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Dynamical sporadicity and anomalous diffusion in the Levy motion
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We discuss continuous-time sporadic dynamics that are intermediate between regular and random be-
haviors. A characterization of such processes is provided by a scale-dependent entropic quantity, and is
applied to a model of Levy motion introduced by Klafter, Blumen, and Shlesinger [Phys. Rev. A 35,
3081 (1987)]. The study suggests that sporadicity may be a feature of some physical systems exhibiting
anomalous diffusion.
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I. INTRODUCTION

When it was first introduced in the turbulence litera-
ture, the term intermittency denoted the remarkable non-
Gaussian nature of small-scale fluctuations in the velocity
field of a fiuid at high Reynolds number [1]. Efforts to
understand this phenomenon were one of the motivations
which led to the recognition that strongly intermittent
structures can be identifiable with geometrical objects of
fractional dimension, or fractals [2].

As far as temporal intermittency is concerned, there
are two slightly different viewpoints. On the one hand,
attention may be focused on certain special events which
occur rarely in time, but which are nevertheless critical in
determining physical properties of a system. On the oth-
er hand, when a dynamical evolution consists of both
quiescent (or regular) and active (or chaotic) phases
which alternate temporally in an interspersed way, one
may wish to quantify the degree of the chaoticity of the
process as a whole. A well-known example of such
dynamical intermittency is the deterministic map of
Pomeau and Manneville [3]

x„+&=x„+cx' (modl), z) 1, c)0
at the transition point from periodic oscillation to chaos.
Note that, though dynamical systems . are given by
differential equations or iterations such as Eq. (1.1), via
symbolic dynamics [4] the phase space can be partitioned
into discrete cells, thereby trajectories are coded by
strings of integers or symbols. In other words, deter-
ministic systems with continuous variables correspond to
stochastic processes with discrete states and time.

In Ref. [5] a criterion is given according to which
sporadic dynamics is defined as intermediate between the
regular and random behaviors, in low-dimensional deter-
ministic systems or discrete stochastic processes. In the
present work we propose to consider stochastic processes
which are continuous both in observables and in time, fol-
lowing the approach of Ref. [5]. This generalization
seems of interest, since "large" dynamical systems are
likely to be connected to continuous stochastic processes.
This is a basic assumption, for instance, of the statistical
theory of full developed fluid turbulence, which involves

many active degrees of freedom [1]. In this paper we
shall be restricted only with dynamical systems of a few
degrees of freedom but in a large spatial extension, such
as the motion of a tracer particle immersed in a fluid.
Transport phenomena such as diffusion of scalar tracers
have been demonstrated experimentally in an array of
convection rolls or vortices [6]. In theoretical models
like the Lorentz gas (or extended Sinai billiard) [7], deter-
ministic chaos gives rise to a Brownian motion in real
space [7,8] and the diffusion coefficient has been ex-
pressed in terms of the ergodic quantities of chaotic dy-
namics of the particle [9]. Perhaps more surprisingly, it
was discovered [10] that diffusion of a scalar tracer in a
fluid of small viscosity admits anomalous regimes, when
the mean-square displacement does not grow linearly
with time, (r2(t))-t", rial. Now, anomalous diffusion
implies non-Gaussian fluctuations, and in some cases the
particle can display Levy rather than Brownian motion
[11]. Furthermore, so far as random diffusion is related
to an underlying chaotic dynamics, in an anomalous
transport regime certain nonchaotic mechanisms may
coexist with a chaotic one, inducing correlated effects and
interesting intermittent phenomena. We shall show that
the velocity of a particle undergoing a Levy motion may
be sporadic rather than random, in the sense specified
below.

The content of this paper is outlined as follows. In Sec.
II we recall the characterization of sporadic dynamics as
proposed in Ref. [5], and discuss a natural way to extend
it to continuous stochastic processes. In Sec. III, a
continuous-time model of Levy motion proposed by Kla-
fter, Blumen, and Shlesinger (KBS) [12] is presented, and
is analyzed using the theory of regenerative phenomena
developed by Feller and Kingman [13,14]. Non-Gaussian
fluctuations are discussed, and are shown to be described
by the Levy stable distributions. By the same token we
obtain the asymptotic forms for the mean-square dis-
placement (r (t))-t". The four transport regimes
which are found in Ref. [12] are thereby recovered in a
more direct way, and interpreted in terms of the forma-
tion of fractals in space and/or time.

Section IV will be concerned with the velocity v( t ) of a
Levy particle. We show that the time-invariant probabil-
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ity density for the velocity may or may not be normaliz-
able. The autocorrelation function and the power spec-
trum are calculated, with the emphasis on the necessity
to use conditional probabilities when the invariant proba-
bility density is not normalizable. From the velocity we
derive again the long-term behaviors for (r (r) ). Finally,
we show that sporadicity as defined in Sec. II is realized
by the velocity v(t ) of a Levy particle, in a subclass of the
KBS models. Some possible applications are mentioned
in Sec V.

II. SPORADIC DYNAMICS AND ENTROPY

A. Intermittency and sporadicity

Intermittency is observable in a turbulent flow by
quantities such as high-pass-filtered velocity or velocity
derivatives. Those signals may display long quiescent
("nonturbulent") time intervals, interrupted by turbulent
bursts. "Quiescent" here may mean for an observable to
remain constant or below a prescribed threshold, and a
"burst" the occurrence of a fluctuation exceeding the
threshold. In order to measure the intermittency of a
turbulent fiow, Townsend [15] introduced a number y as
the mean fraction of time a given signal is turbulent. Let
U( t ) be the integrated turbulent time during (0, t). Then

( U(i))y= lim
f~oo

(2.1)

This number has been measured in boundary-layer exper-
iments [16].

Partly motivated by the interest in fluid turbulence, in
Ref. [17] Mandelbrot proposed a general classification of
stationary stochastic processes exhibiting long quiescent
time intervals. Let 4(t) be the probability that an ob-
servable X(t ) is not quiescent (e.g., does not remain con-
stant or stay below a prescribed threshold) over a time in-
terval (O, t). Then, X(t) is said to be finitely (infinitely)
intermittent if lim, „4(t)& ~ (= ~ ). Infinite intermit-

p(t ) =p(i+dr )+p(0)q(r )dr, (2.3)

where p(t)dt is the probability that the time lapse be-
tween two consecutive events is between t and t+dt.
Equation (2.3) yields

or

d (r) = —P(0)y(t)
dt

(2.4)

p(r)=p(0) 1 —f q(t')dt'
0

Moreover, the quantity fot'y(t')dt' tends to the first

moment of y(t ) as t ~ Do, i.e., the mean quiescent phase
interval r, = f o tp(t)dt. Integrating by parts and using

Eq. (2.4) one obtains

tency was also called sporadic behavior .Let 4(t ) be writ-
ten in an integral form

4(r)=4(0)+ f p(r'}dr'. (2.2)
0

Then, the sporadic behavior in the sense of Mandelbrot
corresponds to the non-normalizability of the probability
distribution P( t ).

In order to see the meaning of Mandelbrot's definition,
one may interpret P(t ) as the probability for any given in-
stant to be exactly at time t prior to the occurrence of an
event. Then, its integral f0$(t')dt' is the probability
that the initial instant 0 is at a time shorter than or equal
to t before an event occurs, which is the same as the
probability 4(t) that the time interval (O, t) is not devoid
of any event. Moreover, let us suppose that the events
are regenerative. That is, once an event has occurred all
the memory of the past is lost. For an intermittent signal
from turbulent motion, for instance, though time correla-
tion might persist during a long nonturbulent phase, it is
expected to be destroyed by chaotic dynamics during a
turbulent burst. In this case, one can write

f t'q(r')dr'= f f q(r")dr" f q(r")dr"—dr' — f p(r')dr'. (2.5)

Equation (2.5} asserts that P(t) is not normalizable if
and only if y(t) decays so slowly so that r, = ~. This is
when no intrinsic time scale exists, and fraetal time is ex-
pected to occur [18]. Indeed, as we shall see later, for a
regenerative event 7 i ~ generally implies that its
( U(t)) grows nonlinearly with time, ( U(t)) —t, where
a is a fractal dimension for U(t ) (0 & a & 1). As a conse-
quence, the intermittency factor y =0 [cf. Eq. (2.1)].

One emphasizes that in the Mandelbrot sense fractal
time corresponds to an extreme case of infinite intermit'-
tency. Non-normalizable probability densities do not
pose mathematical di%culties if the theory of conditional
probability of Renyi [19] is applied. For instance, aver-
age quantities over a time interval (O, t), like correlation

function or power spectrum, ought to be evaluated condi-
tioned by the probability 4(t ) that some event must have
occurred during (0, t) (Ref. [17]and see below).

One may ask if a criterion for the sporadic behavior
could be provided, without reference to such (somewhat
arbitrary) terms as threshold, quiescent phase, or event.
In the light of recent progress in the ergodic theory of
dynamical systems, the notion of regular and chaotic be-
haviors became precise in terms of the Kolmogorov-Sinai
entropy hKs and the Lyapunov exponents [20], and of the
algorithmic complexity of Kolmogorov and Chaitin [21].
A specific characterization of dynamical sporadicity,
therefore, may be expressed in terms of such concepts.
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B. Dynamical entropy

Suppose a low-dimensional dynamical system admits a
generating partition of the phase space, so that a trajecto-
ry is represented by S=(sos& . s„& . . ), where s, are
integers or symbols of the partition. Then, S„oflength n

is said to be sporadic [5], if its Kolmogorov-Chaitin algo-
rithmic complexity J (S„}behaves as

which again implies A, =0.
Also, for a multidimensional system, the presence of a

sporadic mode does not imply necessarily a sporadic be-
havior of the entropy H„~ Chaotic modes with positive
Lyapunov exponents which may be simultaneously
present would imply a nonvanishing Kolmogorov-Sinai
entropy.

E(S„}-n'(inn) ', (2.6)
C. e entropy

where vv&1, or vo=1 and v& &0. The regular (v0=0)
and random (vo= 1, v, =0) cases are at the two extremi-
ties of the spectrum. It has been shown that the
Pomeau-Manneville intermittent map Eq. (1.1) is sporad-
ic for 2&z, with vo=1/(z —1). Sporadicity is realized
when the random events occur rarely in time, often in a
clustering manner. For 0( vo & 1, they are restricted to a
fractal-like subset in time, though the time here is
discrete. The seemingly marginal case with v0=1 and
v, &0 can in fact happen commonly, e.g., in Eq. (1.1) for
z =2.

A relationship between J (S„) and the dynamical en-

tropy asserts [4] that for almost all trajectories S„,
lim E(S„)/n = lim H„/n =hzs, (2.7)

where H„ is the Shannon-like entropy

H„= —g p(S„)lnp(S„)= ( —lnp(S„) ), (2.8)

with p being an invariant measure of the system. The
Kolmogorov-Sinai entropy h Ks is the rate of information
creation per unit time. Thus, for a chaotic attractor with
vp = 1 and v, =0, a positive h Ks is present which, accord-
ing to a theorem of Pesin [22]

hxs= g(positive Lyapunov exponents) (2.9)

implies the existence of at least one positive Lyapunov
characteristic exponent, and hence the system displays an
exponential instability of trajectories.

From Eqs. (2.7) and (2.8), one expects that for a
sporadic system, the scaling of the Shannon-like entropy
H„as a function of n behaves similarly as Eq. (2.6) [23].
As a consequence, the entropy per unit time will be zero,
hKs=0. Besides, the dynamics may produce a stretched
exponential instability, in the sense that along certain
directions of the phase space, neighboring trajectories
diverge as

5x(n )=5x(0)exp[en (inn ) '], c )0 (2.10)

5x(n )-5x(0)+cn, v, c )0 (2.11)

in which case one may speak of a sporadic Lyapunov
mode, with a zero Lyapunov exponent (defined as
A, =lim„( 1/n )In[5x(n ) /5x (0)]=0). Indeed, the
Porneau-Manneville system may be properly viewed as a
description of a sporadic mode. Note that a sporadic
mode is distinct from a regular (e.g., periodic) mode, for
which one expects only a polynomial growth of perturba-
tions

For a genuinely continuous stochastic process, in con-
trast to a discrete one, since an exact knowledge of an
analog random signal of time length T would require an
infinite amount of information, an adequate entropic
quantity is the amount of information production within
a given granite precision e, H(e, T). This has been made
rigorous by Kolmogorov and Shannon [24], in the con-
text of the theory of information transmission. The e en-
tropy h(e)=limr „H(e, T)/T is the corresponding rate
per unit time. In practice, e may denote the precision
limit by which analog signals are digitalized, and h(e) is
the corresponding Shannon entropy per unit time, for the
digitalized signals. The asymptotic behaviors of h(e) as e
goes to 0 have been recently used to describe and classify
diverse dynamical systems [25].

Let us give two simple examples. The erst example is a
d-dimensional uniform distribution on the cube [0,1]".
The d-dimensional vector output, digitalized by a resolu-
tion of e, will have e "possible values, with equal proba-
bility Pr( e) = e Hence . a Shannon entropy of this
coarse-grained random source will behave as

h(e)= —lnPr(e)=din(1/e) . (2.12)

Indeed, a typical asymptotic form of h(e) for a random
function in a finite-dimensional space is ln(1/e) [24].

Our second example is an Ornstein-Uhlenbeck process
which describes the velocity u(t) of a Brownian particle
undergoing a normal diffusion. The random function
v(t) obeys the Langevin equation

dv(t) = —
A,u+g(t),

dt
(2.13)

(u u e AE)2

2bsr

1
p(v;t~v, )=,„,exp

(2~b o)'~. (2.14)

where b=(1—e ')/2A, . A simple reasoning to derive
the asymptotic form of H(e, T) for v(t) is as follows.
Consider a time window [0,T], and let t =kg,
k = 1,2, 3, . . . , n (so that the time is coarse grained by v).
According to Eq. (2.14), the transition from v(k~) to
v((k+1)r) has a Gaussian distribution, with a mean
( v((k+ 1)v ) ~u(k~) ) =u(kr)(1 —A~), and a variance
var(u((1+k)~)~u(kr))=o ~ Therefore, if .the standard
deviation e =o &r is chosen as a resolution limit for
u(k~), at each time step the coarse-grained output will
have a few highly probable values (e.g. , 0, +e or —e
from the mean value), and only a finite amount of infor-
mation is generated. The entropic quantity H(e, 'I} for

where g(t ) is a white noise with covariance
(g(t )g(t') ) =5(t t')o . T—he transition probability is
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the discretized v(t) of n time steps can be shown to be a
finite constant multiplied by n [25]. With
n =T/~=To. /e, we conclude that

the probability that a jump occurs at time t, then the
probability for jumps occurring at time instants

~ ~ ~ )t is

(2.15)

Since H(e, T) is proportional to T, an e entropy per
unit time is positive, h(e)=limT H( e, T) /T, which
behaves as 1/e for small e. This divergence is obviously
much faster than In(l/e) as in the finite-dimensional
cases.

By analogy with the discrete time case, we shall say
that a continuous dynamical process is sporadic if its

H(e, T) T '(lnT) 'h(e),
T~ QQ

(2.16)

with v0 & 1, or v0=1 and v& &0. In this case, the e entro-

py per unit time for all fixed t. will be zero.
In what follows we shall show that sporadicity in the

sense of Eq. (2.16) may be realized by the velocity of a
Levy motion rather than a Brownian one. This will be
carried out on the KBS model introduced in Ref. [12].

III. LEVY MOTION

A. KBS model

In the KBS model proposed in Ref. [12],a particle un-

dergoes straight motion steps, interrupted by jumps. It is
assumed that the memory is lost each time a jump has oc-
curred, so that the process is entirely specified by the
probability density %(r, t ) for a single step of r in time t.
%(r, t ) has the following properties.

(i) I J +(r, t )dt dr = l.
(ii) %(r, t ) =g(r)5(r t ), thus th—e space and time are

coupled by a 5 function, and the velocity is constant dur-

ing each step.
(iii) g(r) depends only on r, and the orientation is uni-

formly distributed.
(iv) g(r) r ". Unusual behaviors are expected be-

t —+ 00

cause of this long tail of P(r). The distribution of the
step length P(r) is related to P(r) by g(r)dr=/(r)dr,
thus one has P(r )-r ",where p* =p d+ 1 and d is-
the dimension of the physical space.

By a coordinate change one may rewrite %(r, t ) as

1 =s+ f (1—e ")p(t)dt .
p(s)

(3.4)

Hence a regenerative event can as well be specified by its

p ( t ), also called the Kingman's p function.
Of central importance is the stochastic function U(t),

the total number of jump events in (O, t), which may be
expressed as

U(t)= f Z(t')dt', (3.5)
0

where Z(t ) is the indicator function for the jump event,
taking values 0 and 1. Obviously,

p(t ) =Pr[Z(t ) = 1], ( U(t ) ) = f p(t')dt' . (36)
0

In order to obtain the asymptotic behaviors of p(t ) as
t ~ oo, we apply Eq. (3.4) to tp(t ) of the KBS model [Eq.
(3.2)], and expand for small s, which yields

Al(1 —a)s +O(s), a&1
As lns+O(s), a= 1

1 =.(I+r, )s —A~1(1—a)~s +O(s ), 1&a&2
p(s )

(I+r&)s —As lns+O(s ), a=2

(1+v, )s —(0 /2)s +O(s, s ), 2 & a

p(t] t2 t ) p(t] )p(t2 tf ) p(t t —1)

There exists a well-developed theory of regenerative
phenomena in the mathematics literature. The theory
was first developed for discrete time processes by Feller
[13], who used the term "recurrent phenomena, " and
later extended to the continuous time by Kingman [14].
These results provide us with powerful tools to analyze
the regenerative events, in particular to establish a
rigorous connection between non-Gaussian fluctuations
with the Levy stable distributions. The theory has been
applied to the Pomeau-Manneville system [5,26], and to
Hamiltonian chaotic systems [27].

According to Kingman's theory, there is a unique
correspondence between p(t ) and y(t ). If p(s) is the La-
place transform ofp ( t ), then [14]

0 (r, t ) =q (t )5(r —t'), (3.1) (3.7)

where y( t ) is the probability density of the interjump in-

terval, satisfying

q(t) —at '"+", F(t)= f y(t')dt' —At
I~co t

where o. =vp* —1, 3 is a constant. We shall see that the
statistical properties of the jump events are essentially
dictated by the exponent a of the distribution y( t ).

B. Regenerative event and fractal time

The particle's motion is basically determined by the
jump events, which are governed by p(tt). The jump
events are regenerative in the sense that, if p(t) denotes

(sinai/Am)t ', a&1
1p(t)— Ex=1

r-~ A ln(t/A )

1
1 &0. .(1+r, )

(3.8)

Equation (3.8) tells us that if a) 1, the probability of

where 7, is the mean, and o the variance, of the inter-

jump interval. Three cases are distinguished in Eq. (3.7),
according to (a) a) 2, r, , o & oo; (b) 1 &a &2, r& & oo,

o = oo; and (c) a & 1, r, =o = oo .
Using the Tauberian theorems [28], one obtains
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(U(t))-
(sinai'/A art)t, a & 1

A ln(t/A )
'

tl(1+r, ), 1 &a .

(3.9)

observing a recurrence of the jump eventually becomes
independent of time. By contrast, for a ~ 1, this probabil-
ity decreases and vanishes for t +00. Hence, as time
elapses, longer and longer steps will have a chance to
occur, and the jurnp event will seem progressively rarer.
However, one should not be misled into thinking that the
process is transient, because after an arbitrarily long time
the event will recur with probability 1, when the whole
process restarts anew (regenerates).

Combining Eqs. (3.6) and (3.8) the mean value of U(t)
yields

(exp[ s—T(u )])=exp[ —u/p(s)] . (3.11)

The moments of T(u) can be easily calculated from
this formula together with Eq. (3.7). For instance, for
a&2, wehave

(T(u)) ~ u(1+r, ), var(T(u))-uo (3.12)

lim Pr

Since T(u) is a sum of time intervals of independent
steps, its ergodic properties and fluctuations can be ex-
pressed using limit theorems for stationary processes with
independent non-negative increments [28]. And using
Eq. (3.10) statements about U(t) may be obtained. For
instance, if a & 2, so that 0 ( 00, the central limit theorem
asserts that

Therefore, for a & 1, the regenerative events occur on a
random fractal subset in time [29], with a fractal dimen-
sion dz =1 if a ~ 1, and a if a (1.

C. Non-Gaussian fluctuations and the Levy distributions

Pr[ U(t ) ~ u ]=Pr[ T(u ) & t ],
from which one can deduce [14]

(3.10)

The inverse stochastic function T(u ) of U(t } is the
time necessary for U(t } to attain the value u. Obviously,

(3.13)

By inverting the equation t =v'u x o + u (1+r, } for
u ~ Oo, and using Eq. (3.10), one concludes that
Pr[U(t) ~ t/(1+r&) xot' —/(1'+rl) ] converges to
the Gauss distribution.

A similar argument can be carried out for a ~ 2, but
the limiting law will be of Levy type. Let G (x) denote
the asymmetric Levy stable distributions, with the
Fourier transform g (z) of its density g (x) given by [30]

—
~z~ 1 (1—a)[cos(na/2) —i sgn(z)sin(ma/2)] if 0&a&2, a+1,

lng (z ) = —
~z

~
[~/2+i sgn(z )in~z

~ ] if a= 1,
—(z( /2 if a~2 .

(3.14)

One can prove the following limit theorems:

Pr U(t) ~
TI

t 1/2

3/2, a & 2
(1+r, )

Pr U(t) ~ —x 3, a=2(At lnt)'~'

1+r,

G (x ) = lim, Pr U(t ) & —x
f~oo 1+&)

' 1/a
At 1&a(2

(1+r)) +' (3.15)

Pr U(t) ~ X
A ln(t/A )

a=1
A [ln(t/A )]

a
Pr U(t)~, a&1 .

Ax

These expressions are consistent with more formal state-
ments in Ref. [31].

It is not straightforward to derive quantities such as
the variance of U(t), from the limiting distributions.
Fortunately, a formula which was derived by Kendall
based on Eq. (3.11) [32] expresses the Laplace transform
of any moment of U(t } in terms of that of the Kingman's

p function, p(s ), or explicitly,

e " U t dt=
0 s[p(s)]"

(3.16)

Hence, using again the Tauberian theorem, with the aid
of Eq. (3.7), one obtains
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var(U(t))=(U (t)) —(U(t))

t, a&2
t lnt, a=2

1&0.&2
2

o(1), a=1
(Int )

t, +&1.

D. Anomalous diffusion

(3.17)

E. Space-time fractals

In this simple model of stochastic diffusion, space and
time are coupled in an explicit way, namely a jump (a
constant step) in time is uniquely associated with a "stop-
over" (straight trajectory) in space. We have shown that
the ensemble of the time instants where jump events
occur form a fractal set if dH =o. ~ 1. When do the stop-
over points form a fractal object in space? Let dH denote
the fractal dimension of the latter. The "mass" of the
stopover points is given by U(t) for a finite t Si.nce this
mass is covered in average by a spatial extension of
(r (t))', we have

Because the direction of each displacement step is ran-
domly chosen, the total displacement after a time t is in
average a "sum" of individual displacements, with U(t)
"sumrnands, " thus one can write

( r'(r ) ) —( U(r ) ) ( r'), r'I—, (3.18)

const, 0, & 2v

(r'), — Inr, a=2v
f —+ oo

~ &2v

(3.20)

where ( r ), is the mean-squared displacement of a single

step, conditioned by the fact that the latter cannot last, at
most, longer than the time t. This implies that

(r ),= Jr %(r, t')6(t —t')drdt' (3.19)

with 8(x ) being a Heaviside function. A direct calcula-
tion yields

(U(t)) —(r (t)) " or g=2dHIdH (3.24)

It is known that for a Brownian motion a particle's tra-
jectory would fill up a two-dimensional surface and we
have dH =2. We shall speak of a fractal in space only in

the restricted sense that the stopover points form a set in

space with a fractional dimension (dH & 2).
From Eq. (3.24) some general statements may be

drawn. Hence the normal diffusion is related to the ab-
sence of a fractal both in space and time (dH= 1 and
dH=2 imply g= 1), as well as to the exceptional cases
when a spatial fractal and a temporal one are connected
via 2dH =dH & 2. Perhaps somewhat surprising is the ob-
servation that fractal time reduces the transport pace: if a
fractal is only present in time the transport is always
subdiffuse (dH & 1 and dH=2 imply rI&1). In this case
the diffusion coefficient D defined as

Combining Eq. (3.18) with Eqs. (3.9) and (3.20), one
concludes that (i) if a ) 1,

("(r))
t m 2td

(3.25)

t, n&2v
(r (t)) — r Int, a=2v

t2v+ I —a
(x & 2v .

(ii) if a= 1,

(3.21)

vanishes. The supradiffusive transport (with D = ~ ) is al-

ways conditioned by the presence of a fractal in space
(dH & 2 is necessary, and dH & 2dH is sufficient, to imply

q) 1).
Applying Eq. (3.24) to the KBS model with the aid of

Eqs. (3.21)—(3.23) and Eq. (3.9), one concludes that if
a~1,

0. &2v
lnt

'

(r'(r ) ) — r, a=2v
2

a&2v .
lnt

'

(3.22)

2 If a&2V
dH

2v+ 1 —a

and iffy&1,

if a &2v
(3.26)

and (iii) if a & 1,

t, a&2v
(r (t)) — t 1nt, a=2v

t, a&2v .
(3.23)

These results are in complete agreement with those
originally derived by Klafter, Blumen, and Shlesinger
I12], who used a technique of Laplace transform of prob-
ability distributions. The new derivation seems more
transparent, and demonstrated the important role played
by the random function U(t ).

2 if o&2V
d" =

H
if a&2v .

v

(3.27)

These results are consistent with the above general
conclusions, and suggest a classification of the four trans-
port regimes summarized in Eqs. (3.21)—(3.23) in terms of
the presence or absence of a fractal in time or/and in

space. In particular, one sees that dH =2 can still be the
case even with an anomalous diffusion behavior, if a frac-
tal is realized only in time (when 2v & n & 1). On the oth-
er hand, regardless whether a fractal is present in time,
the condition under which dH &2 coincides with a & 2v,
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that is, when the single-step displacement is divergent,
(r ),~, „~ [Eq. (3.20)], and therefore there is a lack
of a characteristic scale in space.

step, the larger (the smaller) is the velocity during that
step (cf. Fig. 1). By a coordinate change, and according
to %(v, t)dv=%(v, t)du, one can write

IV. VELOCITY FUNCTION

A. Velocity distribution and normalizability

%(v, t)=g(v)5(t —u'/'" "),
U~(x) 1f v) 1

P(v)-v ' "+' for U~O if v(1

(4.2)

The velocity v(t ) of a Levy particle is constant during
straight motion steps, and exhibits discontinuous changes
at jump time instants (see Fig. 1 for illustrations). Its
values at two time instants t, and t2 are statistically in-

dependent if a jump event occurred at a time between t,
and t2. The probability distribution of a single-step ve-

locity is directly given by %(r, t ) and v =r/t, which yields

+(v, r)=q(r)5(v r" ')—, y(r) —ar I +" . (4.1)

and g(v)=g(v)u'
Now, the probability to observe a value of U at any

time is the probability of having a constant step with that
value of v, times the duration of the time step. Therefore
the probability density of U which would be invariant in

time, say p(v ), satisfies

I/(v —
1)q( ) v

—[(a—I)/(v —1)+i]

Note that, for v & 1 (v & 1), the longer is one constant
v —+(x} if v) 1

for v~0 if v(1 . (4.3)

"y(t)

(a) And p(v)=p(u}v'
From Eq. (4.3) one concludes that the invariant density

p(u ) is normalizable if a & 1, with the normalizing factor
being proportional to ~&, the mean single-step duration.
On the other hand, for a& 1, p(v) is not normalizable.
This is concomitant with the fact that for a 1, the decay
of y(t ) is so slow that r, diverges, and constant steps of
extremely long durations dominate the dynamics. From
an observational viewpoint, however, if a physical obser-
vation is limited to a time span T, the distribution q&(t)

ought to be truncated at T; and the velocity distribution

p(v ) ought to be truncated at v
"=T" '. The conditional

probability density

(b) p(v )

f ,
p(v')dv'

p(u)

f p(v')du'

p(ul T}= '

v&1

l l~l ' "' a, II (g
l

I'UW', -, - - ll II(I'g

Vy(t)

ILI I lip i i Ilies Ill

IIII I I I(I )41

p(v) if a& 1

p(v)/lnT if a= 1
T~ 00

p(v)T ' if a&1
(4.4)

IIII 5. ~~(~

"'
giIW(g~(U

Ii ill~I ~ IIj ' lii[lrll'~ 'I ,
~,t ~~qI. U I II

(c)

will always be well defined.
An alternative way to interpret this peculiar feature is

to consider the probability density p(v, r, t ) for observing
a value of v at time t, which is prior to a jurnp event by
time ~. We have

p(v, r, t }=p(t—v' ' "+r)1(/(u)e(v'/'" "—r), (4.5)

FIG. 1. Velocity function of a two-dimensional KBS model
with a=0.8. (a) v=0. 8 and (b) v=1.2. A same sample path of
3000 times steps was chosen for (a) and (b), which thus differ
only by the value of v. In (c) is shown the corresponding indica-
tor function Z(t ) for the jump event, where a self-similar struc-
ture is apparent.

where p(t) is the Kingman's p function. For a&1, p(t)
tends to a constant [Eq. (3.8)], and p(v } is recovered as
p(v)=lim, p(v, t), with p(v, t}=fp(v, r, t)dr. For
a &1, on the other hand, p(t) asymptotically vanishes in
the same manner as the dependence of p( v l T ) on T.

In conclusion, the probability density for the velocity
of a Levy particle is not normalizable, if a ~ 1 when
~&

= Oo and the jump events occur rarely enough to form
only a fractal subset in time. In that case the conditional
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probability Eqs. (4.4) are to be used in statistical calcula-
tions, e.g. , of the autocorrelation function of v(t ).

B. Velocity autocorrelation and transport behaviors

As a consequence, if C(t) t ~, then

1 if y) 1

( ( )) r}: (4.7)

The mean displacement of a particle can be expressed
in terms of the correlation function C(t } of its velocity,
as follows:

The velocity correlation function of a Levy motion, for
a ) 1, is given by

(r (t)) = f f 'dt'dt" (v(t')v(t"))
O

=2t f dt'C(t') 2f—t'dt'C(t') .
0 0

(4.6)

C(t)=(v(0)v(t)) =f dv f dv'p(v)p(v', t~v)vv', (4.8)

where p(v'; t
~
v; 0) is the transition probability which

takes the form

5"(v—v') if v and v' belong to a same step

p(v', t ) otherwisepv;tv= (4.9)

with y =a+1—2v. Applying Eq. (4.7) to Eq. (4.10) one
concludes that, for a ) 1,

1 if a)2v
2v+ 1 —a if a &2v (4.11)

For a & 1, the same procedure can be repeated, except
that now using the conditional probability p( v, t

~
T )

yields an extra factor —T ' in the final expression in

Eq. (4.10). Identifying T with the last observed time t,
one obtains, for a & 1, y =2( 1 —v) and

a if a)2v
2v if a &2v ~

(4.12)

In this way one recovers once again the four transport
regimes It is to be noted that from the general equation
(4.7), g & 2 only if y &0, i.e., when the velocity autocorre-
lation increases in time.

The power spectrum of a Levy velocity is obtained
from its autocorrelation, using again the Tauberian
theorem, which yields

S(co) —co
co~O

2v —a if a) 1

2v —1 if a&1. (4.13)

If v(0) and v(t ) do not belong to a same step, the aver-

age of their product in Eq. (4.8} would be zero because of
the orientation randomization at each jump. Hence
nonzero contribution to C(t) comes only from single

steps of duration larger than t, i.e., v ) t " '. Consequent-
ly, the velocity correlation function C(t ) is simply

C(t) f d„z—(( — )/( — )+ } t
—y (4 I())

t —+ oo

Pr(e, r, n)=p, (vo) P P,(v;), (4.14)

where p,(v) and g,(v) are the discrete counterparts of
p(v) and P(v), respectively, and N„ is the number of
jump events during n time units. Thus we have

( —1 nPr(e, ,rn ) ) —( N„) ( ln 'g, (v ) ) .

The discrete form of y(t ) is [cf. Eq. (3.2)]

q(k, r)-r(p(kr)-a k "+", -

(4.15)

(4.16)

where a'=ax . The discrete analogy to Eq. (3.9), due
to Feller [13],asserts that

n——T if a) 1
t

T]

(N„)—, ,
—T/lnT if a= 1

n

a'ln(n/(t')
(4.17)

n
a'

—T if a& 1

where r( is the first moment of y(k, r),
r(= $ krak(k, }=rr / (rTherefore (N„) only depends

on T, not on ~.
Furthermore, one can readily show that the second fac-

tor on the right-hand side of Eq. (4.15) yields -din(1/e).
Combining with Eq. (4.17) we conclude

is the probability for a discretized velocity sample of
length n [33]. For a Levy motion, which consists of sta-
tistically independent steps, Pr(e, r, n) can be written as a
product of identical distributions:

N„

Equation (4.13) shows that there is an infrared divergence
( I /f-like noise), if 2v & a & 1, or a & 1 and v & 1/2.

C. e entropy of the velocity function

Tin(1/e)" if a& 1

H(E, T)— (T/lnT)ln(1/e) if a= 1

T ln(1/e) if a & 1 .

(4. 18)

Let velocity signals be digitalized by a scale of e, and
the time discretized by ~. One can define a Shannon-like
entropy H(e, r, T), as function of e and for a time span
T=nr, as the average of I nrP( er, n ), wh—ere Pr(e, nr)

From Eq. (4.18) it follows that the velocity of a Levy
particle is random if a ) 1, and sporadic if a 1, in the
sense of Eq. (2.16). Note that the Levy motion as defined

in the KBS model differs also from a Brownian motion in
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that h(e) diverges with 1/e logarithmically, rather than
polynomially [cf. Eq. (2.15)]. This is related to the fact
that (N„) remains a finite quantity for fixed T and arbi-
trarily small r, and H(e, T) is the product of (N„) with
an e entropy of a d-dimensional entropy which typically
behaves as din(1/e) [cf. Eq. (2.12)].

V. POSSIBLE EXAMPLES

g(l )-I (5.1)

hence the corresponding parameter in the KBS model is
p*=3. With v=1 one deduces a=vp* —1=2. Then,
the KBS model predicts that the mean-square displace-
ment is [Eq. (3.21)]

(r'(t)) -t lnt (5.2)

and the correlation function and the power spectrum for
the velocity are, respectively [Eqs. (4.10) and (4.13)],

1C(t) t', S(-to)-in —. (5.3)

Both these predictions agree with the results derived
from different arguments and with the numerical simula-
tions [35]. Thus the extended Sinai billiard seems to pro-
vide an example of the Levy motion as described by the
KBS model, in spite of the fact that the dynamics is in-
trinsically deterministic (e.g., the orientation change at
each collision, instead of being randomly chosen, obeys
the rule "the incidence angle equals the refiection angle" ).

Chaotic diffusion in regular fields Particle motio.n in
an ideal, incompressible and time-independent How pos-
sessing the Beltrami property vXrotv=o can display
chaotic dynamics in physical space. Examples for this
so-called Lagrangian turbulence are the well-known
periodic ABC flow [36], and its generalization called the
Q flow with quasiperiodic symmetry [37]. There is some
numerical evidence that the trajectory of a particle con-
sists of straight steps between random turns that are rem-

Anomalous diffusion has been a focus of recent atten-
tion [11]. It would be of interest to establish if the KBS
scheme [12] for the Levy motion is realized in some of
the physical systems known to exhibit anomalous
diffusion, and to seek conditions under which the sporad-
icity is expected. Let us mention a few possible examples
from deterministic systems.

Periodic Loren, tz gas without horizon. In a periodic
Lorentz gas (or extended Sinai billiard) a point mass
moves with constant velocity between elastic collisions
with fixed hard spheres in a regular lattice. This problem
of interest to the foundation of statistical mechanics has
been rigorously analyzed and many of its ergodic proper-
ties are known [7]. If the interscatter distance is large
compared with the scatter radius, the length of free paths
is unbounded and the billiard is said to be without hor-
izon. In the case of a cubic lattice which is always
without horizon, from an ergodic consideration the prob-
ability density for the free path length was shown to be
[34]

iniscent of a Levy motion, and the transport by chaotic
streamlines shows signs of an anomalous diffusion [38].

A related class of systems is the particle motion in a
two-dimensional smooth periodic potential which have
also been shown to display anomalous diffusion with
Levy characteristics [39]. This and the streamline prob-
lem can both be described in a Hamiltonian formalism,
and it is possible that the anomalous transport is related
to the existence of a hierarchy of cantori [broken
Kolmogorov-Arnold-Moser (KAM) invariant tori],
which is believed to naturally imply a long tail of the ve-
locity autocorrelation [40,27]. No satisfactory theory is
yet available which would allow one to establish a
waiting-time distribution like Eq. (3.2) and derive analyti-
cally the exponent of its long tail. In particular, we do
not know if sporadic behavior can be realized in such sys-
tems.

Deterministic maps The. Pomeau-Manneville map [Eq.
(1.1)] can be suitably deformed to allow motions between
adjacent unit intervals in an one-dimensional array of
unit cells. Such a variant was introduced to approximate
the phasic diffusion in resistively shunted Josephson junc-
tions [41]. The mean-square displacement was found to
be [41,42]

t, a)2
t lnt, a=2

(r'(t)) — t', 1&a&2
t /lnt, et=1

t, a&1

(5.4)

where a=1/(z —1) as in the Pomeau-Manneville case.
These results are remarkably consistent with the KBS
model [compare with Eqs. (3.21)—(3.23), assuming v= 1].
Here the analogy can be done with certain confidence, be-
cause the distribution of the regular ("laminar" ) phases
are known to exhibit an algebraic decay, tp(t )-t
Therefore we expect that the system is sporadic if a 1,
or z ~ 2 which includes the usual physical values z =2, 3.
Note, however, that the time here is discrete rather than
continuous.

Relatiue turbulent diffusion It has be.en suggested that
the relative diffusion of particles in a developed turbulent
Quid may be modeled by a Levy motion, though no evi-
dence is known for a waiting-time distribution with an
algebraic decay like Eq. (3.2) [43]. Let us denote by v(r )

the velocity difference of a pair of particles separated by a
distance of r. In a scaling regime the classical Kolmo-
gorov law asserts that ( ~v(r ) ~ ) -r ', thus in the sense of
a statistical average a characteristic time t is associated
with a characteristic spatial length r as r -t with an ex-
ponent v=3/2. Moreover, from the Richardson law of
the relative diffusion (r (t) )-t, one has ran=3. It fol-
lows that a 1. However, this does not imply that the
relative velocity should be sporadic in time, or that its
time course would display very long quiescent phases. In
this case, during each characteristic step the relative ve-
locity is not constant but very random in time.
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