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Psychiatric disorders such as autism and schizophrenia, arise from abnormalities in brain systems that un-
derlie cognitive, emotional, and social functions. The brain is enormously complex and its abundant feedback
loops onmultiple scales preclude intuitive explication of circuit functions. In close interplaywith experiments,
theory and computational modeling are essential for understanding how, precisely, neural circuits generate
flexible behaviors and their impairments give rise to psychiatric symptoms. This Perspective highlights
recent progress in applying computational neuroscience to the study of mental disorders. We outline basic
approaches, including identification of core deficits that cut across disease categories, biologically realistic
modeling bridging cellular and synapticmechanismswith behavior, andmodel-aided diagnosis. The need for
new research strategies in psychiatry is urgent. Computational psychiatry potentially provides powerful tools
for elucidating pathophysiology that may inform both diagnosis and treatment. To achieve this promise will
require investment in cross-disciplinary training and research in this nascent field.
Introduction
In 1988, a computational neuroscience ‘‘manifesto’’ (Sejnowski

et al., 1988) mentioned three reasons for the emergence of this

new research field: advances in neuroscience had generated a

large body of neurophysiologic data, new computers possessed

sufficient power to conduct neural model simulations, and

simplified brain models were introduced that provided insights

into complex neural circuit functions. Since then, dramatic ad-

vances made on all three fronts fundamentally changed the

computational neuroscience landscape (Abbott, 2008). Notably,

computational neuroscience initially focused on the early stages

of sensory processing (Sejnowski et al., 1988), because studies

of the neural bases of higher cognitive functions were beyond

empirical neuroscience of that era. Indeed, only in recent years

has the confluence of single-unit physiology, human functional

brain imaging, and advances in computational modeling made

significant strides in tackling executive functions (such as

working memory and decision making) that underlie cognitively

controlled flexible behavior. These higher functions critically

depend on the prefrontal cortex (PFC) (Fuster, 2008; Miller and

Cohen, 2001; Wang, 2013; Szczepanski and Knight, 2014).

Because impairments of the PFC and related circuits are impli-

cated in major psychiatric disorders, such as schizophrenia

and autism (Goldman-Rakic, 1994; Insel, 2010; Courchesne

et al., 2011; Anticevic et al., 2013a), the newly acquired insights

and computational models offer an opportunity to elucidate

how cellular and circuit level pathologies give rise to cognitive

deficits observed in mental illness, advances in this direction

could inform studies of psychiatric diagnosis, pathophysiology

and treatment.

Therefore, the time is ripe for computational psychiatry to

emerge as a field at the interface between basic and clinical
638 Neuron 84, November 5, 2014 ª2014 Elsevier Inc.
neuroscience (Montague et al., 2012; Friston et al., 2014). In

this Perspective, we review recent work demonstrating that

computational psychiatry introduces novel approaches and tools

to investigate neural circuit mechanisms underlying the cognitive

and behavioral features of neuropsychiatric disorders. First, we

will spell out the rationale of a computational approach to psychi-

atry, i.e., ‘‘why computational psychiatry? What theories and

models are relevant to this field?’’ Second, we will discuss how

theories and models have been applied to the investigation of

behavioral impairments in terms of transdiagnostic endopheno-

types. Third, we will summarize recent work that advocates for

amodel-aided framework of diagnosis and treatment. The fourth

part will be devoted to biophysically based neural circuit

modeling that we argue represents the optimal approach for

cross-level understanding from cellular processes to collective

and emergent circuit dynamics and ultimately to behavior. Fifth

and finally, we will end with practical recommendations related

to the training and funding needed to foster this nascent field.

Why Computational Psychiatry?
It is widely acknowledged that current psychiatric diagnostic

schema and the treatments for psychiatric disorders lack a firm

biological foundation. The complexity of the brain presents

unique challenges to the development of highly specific mecha-

nistic hypotheses to guide research in psychiatry. Advances

in genetics, and molecular and cellular neurosciences are

providing, at long last, clues to the etiology of human cognitive,

emotional, and behavioral problems. For example, candidate-

genestudieshave revealedgenevariations (suchasDISC1;Bran-

don et al., 2009) associated with psychiatric disorders. However,

many in the field think that attempts to seek single genes

underlying complex psychiatric phenotypes have been largely
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disappointing, and that efforts to link genes to more basic cogni-

tiveandbehavioral functionsand functional impairmentscouldbe

more promising. The progress in these areas has yet to provide a

firm basis for a diagnostic system or a single pharmacotherapy

for common psychiatric disorders (Krystal and State, 2014).

A major hindrance in our capacity to develop novel pharmaco-

therapies for psychiatric disorders is the still superficial nature

of our understanding of how circuits produce behavior. In this re-

gard, synaptic and systems physiology are producing remark-

able advances in our specific understanding of the functional

properties of microcircuits and the beginnings of connecting

these insights into behavioral processes including basic visual

perception (Parker and Newsome, 1998), fear conditioning and

extinction (Johansen et al., 2011), and mental representations

in working memory (Arnsten et al., 2010). There are even exam-

ples where aspects of the neural representation of distinct fear

memories can be ascribed to the functional integrity of a

few distinct sets of cells in the amygdala (Josselyn, 2010). Yet,

perhaps as a consequence of the limitations of our animal

models combined with the limited spatial and temporal resolu-

tion of current neuroimaging technologies (MRI, magnetoence-

phalograpy, positron emission tomography), there is not a single

symptom of a single psychiatric disorder for which we fully

understand its physiologic basis at a molecular, cellular, and

microcircuit level. In other words, we have only a somewhat

vague idea of how the brain generates the cognitive, emotional,

and behavioral problems that lead people to seek treatment by

psychiatrists and other mental health clinicians.

As a consequence of our limited understanding of how circuits

represent information, there are a plethora of attempts to explain

circuit dysfunction in psychiatric disorders in superficial ways,

giving rise to an equally large number of relatively risky potential

pharmacologic strategies to address the unmet need for more

effective treatments. The implications of this knowledge gap are

profound for the field of psychiatry and for society. For example,

psychiatric diagnoses have categorical qualities as exemplified

by the Diagnostic and Statistical Manual of Mental Disorders,

Fifth Edition (DSM-5). Although this new version of the DSM

takes into consideration the recent explosions in the genetics of

disorders, such as autism and schizophrenia (Krystal and State,

2014), it is widely criticized for lack of a solid biological foundation

based on either etiology or pathophysiology. Categorizing pa-

tients by symptom checklists results in enormous clinical hetero-

geneity within diagnostic categories, surprisingly poor interrater

reliability for many common psychiatric diagnoses (Freedman

et al., 2013), and very likely, poorer clinical outcomes.

An alternative schema has emerged from the recognition that

behavioral impairments are traits that may be shared across

psychiatric disorders (Krueger, 1999). The shift from a categori-

cal diagnostic focus to a dimensional transdiagnostic approach

emerged in the form of the Research Domain Criteria (RDoC,

http://www.nimh.nih.gov/research-priorities/rdoc/index.shtml)

(Insel et al., 2010; Insel 2014). The RDoC program aims at

identifying core cognitive, emotional, and social dysfunctions,

then elucidating their brain mechanisms bridging different levels

(frommolecules, cells, circuits to functions). Yet, the next step in

this process is to determine whether the circuits are dysfunc-

tional in the same way across disorders or whether, when char-
acterized in increasingly accurate molecular and physiological

ways, categorical features of psychiatric diagnoses reemerge.

Furthermore, diagnoses may have both categorical and dimen-

sional features. For example, schizophrenia appears to be a

more severe form of circuit dysfunction than bipolar disorder

with respect to the thalamo-cortical functional connectivity (Anti-

cevic et al., 2013b), but a completely distinct type of disorder

than bipolar disorder with respect to the variance or ‘‘noise’’ level

of cortical activity (Yang et al., 2014). Neither DSM nor RDoC in

its current form provides guidance as to how to integrate the

dimensional and categorical features of psychiatric pathophysi-

ology. A second consequence is the lack of precision with which

one can predict whether a particular treatment mechanism will

work for psychiatric disorders. It is not just that biomarkers of

illness are lacking, but rather the biomarkers that we have are

not sufficiently mechanistically precise as to specify a particular

treatment. In addition, even when aspects of molecular pathol-

ogy are characterized, the impact on micro-and macrocircuit

functions and the paths to correct that circuit dysfunction are

not clear. As a result, in the case of schizophrenia, it is not clear

that GABA signaling deficits (Lewis et al., 2005, Lewis and Gon-

zalez-Burgos, 2006) should be treated by GABAA receptor ago-

nists nor deficits in NMDA receptor (NMDAR) signaling should be

treated with drugs that increase the stimulation of the glycine

coagonist site of the NMDAR (Buchanan et al., 2011; Goff, 2014).

The gap between genetic, molecular, and cellular studies, on

the one hand, and systems and behavioral neuroscience studies,

on the other, currently cannot be bridged purely through exper-

imentation. Take, again, the example of the PFC. Its crucial role

in a wide range of executive functions (Fuster, 2008; Miller and

Cohen, 2001; Wang, 2013) begs the question: what are the key

properties that enable the PFC to subserve cognitive processes,

in contrast to primary sensory ormotor systems? This question is

difficult to address by laboratory experiments alone, partly

because PFC circuitry is endowed with powerful positive and

negative feedback loops and the behavior of any such dynamical

system is not predictable by intuition alone. While physiological

studies in animals and humans yield data on the correlation

of particular measurements to specific cognitive operations,

theory and modeling are usually needed, together with experi-

mentation, to investigate the ‘‘follow-up’’ questions: what circuit

mechanisms give rise to the observed neuronal and other brain

signals? What are the computational algorithms and generaliz-

able principles that are reflected in the observed biological sig-

nals and sufficient to explain behavior?

Computational modeling offers a suitable approach to quanti-

tatively explore the properties of complex systems across

levels of investigation. Therefore, by incorporating computa-

tional neuroscience modeling within translational neuroscience

research programs, it may be possible to develop more specific

hypotheses related to circuit dysfunction in model systems and

psychiatric disorders. There are many forms of computational

models; we will present two types. Models of Mathematical

Psychology or algorithmic models from Computer Science are

enormously useful for quantifying behavioral data and relating

their fitted parameters to neural computations (Maia and Frank,

2011; Montague et al., 2012). On the other hand, biophysically

informed computational modeling, that are constrained by the
Neuron 84, November 5, 2014 ª2014 Elsevier Inc. 639
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Figure 1. Mechanistic Understanding of Brain Functions Must Relate Structure and Dynamics with Behavior
(A) Brain measures probe spatiotemporal neural activity patterns that are correlated with specific aspects of behavior. Theory and modeling provide a powerful
tool to elucidate how such a pattern is produced by its biological substrate, on one hand, and give rise to computations necessary to account for brain function, on
the other hand.
(B) Biologically based neural circuit modeling is calibrated by physiology of single neurons and synapses (red, blue box in the left panel, respectively), and
constrained by quantitative network connectivity data. This approach is arguably necessary for the three-way understanding among function, neural dynamics
and computation, and biological mechanism.
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biophysical properties of identified synaptic signaling mecha-

nisms and other properties of microcircuits, has proven to be

an effective approach to understanding the neurobiology under-

lying cortical functions and psychiatric disorders (Wang, 2006;

Anticevic et al., 2013a).

Biologically Based Neural Circuit Models
What is biologically based neural circuit modeling? Simply

put, it is a computational framework that is constrained by neuro-

biology and designed to achieve a cross-level understanding of

brain functions in terms of neural dynamics, computation, and

biological mechanisms (Figure 1). One may question whether

such models are too complex to be useful in cognitive science

or psychiatry (Carandini, 2012; Montague et al., 2012). Three
640 Neuron 84, November 5, 2014 ª2014 Elsevier Inc.
points are worth noting on this regard. First, biologically based

modeling is a broad term that embraces a diversity of models

with varying degrees of complexity. A model does not neces-

sarily improve when more biological details are included. There

is always a tradeoff between incorporating important details in

order for the model to be suitable (given a scientific question)

on one hand and simplicity and generalizability on the other

hand. It is also tremendously useful to be able to go back and

forth between models differing in their levels of abstraction, for

instance between a spiking network model and its reduced

‘‘mean-field’’ firing-rate model for population-level dynamics.

Second, neuronal modeling is most appropriate for those

functions for which we have some knowledge about the underly-

ing neural processes, such as dopamine neural signaling of
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reward-prediction error, persistent activity subserving the inter-

nal representation of working memory, and neural integrators

in perceptual decision-making. In contrast, modeling at the neu-

ronal level would seem premature for other behavioral phenom-

ena such as hallucinations, in the absence of neurophysiological

characterization. Finally, to the extent that biophysically based

neural circuit modeling begins by incorporating the simplest

and most fundamental features of synaptic connectivity, it is

arguably the simplest possible framework that permits us to

elucidate the interrelationship among biological mechanism,

neural dynamics and computations, and circuit functional

output.

In a spiking networkmodel, single neurons are often described

by either the leaky integrate-and-fire model or the Hodgkin-

Huxley model. These models are calibrated by physiological

measurements, such as the membrane time constant and the

input-output function (the spike firing rate as a function of the

synaptic input), which can be different for excitatory pyramidal

cells and inhibitory interneurons. Furthermore, it is worth empha-

sizing that in biophysically based models, synapses must

be modeled accurately. Unlike connectionist models in which

coupling between neurons is typically an instantaneous function

of firing activity, synapses have their own rise-times and decay

time constants, and they exhibit summation properties. Synaptic

dynamics are crucial factors in determining the integration time

of a neural circuit and the stability of a strongly recurrent network

(Wang, 1999). Finally, networks endowed with a biologically

plausible architecture need to be constructed based on quanti-

tative anatomy (Douglas and Martin, 2004). For example, a

commonly assumed circuit organization is local excitation be-

tween neurons of similar selectivity combined with a more global

inhibition. Dynamic balance between synaptic excitation and

inhibition is another feature of cortical microcircuits that has

been increasingly recognized experimentally and incorporated

in cortical network models (http://www.scholarpedia.org/article/

Balance_of_excitation_and_inhibition).

Consider decisionmaking, the process of reaching a particular

choice among several alternative options, such as rendering a

judgment out of multiple possibilities given incomplete informa-

tion or choosing one of actions expected to yield different out-

comes (Glimcher, 2003; Gold and Shadlen, 2007; Wang, 2008;

Glimcher and Fehr, 2013). Broadly speaking, there are two types

of computational models of decision making: behavioral models

and neural circuit models. In behavioral psychology, decision

making is commonly modeled by the drift diffusion model (Ratcl-

iff, 1978; Smith and Ratcliff, 2004). In this model, an activity var-

iable X represents the difference between the respective

amounts of accumulated information about the two alternatives,

say XA and XB, X = XA� XB. The dynamics of X is given by the drift

diffusion equation, dX/dt = m+ w(t), where m is the drift rate, w(t)

represents noise. The drift rate m represents the bias (net differ-

ence in the evidence) in favor of one of the two choices (and

is zero if there is no net bias). For instance, in a random-dot

motion direction discrimination task, m is proportional to the

strength of motion signal. This system is a perfect integrator of

the input. The integration process is terminated and the decision

time is read out, whenever X(t) reaches a positive threshold q

(choice A) or a negative threshold �q (choice B). If the drift rate
m is positive, then choice A is correct, whereas choice B is an

error. Therefore, this type of models is commonly referred to

as ramping-to-threshold model, with the average ramping slope

given by m.

A biophysically based neural circuit model has been proposed

for decision making (Wang, 2002). This model reproduces not

only behavioral observations, but also single neural activity asso-

ciated with decision making observed in a monkey experiment

(Roitman and Shadlen, 2002). Moreover, it suggests a specific

biological basis for temporal accumulation of evidence in deci-

sion-making. The drift diffusion model is an ideal perfect inte-

grator (with an infinite time constant), whereas neurons and

synapses are leaky with short time constants of tens of millisec-

onds. The neural circuit model suggests that a long integration

time can be realized in a decision network through recurrent

excitation. Reverberating excitation represents a salient charac-

teristic of cortical local circuits (Douglas et al., 1995; Douglas and

Martin, 2004). When this positive feedback is sufficiently strong,

recurrent excitation in interplay with synaptic inhibition can

create multiple stable states (‘‘attractors’’). Such models have

been initially proposed for working memory. The same models,

provided that excitatory reverberation is slow (i.e., mediated by

the NMDARs), has been shown to be capable of decision-

making computations (Wang, 2002, 2008; Machens et al.,

2005; Miller and Wang, 2006; Wong and Wang, 2006; Soltani

and Wang, 2006; Deco et al., 2007, 2009; Furman and Wang,

2008; Engel and Wang, 2011; Hunt et al., 2012). Interestingly,

physiological studies in behaving nonhuman primates often re-

ported neural activity correlated with decision making in cortical

areas such as the prefrontal cortex or the parietal cortex, that

also exhibit mnemonic persistent activity during working mem-

ory. Hence, this model and supporting experimental data sug-

gest a common, ‘‘cognitive-type’’ circuit mechanism for decision

making and working memory in the brain (Wang, 2013).

Behavioral modeling is often powerful in describing computa-

tions that solve a problem normatively or algorithmically. On

the other hand, neural circuit models may be more suited for

enabling us to investigate the underlying neural mechanisms

and potentially pharmacologic or genetic manipulations of

the circuits. Importantly, neural circuit models are not merely

implementations of abstract mathematical models. For instance,

the two types of models of perceptual decision making have

distinct predictions at the behavioral level (Wang, 2008). These

approaches are usually developed independently, but we are

witnessing some convergence of the two in recent years. For

example, spiking network models have been shown to have

the capability of fitting quantitatively with behavioral perfor-

mance (accuracy and reaction time) data (Lo et al., 2009),

whereas such data fitting andmodel comparisons are commonly

done with more abstract models due to their lower computa-

tional cost. Spiking network models can also be reduced to pop-

ulation rate models (Wong and Wang, 2006), that have features

of abstract connectionist models. On the other hand, connec-

tionist neural network models have increasingly taken biological

information (with identified brain structures, receptors, etc) into

account (O’Reilly and Frank, 2006). Thus, to bridge gaps in the

current knowledge base and to facilitate research, there are

advantages to move back and forth across several models that
Neuron 84, November 5, 2014 ª2014 Elsevier Inc. 641
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Figure 2. Research on Endophenotypes Cuts across Traditionally Defined Psychiatric Categories
(A) Gene regions, genes, and putative endophenotypes implicated in a biological systems approach to schizophrenia research. The dynamic developmental
interplay among genetic, environmental, and epigenetic factors that produce cumulative liability to developing schizophrenia. Endophenotypes as schizophrenia
discriminators involve sensory motor gating, oculomotor function, working memory, and glial cell abnormalities. Many more gene loci, genes, and candidate
endophenotypes remain to be discovered (represented by question marks). The figure is not to scale.

(legend continued on next page)
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vary in their degree of abstraction, biological realism, and their

level of analysis (circuits, computational operations, behaviors).

Endophenotypes across Brain Disorder Categories
Inasmuch as features of the pathophysiology of psychiatric dis-

orders are shared across diagnostic boundaries (Krueger 1999),

a promising research direction is to search for transdiagnostic

endophenotypes, i.e., quantitative heritable traits that are inter-

mediate between risk genotypes and the psychiatric disorder

syndrome itself (Figure 2A; Gottesman and Gould, 2003). While

it has yet to be demonstrated that endophenotypes have a

more simple genetics than psychiatric diagnoses, there remains

a hope that endophenotypes may be more precisely defined,

measured, and related to the underlying biology and to animal

models. For instance, impulsivity and compulsivity are behav-

ioral endophenotypes that cut across a range of diagnostic

categories including obsessive-compulsive disorders, sub-

stance dependence, and attention-deficit hyperactivity disorder.

Neither impulsivity nor compulsivity may be unitary constructs,

but they may derive from a set of psychological processes which

themselves are candidate endophenotypes (Figure 2B; Robbins

et al., 2012). Thus, one could show impulsive choice behavior

because of an aversion to delayed gratification, or impulsive

response due to motor disinhibition or timing impairment. While

this dimensional approach has not supplanted the prevailing

psychiatric diagnostic schema, it has powerfully stimulated

psychiatry research.

It is a major challenge to accurately and reliably identify endo-

phenotypes. To make progress, it is beneficiary to complement

consideration of symptoms (how people feel) with attention to

what people do (choices and actions). By using behavioral para-

digms that are designed to probe a specific cognitive function

or functional domain, one can quantify the abnormalities of a

particular function that are shared by multiple mental disorders.

Those carefully designed tasks should be doable by both human

subjects and nonhuman animals, thereby enablingmore produc-

tive translational research (Carter et al., 2008; Wang, 2013; Insel,

2014). Theories can be developed and applied to both normal

subjects and patients, providing insights into the core of a brain

dysfunction.

Consider the case of disturbances in decision making. Many

people who meet current diagnostic criteria for a number of

neuropsychiatric disorders repeatedly make bad choices in the

social, vocational, and recreational domains that compromise

the quality of their lives. There is increasing evidence that spe-

cific impairments in decisionmakingmay represent cognitive en-

dophenotypes across diagnostic boundaries (Robbins et al.,

2012; Montague et al., 2012). A number of studies have dealt

with the valuation process in reward-based decision making.

The computations that enable one to learn to evaluate alternative

options through experience are fundamental for adaptive choice

behavior, i.e., to make a choice, assess its outcome, and to use

this experience to guide the next choice. Reinforcement learning
(B) The impulsivity and compulsivity constructs. The diagram describes possible
appear that these different measures likely do not intercorrelate well, which would
issue is still actively being researched. Both impulsivity and compulsivity involve
(A) Reproduced from Gottesman and Gould (2003) and (B) Robbins et al. (2012)
(RL) theory (Rescorla andWagner, 1972; Sutton and Barto, 1998;

Rangel et al., 2008) offers a framework for this adaptive process

and impairments associated with psychiatric conditions

(Montague et al., 2012; Maia and Frank, 2011; Lee, 2013). This

field, which lies at the interface behavior and neurobiological

mechanisms, was galvanized by the discovery that phasic activ-

ity of dopamine neurons in the ventral tegmental area signals

reward prediction error (RPE) (Montague et al., 1996; Schultz

et al., 1997). Specifically, dopamine phasic firing has been

shown to confirm with RPE according to temporal-difference

RL (TDRL) (Sutton and Barto, 1998; Dayan and Abbott, 2001).

TDRL computes the reward expectation in terms of all antici-

pated reward events in the future, and learns to predict reward

by driving RPE to zero. For the sake of simplicity, here we

describe a simplified notion of RPE, dt = rt � V t, where rt is the

actual reward and Vt is the expected reward, at time t. The

idea is that the mismatch between the actual reward and the ex-

pected reward generates an ‘‘error signal’’ that informs learning.

RL is hypothesized to be driven by adt, with the rate a controlling

the speed of learning. Therefore, there is a solid foundation for

bridging reward-related learning with a specific underlying brain

circuit (the dopamine system). Empirical evidence for impaired

RL has been documented for Parkinson disease, schizophrenia,

Tourette syndrome, attention-deficit disorder, drug addiction,

and depression (Maia and Frank, 2011; Lee, 2013; Huys et al.,

2013), demonstrating powerfully the importance of function-

based, transdiagnostic, approach in psychiatry.

For instance, addiction can be viewed as RL gone awry.

Indeed, a pioneering application of RL to psychiatry (Redish,

2004; Redish et al., 2007) was inspired by TDRL. It was proposed

that addiction accesses the same RL system as in the normal

brain, but drug-induced positive prediction errors could produce

unbounded increases in the value of drug receipt. Amerit of such

quantitative models is that they are precise enough to be falsifi-

able by new experiments, a hallmark of scientific inquiry. Re-

dish’s model predicts that a behavioral trait called blocking

does not occur when drugs are used as unconditional rein-

forcers. Blocking refers to the observation that after a subject

learns to associate a stimulus A with a reward, later pairing A

with another stimulus B should not lead to learning to associate

B with the reward. If, however, drugs (as stimuli A and B) lead to

unlimited value increase, blocking should not be observed.

Behavioral experiments using cocaine as unconditional stimulus

showed that this is not the case, i.e., blocking does occur (Pan-

lilio et al., 2007). One possible interpretation of this result is that

blocking is not due to the specific form TDRL of RL. Indeed,

blocking is accounted for in an alternative model of addiction

that assumes the expected reward Vt to be computed by a

weighted average over past reward events (Dezfouli et al.,

2009). Another possibility is that RL involves multiple competing

systems (Redish et al., 2007).

The RL approach has also been applied to depression. Huys

et al. (2013) set out to test the hypothesis that depression is
psychological component mechanisms underlying the two constructs. It would
argue against a unitary construct for either impulsivity or compulsivity, but this
motor/response disinhibition, but at different stages of the response process.
with permission.
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associated with an altered sensitivity to reward; specifically, the

RPE becomes dt = rrt � V t, where the parameter r represents

reward sensitivity. Meta-analysis of experiments with about 50

healthy subjects and 50 subjects with major depression disorder

has been carried out by fitting behavioral data with a RLmodel. It

was found that compared to the control group, the patient group

shows a significantly reduced reward sensitivity (a smaller value

of r), but no change in the learning rate a, consistent with the

anhedonia and lack of motivation found in patients with depres-

sion. Similar findings were also reported by Strauss et al. (2011).

This work illustrates how computational modeling enables us to

dissect distinct aspects (reward sensitivity but not learning rate)

of a maladaptive behavior.

The RL theory is currently been extended beyond single-factor

considerations. In particular, it has been recognized that RL

involves two separate neural systems (Balleine and Dickinson,

1998; Daw et al., 2005, 2011; Kahneman, 2011; Dolan and

Dayan, 2013). One of these systems subserves habits and

related behaviors. It is referred to as ‘‘model-free’’ because these

behaviors are elicited in an automatized way by cues. The

second, model-based, system is endowed with an internal rep-

resentation of the causal structure of the environment and under-

lies goal-oriented behaviors. The model-free and model-based

systems must be balanced. A dual-system learning model

(Daw et al., 2011) has been combined with human brain imaging

to examine specific ways an imbalance of these two systems

might lead to maladaptive choice behavior in mental illness.

Using this framework, it was found that repeated exposure to

addictive drugs shifts behavior from model-based to model-

free emphasis (Kurth-Nelson and Redish, 2011; Lucantonio

et al., 2012). Likewise, data fitting by the dual-system model

revealed that subjects diagnosed with obsessive-compulsive

disorder display a bias toward model-free habit acquisition

(Voon et al., 2014). The central control mechanisms governing

the balance maintenance and shifts between model-based and

model-free systems represent an area of intense ongoing

research (Simon and Daw, 2011).

Whereas the model-free system relies on RPE, the model-

based system presumably depends on a more abstract ‘‘state

prediction error’’ that might implicate lateral prefrontal cortex,

giving rise to ‘‘dual system’’ RL models (Gläscher et al., 2010).

RL approaches have advanced translational neuroscience

research on such phenomena as delusions that have been previ-

ously extremely challenging to study from this perspective. The

focus on prediction error, a mismatch between expectation

and experience, has inspired neurobiological studies of psycho-

sis (Corlett et al., 2010). Delusions are false beliefs about the

world that persist tenaciously despite repeated encounters with

contradicting evidence. Corlett et al. (2007) found that violations

of causal associations activate the right lateral prefrontal cortex

(rPFC) during fMRI, a putative prediction error signal, and, defi-

cits in this fMRI prediction error signal among subjects with

first-episode psychosis strongly correlated with the severity of

delusions across subjects (Corlett et al., 2007). Thus, false

beliefs may be generated through compromised prediction error

and sustained as aberrant learning (Corlett et al., 2010).

RL has also been extended to hierarchically organized be-

haviors (Botvinick et al., 2009). These studies focused on RL
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illustrate well how theory and computational modeling, in

conjunction with experimentation, can help dissect distinct

component processes (such as reward sensitivity, learning

rate, balance between model-free and model-based systems,

etc.) that may be abnormal in multiple mental disorders but

in different ways. This opens up the possibility that each

cognitive endophenotype (such as impulsivity) could be

defined in terms of a specific combination of quantitative im-

pairments of these component processes. If so, future progress

in this direction could yield a promising new framework to

guide translational neuroscience studies of neuropsychiatric

disorders.

Big Data and Model-Aided Diagnosis
Typically, the process of building from a behavioral experiment

to a computational model follows several steps: (1) a cognitive

task is strategically designed to probe a particular function

(e.g., reward-related learning in decision making), (2) an appro-

priate computational model (e.g., reinforcement learning) is

chosen to simulate the process (e.g., valuation) under consider-

ation, and (3) model-fitting of data yields estimation of model

parameters (e.g., reward sensitivity and learning rate). Many

of these studies compare people deemed to be free of a psy-

chiatric diagnosis to people who have been recruited specif-

ically for the presence of a specific psychiatric diagnosis

(e.g., according to DSM or international classification of dis-

eases criteria). Significant differences between the healthy

group and patient group in some model parameters (e.g.,

reward sensitivity but not learning rate) provide the basis for

characterizing the presumed ‘‘abnormality’’ in the patient

group. However, computational psychiatry is not limited to

existing diagnostic schema. Its focus on relating mechanisms

to cognitive operations and behavioral processes promotes a

transdiagnostic perspective. For instance, a similar bias toward

model-free versus model-based learning has been found in

disorders involving both natural (binge eating) and artificial

(methamphetamine) reward, as well as obsessive-compulsive

disorder (Voon et al., 2014).

Recently, Frank and collaborators (Wiecki et al., 2014) pro-

posed to extend this approach from subject groups to individ-

uals. This requires a fourth step, i.e., to use sophisticated statis-

tical analysis algorithms to investigate whether model parameter

values extracted from individual subjects are clustered into

distinct groups (Figure 3A). This step is crucial for this paradigm

to potentially serve as a clinical tool, because diagnosis must

obviously be done for single individuals. A similar approach

has been advocated by Stephan and his colleagues (Figure 3B)

(Brodersen et al., 2014). These authors proposed a cross-

disciplinary approach that combines behavior, brain measures

(fMRI), and computation (dynamical causal modeling, DCM;

Friston et al., 2003; Stephan et al., 2007). In a working

memory study of schizophrenic patients, they focused on

DCM-based estimates of effective connectivity between visual,

parietal and prefrontal cortex, since these three cortical

areas were critically involved in their visual working memory

task. An unsupervised clustering procedure operating on

the individual connectivity patterns yielded three distinct

patient subgroups (Figure 3C): those with greater fronto-parietal
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Figure 3. Model-Aided Subject Clustering as a Potential Diagnosis Tool
(A) Illustration of the four levels of computational psychiatry. Clinical and nonclinical populations are tested on a battery of cognitive tasks. Computational models
can relate raw task performance (e.g., RT and accuracy) to psychological and/or neurocognitive processes. Thesemodels can be estimated via variousmethods.
Finally, based on resulting computational multidimensional profile, training using learning algorithms can either uncover groups and subgroups in clinical and
healthy populations, or relate model parameters to clinical symptom severity.
(B) Conceptual overview of model-aided clustering of fMRI data. First, separately for each subject, BOLD time series are extracted from a number of regions of
interest. Second, subject-specific time series are used to estimate the parameters of a model. Third, subjects are embedded in a score space in which each
dimension represents a specific model parameter. This space implies a similarity metric under which any two subjects can be compared. Fourth, a clustering
algorithm is used to identify salient substructures in the data. Fifth, the resulting clusters are validated against known external (clinical) variables. Sixth, once
validated, a clustering solution can be interpreted mechanistically in the context of the underlying model.
(C and D) Model-based clustering of fMRI data from patients with schizophrenia in a working memory task. (C) An unsupervised clustering analysis of the patient
group only, using Gaussian mixture models operating on dynamical causal model (DCM) parameter estimates, yield the average posterior parameter estimates
(in terms of maximum a posteriori estimates) for each coupling and input parameter in the model. This is displayed graphically by the thickness of the respective
arrows. (D) The three subgroups, which are defined based on connection strengths, also differ in terms of negative clinical symptoms as operationalized by the
negative symptoms (NS) subscale of the PANSS score.
(A) Reproduced from Wiecki et al. (2014) and (B–D) Brodersen et al. (2014) with permission.
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connectivity, those with weaker fronto-parietal connectivity, and

those with greater visuo-frontal connectivity. The authors further

pushed the approach by including twomore steps (Figure 3B): (5)

assessment of whether clusters of subjects obtained by model-

fitting are correlated with different severity of behavioral impair-
ment (indeed they found that subjects in the three clusters

display a different degree of negative symptom severity;

Figure 3D), and (6) interpretation of the results from step (5)

that attributes the behavioral deficit (negative symptom) to a

possible underlying brain substrate (visual-parietal-prefrontal
Neuron 84, November 5, 2014 ª2014 Elsevier Inc. 645
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circuitry connectivity), generating new hypotheses to be tested

in future research.

This line of work raises the question of whether it might be

possible to use brain imaging data (or models of such data)

rather than symptoms as the substrate for diagnostic classifica-

tion schema. A related line of thinking is to view psychiatric

illness from the perspective of brain connectome (Rubinov and

Bullmore, 2013), according to which the analysis of functional

connectivity patterns inferred from brain imaging offers a win-

dow to pathoconnectomics associated with mental disorders.

It would be interesting to know the impact of attempting to, on

a very large scale, identify model parameters that cluster pa-

tients in new ways. Would this approach yield a classification

schema different from DSM? Would this classification schema

be replicable and generalizable? Would it suggest new direc-

tions for research and treatment? This type of strategy might

address a conundrum in psychiatry, which is the absence of bio-

markers. It may be impossible to develop meaningful illness bio-

markers within a diagnostic framework that is not based in

biology. However, if the diagnostic framework were, itself, built

around an imaging biomarker, then it would seem highly likely

that this biomarker would have predictive power in relation to

diagnosis and treatment.

A number of factors will determine the success of this frame-

work: very large samples of subjects, efficient and statistically

reliable analysis methods, and judicious choices as well

as in-depth understanding of computational models. With the

advance of big data science, and computational modeling, a

radical modern paradigm shift may be on the horizon.

Biophysically Based Neural Circuit Modeling:
Understanding across Levels
In contrast to more abstract models, biophysically realistic neu-

ral circuit modeling has the potential to be rigorously calibrated

by quantitative neurophysiology and anatomy. Ultimately, this

is necessary to elucidate deficits at the molecular, cellular, and

circuit levels that underlie cognitive and behavioral disorders in

mental illness.

Among hierarchically interrelated cognitive dysfunctions asso-

ciated with schizophrenia (Millan et al., 2012), perhaps the best

studied is working memory (Park and Holzman, 1992; Lee and

Park, 2005; Lewis and Gonzalez-Burgos, 2006; Barch and

Ceaser, 2012). Working memory, the brain’s ability to encode

and sustain the neural representation of information in the

absence of direct sensory stimulation and to manipulate this in-

formation in the service of future action, is a core cognitive func-

tion that depends on the PFC (Fuster, 2008; Goldman-Rakic,

1995; D’Esposito, 2007; Baddeley, 2012). Fortunately, working

memory has been particularly amenable to biophysically based

neural circuit modeling, because of the richness of experimental

data at multiple levels of study.

Awell-known workingmemory paradigm is the delayed oculo-

motor response task, in which a subject is required to remember

a visual cue (a directional angle) across a delay period to perform

a memory-guided saccadic eye movement (Funahashi et al.,

1989; Constantinidis and Wang, 2004). A biologically-based

network model of spiking neurons has been developed for this

spatial working memory experiment (Figure 4A) (Compte et al.,
646 Neuron 84, November 5, 2014 ª2014 Elsevier Inc.
2000; Renart et al., 2003; Wang et al., 2004; Carter and Wang,

2007; Wei et al., 2012; Kilpatrick et al., 2013; Hansel and Mato,

2013; Pereira and Wang, 2014). Figure 4B shows a model simu-

lation of the delayed oculomotor task. Initially, the network is in a

resting state in which all cells fire spontaneously at low rates.

A transient input drives a subpopulation of cells to fire at high

rates. As a result, they send recruited excitation to each other

via horizontal connections. This internal excitation is large

enough to sustain elevated activity, so that the firing pattern

persists after the stimulus is withdrawn. Synaptic inhibition en-

sures that the activity does not spread to the rest of the network,

and persistent activity has a localized, bell shape (‘‘bump attrac-

tor’’). At the end of a mnemonic delay period, the cue information

can be retrieved by reading out the peak location of the persis-

tent activity pattern; and the network is reset back to the resting

state. This type of spatial working memory network is endowed

with a continuous family of bump attractors, each encoding a

specific potential location.

In this model, a mnemonic persistent activity pattern is sus-

tained internally by strong recurrent excitation, which the model

predicts to be slow and dependent on the NMDAR-mediated

synaptic transmission at local synapses (Wang, 1999, 2001;

Wang et al., 2008) (Figure 4C). In a recent experiment with mon-

keys performing a working memory task (Wang et al., 2013),

iontophoresis of drugs that blocked the NMDARs suppressed

delay-period persistent activity of PFC (Figure 4D), in support

of an important role of the NMDARs in PFC processes. Another

monkey experiment showed that ketamine (an NMDAR antago-

nist) reduces task selectivity of PFC neurons in parallel with

behavioral impairment (Skoblenick and Everling, 2012). These

findings are directly relevant to psychiatry. Indeed, it has been

hypothesized that NMDA hypofunction underlies working mem-

ory deficits in schizophrenia (Coyle et al., 2003; Moghaddam and

Krystal, 2012), and subanesthetic dose of ketamine produces

working memory impairment in healthy human subjects, similar

to that seen in schizophrenia (Krystal et al., 1994). The finding

that NMDARs are critical for mnemonic persistent activity and

its selectivity offers a possible mechanistic explanation as to

why NMDA signaling pathway is essential for working memory

function.

Like yin and yang in ancient Chinese philosophy, the dynamic

balance between synaptic excitation and inhibition within local

and distributed networks is a fundamental property of cortical

function. This balance is important for normal functions within

a biophysically based PFC neural circuit model because it de-

fines many emergent properties of the network including:

dynamic network stability (if unchecked by inhibition, strong

recurrent excitation would lead to runaway positive feedback),

fast coherent oscillations (generated by the interplay between

fast AMPA receptor-mediated excitation and slower GABAA re-

ceptor-mediated inhibition), stimulus selectivity (synaptic inhibi-

tion is critical for neural tuning), and resistance to distractors

(reduced responsiveness to distracting stimuli by neurons not

involved in memory storage) (Compte et al., 2000; Brunel and

Wang, 2001; Wang, 2013).

These results have functional implications for the observed

pathology of inhibitory circuits associated with schizophrenia

(Lewis et al., 2005, 2012). In particular, enhanced distractibility



A

B

C D

Figure 4. Spatial Working Memory Modeling and the Role of NMDA Receptors in Mnemonic Persistent Activity
(A and B) Spiking network model of working memory. (A) Model architecture. Excitatory pyramidal cells are labeled by their preferred cues (0� to 360�). Pyramidal
cells of similar preferred cues are connected through local excitatory-to-excitatory connections. Inhibitory interneurons receive inputs from excitatory cells and
send feedback inhibition by broad projections. (B) A stimulus is encoded and actively maintained by a self-sustained network persistent activity pattern (a ‘‘bump
attractor’’) in a simulation of the delayed oculomotor experiment. C, cue period; D, delay period; R, response period. Pyramidal neurons are labeled along the
y axis according to their preferred cues. The x axis represents time. A dot in the rastergram indicates a spike of a neuron whose preferred location is at y, at time x.
An elevated and localized neural activity is triggered by a transient cue stimulus and persists during the delay period.
(C) The effects of iontophoretic NMDA blockade on working memory activity in a computational model of working memory. Under control conditions, a stimulus
cue selectively activates a group of neurons, leading to persistent activity sustained by NMDAR-dependent recurrent excitation. NMDA conductance is reduced
from control to 90%, 80%, and 70% (to bottom) of a reference level in a few pyramidal neurons in the network model. Stimulus-selective persistent activity
gradually decreases with more NMDAR blockade and eventually disappears in these affected cells.
(D) An example of an individual dorsolateral PFC cell recorded from behaving monkey in a delayed oculomotor response task. Upper: control condition; lower:
after iontophoresis of Ro 25-6981 (25 nA), a blocker of NR2B-containing NMDARs. The rasters and histograms show firing patterns for the neuron’s preferred
direction and the nonpreferred direction (opposite to the preferred direction). Iontophoresis of Ro 25-6981 markedly reduced mnemonic delay period firing to
baseline.
(B) Adapted from Compte et al. (2000) and (C and D) Wang et al. (2013) with permission.
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Figure 5. Computational Modeling of Excitation-Inhibition Balance
in Working Memory Circuits
(A) A spatial working-memory model can generate a bump-shaped stimulus-
selective persistent activity pattern following stimulus withdrawal. Disinhibi-
tion, mediated by NMDAR hypofunction on interneurons, broadens working-
memory representations at the neural level.
(B) The parameter space of NMDAR hypofunction highlights the importance of
E/I balance for working memory function. If the E/I ratio is elevated as in
disinhibition, the width of the representation increases. In contrast, if the E/I
ratio is reduced too much through weakened recurrent excitation between
pyramidal cells, the circuit cannot support memory-related persistent activity
(upper left corner).
(C) Broadening of working-memory representations was tested using behav-
ioral data from human subjects performing a spatial working-memory task
combined with ketamine infusion, a pharmacological model of schizophrenia.
Consistent with broadening, ketamine induced errors specifically for near
distractor probes (left), as predicted by the model (right).
(D) Compensations can restore E/I balance and ameliorate behavioral deficits
in the model. We paired the disinhibition mechanism with either reduced
excitation (purple) or increased inhibition (green), following proposed phar-
macological treatments.
Adapted with permission from Murray et al. (2014).
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represents a common behavioral deficit in schizophrenic pa-

tients (Goldman-Rakic, 1987; Mesulam, 2000; Luck and Gold,

2008). A recent computational study examined how a reduced

inhibition might lead to PFC’s deficient ability to filter out dis-

tracting stimuli during working memory (Murray et al., 2014).

Disinhibition induced a broadening of the neural representation

for the memorandum maintained in working memory through

persistent activity (Figure 5A). Importantly, this feature of the

circuit was a function of the overall balance between excitation

and inhibition (Figure 5B). Neural broadening, in turn, induced

specific behavioral deficits, making working memory more

vulnerable to intervening distractors. In the model, distractibility

depends on the similarity between the distractor and the mne-

monic representation, and therefore broadening the mnemonic

representation increases the range of distractors that can

disrupt behavior. The authors tested this model prediction by

analyzing behavior from healthy humans administered ketamine,

a pharmacological model of schizophrenia, during a spatial

delayed match-to-sample task. Matching the model prediction,

ketamine increased the rate of errors specifically for distractors

that would overlap with a broadened mnemonic representation

(Figure 5C). Just as the biophysical basis of the model allows

instantiation of potential pathologies, it can also readily explore

pharmacological treatments to compensate for these deficits.

In particular, in this model it was demonstrated as proof-of-

principle that glutamatergic or GABAergic manipulations could

restore excitation-inhibition balance, reversing the broadened

mnemonic representations and corresponding distractibility

induced by disinhibition (Figure 5D). An open question is con-

cerned with the brain mechanisms for deciding which informa-

tion should be considered task-relevant versus distracting and

how this may or may not be related to reward value processing

of potentially relevant or distracting stimuli. Impairments of

this decision process could be relatively independent from

those of working memory circuit’s ability to resist distractors

as described above, which would suggest an orthogonality

between these deficits. Future research is needed to assess

whether this is indeed the case.

In the model, the network’s ability to filter out distractors is

impaired by a reduced excitation in inhibitory neurons. The

main insight is that predominant behavorial disturbance due to

modest disinhibition may not be so much the inability of memory

storage per se as the difficulty of ignoring behaviorally irrelevant

inputs during memory maintenance. The observation that keta-

mine in human subjects leads to impaired resistance against

near distractors, as predicted by the model, suggests that

disinhibition involves NMDA receptors (NMDAR). Intuitively,

this could be caused by a reduced NMDAR-mediated excitation

in inhibitory neurons. In support of this view, there is evidence

that, in rodents, acute ketamine administration led to a

decreased activity of putative fast-spiking interneurons, and

increased activity of putative pyramidal cells (Homayoun and

Moghaddam, 2007). Moreover, because fast-spiking inhibitory

neurons are critically involved in the generation of fast g oscilla-

tions (Buzsáki and Wang, 2012; Wang, 2010), a reduced excita-

tion of those neurons could explain abnormal g synchrony

observed in schizophrenic patients (Spencer et al., 2004; Lisman

et al., 2008).
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However, in fast-spiking interneurons of the mice frontal

cortex, NMDAR-mediated excitation is small and insensitive

to NMDAR blocker AP5 (Rotaru et al., 2011). In adult rats, the

majority of fast-spiking interneurons are devoid of NMDARs,

whereas NMDAR-dependent synaptic excitation is more signifi-

cant in other subclasses of regular-spiking and low-threshold

spiking inhibitory cells (Wang and Gao, 2009). The latter mediate

dendritic inhibition, thereby gating synaptic inputs onto pyra-

midal cells. Further, the dendrite-targeting interneurons func-

tion in an input-specific manner, enabling pyramidal neurons

to be selectively activated by task-relevant inputs. This has

been incorporated in an extended working memory microcircuit

model endowed with three subtypes of inhibitory neurons:

soma-targeting interneurons that express parvalbumin and con-

trol pyramidal firing output, interneurons that express calbindin

or somatostatin and gate dendritic inputs to pyramidal cells,

and interneurons that express calrintinin or vasoactive intestinal

peptide and preferentially target dendrite-targeting interneurons

(thereby providing a new disinhibition mechanism) (Wang et al.,

2004; Wang, 2013). It was found that dendritic inhibition controls

the network’s ability to resist irrelevant distractors more effec-

tively than perisomatic inhibition that controls the spiking output

of pyramidal neurons. Taken together, one plausible scenario

consistent with currently available evidence is that disinhibition

induced by ketamine results from a reduction of NMDAR-depen-

dent excitation of dendrite-targeting interneurons. This predic-

tion can be tested using cell-type specific genetic tools (Kepecs

and Fishell, 2014; Higley, 2014) in future animal experiments.

What happens when the excitation-inhibition balance is tilted

in a way that synaptic excitation becomes excessively strong?

Model simulations showed that one consequence of such an

imbalance could lead to behavioral inflexibility: attractor states

encoding memory items become so robust that it becomes diffi-

cult to switch off from one memory attractor state either to rest

(memory erasure) or another memory state (Rolls et al., 2008;

Durstewitz and Seamans, 2008; Gruber et al., 2010). This idea

is interesting especially in the light of the fact that working mem-

ory is not limited to sensory stimuli but also more abstract infor-

mation such as behavioral task sets or rules (Miller and Cohen,

2001;Wallis et al., 2001; Sakai, 2008; Buckley et al., 2009; Lapish

et al., 2008; Sigala et al., 2008), and attractor network models

have been extended to internal representation of behavioral

rule or context in flexible behavior (Rigotti et al., 2010, 2013).

Thus, behavioral inflexibility may be reflected in the difficulty to

make a transition from a behavioral context to another one,

which is a hallmark of abnormal cognition in schizophrenia.

This framework is also useful for analyzing abnormal neuromo-

dulation in mental illness. The dopamine system represents an

example par excellence. It is well known that working memory

performance exhibits an inverted U-shaped dependence on

dopamine modulation: too little dopamine, you lose working

memory; too much dopamine, you are inflexible with switching

on and off in a working memory system. Dopamine modulation

acts on targets such as NMDAR-mediated excitatory synaptic

excitation and GABA-mediated inhibitory synaptic inhibition

(Brunel and Wang, 2001; Seamans et al., 2001; Durstewitz

et al., 2000), or the gain of single-neuron input-output relation-

ship (Cohen and Servan-Schreiber, 1992). Computational
modeling showed that an inverted-U shape of dopamine modu-

lation can be readily explained if dopamine modulation has a

differential sensitivity to the NMDA conductance and GABA

conductance (Brunel and Wang, 2001). Furthermore, interest-

ingly, the network’s ability to ignore distractors is sensitive to

modulation by dopamine of recurrent excitation and inhibition.

Therefore, even a mild impairment of dopaminergic signaling in

the prefrontal cortex could be very detrimental to robust working

memory maintenance in spite of ongoing sensory flow.

These studies on working memory demonstrate how bio-

physically based modeling in interplay with experimentation

can play a powerful role in making discoveries and producing

new hypotheses about the brain mechanisms of core cognitive

processes implicated in psychiatric disorders.

Looking Forward: Building a New Cross-Disciplinary
Field
The economic cost of mental illness represents an enormous

burden on the society (Wittchen et al., 2011; Olesen et al.,

2012; Vos et al., 2012). The critical nature of our knowledge

gap for the clinical neuroscience fields, including neurology,

neurosurgery, psychiatry, and psychology, is well known. In

the United States, NIH initiatives, including the Human Connec-

tome Project (http://www.humanconnectomeproject.org) and

the BRAIN Initiative (http://www.braininitiative.nih.gov/index.

htm), are designed to advance current approaches and to

develop new technologies to characterize brain circuit function.

Parallel initiatives are underway in Europe and Asia.

In this Perspective, we marshaled findings from recent work

on reinforcement learning and working memory to argue for

a computational psychiatry approach to brain disorders. This

perspective emphasizes an integration of experimentation,

data analysis, and theory in concerted efforts to understand neu-

ral circuits involved in mental illness. Although we have focused

on local circuit mechanisms, computational psychiatry must

also be developed for large brain systems. We need to develop

large-scale brain circuit models to investigate how the PFC

controls and interacts with many other brain regions in a highly

interconnected complex system. A notable line of research in

this regard is concerned with the interplay between the PFC

and basal ganglia, which is important for both working memory

and decision making (O’Reilly and Frank, 2006; Lo and Wang,

2006; Ding and Gold, 2013). In fact, behavioral evidence from

a cleverly designed experiment suggests that impaired RL in

schizophrenia is attributable, largely, to working memory deficits

rather than valuation process (Collins et al., 2014). Another inter-

play involves cortex and thalamus (Vukadinovic, 2011; Anticevic

et al., 2013b). More broadly, new approaches applied to the

study of the connectivity properties of large-scale brain

systems are exciting advances (Sporns, 2009; Bullmore and

Sporns, 2009; Markov et al., 2013) with important implications

for psychiatric disorders (Anticevic et al., 2013a; Rubinov and

Bullmore, 2013; Yang et al., 2014).

Unprecedented ongoing progress in neuroscience offers

extraordinary opportunities as well as challenges. First, progress

in genomics, massive neuroimaging, and other advances are

creating enormous data sets that, in turn, require newmathemat-

ical/statistical tools. Second, a pressing need is to develop new
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ideas for cross-level investigations. For instance, genome-wide

analysis revealed that genes encoding L-type voltage-gated

calcium channels are associated with several psychiatric disor-

ders including schizophrenia (Smoller et al., 2013). How would

alternations of L-type calcium channels give rise to abnormal

circuit formation, ultimately explain specific mental and behav-

ioral disturbances? This question could be addressed using

modeling that enables us to go back and forth between different

levels (from molecules and cells to circuits and behavior). Third,

majormental disorders like schizophrenia, autism, and attention-

deficit hyperactivity disorder are neurodevelopmental diseases

(Moore et al., 2006; Belujon and Grace, 2008; Insel, 2010; Fair

et al., 2012). Thus, it is critical to build computational models

for investigating developmental changes in synaptic and circuit

function in disease-related models. For instance, the human

neural representation of working memory assessed with fMRI

changes during adolescence (Satterthwaite et al., 2013).

Similarly, synaptic mechanisms evolve during adolescence. In

rodents, for example, NMDARs are abundant on parvalbumin-

expressing interneurons early in life, but they are present more

sparsely in adults (Belforte et al., 2010). In these circuits,

reducing NMDAR expression early in life, but not in adulthood,

impairs cognitive function in adulthood. There is a dearth of

computational modeling dedicated to understanding critical

periods in neurodevelopment and the impact of even ‘‘transient’’

disruption on circuit development and cognitive function

in adulthood. Progress along these lines will require sophisti-

cated neural circuit modeling in conjunction with genetic,

physiological, and imaging experimentation. Fourth and finally,

can one quantitatively capture specific features of dysfunc-

tional flow of thought associated with mental illness? A recent

work took the view that language could be used ‘‘as

a privileged measuring lens into thought,’’ and showed that

quantitative analysis of speech could yield accurate sorting of

schizophrenia versus mania with high sensitivity and specificity

(Mota et al., 2012). Language is a human cognitive ability impli-

cated in mental disorders, thus elucidation of brain’s language

circuit represents another neuroscientific theme relevant to

psychiatry.

It is our belief that these challenges cannot be overcome

without theory and computational modeling. To advance the

field, we need new infrastructure, resources, and training of

cross-disciplinary young talents who are well versed both in

mathematical modeling and experimentation. First, it would

be important to develop training programs whereby graduate

students and postdoctoral fellows trained in the physical

and mathematical sciences could more easily be introduced

to and engage in psychiatric research. Second, it will be

important to develop a cadre of young psychiatrists who

learn computational modeling, lest computational psychiatry

develop without the input of physician-scientists. Third,

government funding agencies and nonprofit organizations and

foundations should offer new programs to promote highly

cross-disciplinary education and research in computational

psychiatry. Through these concerted efforts, we are optimistic

that computational psychiatry could play an indispensable

role in addressing the great challenges of mental health in the

21st century.
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