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Abstract. The Newhouse phenomenon of infinitely many coexisting periodic 
attractors is studied in its simplest form. One shows that the corresponding 
parameter set (the Newhouse set) JN has a strictly positive Hausdorff 
dimension. This result is stronger than that of Tedeschini-Lalli and Yorke 
[Commun. Math. Phys. 106, 635 (1986)] concerning the Lebesgue measure of 
the Newhouse set; and is complementary to our knowledge on the topological 
properties of JN, namely it is a residual set, hence uncountable and everywhere 
dense in a parameter interval. 

I. Introduction 

It is nowadays well known, and much discussed in the literature, that in a 
multidimensional dynamical system, an infinite number of periodic attractors may 
coexist in a bounded region of the phase space. This possibility was recognized 
largely due to the work by Newhouse (1974, 1979). While studying the homoclinic 
tangency to a periodic saddle point in one-parameter families of planar 
diffeomorphisms, this author proved that the system near the tangency can possess 
an invariant basic set of chaotic nature, to which secondary homoclinic tangencies 
persist for an open set of parameter values. As a consequence, there is a residual 
parameter set (the Newhouse set), for which infinitely many sinks of arbitrarily 
long period coexist in the system. 

One may naturally ask how typically does this phenomenon occur, or how 
generic is the Newhouse parameter set? We note immediately that there are two 
distinct basic notions of genericity for a set of real numbers:measure and category 
(Oxtoby, 1980). Being residual, the Newhouse set is generic in the topological sense 
of belonging to Baire's second category. It is not countable, and everywhere dense 
in an interval. The measure properties have been discussed by Tedeschini-Lalli and 
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Yorke (1986) (see below). In the present work we would like to pursue this issue and 
provide a more complete, measurable characterization of the Newhouse set. 

We start by observing that the essence of the Newhouse phenomenon is the 
creation of a hyperbolic chaotic state (by the principal homoclinicity to a saddle 
periodic orbit), then the realization of secondary homoclinicity to this latter state. 
Presumably this occurs as well in the homoclinic system to a Shil'nikov saddle- 
focus equilibrium point. Besides, the basic hyperbolic chaotic state may also be 
formed merely via a logistic map-like bifurcation scenario (Gaspard and Wang, 
1987). Hence, it is of interest to consider a simple albeit mostly general situation, 
namely the homoclinic tangency to a given chaotic state (Wang, 1987; Tedeschini- 
Lalli and Yorke, 1986). In the present work, we propose to study a class of such 
systems, i.e. the homoclinicity to a standard Smale horseshoe. Figure 1 displays an 
example of the kind of planar diffeomorphisms we intend to investigate. Models of 
related type have been discussed in Gambaudo and Tresser (1983), in which an 
example of infinitely many sinks is explicitly given. Our system, which will be 
presented in Sect. 2, is constructed by extending the approach of Gavrilov and 
Shil'nikov which was initially developed in the case of homoclinic tangency to a 
periodic point of saddle type (1972, 1973). It consists of two locally defined 
mappings: one of them, To (2.2), is defined near the basic invariant state A, and is 
assumed to be linearized; whereas the other, T1 (2.5), brings outgoing orbits back 
to the neighborhood of A. Following Tedeschini-Lalli and Yorke (1986), we shall 
call the stable fixed points of T1 o T~ simple sinks. The parameter set with infinitely 
many coexisting simple sinks is called the simple Newhouse set, which we denote 
by J~o according to Robinson (1983). 

The work of Tedeschini-Lalli and Yorke (1986) shows that J~ is of zero 
Lebesgue measure. Our main purpose is to show that J~ has a positive Hausdorff 
dimension DH(J~). More precisely, we shall prove that 

log2 (1-t log2u ~-1 log2 (1.1) 
21og)~ u .  l o g ~  1] <Dn(J~)< 21og~u" 

with 2 < 2, < 2~- 1. 
In Eq. (1.1) 2, (respectively As) is the expanding (respectively contracting) rate of 

the basic state 1/. log2 is the topological entropy of the basic chaotic state A, and 
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the factor 1/2 comes from the assumption that the homoclinic tangency is 
quadratic. 

This result is derived by relatively direct calculations which will be presented 
below step by step in a few short sections. A notable exception is Lemma 2 which is 
a crucial, and not so evident assertion; its the proof is given in the Appendix. 

Let us comment on the meaning of formula (1.1). On one hand, the 
Tedeschini-Lalli and Yorke result is recovered directly from the formula (1.1), 
since the latter gives to Do~(Jo~) an upper bound smaller than the unit, and the fact 
that the Hausdorff dimension is less than one implies the nullness of the set. On 
the other hand, the lower bound is strictly positive. This conclusion will remain 
valid even if, when nonsimple Newhouse sinks are taken into account, the total 
Newhouse parameter set would turn out to be of positive Lebesgue measure. 

We may thus conclude that the simple Newhouse set J~ is a "fractal" in 
Mandelbrot's sense that its Hausdorff dimension is noninteger, and larger than 
its topological dimension. We remind the reader that J~o is otherwise unlike the 
Cantor ternary set (a standard example of fractal) which is totally disconnected, 
nowhere dense, and which belongs to Baire's first category. 

II. The Homocfinic System to a Smale Horseshoe 

Consider a planar diffeomorphism T(.,/~): 9~ 2 ~-* 9t 2, depending on a parameter #. 
We assume that T(-,/,t) realizes a standard Smale horseshoe (Smale, 1967), and is 
linearized on two horizontal strips (cf. Fig. 2a) 

Ho=Ix[O,2~a+6] ,  Hx = I  x [ l - 2 ~ - x - ~ ,  1]. 

where ID [0, 1] and 6 may be chosen arbitrarily small, and 

D(T)( / 'Y)=( -1) '~  2,0) if (x,y)EHo, , c9=0,1, (2.1) 

where 0<2s<2~ -1 < 1/2. 

Fig. 2 a 
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We denote by To the mapping T restricted on H o w H r  To takes the form 

X 1 = 2sXO 
Yl -- 2,yo if (Xo, Yo) ~ Ho (2.2a) 

{ x l = l - 2 s x ~  (Xo, Yo)~H 1 (2.2b) if 
Yl = 2,(1 - Yo) 

with 0 < 2s < 2~- 1 < 1/2. 
We note that since T o is hyperbolic on HowHt ,  it is insensitive to the parameter 

variation, thus its dependence on # is disregarded in (2.2). 
The nonwanding set A of To is a 2D Cantor set, each point of which may be 

represented by a bi-infinite sequence R=(...~_2~_lCOoCOl~ 2...) of symbols 
co i = 0 or 1 (Smale, 1967). The local stable manifold W~ s of A consists of the product 
of a vertical Cantor set with a horizontal segment. The Cantor set has a Hausdorff 
dimension D~ and a thickness z s given by 

log2 ; ~s 2~- 1 (2.3a) 
D~r = log2, 1 - 22~- 1. 

The notion of the thickness of a linear Cantor set was introduced by Newhouse 
and played an important role in his work. For  a general definition see Newhouse 
(1979), or Guckenheimer and Holmes (1983). The thickness of a standard ternary 
Cantor set is just the ratio of the length of one of the two remaining components to 
that of the middle gap, at any step of construction. 

Similarly, for the local unstable manifold W~" which consists of the product of a 
horizontal Cantor set with a vertical segment, we have 

log2 2~ 
" = - - '  ~ " -  - -  (2.3b) 

D ,  log 271 '  1 - 2 2  s" 

The hyperbolic set A of T is not attracting. Almost every point in the unit 
square eventually enters into the horizontal strip [0, 1] x [2~ -1, 1-2~ -1] after a 
finite number of iterations, before escaping from the unit square at the next step. 
We assume that there is an integer k, such that T k maps the rectangle H* E1 
x [1, 1 + 62,] back to the vicinity of A, HowH1. (Please see Fig. 1 for an example 

with k = 1, in which the black rectangle plays the role analogue to H*.) Specifically, 
we suppose that in a small neighborhood of a horizontal curve y = v(x, #) inside H*, 
T k may be written as 

Xo = x* + F(x 1, Yl - v(xl, Iz), #), 
(2.4) 

Yo = G(xl, Y ~ - V(Xl' #)' #) 

with F(0,0,0)=0; -b=OF/ay(O,O,O)+O; G(0,0,0)=0; c=OG/dx(O,O,O)#:O; 
0G/~y(0, 0, 0) = 0; and d = ~2G/~y2(O, 0, 0) ~ 0. And x* e I may be chosen arbitrarily 
near to, albeit larger than the unit. 

At the lowest approximation, v(x l, #)= y* = constant; and the mapping T k 
restricted on a small rectangle with [Y~-Y*I <e~ is denoted as T1 (Fig. 2b). The 
simplest form that T~ can take while fulfilling (2.4) is 

d 
X o = x ~ - b ( y l - Y * ) ,  Y o = l - t + C X l  + ~(Yi _y~)2. (2.5) 
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Fig. 2 b 

V// / / / /~  F/U/////A 

T(H o) T(H~) 

T k (H*)  
I / 
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with 1 < y* < 1 + 62u, Jacobian(T1)  = cb > 0. One sees f rom (2.5) that  any vertical 
straight line in H* (with fixed xi)  will be mapped  by T1 into a parabola  with the 
ex t remum located at X o = X ~  (Fig. 2b). In order  to satisfy I X o - X * l < e o  for all 
Y l ' I Y l - Y * I  < e l ,  it is sufficient to choose el =eo/fbl. 

We have therefore const ructed two mappings:  the T o (2.2) which has H o w H  ~ as 
its definition domain;  and T1 (2.5) which has H* as its definition domain.  Let  

/Io = {IXo - x * [  =<~o, Yo 6 [0, 2 Z 1 + 6 ] u [ 1 - 2 ~ -  1 _ 6, 1]} C H o u H  1 

and 

H i  = {xl e [0, 13, lYl -Y*[ ~ e l }  CH* .  

Clearly, T i : H~ ~ H  o is well defined provided that  # is confined in a suitable 
interval. Such constraint  on # will be specified in the subsequent  section. In order  
to complete  the const ruct ion  of  our  system, it remains to show that  ~ :  H o - , H  i is 
equally well defined for any I. Let  S z = caoCn i ... ca t_ ~ be a finite string of zeros and 
ones. T~ denotes the / th - i t e ra t ion  of  T O according to St, Tj(p)~ Hoj  , 0__<j__<l-1. 
Then, we have [cf. (2.2)] 

(x l, Y l) = T~(xo, Yo) = (Et + Ft" Xo, Cl + Dr- Yo), (2.6) 

with 

E l =  cal_ l w (__ l )~~ lOgt_ 22s + . . . + (__ l )~o,- l + ... + o~1 ~0,~ ,~t-1 , 

F, = 2~(_ 1)~o +,ol +-.. + o,,- ~, 

C l = ~ t _ i 2 u + ( _ l ) ~ , - ~ l _ z 2 2 u +  ... + ( _  1)o,,- 1 +... + ...... ~t w 0 z ~ u ,  

D / =  2L(_ 1),oo + o,1 +... + ~,,- 1 

(2.7) 
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Equation (2.6) may be rewritten as 

x l  = ~(Xo, Yl ; St) = El+ Ft" Xo , 
(2.8) 

Yl - Ct 
Yo=rl(Xo'Yl;St ) -  Dt 

The definition domain tr~ of TOt:I-Io~H 1 is given as the image of the rectangle 

{Ixo-X*[ s lYi -Y*[ <_-el} (2.9) 

under the action of the linear transformation defined by 

Xo = Xo, Yo = ~/(Xo, Yl; St). (2.10) 

It can be easily seen that each alo is a small horizontal box in/70, and the 
ensemble {a~} is composed of a countably infinite number of disjoint horizontal 
boxes included in H o. In fact, if S 14: S~, then Tot(a~o)n Td(~o) = 0, i = 0,1, ..., I -  1, and 
j = 0,1 . . . .  , k - 1. See Fig. 3 for an illustration with tr z, l = 0, 1 and their images by To ~, 
k=0 ,  1, . . . , l - 1 .  One notices that they are arbitrarily near to the basic invariant 
state A. 

The image of a~ by To t, a~ = I l Tdao, is also that of the rectangle (2.9) under the 
action of the linear transformation defined by 

x l  =((Xo, y l ;S , ) ,  Yl = Y l .  (2.11) 

One can similarly check that the ensemble {a~} is composed of a countably 
infinite number of disjoint vertical boxes included in/71. Therefore, TOt:II o o H ~  is 
indeed well defined for all I. 



Newhouse Phenomenon 323 

III. The Persistence of Homoclinic Tangencies 

In this section we specify the conditions under which homoclinic tangencies to the 
invariant state A of the system (Z2), (2.5) persist in a whole parameter interval of #. 
The possibility of such robustness will be of central importance. 

Let F~=({x~} • [0, l])nW~ S and Fu=([0, 1] x {y*})nW~ u. It is obvious that T1 
maps the horizontal Cantor set Fu (with Yl =Y*) into a vertical Cantor set TI(F~) of 
the parabolic extrema (with Xo = x~). Since this is a simple affine transformation 
[cf. (2.5)], Xo=X *, yo=#+cxl ,  Tx(F~) has the same Hausdorff dimension and 
thickness as F,. Both F~ and TI(F~) are vertical linear Cantor sets located at x 0 = x*. 
As # varies, the local stable manifold W~ S and the global unstable manifold TI(W~ u) 
can intersect with each other, to creat homoclinic orbits. A homoclinic tangency is 
realized each time TI(F~)nF ~ =~0. We have the following 

Proposition 1. If  z(F~), z(F~) > 1, i.e. 

(2 s -  1/2) (2u-  3/2) + 1/4 > 0, (3.1) 

then, Tx(I',)nF~+O for a whole interval of the values of ~. 

Proposition 1 is an immediate consequence of the Newhouse lemma 

Lemma 1 (Newhouse, 1979). Let F and G be two Cantor sets in ~ with F in no G-gap 
closure and G in no F-gap closure. I f  z(F). z(G)> 1, then FnG:~O. 

In order to ensure the condition of the lemma, that F~ is in no Tl(F,)-ga p closure 
and 7"1(1".) is in no Ffgap closure, a parameter domain of # should be chosen 
appropriately. Since TI(F,) is contained in the interval between # and # + c, we see 
that if 

Ic[ > 1 - 22~- 1 (3.2) 

TI(F,) well not be found inside any gap of F~. Then, the following conditions on #: 

# e [ - - c ,  1] if c > 0 ;  or # ~ [ 0 , 1 - c ]  if c < 0  (3.3) 

guarantee the condition of the Lemma 1 to be fulfilled. For mere convenience we 
shall suppose (3.2) to be true for c, an alternation of which should not affect the 
main conclusions of our analyses; and henceforth we let c > 0. 2~, 2u will be assumed 
to satisfy both (2.2) and (3.1) (Fig. 4). Notice that the product z(F~). "c(F~) can be 

Fig. 4 

I /2  

h s h u = I 
/ 

( k  s-  1 /2) (ku-  3/21 = - 1 / 4  

Xu 
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rendered as large as we please, by approaching 2u~ 2; while still maintaining (2.2), 
so that the basic set A remains hyperbolic. 

IV.  C o e x i s t e n c e  o f  Inf in i te ly  M a n y  S i m p l e  S i n k s  

The simple periodic solutions are fixed points of T1 o To l, i.e. [of. (2.5) (2.6)] 

Xo = x* -- b(Cl + Dtyo - y*), 

d (4.1) 
Yo = # + c(El + Ftxo) + ~ (Cl + Dtyo -- y~,)2. 

Substituting Xo in (4.1b) by (4.1a), we obtain 

d 
#=yo-c[E t+Fz(x*-b (C~+Dlyo-y*) ) ]  - ~(Ct+Dzyl--y*) 2 . (4.2) 

A saddle-node bifurcation occurs when O#/dyo = 0. Two solutions bifurcate in 
this way, one is stable, the other is unstable. They can be given symbolic names 
(S t___), where _+ specify Yl < or > y*. We are interested in the stable solution, which 
we denote by (S~H), with H =  + or - .  Let 21 and 22 be the two eigenvalues of this 
solution, then, it follows from straightforward computations that 

at #~-  y*-C~ c(E~+Ftx*)+At/2, 
Dt (4.3a) 

21= + 1 ,  0 < 2 2 < 1 ,  

at # * -  y * -  Ct c(Et +Ftx*), 

Dt (4.3b) 

21,2= -4-i0, 0 < f2 = ~/cb(2s2,)l < 1, 

at #h_ Y*--Ct c(Ez+Ftx*)-3A,/2,  

Dt (4.3c) 
2 1 = - 1 ,  - 1 < 2 2 < 0  

(cbDtFt + 1) 2 
with At - dD 2 

That is, (StH) becomes unstable at # = #), via a period doubling bifurcation. Its 
range of its stability, or the window width in the #-space, is 

t h _ ~ - 21 (4.4) [#l--#l[--2lAll t-~| �9 

We have therefore obtained the explicit expressions for all the simple periodic 
windows in the #-space. With this knowledge we can now show that infinitely 
many of them may coexist in the system (2.2), (2.5). Firstly, we have the following 

Propos i t i on  2. Under the conditions (2.2) and (3.1) on 2~ and 2~, and (3.2) with c > O, 
the set {#~} is dense in I - c ,  i]. 

Proof By virtue of the Proposition 1, which is valid if (2.2) and (3.1)-(3.2) are 
fulfilled, V# e [ -  c, 1], 3(x~, y*) e F~, and (x*, y*) e F,, such that 

Tl(x*,y*)=(x*,y*) or y * = # + c x * ,  (4.5) 
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since (x*, y*)~ F~, there are horizontal gaps arbitrarily near (x*, y*). W > 0, there 
exists a gap to which (Xo, y~) belongs, y~ = (y* - Ct)/Dz and 1 larger enough, such that 

, e (4.6) Xo))~s < ~. lY l -Y  I<~  and c(1+ * l e 

Let x* =Ez+Ffi*,  ~* ~ [0, 1]. We have 

y* - Y* - Cl + c(E~ +Ftx* ) [#-#~'1= c x * -  DK 

y.  Y*-C t 
<_ ~ +clFtl lS*-x*[ 

< ~ + ~ = e. (4.7) 

Hence, {#*} is dense in [ - c ,  1], so is {#~}. 

Remark. This proposition may be understood easily in terms of the two basic 
ingredients of the mechanism giving rise to the Newhouse phenomenon. 
According to the Proposition 1, F~c~ TI(F,) ~e O, thus there is a homoclinic tangency, 
for every # ~ [ - c ,  1]. The point (x*, y*) satisfying (4.5), for which the tangency is 
realized, changes as # is varied. Now we know that the periodic orbits are dense in 
the invariant basic set A, so are their local stable (respectively unstable) manifolds in 
W~ S (respectively W~u). Consequently, when p is varied continuously, for a dense set 
of # values in [ - c ,  1], the corresponding (x*, y*) belongs to a periodic orbit St of 
A and the tangency is just homoclinic tangency to this periodic orbit of saddle 
type. Here enters the second ingredient: arbitrarily near such a tangency there 
exist saddle-node bifurcation cascades; each resulting sink with its stability range 
given by (4.4) (see e.g. Gavrilov and Shl'nikov 1972, 1973). It thus follows that 
saddle-node bifurcation points are dense in [ - c ,  1], which is the assertion of the 
Proposition 2. 

Corollary. There is a residual set J~o C l--c, 1], for which the system (2.2), (2.5) has 
simultanously an infinite number of simple sinks. 

Proof The argument is adopted from Robinson (1983). Since {#~) is dense, the set 
J1 ofp values with one sink is open and dense. And since {/t~} is dense in J1, the set 
J2 with two coexisting sinks is open dense, J1 3J2. Repeating the argument ad 
infinitum, we get a sequence of dense open sets, J~ 3 J2 3... 3 Jo~, the limit of which 
is a residual set, Joo, with infinitely many coexisting simple sinks. 

V. The Hausdorff  Dimension of  J~ 

The preceding computations enable us to estimate now the Hausdorff dimension 
of the simple Newhouse set J~. The key assertion is the following 

Lemma 2. For 1 large enough, there are ,~ 2 hi, where 

h = (1 + log2u/log2~- 1)- 1 (5.1) 



326 X.-J. Wang 

I I I I 

among the ,.~ 21 windows, all with the same period and same window width, which do 
not overlap with each other in the #-space. 

The proof of this lemma, which is somewhat long and will be given in the 
appendix, is based on the fact that, for any pair of such specially selected periodic 
windows, the distance between #* and #~* behaves as --~2~ -I up to a certain 
polynomial correction in l; while the width of the windows is of order 2~-21 (Fig. 5). 

By definition of J~,  we see that # ~ J~  iff Vl__> 1, 31'> l, and #~* such that 

# e (#'z* + A'J2, I~;* - 3A'J2). 

(For definiteness, and in accordance with Fig. 2, we choose d < 0, so that A'l < 0.) 
Let 

G, = U U (#~' + A J2, #~" - 3A J2), (5.2a) 
l>n S~ 

then 

= N G.. (5.eb) 
n 

Being a residual set, J| is uncountable and dense in l --c ,  1]. We shall now 
show that it has a positive Hausdorff dimension. Let us recall 

Definition 1 (Billingsley, 1978). Consider an arbitrary bounded set A in 9t. For  s, 
e>0,  let 

m~(A)=inf~lll~, U I s D a ,  Ilsl < e ,  (5.3) 
J J 

where the infimum is taken over all countable coverings {I j} of A, 

ms(A)=limm~(A). (5.4) 
~ 0  

Then, there exists a unique Dn(A), which is called the Hausdorff dimension of 
the set A, such that 

if s <Dn(A), ms(A)= ~ ,  
(5.5) 

if s>Dn(A),  ms(A ) = 0 .  

For the simple Newhouse set J~o, we have the following 

Proposition 3. 

( l o g 2 u )  -1 log2 log2 1 + < Dn(J~) < (5.6) 
2 log2~ log2~- I = = 2 log2u " 
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Proof. First, we observe that 

[ 1 m~(G,,)<~=n ~' 2~(2AI)~< 2(ld+Cb) l~, (2/2~2~)1 

- - , 0  ( 5 . 7 )  

log2 
Therefore, m~(J~)=0,  if s > 2 log2----~" 

On the other hand, Lemma 2 implies that every G, will contain .-~ 2 hz [with h 
given in (5.1)] disjoint opens for sufficiently large l, each with a width 2lAzl, l>  n. 
Consequently, 

mjG,,)>_2th(2At)~>(2/d)~(2h/22~)"--',~_ _ if 2 /2,,h 2~>1. 

h log2 
Therefore, mJJ~,)  = ~ ,  if s < 2 log2-----~" 

And the proposition follows from Definition 1, with h given in (5.1). 

VI. Concluding Remarks 

In this paper we have discussed the question raised in the introduction concerning 
the measurable properties of the parameter set corresponding to the coexistence of 
infinitely many sinks in the phase space of a dynamical system. Our analysis in the 
previous sections was limited to the simple Newhouse sinks as the stable fixed 
points of 7"1 o To I. In Wang (1987) nonsimple Newhouse sinks have also been 
investigated. It seems worthwhile to mention some conclusion drawn from there. 

In general we shall call a Newhouse  sink a stable fixed point of 

T l o T ~ , o T l o T ~  k-,  . . . . .  T l o T  11 " 

The complete Newhouse set denoted by JN, is the set of parameter values for which 
the system has infinitely many coexisting Nowhouse sinks. Let us divide the total 
Newhouse set JN into two disjoint subsets: JN = J A ~ J B  �9 Jn is defined as follows: let 
it be given any large integer M. For # ~ JN, let the associated, countable set of 
coexisting sinks be 

s = {(SllelSt2~2... %_ ,S%Hj)}j= 1, St, = (COo... oh), ~i = + 1. (6.1) 

Then, # e JB if only a finite number of elements in the sequence Y2 (6.1), contain 
certain S h longer than M, I i > M; and all the infinitely many others in the sequence 
involve only the S h of length shorter than M, 1 i < M. It then follows from the 
infinitude of the collection s that the sequence {kj, j---1,2,3 .... } must be 
unbounded. In other words, the largest period amongst these sinks in s tends to 
the infinity via k ~  oo instead of l ~  o% in contrast to the case of Joo. Obviously the 
larger is M, the larger is the set JB. The complement of JB is denoted by JA, 
Ja = JN\JB �9 Evidently, we have J~o C Ja. 

Nothing is known about the Newhouse subset JB, not even whether it is a 
nonempty set. On the other hand, since J~ CJA, it follows immediately from the 
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previous sections that the Hausdorff dimension of Ja  is strictly positive. Indeed, JA 
enjoys quite similar properties as Jo~. By extending the techniques developed in 
Tedeschini-Lalli and Yorke (1986), we can show that 

Proposition 4 (Wang, 1987). There exists an M such that the Lebesgue measure of J A 
is zero. 

The proof will not be given here. Let us end by saying that in order to provide 
with a complete answer concerning the Lebesgue measure of the Newhouse set JN, 
it remains to understand the other Newhouse subset J~. 

Appendix: Proof of the Lemma 2 

We would like to show that as I ~  0% there are about  2 ht simple windows, with 
log . )-1 

h = 1 + ~ ]  , out of the total ~ 2 ~ simple windows of same period, which 

do not overlap amongst themselves. To this end, consider any pair of two windows, 
t ,  t t ,  (1~* + At/2, # * -  3A t/2) and (#t + A J2, #~ -3A',/2) [cf. (4.3)]. They are separated if 

y*- c, G 

=> Y~Dt Ct Y~o't- C'~ 

c(e, + F,x~) + c(e; + F',x~) 

c lE t -  E'tl] - cx~dlF , - F;I 

>21Atl. (A.1) 

Let us suppose that these two sinks are stable fixed points of T1 o To g according 
to Sz = O)oCOl ... oh-1, and S'l = m;~o'l ... o)'z-1, respectively. We assume 

C0k=CO~, k=0 ,1  . . . .  , i - 1 ;  k = l - l , l - 2  ..... j + l  
(A.2) 

and co i + co'z, coj + co~ 

(i<j). Then, Sl and S} are separated by a distance larger than a gap S, (Fig. 6a). 

Recall that x~, respectively x ~ , o )  j j  is a point inside the gap S, 

(respectively S'~), we have 

22t> Y*Z  C~ Y 'Z ,  C'~. > 2 2 t ( 1 - 2 2 2 1 ) .  (A.3) 
Dt Dt = 

Similarly, recalling that [cf. (2.7)] 

Et = col_ 1 + ( -  1)~ 1cot_ 22s + ... + ( -  1)'~ 1 ++~ -1 , (A.4) 

we have (of. Fig. 6b) 

2ts j-  1 > IE t -  E~I > 2tZ j- 1(1 - 223. (A.5) 

Let us select two different cases: 

case (A) 2~-i(1 - 22~- 1) > c2ts-j- 1, (A.6a) 

case (B) c21s - ~- 1(1 - 22s) > 2~-~. (A.6b) 
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Fig. 6 a 
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In case (A), it follows from (A.3) and (A.5) that Dl Dt >clE~-E'L 

hence a sufficient condition in order to satisfy (A.I) is 

i ~ .  #~,1___c2~-i(6_ ~ - j - 1  i , z _ 2s 2 . ) -  2CXo As > 2lat[, (A.7) 

where ~ = (1 - 22~- 1)/c. 
y* - C~ * - -  C'~ 

Or in case(B), ~ Y~D; <clEz-Ell, and a sufficient condition in 

order to satisfy (A.1) is 

I]~__~t/*l - i  ~t l - j - 1  i ~t >2, /c(2~ 2,--c)--2cx*21~>2lAll, (A.8) 

where ~' = (c(1 - 22s))- 1. 
Now, we would like to show firstly that for large I, (A.6a) [respectively (A.6b)] 

implies (A.7) [respectively (A.8)], thus the corresponding pair of simple windows 
do not overlap (Proposition 5). Then, we shall estimate the number of windows in 
each of the two classes A and B specified respectively by (A.6a) and (A.6b) 
(Proposition 6). 

Proposition 5. For 1 large enough, (A.7) (respectively (A.8)) holds if (A.6a) 
(respectively (A.6b)) is fulfilled. 

Proof Consider firstly case A, for which we need to prove the truth of (A.7). We 
observe that for almost any arbitrarily chosen c, 2s, and 2,, the two real numbers 
log2Jlog~ and log2fflog~, will satisfy the Diophantine condition (Chenciner and 
Iooss 1979): Ve>0, 3A'>O such that 

mlog2s lo~2. A' 
+ n "---~-~log? --1 > --,12+~ Vm, n<_l_. (A.9) 

Then, if m log2~ + n l o g 2 , -  log6 < 0, 

2s m. 2."/6 < exp ( - All 2 + ~), (A. 10) 
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where A = A'llog~l. Consequently, 

- 2 m. 2~ > ~(1 - exp ( -  A/I 2 +~)) ~,_, co ~A/l 2 +~. (A.11) 

On the other hand, in case (B), m log2s + n l og2 , -  log~' > 0, 

(27 �9 2~)/e > exp (A/I 2 + ~) (A.12) 

with A = A'llog~'l and, 

2~n~-- ~' > ~'(exp(A/l 2 +~)-- 1) ~,-t_, o~ ~'A/I 2 +~ . (A.13) 

Combining (A.11) with (A.7) or (A.13) with (A.8), we conclude that, in either 
case A or case B, there exists a positive constant C such that, for large l 

2~ iC , l 
I~-~ '~*1_ >- 12+~ 2CXo,~s>C2~t/12+~-2cx*)}s 

= z ;  ~(C/ l  2 +~ - 2cxg(,~s,~) ~) > 21~ ~1 ~ ~/- 2~. (n. 14) 

The last inequality follows from the fact that 2s2~ < 1 (2.2) so that (2~2~) t 
decreases exponentially with I. The proposition is proved. 

The last step is to estimate the cardinality for each of the two classes A and B 
defined respectively by (A.6a) and (A.6b). 

Proposition 6. For large l, the number of windows in the class A (respectively 
class B)  is "~ 2 hi (respectively ~ 2  h'l) where 

h= l+log2j_~j  , l + ~ j  (A.15) 

Proof. Equations (A.6a-b) are equivalent to 

i l o g A ~ - ( l - j -  1) log2j 1 <log~, 
(A.16) 

i log 2~ - (I - j  - 1) log 2[ 1 > log ~'. 

The domains in the (i,j)-plane admitted by (A.16) are shown in Fig. 7 as dashed 
regions A (for class A) and B (for class B). The task, thus, is to consider a subset of 
simple windows of period l, WA = {S,} (respectively WB), such that any pair St and S'z 
in Wa (respectively WB) would have i andj defined by (A.2) belonging to the dashed 
region A (respectively region B) in Fig. 7. The Proposition 5 then guarantees that 
they do not overlap, and the cardinality of such a subset will provide with an 
estimation of the number of windows in the class of type A (respectively type B). 

Fig. 7 
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(I) ("n') 

] 

:,L ~ :,L ~-I (m) 
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As we see from Fig. 7, there are three different cases 

(I) ~<1,  ~'>1, 

(II) 5< 1, ~' < 1, 

(III) 5> 1, ~' > 1. 

It can be easily checked that ~ > 1 and ~' < 1 can not be simultaneously realized, 
given the constraints on 2~ and 2, (2.2). For  simplicity let us consider here only the 
case I. The other two cases may be treated in exactly the same way. Look at first the 
region A. It is bounded by 

i = 0 ,  and i=j, (A.17a) 

j = l - l - i  l~ 1 + l o g ~  (A.17b) 
log27 log271. 

Let us denote by /max (respectively Jma~) the intersection of the straight line 
(A.17b) with i=j (respectively i=0), 

( logg "~ 
imax = h l - 1 + ~ ] ,  jma~=ima,Jh (A.18) 

with h given in (A.15). Let us choose a fixed string of zeros and ones, 

~U~.,,I + I(;SU~.,,] + 2 ... ~ 1, 

where [x] is the integer part of x, and define 

Wo = {(0o91o~2 ... o)u~,,=jc~u,,o=l + VSum=j + 2 ... c5~_ 0}, 
(A.19) 

Wl = {(1~1~o2 ... oJtj,.,~ ~ + l ~ t s ~ , l +  2 . . .  ~ z -  0 } .  

IfSl ~ W o and S'~ e W1, then evidently the values o f / a n d j  defined in (A.2) satisfy 
i=  0, j < [J~aJ" It follows from the constraint (A.6a) with i=  0 that 

Sic~S'~ = O. (A.20) 

log2~ 
log2~- 1, and 

Likewise, let it be fixed OSUmax_ ~1 + 1 &Urn,=-- ~J + 2"' '  OSZ-- 1, where e = - -  
we define 

Woo = { (00(D2 �9 �9 �9 (D[Jmax- ~]~[.Jmax - a] + 1 f/~[Jmax --a] + 2 " ' "  0)1-  1 ) ) ,  

Wol = {(0leo2 ... COUm,x_,lrSUmax_,l + lOSU,,, _,1 + 2"' '  ~St-- 0}'  
(A.21) 

W1 o = {(10~o2 ... ~OUm==_ ~1~U,,,=_ ~1 + ~Um,=- ~1 + 2"" ~ -  0}, 

W l  1 = {(1 1 (J~2 �9 ~ . ~OUmax -- ~ ]~[Jmax  -- ~] + l(J~[Jma. -- g] + 2 " ' "  ( ~ l -  1 ) } '  

then, Woo and Wol, the union of which is included in Wo, are two nonoverlapping 
subsets of the simple windows according to the constraint (A.6a) with i = 1. Idem 
for Wlo and Wll. Combining with the previous statement about i=  0, we conclude 
that the four groups of windows defined in (A.21) are not overlapping. Repeating 
the reasoning in this way, for i = 0, 1, 2 . . . .  , [/max], we end up by concluding that for 
any fixed 03[imax] + lf~[ima~] + 2 " ' "  (Dl -1 ,  all the windows in 

Wa = {Sz = (COoCOl .- �9 COtlma=lChti~,=l + 1OSt~m,=l + 2 .- �9 eSZ-- ~)} (A.22) 
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are not  over lapping.  The  n u m b e r  of  such windows are app rox ima te ly  2 tim"xl,,~ 2 h~ 
with h given in (A.15). 

We  m a y  proceed  with the same cons idera t ion  for the region B b o u n d e d  by  

j =  l -  1, i=j ,  (A.23a) 

i log2 ,  logg'  (A.23b) 
j = l - l -  log2Z a + log2_ 1. 

By similarly defining imi n as 

( log , 
imin = h I -  1 + log2~- 1] (A.24) 

we m a y  show tha t  for any  fixed O5oC31 ... OStim,nl, all the windows in 

WB = {St = (O5o~1 ... OS[im,~l~0timio] + 1CO[i~i~l + 2" ' '  ~Ol- 1)} (A.25) 

are not  over lapping.  The  n u m b e r  of  such windows is app rox ima te ly  
2 t- 1- t~,,,,l~ 2th ", where h' is given in (A.15). 

Thus,  we have  cons t ruc ted  two classes of  windows,  WA and  Wn. With in  each of 
them, any  pa i r  of  windows do not  overlap.  O f  course, these two classes m a y  
over lap  one with the other. F o r  our  purpose,  we m a y  select the first class Wa which 
is larger  than  the second one, since 2~- ~ > 2, implies that  h > h'. We  also note  tha t  
this class is not  unique;  in fact any  choice of  the subsequence of  string 
&t~.,~l + a Cht~r-~J + 2""  05~_ 1 will do in our  cons t ruc t ion  of WA. However ,  the largest  
class of  nonove r l app ing  windows we were able to cons t ruc t  has the n u m b e r  as 
s ta ted in L e m m a  2. 
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