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A microcircuit model of prefrontal
functions: Ying and Yang of reverberatory
neurodynamics in cognition

Xiao-Jing Wang

1 Introduction

In contrast to neural systems responsible for sensory processing or motor

behavior, the prefrontal cortex is a quintessentially ‘‘cognitive’’ structure.

A bewildering gamut of complex higher brain processes depend on prefrontal

cortex. It is thus a particularly challenging quest to elucidate the neurobiology of

prefrontal functions at the mechanistic level. Patricia S. Goldman-Rakic voiced

this difficulty in 1987:

Unlike largely sensory and motor skills, the mnemonic, associative, and command functions

of the mammalian brain have eluded precise neurological explanation. The proposition that

cognitive function(s) can be localized to specialized neuronal circuits is not easy to defend

because the neural interactions that underlie even the most simple concept or solution of

an abstract problem have not been convincingly demonstrated. Also it does not seem possible

to conceptualize in neural terms what it means to generate an idea, to grasp the essentials of

a situation, to be oriented in space and time, or to plan for long-range goals. Furthermore

we are still learning how to formulate the structure-function problem in a way that can

lead to fruitful experimentation, theory building, or modeling in terms of neural systems or

synaptic mechanisms.

Since these words were written, some of the impediments have begun to

yield ground, partly thanks to the development of novel techniques linking

cognitive functions with underlying neural processes. The advent of functional

magnetic resonance imagining (fMRI) has opened up a window with which

brain activity can be probed and dissected during behavior. Therefore, internal

representations and processes that are not necessarily reflected by overt motor

responses can now be directly observed and quantitatively analyzed. Stimulated

by a confluence of experimental psychology, computer science, clinic neurology,

and brain imaging, theory building in cognitive science has evolved from
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predominantly ‘‘conceptual models’’ (in words and box diagrams) to more

quantitative ‘‘connectionist’’ neural network models (Dehaene & Changeux,

1995; Cohen et al., 1996; O’Reilly et al., 1999; O’Reilly & Munakata, 2000).

Meanwhile, neurobiologists have developed laboratory paradigms that combine

psychophysics and neuronal recordings with behaving animals, especially

nonhuman primates. While an alert monkey performs a cognitive task (such

as working memory, perceptual discrimination, selection of motor response),

psychophysical data are collected to quantitatively measure the animal’s perfor-

mance. At the same time and under the same conditions, spike firing activities of

individual neurons are recorded from identified brain areas and linked to the

animal’s behavior (for reviews, see Parker & Newsome, 1998; Romo & Salinas,

2000; Schall, 2001; Pasternak & Greenlee, 2005). Therefore, in many cases,

a quantifiable relationship can be established between specific aspects of behavior

and spike firing activity of single cells at the spatial resolution of microns and the

temporal resolution of milliseconds.

Yet, correlations are not explanations. To build a neurobiological founda-

tion of cognition, we need to understand network behavior underlying higher

brain functions in terms of the biophysics of neurons and synapses, microcircuit

anatomy, and collective neural dynamics. Past decades have seen tremendous

progress in our understanding of the ‘‘hardware’’ of cortex and its plasticity. The

vast amount of information gained from these advances has helped our efforts in

a mechanistic understanding of sensory processing such as orientation selectivity

in primary visual cortex, and long-term plasticity such as development of barrels

in somatosensory cortex. By contrast, relatively little has been firmly established

regarding cellular mechanisms of higher cognitive functions. This situation

is changing in recent years, when neuroscientists of various subfields begin to

join force in studying prefrontal cortex (Wang & Goldman-Rakic, 2003). The

question must be raised: can cognitive functions, such as working memory and

decision-making, be described and explained in terms of what we know about

the brain: be it the rich repertoire of electroresponsiveness of single neurons

(Llinas, 1988), intricate active properties of neuroral dendrites (Magee et al.,

1998), dynamics of synaptic connections between individual neurons (Markram

et al. 1998; Abbott & Regehr, 2004), and microcircuit wiring connectivity

(Somogyi et al., 1998; Douglas & Martin, 2004)? In this chapter, I will explore

this question from a computational perspective. At the interface between

cognitive science and neurobiology, realistic modeling offers a valuable approach

for at least two reasons. First, existing experimental methods are limited in

linking neural processes observed in behaving animals with the underlying

cellular mechanisms; models can serve to bridge these different levels. Second,

cognitive functions involve cortical circuits that are strongly recurrent.
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Predicting behaviors of such nonlinear systems with positive and negative

feedback loops is not easy or even possible by intuition alone, a mathematical

framework based on dynamical systems theory and computational methods is

needed.

I will discuss models of prefrontal cortex that are constructed based on the

known cortical anatomy and electrophysiology. To be concrete, I have chosen to

focus on a cardinal prefrontal function which is nevertheless simple enough for

detailed mechanistic analysis at the microcircuit level. I will thus devote the bulk

of this chapter to delayed response behavior that engages working memory.

As we shall see later, the same models designed for working memory are

also suitable for decision-making processes. Finally, I will argue that theory

of microcircuit neural dynamics provides a framework for understanding how

alternations at the molecular level (e.g. deficits in glutamate, GABA, dopamine

transmission) give rise to impaired network behaviors associated with mental

diseases such as schizophrenia.

2 Mnemonic persistent neural activity

In delayed response tasks (Hunter, 1913), the sensory stimulus and motor

response are separated by a brief delay period, during which time the sensory

information must be actively held in mind by the subject. The behavior goes

beyond simple stimulus-response reflexes and engages active short-term memory

or ‘‘working memory.’’ In the 1930s, C. F. Jacobsen (Jacobsen 1936) demon-

strated that lesion of prefrontal cortex in monkeys induced specific deficits in

delayed response tests. It is worth noting that such deficits did not occur with

temporal lobe lesions, a result that was confirmed by later monkey lesion studies

(Bachevalier et al., 2002) and in consonance with evidence from the human

clinical literature (H.M. had essentially intact active short-term memory)

(Milner, 1972). Subsequent work by K.H. Pribram, H. E. Rosvold, M. Mishkin

and others substantiated Jacobsen’s finding and established delayed response

tasks as a paradigm of choice for studying prefrontal cortex (see Curtis

& D’Esposito [2004] for a recent critical review). The delayed response task is

simple compared to other cognitive tasks, and thus offers a paradigm amenable

to rigorous experimentation for studying prefrontal function in the laboratory.

When single neuron recordings from awake monkeys became possible

Fuster and Alexander (1971) discovered that, during delayed response tasks,

cells in prefrontal cortex displayed elevated spike discharges throughout the delay

period while the animal was required to maintain sensory information internally

in the absence of sensory stimulation. Persistent neural activity was immediately

recognized as candidate neural correlate of working memory. Over the last
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35 years, there has been a large body of work documenting mnemonic persistent

activity in prefrontal cortex (Funahashi et al., 1989; Miller et al., 1996; Rainer

et al., 1998; Romo et al., 1999), posterior parietal cortex (Gnadt & Andersen,

1988; Chafee & Goldman-Rakic, 1998), inferotemporal cortex (Fuster & Jervey,

1982; Miyashita, 1988), and basal ganglia (Hikosaka & Wurtz, 1983).

An especially elegant paradigm is the spatial delayed oculomotor task

(Figure 4.1A). Using this task Funahashi et al. (1989) found that many neurons

in the dorsolateral prefrontal cortex, including and surrounding the principal

sulcus, and in the frontal eye field, exhibited mnemonic persistent activity during

the delay period (Figure 4.1B). Remarkably, the delay activity of a recorded

neuron was selective for preferred spatial cues (the cell’s ‘‘memory field’’), and

this selectivity could be quantified by a bell-shaped tuning curve (Figure 4.1C).

The discovery of ‘‘memory fields’’ demonstrated an internal representation of

visuospatial information in the prefrontal cortex. This representation is

observable and can be quantitatively described in terms of a Gaussian tuning

of persistent delay activity at the single-cell level. However Gaussian tuning is

commonplace among cortical neurons. Perhaps the best known example is

orientation selectivity in primary visual cortex, the mechanisms of which have

been extensively studied in cortical physiology (Sompolinsky & Shapley, 1997;

Ferster & Miller, 2000). Thus, the question of prefrontal microcircuitry under-

lying working memory could be formulated in cellular and synaptic terms

(Goldman-Rakic, 1995; Wang, 2001): what are the excitatory-inhibitory synaptic

mechanisms for the formation of memory fields? What are the microcircuitry

properties of the prefrontal cortex, such as local horizontal connections, that give

rise to persistent activity?

The persistence time (up to 10 s) of sustained firing activity during working

memory is orders of magnitude longer than the biophysical time constants (tens

of milliseconds) of fast electrical signals in neurons and synapses. For this reason,

persistent activity is believed to be generated by feedback dynamics, or reverbera-

tion, in a neural circuit (Lorente de Nó, 1933; Hebb, 1949; Amit, 1995).

The characteristic horizontal connections found in the superficial layers II�III of

the dorsolateral PFC may provide the anatomical substrate for such a recurrent

circuit (Levitt et al., 1993; Kritzer & Goldman-Rakic, 1995). This idea is made

precise in theoretical work where persistent activity is described as ‘‘dynamical

attractors’’ (Wilson & Cowan, 1973; Amari, 1977; Amit, 1995; Wang, 2001).

The mathematical term ‘‘attractor’’ simply means any self-sustained and stable

state of a dynamical system, such as a neural network. For example, according

to this picture, in a working memory system, the spontaneous state and

stimulus-selective memory states are assumed to represent multiple attractors,

such that a memory state can be switched on and off by transient inputs.
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This formulation is plausible, inasmuch as stimulus-selective persistent firing

patterns are dynamically stable and approximately tonic in time (e.g. across a

delay). However, it remains unproven that attractor networks can be realized in

the brain. To determine the realistic synaptic properties and circuit dynamics

that are required for a robust network-induced persistent activity, biologically-

constrained models of persistent activity were needed, which became possible

only recently thanks to the advances in quantitative neurophysiology (Wang,

2001; Major & Tank, 2004). Broadly speaking, feedback mechanisms underlying

reverberation can either arise from recurrent network dynamics (Amit & Brunel,

1997; Lisman et al., 1998; Wang, 1999; Durstewitz et al., 2000b; Compte et al.,

2000; Seung et al., 2000; Brunel & Wang, 2001; Miller et al., 2003), or from

intrinsic membrane/intracellular dynamics of single cells (Camperi & Wang,

1998; Egorov et al., 2002; Koulakov et al., 2002; Goldman et al., 2003;

Loewenstein & Sompolinsky, 2003). This chapter will mostly deal with circuit

mechanisms but, as we shall see, network functions strongly depend on the

biophysical properties of single cells, even though the latter alone are not

sufficient to account for mnemonic persistent activity.

3 A biophysically based model of working memory

A network model for the Funahashi experiment of spatial working memory is

illustrated in Figure 4.2A. The key feature is the preeminence of recurrent

connections (‘‘loops’’) between neurons, so that a cell receives not only external

stimulation (via afferents from upstream neurons) but also inputs from other cells

within the same microcircuit (via ‘‘horizontal’’ connections). A commonly

assumed network architecture is the so-called ‘‘Mexican-hat’’: localized recurrent

excitation between pyramidal cells with similar preference to spatial cues, and

broader inhibition mediated by interneurons. Models of synapses and single cells

Figure 4.1 (A) Oculomotor delayed response task. Trials begin with the appearance of a fixation point

at the center of the screen, which the monkey is required to foveate throughout the trial.

A spatial cue is subsequently presented, typically at one of eight locations (inset at left). After

a delay period of a few seconds, the disappearance of the fixation light spot signals the end

of the delay. At that moment the monkey must make an accurate saccadic eye movement to

the location where the cue was shown before the delay period, in order to collect a liquid

reward. (B) Activity of a single prefrontal neuron, exemplifying persistent discharges during

working memory. (C) Tuning curves of mnemonic delay period activity in a regular spiking

putative pyramidal cell (left) and a fast-spiking putative interneuron (right). ([A�C] are

adopted from Constantinidis & Wang [2004]; Funahashi et al. [1989], and Constantinidis

& Goldman-Rakic [2002] respectively, with permission.)
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Figure 4.2 Working memory maintained by a spatially tuned network activity pattern (a ‘‘bump

attractor’’). Top: model architecture. Excitatory pyramidal cells are labeled by their preferred

locational cues (0� to 360�). Pyramidal cells of similar preferred cues are connected through

local E-to-E connections. Interneurons receive inputs from excitatory cells and send

feedback inhibition by broad projections. Middle: a network simulation of delayed

oculomotor response experiment. C: cue period; D: delay period; R: response period.

Pyramidal neurons are labeled along the y-axis according to their preferred cues. The x-axis

represents time. A dot in the rastergram indicates a spike of a neuron whose preferred

location is at y, at time x. Note the enhanced and localized neural activity that is triggered by
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are calibrated quantitatively by cortical electrophysiological studies. This is

important: as we will discuss below, even though network function is determined

by the collective dynamics of many thousands of neurons, the emergent popu-

lation behavior depends critically on the properties of single cells and synapses.

Figure 4.2B shows a model simulation of the delayed oculomotor task

(Compte et al., 2000; Renart et al., 2003) (for movie presentation of this model,

go to http://wanglab.ccs.brandeis.edu). Initially, the network is in a resting state

in which all cells fire spontaneously at low rates. A transient input (in this case

at 180�) drives a subpopulation of cells to fire at high rates. As a result they send

recruited excitation to each other via horizontal connections. This internal

excitation is large enough to sustain elevated activity, so that the firing pattern

persists after the stimulus is withdrawn. Synaptic inhibition ensures that the

activity does not spread to the rest of the network, and persistent activity has

a bell shape (‘‘bump attractor’’). At the end of a mnemonic delay period the cue

information can be retrieved by reading out the peak location of the persistent

activity pattern; and the network is reset back to the resting state. In different

trials, a cue can be presented at different locations. For example, across eight cue

presentations the firing activity of a single cell (Figure 4.2C) can be compared

with the single-unit recording data from monkey’s prefrontal cortex

(Funahashi et al., 1989). At the network level, each cue triggers a persistent

firing pattern of the same bell-shape but peaked at a different location.

A spatial working memory network thus requires a continuous family of ‘‘bump

attractors,’’ each encoding a potential location (Ben-Yishai et al., 1995; Camperi

& Wang, 1998; Compte et al., 2000; Renart et al., 2003; Song & Wang, 2005).

The instantiation of such a continuous attractor can be rendered robust

by regulatory homeostatic mechanisms in a biophysically realistic cortical

network in spite of cellular heterogeneities (Renart et al., 2003).

Thus, this biologically constrained model captures salient experimental

observations from behaving monkeys. What lessons have we learned from

such a model?

Figure 4.2 (contd.) a transient cue stimulus and persists during the delay period. The

population firing profile, averaged over the delay period, is shown on the right. Bottom left:

firing activities of a single cell when the cue was shown in one of the eight locations

indicated in the center diagram. This neuron exhibits an elevated persistent activity in the

delay only for one direction (270�), and is suppressed relative to intertrial spontaneous

activity in the upper visual field. Bottom right: the delay period tuning curve shows the

average discharge rate during the delay period (circles), together with a Gaussian fit of

the data. The horizontal line indicates average intertrial spontaneous activity. Data provided

by A. Compte. (For a color version of this figure, please see the color plate section.)
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4 Excitation-inhibition balance

A conspicuous feature of our network model is multistability: a resting state

coexists with a number of stimulus-selective memory states, so that transient

inputs lead to switching between self-sustained network firing patterns, or

‘‘attractors’’ (Figure 4.3). When the attractor network scenario for working

memory was tested with biophysically realistic models, it was recognized that

such a system with strong recurrent loops is prone to instability. For instance, the

resting state should be stable to small perturbations due to noisy spontaneous

neural firing, in spite of strong excitatory recurrency. This is realized by a tight

balance between excitation and inhibition (E-I balance), like Ying and Yang

in ancient Chinese philosophy. In fact, in the resting state, feedback inhibition

is slightly larger than excitation, hence the overall recurrent input to a neuron is

inhibitory (Figure 4.4A) and spontaneous spike firing is driven by random

background external inputs. Interestingly, in a memory state in which stronger

reverberatory excitation is recruited to sustain an elevated firing rate, synaptic

inhibition increases proportionally with excitation (Figure 4.4B�C); this dynami-

cally maintained E-I balance contributes to controlling the firing rates and

preventing runaway excitation. Other experimental and theoretical work suggests

that a fixed E-I balance, regardless of changing neuronal firing rates, may be

Figure 4.3 Schematic illustration of the biophysics underlying an attractor dynamics. An attractor is a

neural firing state that is stable to perturbations: when a small input perturbs the network

to a lower or higher activity level, there is a ‘‘restoring force’’ to bring the network back to

the attractor state. In this case, the spontaneous state is stabilized from below by

background inputs, and from above by feedback synaptic inhibition. A sufficiently powerful

sensory stimulus can drive a cell assembly to ‘‘escape’’ from the spontaneous state, and

after the stimulus is withdrawn the system settles in one of the active memory states at an

elevated firing rate. The persistent activity state is stabilized from below by excitatory

reverberation, and from above by various negative feedback ‘‘rate control’’ mechanisms.

Finally, a behavioral response or reward signal can turn the network off and erase the

memory. (Adopted from Wang [2001] with permission.) (For a color version of this figure,

please see the color plate section.)
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a general characteristic of cortical network dynamics (Shadlen & Newsome, 1994;

Shu et al., 2003; Compte et al., 2003b; Liu, 2004).

The balancing act of recurrent excitation and inhibition may contribute

to an explanation for the highly irregular spike discharges in prefrontal cells

Figure 4.4 Balanced excitation and inhibition in the spatial working memory model (same as in

Figure 4.2). Various components of synaptic current in a single cell during spontaneous

activity (top), during delay activity following presentation of a preferred stimulus (middle),

and during delay activity following presentation of a nonpreferred stimulus (bottom). The

dotted line indicates the value of excitatory synaptic currents needed to reach the

(deterministic) firing threshold. In the two lower panels, the dotted boxes indicate the value

of the corresponding component during spontaneous activity, to show the differences

between delay and spontaneous activity. Background external inputs are superthreshold.

Recurrent circuit is dominated by inhibition (brown) over excitation (orange) in the

spontaneous state, so that the net recurrent synaptic current is hyperpolarizing (blue).

During delay activity both recurrent excitation and inhibition are larger and dynamically

balance each other, in such a way that the overall synaptic excitation becomes slightly larger

following a preferred stimulus (leading to persistent activity at an elevated rate) than after

a nonpreferred stimulus. (For a color version of this figure, please see the color plate

section.)
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(Compte et al., 2003a). On the other hand, we found that the E-I balance

often manifests itself in the form of coherent network oscillations, typically

in the gamma (40 Hz) frequency range (Wang, 1999; Compte et al., 2000; Tegnér

et al., 2002) (Figure 4.5). This is because fast excitation followed by slower

inhibition is a common recipe for rhythmogenesis in neural networks (Wilson &

Cowan, 1972; Wang, 2003). Synaptic inhibition mediated by GABAA receptors

is typically about 3�5 times slower than fast synaptic excitation mediated by

AMPA receptors, the latter having a decay time constant of a few milliseconds

(Hestrin et al., 1990b; Xiang et al., 1998). Modeling studies showed that coherent

oscillations resulting from an interplay between AMPAR-mediated excitation

Figure 4.5 Gamma oscillations during working memory. (A) Spatiotemporal firing pattern of a spatial

working memory model same as in Figure 4.2 (with slightly different parameters) except

that firing rates are color-coded. (B) 500-ms blowup of (A) to show synchronous

oscillations in the spatiotemporal activity pattern (top), the local field potential (middle)

and membrane potential of a single neuron (bottom). On the right is shown the power

spectrum of the local field, demonstrating a large peak at about 40 Hz. (Adopted from

Compte et al. [2000] with permission.) (For a color version of this figure, please see the

color plate section.)
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and GABAAR-mediated inhibition have a preferred frequency range around

40 Hz (Brunel & Wang, 2003). This theoretical finding suggests that synchronous

40-Hz oscillations may be observed in mnemonic persistent activity, a notion

that has found some experimental support (Pesaran et al., 2002). In this view,

fast g rhythms may be a characteristic sign of the engagement of strongly

reverberatory cortical circuits in cognition and memory.

5 The importance of being slow: role of NMDA receptors

A system with fast positive and slow negative feedbacks, both powerful, is prone

to dynamical instability. Persistent activity is often disrupted in the middle of

a delay period, thereby the memory is lost (Wang, 1999; Compte et al., 2000;

Tegnér et al., 2002; Renart et al., 2003). The same destabilization problem is

present if negative feedback is instantiated by spike-frequency adaptation

(McCormick et al., 1985) or short-term synaptic depression (Markram et al.,

1998; Abbott & Regehr, 2004). Such instability does not occur, if the excitation is

sufficiently slow, when compared to negative feedback, i.e. when recurrent

synapses are primarily mediated by NMDA receptors (time constant 50�100 ms)

(Wang, 1999; Compte et al., 2000). Moreover, the slow NMDAR unbinding to

glutamate gives rise to saturation of the NMDA synaptic current with repetitive

stimulation at high frequencies (Figure 4.6). As a result further increase in neural

firing rates does not lead to a larger excitatory drive, and the explosive positive

feedback is curtailed. Therefore it helps to control the firing rate in a persistent

activity state (Wang, 1999).

A specific suggestion from modeling work, then, is that in a working memory

microcircuit, if persistent activity is primarily sustained by synaptic reverberation,

local excitatory synapses should have a sufficiently high NMDA/AMPA ratio.

How high is high enough? The answer depends on the details of network

biophysics and connectivity. For instance, the time constant of a synaptic current

depends on the subunit composition of its receptors. If GABAA-receptor-

mediated inhibition is unusually fast in a working memory circuit, instability

due to the time constant mismatch with AMPA-receptor-mediated excitation

would be less severe, and the required NMDA/AMPA ratio would be lower

(Tegnér et al., 2002). Furthermore, if a slow ion channel in single cells

contributes to positive feedback, then less NMDA/AMPA ratio would also

be needed, as shown in Figure 4.7 (Tegnér et al., 2002). The general idea is that

positive feedback should not be too fast compared to negative feedback, when

both are powerful in a working memory circuit. This remains true if persistent

activity is generated not by a synaptic mechanism, but by intrinsic membrane

dynamics of single neurons.
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6 Stimulus selectivity and resistance against distractors

As I discussed earlier, like Ying and Yang, reverberatory excitation should be

balanced by synaptic inhibition to ensure proper function of a working memory

circuit. Synaptic inhibition plays a critical role in sculpturing stimulus selectivity

of mnemonic persistent firing patterns, in consonance with the observation that

GABAA receptor antagonists resulted in the loss of spatial tuning of prefrontal

neurons during a delayed oculomotor task (Rao et al., 2000). Note that it is useful

to distinguish between ‘‘feedforward’’ inhibition (from GABAergic cells driven

Figure 4.6 Temporal summation of the NMDAR-mediated excitatory postsynaptic currents (EPSCs). (A)

NMDAR-mediated EPSCs elicited by four stimuli, when the membrane potential is clamped

at �40 mV. Upper panel: data from a pyramidal neuron in CA1 of the rat hippocampus

(redrawn from [Hestrin et al., 1990b] with permission). The stimulus is at 25 Hz. Note the

significant summation and saturation. These properties are mediated postsynaptically by

the NMDARs, since they are absent in the non-NMDR-mediated EPSCs recorded in the

same cell at �100 mV. Lower panel: NMDAR-mediated EPSCs produced by a model

synapse in response to a stimulus at 20 Hz. (B) The average NMDAR-mediated EPSC as

function of stimulus frequency. (Adopted from Wang [1999] with permission.)
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Figure 4.7 A spatial working memory model, with single neurons endowed with three compartments

(soma, proximate and distal dendrites) and a number of voltage-gated ion channels.

(A) Left: schematic single pyramidal cell model; right: spatiotemporal network activity (top)

and membrane potential of a single cell (bottom) in a simulation of the delayed

oculomotor experiment. Data provided by J. Tegnér (2002). (B) Electroresponsiveness

of an isolated pyramidal cell model with a nonselective cation current ICan. The calcium-

dependent activation of ICan is slow, leading to a ramping-up time course of the neural

response. A few action potentials are still fired after stimulus extinction, in parallel with

a slow deactivation of ICan. Notice that the neuron is not bistable; it returns to stable resting

state. (C) Slow ionic currents (here ICan) reduce the minimum level of NMDAR that is

required for sustained delay activity. Further increase in gCan renders the neuron intrinsically

bistable (not shown). (Adopted from Tegnér et al. [2002] with permission.) (For a color

version of this figure, please see the color plate section.)
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by external afferents) and ‘‘feedback’’ inhibition (from those predominantly

driven by pyramidal cells within the same local circuit). For instance, it has been

proposed that bell-shaped tuning of orientation in primary visual cortical

neurons is constructed by a feedforward inhibitory mechanism (Ferster & Miller,

2000), or feedback (recurrent) mechanisms (Sompolinsky & Shapley, 1997),

or a combination of both. Because stimulation is absent during a delay period,

inhibition underlying selectivity of mnemonic activity is presumably driven by

local pyramidal cells, hence of the feedback type. According to Compte et al.

(2000), inhibitory cells that sculpture spatial selectivity of pyramidal cells should

have broader tuning curves, a prediction that was later confirmed by experiments

(Constantinidis & Goldman-Rakic, 2002) (Figure 4.1, bottom panel).

Another key aspect of memory maintenance, in which inhibition plays an

important role, is resistance against distractors: while behaviorally relevant infor-

mation is actively held in mind, irrelevant sensory stimuli should be denied

entrance to the working memory system. In delayed response experiments using

intervening stimuli (distractors), mnemonic activity has been shown to be easily

disrupted by distractors in inferotemporal neurons but not in prefrontal neurons

(Miller et al., 1996). Similarly, delay period activity in posterior parietal cortex

appears to be sensitive to distractors (Powell & Goldberg, 2000; Constantinidis &

Procyk, 2004). Therefore the evidence, albeit not conclusive, suggests that

although multiple cortical areas exhibit delay period activity, mnemonic neural

signals in prefrontal cortex may persist when those in the temporal lobe and

parietal lobe are lost, so that behaviorally relevant information is maintained in

the brain in spite of distractors. This observation at the single-cell level suggests

a candidate basis for the proposal that prefrontal cortex is a pivotal part of

the attention network that focuses brain resources on selective information

(Mesulam, 2000).

What enables prefrontal cortex to resist distracting stimuli? A gating mecha-

nism may be involved in deciding which stimulus is behaviorally relevant and

thus should be held in working memory (Cohen et al., 1996, 2002). On the other

hand, it is desirable that a working memory circuit be endowed with mechanisms

to filter out, ‘‘by default,’’ external inputs that constantly bombard our senses.

We found that synaptic inhibition naturally gave rise to this capability (Compte

et al., 2000; Brunel & Wang, 2001). This is because, in a memory delay period,

active neurons recruit inhibition which project to the rest of the network.

Consequently, those cells not encoding the initial cue are less excitable than when

they are in the resting state (see Figures 4.2 and 4.7A), hence less responsive to

distracting stimuli presented during the delay. For spatial working memory,

the impact of a distractor depends on its strength (saliency) and the distance to

the memorized cue (Figure 4.8A). More generally, we found that the network’s
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Figure 4.8 Resistance against distractors. (A) In the spatial working memory model, the initial cue

(upper arrow on the left) triggers persistent activity centered at 180�. During the delay,

a second cue (distractor) is shown briefly (lower arrow on the left). When the distractor is

close to the initial stimulus, the network performs a vector sum so that the final remembered

cue is half-way between the two (arrow on the right). On the other hand, when the distractor

is far away from the initial stimulus, the network operates in a winner-take-all regime, so that

the final remembered cue is either the initial stimulus or the distractor, depending on the

strength of the stimuli. (B) Behavior of an object working memory model as function

of dopamine modulation of NMDAR-mediated recurrent excitation and GABAAR inhibition

(x-axis) and amplitude of cue stimulation (y-axis). A very weak stimulus (initial cue) cannot

elicit persistent activity (lower left region), whereas a powerful stimulus (distractor) can

override recurrent dynamics and disrupt delay activity (upper left region). The desirable

behavior (robust persistent activity in spite of distractors) (middle right region) is sensitive

to dopamine modulations. (Adopted from Brunel & Wang [2001] with permission.) (For a

color version of this figure, please see the color plate section.)
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Figure 4.9 (A) A simple model for two-alternative forced-choice tasks. There are two pyramidal cell

groups, each of which is selective to one of the two directions (A¼ left, B¼ right) of random

moving dots in a visual motion discrimination experiment. Within each pyramidal neural

group there are strong recurrent excitatory connections which can sustain persistent activity
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ability to ignore distractors is sensitive to modulation of recurrent excitation and

inhibition (Figure 4.8B). This finding has important implications for dopami-

nergic signaling in prefrontal cortex (see below).

7 Decision-making

So far, I have focused on delayed response tasks. We have seen that this approach

provides a valuable probe into the detailed mechanisms of prefrontal micro-

circuitry. However, currently there is a heated debate as to whether prefrontal

function should be conceptualized by internal representation (memory main-

tenance) or processes (decision-making, executive control) (Miller & Cohen,

2001; Curtis & D’Esposito, 2003; Wood & Grafman, 2003). Unexpectedly, it

turns out that the same models originally developed for working memory can

account for decision-making processes as well (Wang, 2002; Machens et al.,

2005). An example is shown in Figure 4.9 from model simulations of visual

motion discrimination (Newsome et al., 1989; Parker & Newsome, 1998). In this

two-alternative forced choice task, monkeys are trained to make a judgment

about the direction of motion (say, left or right) in a near-threshold stochastic

random dot display, and to report the perceived direction with a saccadic eye

movement. Neurons in posterior parietal cortex (Shadlen & Newsome, 2001;

Roitman & Shadlen, 2002) and prefrontal cortex (Kim & Shadlen, 1999) were

found to exhibit firing activity correlated with the animal’s perceptual choice.

We used the same model designed for working memory to simulate this decision

experiment; with the only difference that for delayed response task only one

stimulus is presented, whereas for perceptual discrimination tasks conflicting

sensory inputs are fed into competing neural subpopulations in a decision

circuit (Figure 4.9A). Our model accounts for not only salient characteristics

of the observed decision-correlated neural activity (Figure 4.9B�C), but also

Figure 4.9 (contd.) triggered by a transient preferred stimulus. The two neural groups

compete through feedback inhibition from interneurons. The motion coherence is expres-

sed as c ¼ (mA�mB)/(mAþmB), where mA and mB are the mean values of inputs IA and IB.

(B) A network simulation with zero coherence. Top to bottom: network spiking raster,

population firing rates rA and rB, stochastic inputs IA and IB. Note the initial slow ramping

(time integration) and eventual divergence of rA and rB (categorical choice). (C) In reaction

time simulations, when one of the two neural groups reaches a fixed threshold (15 Hz) of

population firing activity, the decision is made and the deliberation or decision time is read

out. The decision time is longer and more variable at low coherence (left) than at high

coherence (right). (Adopted from Wang [2002] with permission.) (For a color version of this

figure, please see the color plate section.)
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quantitatively for the animal’s behavioral performance (psychometric function

and reaction times) (Figure 4.10).

8 Distinct features of prefrontal microcircuitry

Quantitative differences breed qualitatively different behaviors. That a cortical

area exhibits a new type of behavior does not necessarily mean that the circuit

must possess unique biological machineries completely different from other areas.

Hence, persistent activity may be generated in the prefrontal cortex when

the strength of recurrent excitation (mediated by AMPAþNMDA receptors

combined) exceeds a critical threshold, whereas this may not be the case for

a sensory area such as the primary visual cortex. Based on our modeling results,

Figure 4.10 Top: left panel: psychometric functions for the reaction time stimulation (circle) and with

fixed stimulus duration of 1 s (square); right panel: average decision time as function of the

coherence level, ranging from 200 ms at high c to 800 ms at low c. At very low coherence

there is a saturation. Note the large standard deviation of decision time, especially at low

coherence. (Adopted from Wang [2002] with permission.) Bottom: monkey’s behavioral

data reproduced with permission from Roitman & Shadle (2002).
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we can extend this idea and propose that, for stable function of a working memory

circuit, the NMDA/AMPA ratio at recurrent synapses should also be above

a certain threshold, as illustrated in Figure 4.11. It is important to emphasize that

what matters for persistent activity is not the unitary amplitude of EPSCs

at resting potential, but the ratio of the average NMDA and AMPA synaptic

currents during repetitive neural discharges. This ratio depends on multiple

factors such as presynaptic short-term plasticity, postsynaptic summation and

saturation and voltage-dependence of the NMDA channel conductance. Further,

a relatively high NMDA/AMPA ratio at local synapses can be compatible

with a low total NMDA/AMPA ratio in a neuron, for instance if feedforward inputs

from outside of the network are predominantly mediated by AMPA receptors.

Last but not least, this ratio can be enhanced by neuromodulators, such as

dopamine (Chen et al., 2004; Huang et al., 2004; Seamans & Yang, 2004).

Immunochemical analysis revealed a significantly larger amount of mRNA

expression of NMDA receptor subunits in prefrontal neurons, compared

to primary visual cortical neurons (Figure 4.12). It is unknown whether this

simply correlates with a larger number of spines (hence synaptic connections)

per pyramidal cell in prefrontal cortex (Elston, 2000). In any event, contri-

bution of NMDA receptors to synaptic transmission locally between prefrontal

pyramidal cells remains to be established by direct electrophysiological measure-

ments, e.g. using intracellular recording from connected pairs of neighboring

Figure 4.11 Schematic depiction of the dependence of stable persistent activity on both sufficiently

strong recurrency (y-axis) and large NMDA/AMPA ratio at local excitatory synapses (x-axis).

A circuit that does not exhibit persistent activity may be endowed with this ability by

strengthening excitatory connections while preserving a relatively large NMDA/AMPA ratio

(blue arrow). However, an enhancement of recurrency at a low NMDA/AMPA ratio can

lead to network dynamical instability (black arrow), in which case the NMDA/AMPA

ratio needs to be increased simultaneously (red arrow). (For a color version of this figure,

please see the color plate section.)
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cells in prefrontal slices. On the other hand, iontophoresis can be used to

selectively block NMDARs in recorded prefrontal cells of behaving monkeys

during working memory (Williams & Goldman-Rakic, 1995; Shima & Tanji,

1998; Wang et al., 2004b). Traditionally, the function of NMDA conductance

is almost exclusively emphasized in terms of its role in long-term synaptic

potentiation and depression. Thus, an abundance of NMDA receptors could

reflect a high degree of plasticity of prefrontal microcircuit, which could subserve

learning flexible and adaptive behaviors (Miller & Cohen, 2001; Stuss & Knight,

2002). That may be, but we propose that NMDA receptors also directly mediate

slow excitatory synaptic transmission critically important to working memory,

and that this may explain why NMDA receptor antagonists produce working

memory impairment in healthy human subjects (Krystal et al., 1994). Taken

one step further, effects on cognitive behavior by genetic manipulation of

NMDARs may also be partly caused by altered short-term memory, in addition

to long-term memory.

On the other side of Ying and Yang, prefrontal cortex may also be endowed

with specialized inhibitory circuitry. A salient feature of cortical organization

is the presence of a wide diversity of GABAergic interneurons, with regards to

their morphology, electrophysiology, chemical markers, synaptic connections

and short-term plasticity, molecular characteristics (Freund & Buzsaki, 1996;

Cauli et al., 1997; DeFelipe, 1997; Kawaguchi & Kubota, 1997; Somogyi et al.,

1998; Buzsaki et al., 2004; Markram et al., 2004). How do different

Figure 4.12 mRNA expression of NMDA receptor subunits NR1, NR2A and NR2B in human prefrontal

cortex (top) and primary visual cortex (bottom). (Adopted from Scherzer et al. [1998]

with permission.)
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interneuron types work together in prefrontal cortex? To investigate this

question, we have extended our model of spatial working memory to incorporate

three subclasses of interneurons classified according to their synaptic targets

(Wang et al., 2004a). In this model (Figure 4.13A), in addition to widespread

inhibition mediated by perisoma-targeting and parvalbumin-containing (PV)

interneurons, dendrite-targeting (calbindin-containing, CB) interneurons receive

inputs from interneuron-targeting (calretinin-containing, CR) interneurons,

leading to an activity-dependent local disinhibition of pyramidal cells.

Note that the three interneuron types in our model should be more

appropriately interpreted according to their synaptic targets, rather than

calcium-binding protein expressions. For example, PV cells display a variety

of axonal arbors, among which the large basket cells (Krimer & Goldman-Rakic,

2001; Kisvarday et al., 2003) are likely candidates for our widely-projecting cells.

Similarly, CB interneurons show a high degree of heterogeneity, but some of

them (such as double bouquet cells) are known to act locally and preferentially

target dendritic spines and shafts of pyramidal cells (DeFelipe, 1997; Somogyi

et al., 1998). Finally, although many CR interneurons do project to pyramidal

cells (DeFelipe, 1997), anatomical studies show that a subset of CR cells avoid

pyramidal cells (Gulyás et al., 1996), at least in the same cortical layer

(Meskenaite, 1997), and preferentially target CB interneurons (DeFelipe et al.,

1999). It is also possible that axonal innervations of a CR cell project

onto pyramidal cells in a different cortical layer, while selectively targeting

inhibitory neurons in the same layer (Meskenaite, 1997; Gonchar & Burkhalter,

1999). Whether such selective connection pattern holds true as a general

principle can only be settled by further anatomical studies. Moreover, electro-

physiological evidence is presently lacking about the preferred innervations of

a subset of CR interneurons onto GABAergic cells; progress in this direction

would be most welcome.

We found that the disinhibition mechanism, mediated by CR inhibition of CB

interneurons, contributes significantly to the formation of memory field, as well

as the network’s ability to filter out distracting stimuli (Wang et al., 2004a).

Interestingly, the distributions of PV, CB and CR interneurons appear to be quite

different in macaque monkey prefrontal cortex (Conde et al., 1994; Gabbott &

Bacon, 1996) compared to primary visual cortex (Brederode et al., 1990;

Meskenaite, 1997) (Figure 4.13B). In the prefrontal cortex the proportions are

24% (PV), 24% (CB) and 45% (CR), respectively, according to Conde et al.

(1994) and Gabbott and Bacon (1996). Other studies reported different estimates

(Kondo et al., 1999; Dombrowski et al., 2001; Elston & Gonzalez-Albo,

2003), presumably due to species differences and technical factors (different

cell-counting methods and antibodies used for calcium-binding proteins,
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Figure 4.13 (A) A spatial working memory model with three subclasses of GABAergic interneurons.

Pyramidal (P) neurons are arranged according to their preferred cues (0 � 360�). There are

localized recurrent excitatory connections, and broad inhibitory projections from perisoma-

targeting (parvalbumin-containing, PV) fast-spiking neurons to P cells. Within a column,

calbindin-containing (CB) interneurons target the dendrites of P neurons, whereas

calretinin-containing (CR) interneurons preferentially project to CB cells. Excitation of a

group of pyramidal cells recruits locally CR neurons, which sends enhanced inhibition to CB

neurons, leading to dendritic disinhibition of the same pyramidal cells. (Adopted fromWang

et al. [2004] with permission.) (B) Proportional distribution of PV, CB and CR expressing

GABAergic cells in primary visual cortex and prefrontal cortex. See text for details. (For a

colour version of this figure, please see the colour plate section.)
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overlapping CB expression by GABAergic cells and pyramidal neurons, etc).

Future work is needed to resolve these discrepancies, and to test the hypothesized

disinhibition mechanism and assess whether it may be especially prominent

in working memory circuit.

9 Insights into prefrontal dysfunction in schizophrenia

Our modeling work has given rise to a number of specific candidate expla-

nations for frontal lobe dysfunction associated with schizophrenia and other

mental disorders.

We showed that impairment of NMDARs at intrinsic prefrontal synapses is

detrimental to persistent activity underlying working memory. If borne out,

these results may shed insights into why working memory dysfunction similar to

that observed in schizophrenic patients can be induced in healthy subjects by

subanesthetic doses of ketamine, a noncompetitive NMDA receptor antagonist

(Krystal et al., 1994). Postmortem studies showed significant alterations of

the NMDAR mRNA expression (Akbarian et al., 1996), but did not reveal

abnormality (Healy et al., 1998) or a slight increase (Dracheva et al., 2005) in

the AMPAR level. Available information does not yet permit a more precise

explanation as to why and how impairment of the NMDA receptor system causes

cognitive deficits associated with schizophrenia. It has been previously suggested

that impairment can occur outside of prefrontal cortex, such as in hippocampus

(Grunze et al., 1996; Jodo et al., 2005; Rowland et al., 2005) or in the dopamine

system (Carlsson et al., 2001). Again, functional implications tend to be

discussed in the realm of learning and synaptic modification. By contrast, our

modeling work suggests a novel scenario focused on the role of NMDARs in

persistent activity. Of course, this scenario is compatible with other proposals,

given that impairment of NMDARs may not be restricted to a single pathway,

and that NMDARs play a major role in long-term synaptic plasticity. These

different facets of NMDAR function are also under influence of dopamine

modulation (Chen et al., 2004; Huang et al., 2004).

On the other side of Ying-Yang, there is mounting evidence that the dorso-

lateral prefrontal cortex of schizophrenic patients shows abnormality of selective

interneuron subtypes, especially fast-spiking basket and chandelier cells (Lewis

et al., 2005). Our theory suggests that this may be the case for two reasons.

Modeling work (Compte et al., 2000; Brunel & Wang, 2001; Wang et al., 2004a),

in concordance with physiological experiments (Rao et al., 2000; Constantinidis

& Goldman-Rakic, 2002), demonstrates that inhibition mediated by fast spiking

and broadly projecting interneurons is critical to the stimulus selectivity, hence

information specificity, of mnemonic persistent activity. Moreover, fast spiking
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GABAergic cells are critical to the generation of coherent gamma (40 Hz)

oscillations (Traub et al., 1996; Wang & Buzsaki, 1996; Wang, 2003; Traub et al.,

2004), which may contribute to cognitive processes such as feature integration

in perception (Singer & Gray, 1995) or selective attention (Fries et al., 2001).

Revealingly, gamma oscillations appear to be decreased in schizophrenic brain

compared to control subjects (Lee et al., 2003; Spencer et al., 2004). Thus, deficits

in synaptic inhibition could impair the quality of information stored in working

memory as well as the brain’s ability to bind distributed neural activity.

We found that inhibition is also crucial for robust working memory despite

ongoing sensory flow. This result provides another insight into how dopamine

may affect prefrontal functions (Durstewitz et al., 2000a; Brunel & Wang, 2001).

It is known that dopamine acts on prefrontal cortex partly through modulation

of gluatamergic and GABAergic synaptic transmissions (see Arnsten [1998]

and Seamans & Yang [2004] for reviews). Our modeling showed that a relatively

small increase by dopamine of recurrent connections (while preserving the

E-I balance) can lead to significant enhancement of the network’s resistance

against distractors. Conversely, mild impairment of dopamine signaling in the

prefrontal cortex can result in behavioral distractibility associated with mental

disorders such as schizophrenia. Moreover, according to the disinhibition

mechanism (Figure 4.13), dendritic inhibition is reduced locally in activated

pyramidal cells, but increased in those pyramidal cells not engaged in encoding

the shown stimulus. This mechanism mediated by CB interneurons could serve to

filter out distracting stimuli, and that this mechanism is enhanced with a larger

dendritic/somatic inhibition ratio (Wang et al., 2004a). A high dendritic/somatic

inhibition ratio in a working memory circuit may be hard-wired, for example with

a large proportion of CB cells in prefrontal cortex. Alternatively, it can also be

dynamically controlled by neuromodulators such as dopamine.

Interestingly, an in vitro work suggests that dopamine D1 receptor activation

precisely increases the ratio of dendritic/somatic inhibition onto pyramidal cells

in prefrontal cortex (Gao et al., 2003). Using double intracellular recording

in prefrontal cortex slices and morphological reconstruction, it was found that

bath application of dopamine has a dual effect on the inhibitory synaptic

transmission in a pyramidal cell of the prefrontal cortex. Dopamine was found to

reduce the efficacy of inhibitory synapses onto the perisomatic domains

of a pyramidal cell, mediated by fast-spiking interneurons; whereas it enhances

inhibition at synapses from accommodating or low-threshold spiking inter-

neurons that target the dendritic domains of a pyramidal cell (Gao et al., 2003).

Our model predicts a specific function for such a dual dopamine action, namely

it could boost the ability of a working memory network to filter out behaviorally

irrelevant distracting stimuli. Our modeling work (Brunel & Wang, 2001),
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as well as brain imaging (Sakai et al., 2002), points to a possible physiological

basis of the clinical literature documenting distractibility as a common symptom

of frontal lobe damage (Goldman-Rakic, 1987; Fuster, 1988; Mesulam, 2000).

10 Concluding remarks

In this chapter I discussed biophysically based neural modeling that, in concert

with experiments, offers a powerful tool for investigating the cellular and circuit

mechanisms of mnemonic persistent activity in delayed response tasks.

This approach has been used to assess whether the attractor model for working

memory and decision-making can be instantiated by biologically plausible

mechanisms. Our theoretical work suggests that slow excitatory reverberation

underlies persistent activity in working memory and time integration in

decision-making (Figure 4.14). A candidate cellular substrate is the NMDA

receptors at local recurrent synapses; an alternative/complementary scenario

involves intrinsic channels and calcium dynamics in single cells. Recurrent

excitation must be balanced by feedback inhibition, which is mediated by several

types of GABAergic interneurons. We found that inhibitory circuitry plays a key

role in stimulus selectivity (similarly as in sensory areas) and the network’s

resistance against distracting stimuli (a cardinal requirement for robust working

memory), as well as winner-take-all competition in decision-making. These

modeling predictions can be tested experimentally, such as by in vitro physiology

or iontophoresis of transmitter receptor blockers with behaving nonhuman

primates.

We have confined ourselves to models in which working memory storage

is maintained by roughly tonic (constant) spike discharges in a neural assembly

Figure 4.14 Working memory requires neurons to convert a transient input pulse into a self-sustained

persistent activity, whereas decision-making involves neuronal ramping activity for

accumulation of sensory information. Both types of time integration can be subserved by

slow reverberatory dynamics in a recurrent neural network.
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across a delay period. However, many cortical cells exhibit delay activity that

is not stationary but ramps up or down over time (Fuster, 1988; Chafee &

Goldman-Rakic, 1998; Brody et al., 2003). Such ramping activity can conceivably

be realized in a two-layer network, in which first-layer neurons show tonic delay

activity whereas second-layer neurons slowly integrate inputs from the first-layer

neurons in the form of ramping activity (Miller et al., 2003). Moreover,

self-sustained network activity can occur as a firing pattern that propagates in

a neural network (Sanchez-Vives & McCormick, 2000; Cossart et al., 2003).

It remains unclear how the specificity of stored information can be preserved in

dynamically moving neural activities (Baeg et al., 2003).

Our emphasis on internal representations by no means underestimates the

importance of processes such as action selection. Rather, we propose that

prefrontal cortex does not simply send out nonspecific ‘‘control signals’’ and that

representational information is indispensable to processes. As it turns out, our

model is capable of both working memory maintenance and decision-making

computations. These results suggest that it may not be a mere coincidence that

decision-related neural activity has been found in the same cortical areas that

also exhibit persistent activity during working memory (Romo & Salinas, 2000;

Schall, 2001). In our model, both working memory and decision-making rely

on slow reverberatory dynamics that gives rise to persistent activity and time

integration (Figure 4.14), and inhibitory circuitry that leads to selectivity and

winner-take-all competition. Thus, we are beginning to unravel the microcircuit

properties of a ‘‘cognitive’’ cortical area (such as prefrontal cortex as in contrast

to, for example, primary visual cortex) that enable it to serve multiple cognitive

functions. At a fundamental level, these studies point to a unified view about

why and how ‘‘cognitive’’ cortical area can serve both internal representation

(active working memory) and processing (decision, action selection, etc).

Microcircuitry is at a level of complexity ideally suited for bridging the

gap between cognitive network functions and the underlying biophysical

mechanisms. The delicate balancing act of recurrent excitation and feedback

inhibition is at the heart of strongly nonlinear dynamics that underlie cognitive

processes in prefrontal cortex. Therefore, ultimately, microcircuit neurody-

namics hold the key to a theoretical foundation for neuropharmacology and

molecular psychiatry (Harrison & Weinberger, 2005), and a full understanding

of mental disorders.
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