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Abstract

Abstract: How does functional modularity emerge in a multiregional cortex

made with repeats of a canonical local circuit architecture? We investigated this

question by focusing on neural coding of working memory, a core cognitive func-

tion. Here we report a mechanism dubbed “bifurcation in space”, and show that its

salient signature is spatially localized “critical slowing down” leading to an inverted

V-shaped profile of neuronal time constants along the cortical hierarchy during work-

ing memory. The phenomenon is confirmed in connectome-based large-scale models

of mouse and monkey cortices, offering an experimentally testable prediction to

assess whether working memory representation is modular. Many bifurcations in

space could explain the emergence of different activity patterns potentially deployed

for distinct cognitive functions, This work demonstrates that a distributed mental

representation is compatible with functional specificity as a consequence of macro-

scopic gradients of neurobiological properties across the cortex, suggesting a general

principle for understanding brain’s modular organization.
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Introduction

Recent technical advances are enabling neuroscientists to image calcium signals or record

spiking activities of many single cells in behaving animals [1, 2], opening a new era of

investigating neural computation distributed in the multiregional brain [3]. Studies re-

ported widespread neural correlates of task relevant information, observed wide-spread

activity signals are sometimes interpreted as evidence of a lack of any spatial specificity.

Therefore, a central challenge in the field is to elucidate local versus global neural pro-

cesses underlying behavior. We tackled this challenge using computational modeling of

the multiregional cortex. In Psychology, modularity denotes an organization of the mind

into distinct component capabilities [4]; in neuroscience it refers to functional specializa-

tion of brain areas [5]. We propose that modularity is understood in terms of a selective

subset of cortical areas, which are not necessarily spatially congruent, engaged in a dis-

tinct brain function. This definition is compatible with distributed neural representation

and processing across multiple brain regions, but in contrast to the absence of modularity

manifest by merely graded variations of engagement across the entire cortical mantle.

We designed this research to address the question of biological mechanism underlying

the emergence of functional modularity. At the same time, our work suggests a sensitive

test to arbitrate whether there is modularity of a given cognitive function in the first place

by neurophysiological experiments.

According to a central tenet of neuroscience, a canonical local circuit is repeated nu-

merous times throughout the cortical mantle and shared across mammalian species [6].

Consistent with this view, the cortex is commonly described as a graph where parcellated

areas are considered as identical nodes, each with different inputs and outputs that de-

termine its function [7]. However, input-output patterns alone do not explain a variety of
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qualitatively functional abilities in different parts of the cortex, exemplified by the con-

trast between the primary sensory areas and the prefrontal cortex [8, 9, 10]. For the sake

of concreteness, consider working memory, our brain’s ability to maintain and manipulate

information internally in the absence of external stimulation [11, 12]. Working memory

represents an excellent case study because it is essential for major cognitive processes and

has been extensively investigated. The underlying mechanism of this core cognitive func-

tion involves persistent neural firing that is self-sustained internally during a temporal

delay between a stimulus and a response [13, 14]. A large body of literature have docu-

mented that working memory representations are distributed over some cortical areas but

not others [15, 16]. In particular, for working memory of visual motion information, there

is evidence that the middle temporal (MT) area does not, but its monosynaptic projection

target, the medial superior temporal (MST) area, does show persistent activity during a

mnemonic delay [17], suggesting a sharp onset of working memory representation along

the cortical hierarchy. How can such functional modularity be reconciled with a uniform

canonical architecture of the cortex?

Recent experimental and computational research suggests clues to solve this major

puzzle. Heterogeneities in different parts of the cortex [18, 19, 20] have been quantified,

they are not random but display macroscopic gradients along low-dimensional axes such

as the cortical hierarchy [21, 22]. Such macroscopic gradients have been incorporated into

connectome-based models of a multiregional cortex of macaque monkeys [23, 24] and mice

[25] for distributed working memory. In such a model, the idea of a canonical local circuit

is implemented by the same mathematical equations of an excitatory-inhibitory neural

network in each parcellated area; variations of the strength of synaptic excitation or/and

inhibition are incorporated in the form of macroscopic gradients [22]. Computational

modeling revealed an abrupt transition, at some stage of the cortical hierarchy, that sep-
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arates cortical areas exhibiting information-coding self-sustained persistent activity from

those that do not. These findings offer hints that the entire cortex organized according

to a canonical microcircuit architecture can nevertheless be divided into subnetworks of

areas for modular functions.

The present work was designed to test the hypothesis that such a transition represents

a “bifurcation in space”. The mathematical term “bifurcation” denotes the sudden onset

of a qualitatively novel behavior by virtue of a graded change of a dynamical system’s

property [26]. The idea of bifurcation in space is conceptually novel because it emerges

from an interactive large-scale brain circuit as a collective phenomenon but occurs locally

in space. We used a generative model of the cortex [27], which can generate a model with

an arbitrary number of areas characterized by the experimentally measured connection

statistics [28, 29]. With a large number of parcellated areas in such a model, we were able

to “zoom in” on the transition point along the cortical hierarchy. We derived a normal

form equation close to the bifurcation [26] in our large-scale cortex model. The analyti-

cal prediction fits well with numerical simulation results, thereby firmly establishing the

concept of bifurcation in space.

We found that, as a signature of phase transition, the timescale of neural activity di-

verges to infinity at the transition, called “critically slowing down” [30, 31]. Consequently,

the time constant of neural firing fluctuations would be maximal for cortical areas near the

transition, larger than those in both lower areas devoid of persistent activity and higher

areas showing robust persistent activity. In other words, along the cortical hierarchy,

there is an inverted V-shaped pattern of time constants that dominate neural fluctuations

during persistent activity associated with working memory. Note that critical slowing-

down has been shown previously for a dynamical system as a whole, but here is manifest

locally at a particular site of a spatially extended system.
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These results are highly non-trivial. The model is set up in such a way that, when

disconnected from each other, none of isolated areas is capable of maintaining persistent

activity. Consequently, the observed working memory representation must be a collective

phenomenon depending on long-distance connection loops. The connectivity is dense,

about 67% of all possible inter-areal pathways are present. Yet, bifurcation occurs locally

in space. Furthermore, importantly, such bifurcation in space is defined for any one of

numerous spatially distributed persistent activity states, each engages a subset of cortical

areas (a discrete specialized system) and could potentially serve a distinct function. In

other words, there are many bifurcations in space for a single multiregional cortical system

with fixed parameters. This finding suggests that the concept of bifurcation in space can

account for the modularity of various cognitive functions like decision-making [32]. Finally,

we reproduced the salient finding of an inverted-V shaped profile of time constants in the

connectome-based models of the macaque monkey cortex [24] and the mouse cortex [25],

thereby identifying specific model predictions that are testable experimentally.

Results

A generative model for the mammalian neocortex.

To understand the fundamental mechanism of bifurcation in the neocortex’s space, we

build a simplified multi-regional neocortex model. In Physics, a phase transition is studied

by “zooming in” very close to a criticality. For example, ice melts at zero degree Celsius;

temperature must be precisely tuned to that critical point for understanding the ice-to-

water transition. Similarly, in order to rigorously investigate mathematically a bifurcation

in space, we need to “zoom in” close to an abrupt transition point along the cortical

hierarchy that separates those areas engaged in working memory representation from
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Figure 1: Spatially embedded generative model of a cortex. (A) Network connectivity of

1000 parcellated cortical areas produced by a generative model of the mammalian cortical

connectivity [27]. In this model, the network’s parcellations are embedded in an ellipsoid

and are connected by spatially dependent and weighted connections. (B) Connectivity

matrix obtained from the generative model. The connectivity weights are defined similarly

to the fraction of labeled neurons (FLN) in the connectomic analysis of the macaque cortex

[29]. (C) Three-dimensional diffusion map embedding of the generated cortical network.

Red dots: 1, 000 cortical areas, black lines: the nearest neighbor links in the embedding

space. The axes correspond to the three first principal gradients from the diffusion map

embedding (see Methods). Using the diffusion map, hierarchical position of any area can

be defined based on Euclidean (brown) or hyperbolic (blue) distance to a starting area at

the bottom of the hierarchy (see Methods). (D) Hyperbolic metric shows a more linear

increase than Euclidean metric along the hierarchy. (E) local circuit model scheme for each

cortical region, with recurrently connected excitatory (E) and inhibitory (I) populations.

Long-range projections between cortical areas are excitatory. The strength of local and

long-range connections’ strength is indicated by the thickness. (F) Bifurcation diagram

of an isolated cortical circuit (see equation (1) in SI). In the large-scale system, the local

E-to-E and E-to-I weights are scaled with the factor J, which displays a macroscopic

gradient as a function of the hierarchy value h (Insert).
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those that are not. However, a connectome-based model of the mouse or monkey cortex

has a relatively small number of areas thus the distance between any pair of adjacent areas

along the hierarchy cannot be reduced as much as desired. To overcome this limitation,

we used a generative model of (unlike a purely topographic graph) a spatially embedding

mammalian cortex [27].

We aim for this model to capture central aspects of the mammalian neocortical con-

nectivity and neural dynamics but to be simple enough to be suitable for mathematical

analysis. The model (see Fig. 1A) is generative and random, thus can be used to produce

realizations of a mammalian neocortical network model with sample connectivity matri-

ces (see Fig. 1B for one network realization) that share the same statistical distributions

observed in the inter-areal connectivity [28, 29, 33, 27]. This network model has three

advantages. First, conclusions rendered from this model can be applied to different mam-

malian cortices [29, 34, 35, 36]. Second, in this model, the number of brain areas can

be arbitrarily large, enabling us to examine bifurcation phenomenon close to a transition

point. Third, we show that our results are robust by studying the network dynamics over

multiple network realizations, i.e., our results depend only the connection statistics but

not qualitatively on the specific network realizations. In the last section of this paper,

we show that all our results hold in connectome-based models of macaque cortex [24] and

mouse cortex [25].

We define the hierarchical distance using the diffusion map embedding method [37, 21]

applied to our model. This class of nonlinear dimensionality reduction method embeds

the connectivity. In the embedding space, closer areas share a larger number of paths

connecting them with stronger connections, while areas further apart share fewer paths

and weaker connections (see Methods). Interestingly, the embedding structure of the

generated connectivity conforms to a low-dimensional hyperbolic shape (see Fig. 1C).
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To define a hierarchical distance, we arbitrarily choose as the start of a hierarchy the

cortical area at one of the tips of the hyperbolic shape. We found that for the hyperbolic

distance (the distance defined along the hyperbolic shape) the cortical areas display a

smooth progression evenly distributed in each hierarchical position (see Fig. 1D blue

trace), in contrast to the Euclidean distance where a significant fraction of cortical areas

are concentrated around the hierarchy value 0.8 (see Fig. 1D brown trace). Therefore,

we use the hyperbolic distance for defining the hierarchical position. Strikingly, after

remapping each brain area’s hyperbolic hierarchical position into the ellipsoid’s position

(see Fig. 1A), we found the hierarchical position increases along the major axis of the

ellipsoid, similar to the hierarchy of the mammalian cortex roughly along the anterior-

posterior axis (Fig. S1A).

Based on the hierarchy defined above, we build a simplified yet biologically realistic

neocortex model in which macroscopic properties of a canonical circuit vary along the

hierarchy. Each brain area is modeled as a local canonical circuit of recurrently con-

nected excitatory and inhibitory populations (Fig. 1E and Methods). Consistent with the

macroscopic gradient of excitation observed in the cortex [22], the local and long-range

excitatory weights are scaled by the hierarchical position (i.e., J ∝ h, Fig. 1F). When

decoupled, a cortical area has only a resting state at a low firing rate if the strength of

synaptic excitation is below a threshold Jthreshold ≈ 1.32 (J < Jthreshold), exhibits bistabil-

ity of a resting state and an elevated persistent activity state if J > Jthreshold. In order

to focus on collective large-scale dynamics, here we consider the case when the maximal

value of J at the top of the hierarchy is smaller than Jthreshold (insert in Fig. 1F), so

that the observed distributed working memory representation emerges from long-distance

area-to-area connection loops, thereby extending the concept of synaptic reverberation

[38, 13, 14] to the large-scale multiregional brain.
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Bifurcation in the hierarchy space.

The dynamics of the connected network of interacting areas strongly differ from that of

isolated areas. The network exhibits a coexistence of a resting state (where all areas of

the network exhibit a low firing rate state ∼1Hz) and active states (where some cortical

areas display persistent high firing rates while others have low firing rates). An example

is shown in Fig. 2A, where the resting state (brown) and a persistent firing state suitable

to underlie working memory representation (blue) are shown as a function of the cortical

hierarchy. For the active state, the areas that are engaged in the persistent activity state

are higher in the hierarchy and separated by a firing rate gap, indicating a transition zone.

The size of this transition zone systematically shrinks when we increase the network size

(Fig. S2B). In the limit of infinitely large networks, we expect this transition zone shrinks

to a point. We denote this point in the hierarchy space the bifurcation location (Fig. 2A,

Fig. S2B). Interestingly, at the bifurcation point, there is a firing rate gap reminiscent of

classical first-order phase transitions in statistical physics [39].

Mapped into our generative model’s ellipsoid where the connectivity was originally

embedded, the firing rate for both active and resting states increases along its major

axis (Fig. 2B). In contrast to the resting state where the firing rate increases smoothly

along the hierarchy (lower panel), in the persistent activity state there is a firing rate gap

between the posterior and the anterior areas (upper panel). Furthermore, the persistent

firing rate increases along the minor axis z (Fig. 2B).

A signature of a “phase transition” in physical systems is critical slowing down, which

denotes the phenomenon of fluctuations on all timescales (scale-free) close to a critical

point. Do we observe critical slowing down in our network associated with the bifurcation

in space? The time scale of our network’s fluctuations increases from milliseconds to tens

of seconds for areas within the bifurcation region (Fig. 2C), displaying the critical slowing
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Figure 2: Bifurcation in hierarchical space. (A) Resting (brown) and persistent activity

states (blue) are shown with firing rates plotted against areas ranked by the hierarchical

position. In the persistent activity state, a subset of areas represent working memory

and are separated from the rest of the network by a firing rate gap. (B) The front (left)

and side (right) view of the spatial distribution of the persistent activity state (top) and

resting (bottom) state in the generative model’s ellipsoid. (C) The time constant of all

the brain areas at the persistent activity state of panel A with 1, 000 brain areas. (D)

The time constant (left) of 10 chosen brain areas and firing rate time series (right) of 8

chosen cortical areas when the network is in the persistent activity state.

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 6, 2023. ; https://doi.org/10.1101/2023.06.04.543639doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.04.543639
http://creativecommons.org/licenses/by-nc-nd/4.0/


down phenomenon. The timescale profile along the hierarchy is of an inverted V-shape

with fast fluctuations for areas low and high in the hierarchy and very slow fluctuations

for areas in the bifurcation region. This inverted V-shape divergence in the time scales

characteristic of the critical slowing down is only observed for the active state. In contrast,

in the resting state, the timescales increase monotonically with the hierarchy (Fig. 2A),

recapitulating known results from the linear theory of large-scale models constrained by

anatomical connectivity [40, 41] (Fig. S2H, left panel).

In the model, when the input-output neuronal transfer function’s gain (parameter d)

decreases, the firing rate gap disappears in the persistent activity state. In this scenario,

the system is divided into two parts: activity is roughly constant and low for areas low

in the hierarchy, then starts to increase without a discrete jump of firing rate higher

along the hierarchy (see Fig. 3A and figure 3B, blue dots). The larger the input-output

gain, the sharper the firing rate progression becomes (see Fig. 3A ) until the bifurcation

in space comes to light. The firing rate gap at the transition increases with the gain d

reaching its maximum for the threshold-linear transfer function (see Methods, equation

(2)) [42] (Fig. 3A-B). With a sufficiently small d value, the transition becomes smooth

with virtually no firing rate gap, but the working memory state is still characterized by

an inverted V-shape time scale profile (Fig. 3C-D). This observation suggests that critical

slowing down does not require the presence of a firing gap in the persistent activity state.

The geometry of distributed attractor states.

In our model, cortical areas indexed by i = 1, 2, ..., N receive long-range excitatory input

currents from the network’s recurrent interactions, Li
E =

∑
j FLNijS

j
E where FLNij is

connection matrix and Sj
E is the output synaptic variable from area j (see illustration

in Fig. 4A). This input current for each area i varies with the hierarchical position and
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Figure 3: The effects of the input-output transfer function gain parameter d on bifurcation

in space. (A) The persistent activity state for different d values. When the gain parameter

increases from 0.157 to ∞, the transition along the hierarchy changes from a smooth

pattern to another characterized by a jump in the firing rate. (B) The maximum firing

rate difference among all the pairs of areas. The mean (dots) and error bars correspond to

the results of 10 different network realizations. (C) The time constant of all the cortical

areas at the active state. (D) The time constant (left) and firing rate time series (right) of

8 choose brain areas in the active state with the smooth transition. The gain parameter

d = 0.157 for panels C and D.
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Figure 4: The geometry of distributed attractor states in parameter space. (A) Illustration

of long-range excitatory input currents from the network’s recurrent interactions to the

ith brain area. The gradient of red and blue color corresponds to hierarchical positions

of brain areas and the weight of long-distance connections FLNij from area j to area

i, respectively. (B) Normal form analysis of the neocortex model with threshold-linear

transfer function (see Methods). The bifurcation in hierarchical space happens at the

critical line in the plane of hierarchy h and long-range gating variable LE. (C) The

firing rate from network simulations versus the predicted firing rate from the normal form

analysis, showing perfect agreement between the two. (D) The neocortex model’s resting

(brown) and persistent activity state (blue) lie on top of the solution surface with d = 0.17.
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depends on the network’s internal state. Therefore, the simulation result shows that the

bistability region in the (h,LE) plane increases with the gain d of the input-output transfer

function. In the limit of infinite gain, which is equivalent to a threshold-linear transfer

function (see Methods, equation (3)), there is bistability in the entire region of hierarchy

h and LE (see Fig. 4B). In this limit, using mathematical expansions similar to those

used in the theory of the normal forms [43], the normal form of bifurcation in hierarchical

space is obtained (see Methods, equation (26)). Based on this normal form expression, we

solved self-consistent equations for the N firing rates and N LE variables. The analytical

results match perfectly with our numerical simulations (Fig. 4C).

As the case for finite gain parameter d, we found that for any steady state of our

network, the firing rate of all cortical areas must lay on a surface parameterized by the hi-

erarchy h and the long-range excitatory input current LE (Fig. 4D, Fig. S4, and Fig. S5A-

B). We refer to this surface as the solution surface (Fig. 4D, Fig. S4 and Fig. S5A-B).

Importantly, the solution surface does not depend on the network size N . In the resting

state, both the firing rates and the long-range excitatory inputs LE are low (Fig. 4D). In

a persistent activity state (Fig. 2A with d = 0.17), the more active an area is, the larger

its output synaptic gating variable is. Therefore, those areas below the transition receive

weak input currents from strongly interconnected areas nearby in the hierarchy [27, 28]

(Fig. 4D). In the same active state, the long-range excitatory input currents Li
E are large

for areas above the transition since they receive strong inputs from nearby areas with

elevated persistent activity.

What is the geometry of the solution surface in our network? We find the solution

surface folds at a cusp, which corresponds to a point in the two-dimensional space of

h and LE (Fig. S5A-B). This geometry is reminiscent of a cusp described in the classic

bifurcation theory for non-linear dynamical systems [44, 43]. For a system that undergoes
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a cusp bifurcation, the solution surface representing the steady state solution in a two-

dimensional parameter space folds at a cusp point [43]. From this point to the folded region

in parameter space, the system displays a transition from having a single to three (two

stable and one unstable) steady states. Indeed in our network, areas with hierarchy values

h and long-range excitatory input currents LE within the folded region exhibit bistability

(see Methods and Fig. 2D). However, it is important to highlight that bifurcation in space

of our model is conceptually different from the conventional cusp. The firing rates are

driven by LE, which in turn depend on the firing rates themselves; the two must be solved

in a self-consistent manner for the entire system (not separately for each area), which are

shown in the cloud of dots in Fig. 2 A. Recall that when decoupled from each other,

none of the isolated areas shows elevated persistent activity. Therefore, this is a collective

behavior emerging from the complex area-to-area interactions, yet with the transition

occurring at a particular location of the hierarchy.

A diversity of distributed attractor states of persistent activity.

Interestingly, in our network, we found a large number of persistent activity states each

with a distinct spatial distribution, similarly in connectome-based models of macaque

monkey [24] and mouse [25]. For most of these attractor states the firing rate increases

monotonically with the hierarchy (see Fig. 2A, 5A, Fig. S7A). However, surprisingly, a

sizable number of attractor states display a localized bump of activity in the hierarchy

space (Fig. 5A, bump active states; Fig. 5B; and SI Fig. S7C). Strikingly, unlike the

monotonic active states where persistent firing roughly follows the posterior-anterior axis

of the model ellipsoid, bump active states display in general, scattered spatial patterns of

working memory activity (Fig. 5B and Fig. S7C, right panel). The time constant of each

area’s neuronal fluctuations in those bump states is maximal and exceptionally long at
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A

B

Figure 5: A diversity of distributed working memory states. (A) The firing rate pattern

of 4333 active states with cortical areas ranked by hierarchy values. There are two major

classes of distributed working memory states: monotonic and bump active states. The

x-axis corresponds to the rank of all persistent activity states according to the number of

high firing rate areas with firing rates larger than 10Hz. (B) An example of bump-shaped

persistent activity state indicated by S2 in (A). Left: firing rate (blue) and time constant

(brown) as a function of the hierarchy; Right: spatial distribution of firing rates in the

generative model ellipsoid. Three other persistent activity states S1, S3, and S4 are shown

in Fig S7 A, B and C, respectively.

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 6, 2023. ; https://doi.org/10.1101/2023.06.04.543639doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.04.543639
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

Figure 6: All attractor states of distributed working memory are shown on the cusp

surface. (A) The firing rate of all the brain areas of the resting, monotonic persistent

activity, and bump persistent activity states for the generative and biologically realistic

models.

one of the edges of the bump, for a particular noise strength, as depicted in Fig. 5B and

Fig. S7C.

With a given network parameter set, all distributed persistent activity states can

be plotted on the solution surface, even for different network realizations or networks of

different sizes (see Fig. 6A). This provides a unifying picture; different states take different

parts of the solution surface, since cortical areas at the same hierarchical position h have

different firing rates and long-range excitatory input current LE values in distinct internal

states.

In summary, bifurcation in space is defined separately for each of the internal states of

distributed persistent activity. In other words, a single network has many bifurcations in

space, each marked by a subset of areas engaged in the corresponding persistent activity

state and critical slowing down at its own transition spatial location.
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Bifurcation in space in connectome-based cortex models of mon-

key and mouse.

Do models of the multiregional cortex constrained by anatomical data also display crit-

ical slowing down? To address this question, we considered a connectome-based model

of macaque cortex [24] with 40 cortical regions (Fig. 7A). For the sake of simplicity but

suitable for stimulus-selective working memory, each brain area has two excitatory popula-

tions encoding stimuli and one inhibitory population [24]. The strength of long-range and

local excitation follows a macroscopic gradient proportional to the spine count per pyra-

midal neuron [40, 22]. As in our abstract model, this connectome-based model exhibits

the coexistence of a resting state (firing rate around 1Hz) and persistent activity (more

than 10Hz) encoding working memory (Fig. 7B). The spatial firing rate distribution dur-

ing working memory states is modular, with only a few areas displaying persistent firing

(Fig. S8E). Consistent with the macaque monkey physiological experimental observations

[15], association cortical areas but not early sensory areas are engaged in stimulus-selective

persistent firing during working memory states (Fig. 7C). The standard deviation of firing

rate shows a non-monotonic pattern as a function of the hierarchy (Fig. S8A).

We carried out the autocorrelation analysis of stochastic persistent activity time series

from each area, and found that neuronal fluctuations are fast in the brain areas at the

high and low hierarchical positions; by contrast, mnemonic firing of brain areas around

the hierarchical bifurcation region shows fluctuations on slower timescales, exemplified by

Brodmann area 5, which is part of the posterior parietal cortex (Fig. 7D, lower panel; see

also Fig. S8F, right). The brain area 5, 2, and F1 have a time constant around 103 ms.

To compare with the previous experimental result about the time constant of each

brain area during a baseline state, we checked the time constant of the resting state,

which is roughly a monotonic function of the hierarchy (Fig. 7D, upper panel, see also
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Figure 7: Bifurcation in space of connectome-based cortical models of macaque monkey

(A-D) [24] and mouse (E-H) [25]. (A) Lateral view of macaque neocortex surface with

model areas in color. (B) Firing rate of 40 brain areas, ranked by the hierarchical position.

(C) Firing rate time series of 8 chosen brain areas when neocortex model is in a delay

period working memory state. (D) The bar figure of time constants of 8 selected brain

areas for resting (upper panel) and delay period working memory (lower panel) state. (E)

Superior and lateral view of mouse cortex surface with model areas in color. (F) The

firing rate of 43 brain areas with noise (brown) is ranked by the hierarchical position. (G)

Firing rate time series of 8 chosen brain areas when large-scale mouse model in a working

memory state. (H) The bar figure of time constants of 8 selected brain areas in resting

(upper panel) and delay period working memory (bottom panel) state.
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Fig. S8F, left), which is consistent with previous modeling [40] and experimental [45]

results.

We then asked if critical slowing down also occurs in the connectome-based large-scale

mouse cortex model [25]. The model contains 43 cortex areas in the common coordinate

framework v3 atlas [46] (Fig. 7E) with a quantified hierarchy. There is a macroscopic

gradient of synaptic inhibition mediated by parvalbumin-expressing interneurons [47] that

decreases along the hierarchy. The mouse model also exhibits the coexistence of a resting

state and persistent activity states appropriate for working memory function (Fig. 7F).

Once again, we performed autocorrelation analysis of mnemonic persistent activity and

found a qualitatively similar inverted-V shaped profile of time constant (Fig. 7H, lower

panel, see also Fig. S8, H right).

It is worth noting that our model of the macaque monkey cortex is presently limited to

a subset of areas for which the connectomic data are available, the precise hierarchical po-

sitions (normalized between 0 and 1) could be slightly modified in a complete model of all

cortical areas. Moreover, exactly which area displays maximal time constant of mnemonic

firing fluctuations, may depend model parameters. Regardless, the demonstration of the

inverted V-shaped pattern of time constants in the mouse and macaque monkey cortical

models offers a strong model prediction that is testable experimentally.

Discussion

In this work, we chose working memory of central importance to cognition and behavioral

flexibility to investigate how functional modularity emerges in a multiregional cortex.

One may question whether there is indeed modularity for working memory, given that

visual working memory content can be decoded from functional MRI measurements in
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the primary visual cortex [48, 49]. However, the interpretation of fMRI results remains

controversial [50]. By contrast, there is ample evidence at the single cell level that a

subset of cortical areas are involved in working memory maintenance [15]. Regardless,

the debate does not directly bear on the present work which addresses the question of

how functional modularity, if it is present, may emerge under the assumption that the

cortex is made of repeats of a canonical circuit.

We found that the mechanism is mathematically described as a novel form of bifur-

cation, that occurs at some critical location in the spatially embedded cortex. The idea

of a neural system to operate near a criticality has been proposed [51, 52], among open

questions are what are the signatures of criticality, whether fine-tuning of parameters is

required or can be realized through a self-organized mechanism [53]. A bifurcation in

space is robust: parameter changes would merely move the spatial location of bifurcation.

Moreover, it is defined for each of numerous spatially extended persistent activity states,

that potentially can serve various internally driven cognitive processes. For example, one

spatially distributed attractor stores sensory information, another maintains a behavioral

rule that guides sensorimotor mapping etc. Each of these is modularly organized in the

sense of selectively engaging a subset of areas but not the others, mathematically de-

scribed by its own bifurcation in space. In other words, there are many bifurcations in

space in a given large-scale cortical system.

An observable manifestation of bifurcation in space is critical slowing down near the

transition. Consequently, along the cortical hierarchy, there is an inverted V-shaped

pattern of time constants that dominate neural fluctuations during working memory. This

is in contrast to our previous report that during a resting state, the dynamical timescale

roughly increases along the cortical hierarchy [40, 3]. The difference is explained by the

fact that time constants are uniquely defined mathematically only for a linear dynamical
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system; they depend on the internal state of a highly nonlinear system. This work thus

extends our previous finding of a hierarchy of time constants. We propose that an inverted

V-shaped pattern of time constants during working memory represents a sensitive test of

the absence or presence of functional modularity.

The main results using an abstract model of cortex endowed with experimentally mea-

sured connection statistics are confirmed in connectome-based models of the macaque

cortex and mouse cortex, opening the door to test the predicted inverted V-shaped profile

of time constants at specific areas during working memory. In particular, for working

memory of visual motion information, the work in [17] suggests MST as a candidate area

close to a criticality. Furthermore, since working memory and decision-making are be-

lieved to share a common cortical substrate [54], the inverted V-shaped timescale profile

is likely to hold during a decision process, a proposal in line with the existing evidence

that neurons in the posterior parietal cortex display longer integration times underlying

accumulation of information than both sensory areas and the prefrontal cortex, located

lower and higher hierarchical positions, respectively [55]. Testing this model prediction

requires the following considerations. First, time constant estimates may vary in different

behavioral epochs and tasks, here we focus on an internal state independently of external

inputs during a mnemonic delay. Second, there is heterogeneity of time constants across

single cells within an area, therefore sufficient statistics is needed for a cross-area com-

parison. Third, a mnemonic delay period needs to be much longer than to-be-assessed

autocorrelation times. Fourth, critical slowing down is manifest near a criticality; the

number of cortical areas is limited and it remains to be seen experimentally how close one

can get to a bifurcation locus in the cortical system.

This work focuses on spatial patterns of modular neural representations mathemati-

cally described as attractor states. The concept is not limited to simple patterns of higher
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versus low firing rates which are discussed in this work merely for the sake of simplicity.

As a matter of fact, monkey and mouse experiments showed that in a recorded corti-

cal area, during working memory some neurons increase firing while others reduce firing

such that the totality of neural population activity is roughly the same as in the resting

state [56, 14]. The principle of bifurcation in space is applicable to more complex spatial

patterns of neural activity. Moreover, attractors can display complex temporal dynamics

such as chaos rather than steady states [26]. For instance, neural representation of work-

ing memory often involves stochastic oscillations [57, 58]. As discussed elsewhere [14],

the attractor paradigm can well be consistent with considerable temporal variations of

neuronal delay period activity as well as cell-to-cell heterogeneities. Future research is

needed to extend the concept of bifurcation in space beyond steady states.

In general, bifurcation in space could underlie a sudden appearance of new behavior

in a region of a spatially extended physical, chemical or biological system endowed with a

systematic gradient of property variations. In contrast to local interactions through diffu-

sion or chemical reactions, interareal cortical interactions involve long-range connections

which makes it all the more remarkable that criticality can occur locally in a multiregional

cortex. We rigorously established the concept of bifurcation in space using the normal

form theory of bifurcation. A recurrent deep neural network (a hierarchical cortex with

many feedback loops) and macroscopic gradients are sufficient to give rise to various spa-

tial distributed persistent activity states, thus several functionally modular networks in

our model. Research along these lines should broadly help us explain the emergence of

novel brain capabilities that are instantiated in certain parts of the brain merely as a result

of quantitative changes of properties, providing a mechanistic foundation for functional

modularity.
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[35] Gămănuţ, R. et al. The mouse cortical connectome, characterized by an ultra-dense

cortical graph, maintains specificity by distinct connectivity profiles. Neuron 97,

698–715 (2018).

[36] Theodoni, P. et al. Structural attributes and principles of the neocortical connectome

in the marmoset monkey. Cerebral Cortex 32, 15–28 (2022).

[37] Coifman, R. R. & Lafon, S. Diffusion maps. Applied and computational harmonic

analysis 21, 5–30 (2006).
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Materials and Methods

Generative model for the mammalian cortical connectivity.

We use the model in [27] to generate multiple cortical network realizations. Briefly, in this

model, we start by randomly choosing the center of N brain areas in a three-dimensional

ellipsoid. After that, the ellipsoid is parcellated into N areas through a Voronoi partition.

Then, axon growth starts by randomly choosing a source in the ellipsoid. The direction

of the growth is determined by the summing force of all the areal centers. The growth

length is randomly chosen from an exponential distribution for modeling the previously

reported distance effects on the connectivity [28]. Since the axon’s source, direction, and

length are determined, we can find the axon’s target position in the ellipsoid. After that,

we add a connection from the source area to the target area and repeat the axon growth

process N × 2.1978 × 104 times. Through this process, the generated network has not

only a similar in- and out-degree distribution with the actual macaque monkey brain

network, which is measured using retrograde tract-tracing methods, but also a similar

triad distribution. In this model, an ellipsoid better fits the connectivity data than a

two-dimensional spheroid [27].

Diffusion map method for connectivity embedding.

We analyze the generated connectivity using the diffusion map method [37]. This is a

class of non-linear dimensionality reduction that has been recently applied to human, and

macaque monkey connectomes [21]. Briefly, this method assumes a hypothetical diffusion

processes on the nodes of the symmetric version of the generated network connectivity

(i.e., the FLN matrix). This diffusion process generates a diffusion metric space where

the distance between cortical areas can be defined. In this diffusion space, closer areas
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share a larger number of loops connecting them with stronger connections. On the other

hand, areas further apart in diffusion space share fewer loops and weaker connections.

When this method is used on the connectivity, the cortical network is embedded in a few

“principal gradients” of the diffusion process. These principal gradients are the principal

components of the normalized graph Laplacian of the diffusion process. This process leads

to embedding the connectivity matrix into a low-dimensional space. Its dimensionality is

determined by the selected number of principal gradients (three for Fig. 1C). We applied

this method in the symmetric version of the FLN matrix FLN + FLNT .

Constructing cortical hierarchies from the network connectivity.

We calculate two classes of hierarchies based on the three-dimensional embedding of the

structural connectivity matrix through the diffusion map (see Fig. 1C): Euclidian and

Hyperbolic hierarchies. To calculate either class of hierarchy value, we first choose the

cortical area with the smallest value in the first principal gradient as the first area in the

hierarchy or origin area. This choice is arbitrary. To determine the hierarchical position,

we compute the distance in diffusion space between each cortical area with the origin area.

For the Euclidean hierarchy, the hierarchical value of a cortical area i is computed using

the normalized Euclidean distance hi
Euc = disti0Euc/dist

max
Euc . Here the value disti0Euc is the

Euclidean distance between brain area i and the origin area, and the value distmax
Euc is the

maximum Euclidean distance of all the brain areas to origin area. The ranked Euclidean

hierarchical position of each brain area is shown as the brown circles in Fig. 1D.

For the hyperbolic distance, we estimate the distance with the origin area along the

hyperbolic shape in the embedding space. To do that, we create a nearest-neighbor

network for all the brain areas in the embedding space. We link all the brain areas

by connecting each brain area with its neighbor within a Euclidean distance threshold
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distthr. The distthr is the maximum distance of all the distances between each brain

area and its nearest neighbor. The weight of each link in the nearest neighbor network

is the Euclidean distance between the two cortical areas. After creating the nearest

neighbor network, we estimated the hyperbolic distance between brain area i and the

origin area by finding the shortest path between them. The length of the shortest path is

the summation of the weights of the links (i.e., euclidean distances) within this shortest

path. The shortest path finding is computed using the dijkstra path length function in the

Python package of NetworkX. We define the hyperbolic hierarchical position of brain area

i hi
Hyp = disti0Hyp/dist

max
Hyp, where disti0Hyp is the Hyperbolic distance between brain area

i and the origin area. The value distmax
Euc is the maximum Hyperbolic distance of all the

brain areas to the origin area. Each brain area’s ranked Hyperbolic hierarchical position

is shown as the blue dots in Fig. 1D.

Isolated cortical circuit.

The simplified nonlinear dynamical model is adopted from [59], which approximated spik-

ing neural network with AMPA, GABA, and NMDA synapses [60]. The dynamical equa-

tions that describe the dynamics for a single cortical area are described as follows:

τE
dSE

dt
= −SE + γEτE(1− SE)rE,

τI
dSI

dt
= −SI + γIτIrI ,

τr
drE
dt

= −rE + ϕexc(JWEESE −WEISI + Iext,E),

τr
drI
dt

= −rI + ϕinh(JWIESE −WIISI + Iext,I), (1)

where, SE and SI are the gating variable of NMDA receptor of the excitatory population

and the gating variable of GABAergic receptor of the inhibitory population, respectively.
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The variables rE and rI are the mean firing rates of the excitatory and inhibitory popula-

tions, respectively. The functions ϕexc and ϕinh are the input-output transfer functions of

the excitatory and inhibitory populations. The variable J is the excitation factor, which

is proportional to the hierarchical value and differs for each cortical area. Unless specified,

parameters are τE = 60ms, τI = 5ms, τr = 2ms, γE = 0.76, γI = 1, WEE = 276.48pA,

WEI = 251pA, WIE = 129.6pA, WII = 54pA, Iext,E = 329.5pA, Iext,I = 260pA. For the

input-output transfer function ϕ(I), which is a function that transforms the average input

current to a cortical circuit into a mean firing rate, we use two different functions:

1. Abbott-Chance function [42]

ϕexc(I) =
aI − b

1− e−d(aI−b)
. (2)

2. Threshold-linear function

ϕexc(I) = [aI − b]+. (3)

The notation [•]+ denotes rectification, i.e., ϕexc(I) = aI − b when aI − b > 0 and

ϕexc(I) = 0 when aI − b ≤ 0.

The parameters for Abbott-Chance and threshold-linear functions are a = 0.27Hz/pA,

b = 108Hz. The parameter d is the gain in the Abbott-Chance function. For a very large

gain d, i.e., in the limit when d → ∞, the Abbott-Chance function becomes equal to the

threshold-linear function.

For the inhibitory population, the transfer function is threshold-linear

ϕinh(I) = [c1I − c0]+ (4)

where the parameters are c1 = 0.308Hz/pA, c0 = 77Hz.
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Dynamical model of the mammalian neocortex.

We connect cortical areas with local neural dynamics described by equations (1-4) using

the connectivity from our generative model of the mammalian neocortex. The long-range

projections in our model are from excitatory to excitatory populations [40, 23, 24]. Our

large-scale model is described as follows

τE
dSi

E

dt
= −Si

E + γEτE(1− Si
E)r

i
E,

τI
dSi

I

dt
= −Si

I + γIτIr
i
I ,

τr
driE
dt

= −riE + ϕexc(J
i(WEES

i
E + µEE

N∑
j=1

FLNijS
j
E)−WEIS

i
I + I inoi + I iext,E),

τr
driI
dt

= −riI + ϕinh(J
i(WIES

i
E + µIE

N∑
j=1

FLNijS
j
E)−WIIS

i
I + I iext,I),

τr
dI inoi
dt

= −I inoi +
√
τrσ2

noiξ
i, (5)

where the parameters µEE and µIE are the long-range coupling strength. Unless

specified, µEE = 69.12pA, µIE = 62.809pA. The FLNij is the long-range connection

strength from the source brain area j to the target cortical area i, which is generated

as described in the previous section. The parameter J i corresponds to the gradient of

excitation. This factor scales excitation for each cortical area i, which is linearly related

to the hierarchical position hi of cortical area i as J i = 1 + ηhi (see insert of Fig. 1F).

We assume that all the brain areas have the same external input current I iext,E = Iext,E

and I iext,I = Iext,I . The noise term Inoi is an Ornstein-Uhlenbeck process, representing the

AMPA synaptic noise with a short time constant τr = 2ms [59]. The parameter σnoi is

the standard deviation of the noise, and ξ is Gaussian white noise with zero mean and

unit variance. Unless specified, all other parameters are the same as in the isolated brain
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area.

Steady states for an isolated cortical area.

For solving the steady state of isolated brain area, we set dSE

dt
= 0, dSI

dt
= 0, drE

dt
= 0 and

drI
dt

= 0. Thereafter, we have the steady state equations as follows:

−SE

τE
+ γE(1− SE)rE = 0,

−SI

τI
+ γIrI = 0,

−rE + ϕexc(JWEESE −WEISI + Iext,E) = 0,

−rI + ϕinh(JWIESE −WIISI + Iext,I) = 0. (6)

A meaningful steady state of brain area must have positive firing rates rE ≥ 0, rI ≥ 0.

Thus we will have the steady state 0 ≤ SE ≤ 1 and SE ≥ 0. Therefore, we could reduce

our steady state equation to

−SE

τE
+ γE(1− SE)ϕexc(JWEESE −WEISI + Iext,E) = 0,

−SI

τI
+ γIϕinh(JWIESE −WIISI + Iext,I) = 0. (7)

We reorganize the above expression and obtain an expression for SI given by

SI = γIτI(c1Iinh,t − c0) = αc1JWIESE + α(c1Iext,I − c0),

α =
γIτI

1 + γIτIc1WII

=
1

1
γIτI

+ c1WII

, (8)

where we define Iinh,t as a total current input to inhibitory population, and α = 4.6ms

by using the parameters of Table. 1. Then, we plug-in equation (8) into the steady state

SE equation (7). After this manipulation, the steady state of the single cortical area is

determined by the NMDA gating variable SE as follows:
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−SE + γEτE(1− SE)ϕexc(α1SE + α2) = 0,

α1 = J(WEE − αc1WEIWIE),

α2 = Iext,E − αWEI(c1Iext,I − c0). (9)

Where α1 = 230.2305JpA and α2 = 301.1294pA by using the parameters of Table. 1.

For the threshold-linear transfer function in equation (3), we immediately noticed that

SE = 0, SI = α(c1Iext,I − c0) is one of the steady states solution with −WEI(α(c1Iext,I −

c0))+ Iext,E < 400pA. This solution corresponds to the resting state and does not depend

on the hierarchy factor J , which means the resting state always exists along the cortical

hierarchy with the threshold-linear transfer function.

However, for the other steady states SE, they obey the following quadratic equation:

−aα1S
2
E + (a(α1 − α2) + b− 1

γEτE
)SE + (aα2 − b) = 0.

By solving the quadratic equation, we obtain two steady state

SE =
−(a(α1 − α2) + b− 1

γEτE
)±

√
(a(α1 − α2) + b− 1

γEτE
)2 − 4(−aα1)(aα2 − b)

2(−aα1)
,

(10)

therefore, the isolated brain area has a saddle-node bifurcation of SE, and the bifurcation

point at (a(α1 − α2) + b − 1
γEτE

)2 − 4(−aα1)(aα2 − b) = 0. At the bifurcation point,

we have α∗
1 = J∗(WEE − αc1WEIWIE) and (a(α∗

1 − α2) + b − 1
γEτE

)2 − 4(−aα∗
1)(aα2 −

b) = 0, Thus α∗
1(±) =

((b−aα2)+
1

γEτE
)±

√
4

γEτE
(b−aα2)

a
. If we consider the solution α∗

1(−)

then we have that the critical hierarchy factor is given by J∗ =
α∗
1(−)

WEE−αc1WEIWIE
=

((b−aα2)+
1

γEτE
)−

√
4

γEτE
(b−aα2)

a(WEE−αc1WEIWIE)
. For our parameter setting,

α∗
1(−)

WEE−αc1WEIWIE
= 7.1592× 10−4,

which means that J∗ ≪ 1. However, this is not possible since Jmin = 1. Therefore, the

bifurcation hierarchy value is given by J∗ =
α∗
1(+)

WEE−αc1WEIWIE
= 1.3483.
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We performed a similar analysis for the Abbott-Chance transfer function in equa-

tion (2). By combining equation (2) and equation (9) the steady state is given by

−SE(1− e−d(aα1SE+aα2−b)) + γEτE(1− SE)(aα1SE + aα2 − b) = 0. (11)

The steady states equation (11) is highly nonlinear, and we can not provide an analytic

solution. Instead, we solve equation (11) using the Matlab numerical solver fsolve. The

steady state in equation (11) depends on the gain parameter d of the Abbott-Chance

function, and the bi-stable region enlarges when d increases. This is shown by comparing

Fig. 1F, Fig. S1E, and Fig. S1F.

Steady states of the dynamical model of the mammalian neocor-

tex.

As for the large-scale network model, we write the steady states equation as follows:

−Si
E

τE
+ γE(1− Si

E)r
i
E = 0,

−Si
I

τI
+ γIr

i
I = 0,

− riE + ϕexc(J
i(WEES

i
E + µEE

N∑
j=1

FLNijS
j
E)−WEIS

i
I + I iext,E) = 0,

− riI + ϕinh(J
i(WIES

i
E + µIE

N∑
j=1

FLNijS
j
E)−WIIS

i
I + I iext,I) = 0. (12)

We assume stable steady states of large-scale network model are attractor states. There-

fore, in the steady states, the long-range excitatory input for the ith brain area Li
E =∑N

j=1 FLNijS
j
E is a fixed number. The exact value of long-range excitatory inputs Li

E de-

pends on the connectivity structure of FLN . Based on this assumption, we could rewrite

the steady state equation of large-scale network model as
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−Si
E

τE
+ γE(1− Si

E)ϕexc(J
i(WEES

i
E + µEEL

i
E)−WEIS

i
I + I iext,E) = 0,

−Si
I

τI
+ γIϕinh(J

i(WIES
i
E + µIEL

i
E)−WIIS

i
I + I iext,I) = 0. (13)

After some manipulations, we obtain the expression for Si
I given by

Si
I = γIτI(c1Iinh,t − c0) = αc1WIEJ

iSi
E + αc1µIEJ

iLi
E + α(c1I

i
ext,I − c0), (14)

where the definition of α is same as in equation (8). Therefore, for the ith cortical area

the excitatory gating variable Si
E obeys the following steady state equation

−Si
E + γEτE(1− Si

E)ϕexc((WEE −WEIαc1WIE)J
iSi

E

+(µEE −WEIαc1µIE)J
iLi

E + (I iext,E −WEIα(c1I
i
ext,I − c0))) = 0. (15)

First, we will analyze the steady state equation (15) for the case when the transfer

function is threshold-linear. The above equation (15) can be written as the steady state

of the following set of dynamical equations

dSi
E

dt
= f(Si

E, L
i
E, J

i) (16)

= −γEτEχ1J
i(Si

E)
2 + (γEτEχ1J

i − γEτE(χ2J
iLi

N + χ3)− 1)Si
E

+ γEτE(χ2J
iLi

E + χ3),

with

χ1 = a(WEE −WEIαc1WIE),

χ2 = a(µEE −WEIαc1µIE),

χ3 = a(I iext,E −WEIα(c1I
i
ext,I − c0))− b,
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where χ1 = 62.1622Hz, χ2 = 12.6106Hz, χ3 = −19.9985Hz by using the parameters of

Table. 1, and steady states value of the synaptic variable of the ith cortical area Si
E obeys

the above quadratic equation equal to zero. Importantly, the steady state of Si
E depends

on the hierarchy value through J i and the long-range excitatory inputs Li
E.

Since the steady state equation for the synaptic variables of each cortical area Si
E in

equation (16) is given by a quadratic equation, then the steady state can be calculated by

using the quadratic formula. This calculation is similar to the steady state calculations for

an isolated cortical area above (see equation (10)). However, in our large-scale network

model, the quadratic formula of the network model is also dependent on the hierarchy

value through J i and the long-range excitatory inputs Li
E. Therefore, the bifurcation

happening in the hierarchical space is determined by the following expression:

(γEτEχ1J
i − γEτE(χ2J

iLi
E + χ3)− 1)2 + 4(γEτEχ1J

i)(γEτE(χ2J
iLi

E + χ3)) (17)

= γE(τEχ2)
2(J i)2(Li

E)
2 + 2γEτEχ2J

i(1 + τEχ3 + τEχ1J
i)Li

E

+ (1 + 2γEτE(χ3 + τEχ
2
3) + 2γEτEχ1(τEχ3 − 1)J i + γE(τEχ1J

i)2) (18)

= γEτ
2
E(χ

2
1 + 2χ1χ2L

i
E + χ2

2(L
i
E)

2)(J i)2

+ 2γEτE(−χ1 + τEχ1χ3 + (χ2 + τEχ1χ3)L
i
E)J

i + (1 + γEτ
2
Eχ

2
3 + 2γEτEχ3) (19)

= 0,

where J i = 1 + ηhi and Li
E are the scaled hierarchy value and long-range excitatory

inputs of ith brain area, respectively. The equation (17) is a constrain equation in the two-

dimensional space of hierarchy h and long-range excitatory inputs LE. Therefore, equa-

tion (17) determines where the bifurcation in space is happening in the two-dimensional

hierarchy and long-range excitatory inputs space. We refer to this curve as the critical

line. For example, the ith brain area with scaled hierarchical value J i will give a spe-

cific quadratic equation (see equation (18)), which determines the bifurcation long-range

41

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 6, 2023. ; https://doi.org/10.1101/2023.06.04.543639doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.04.543639
http://creativecommons.org/licenses/by-nc-nd/4.0/


excitatory inputs L∗
E. Therefore, J i and L∗

E determine one of the bifurcation points in

the two-dimensional space. The ith brain area will be in an active state only when it has

long-range excitatory inputs such that Li
E > L∗

E. From another viewpoint, the bifurcation

equation could be a quadratic equation of the scaled hierarchical value J i (eq. 19). For

a ith brain area with long-range excitatory inputs Li
E, only when it has a hierarchical

position J i > J∗ it displays non-zero firing rates. The critical line given by equation (17)

is shown in Fig. 4B.

We perform the same analysis for the Abbott-Chance transfer function. The steady state

equation for the large-scale model reads as follows:

dSi
E

dt
= f(Si

E, L
i
E, J

i)

= −Si
E(1− e−d(χ1JiSi

E+χ2JiLi
E+χ3))

+γEτE(1− Si
E)(χ1J

iSi
E + χ2J

iLi
E + χ3) = 0. (20)

We use numerical methods to solve equation (20). Numerically solving the equation (20)

will give a steady state surface shown in Fig. 4D, Fig.S4, Fig.S5A-B and Fig. 6. We

refer to this surface as the solution surface. Any steady state solution to the network’s

dynamics will lay on this surface.

Remarkably, our network’s solution surface has very similar geometry as the cusp

bifurcation normal form solution surface [43]. The cusp normal form is given by dx
dt

=

β1 + β2x − x3, where β1 and β2 are two independent parameters [43, 26]. The cusp

normal form solution surface is given by the set of solutions to the steady state equation

β1 + β2x − x3 = 0 in the (β1, β2) parameter space. We refer to this surface as the cusp

surface. The cusp surface determines the possible bifurcations that the cusp normal form

undergoes [43, 26], and with this, its bifurcation diagram. The cusp bifurcation point is

given by β1 = β2 = 0. In Fig. S5A-B, for illustration proposes, we overlay a β1 and β2
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axes to highlight the resemblance of our network’s solution surface with the cusp surface

[43].

Similarly to the cusp surface, in our network’s solution surface, the bi-stable region is

the region in the J i and L∗
E parameter space where, for a given active state, brain areas

have two stable states: one with low and another with high firing rates. For the solution

surface, the bi-stable region increases with the increase of the transfer function gain d,

and when d → ∞, the bi-stable region is the largest. Thus, the solution surface structure

depends on the gain parameter d.

The bifurcation in hierarchy space normal form.

We derived a reduced equation for the dynamics of our large-scale neocortical network. We

refer to this equation as the bifurcation in hierarchy space normal form. Similar to classical

normal forms in dynamical systems [43], this is a reduced dynamical equation derived

from the network dynamical system, which qualitatively captures the network’s nonlinear

dynamics close to the bifurcation in hierarchy space. We performed the derivation of this

equation analytically for a network with a threshold-linear transfer function.

To calculate this equation, we first calculate the bifurcation points in the network

dynamics. Based on the steady state equation for the threshold-linear transfer function

in equation (17), we have the bifurcation point (S∗
E, L

∗
E, J

∗) fulfill the below equation.

f(S∗
E, L

∗
E, J

∗) =

(γEτEχ1J
∗ − γEτE(χ2J

∗L∗
E + χ3)− 1)2

+4(γEτEχ1J
∗)(γEτE(χ2J

∗L∗
E + χ3)) = 0. (21)

The bifurcation point in our multi-regional network with a threshold-linear transfer func-

tion is defined as the point in parameter space where the solutions of the quadratic
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equation in equation (17) change from complex conjugate to real. This point in param-

eter space corresponds to the point of appearance of bi-stability at the single-area level.

Areas below the bifurcation point have a single low firing rate stable state. Beyond the

bifurcation point, cortical areas have two stable states: one with low and another with

high firing rates. To calculate the bifurcation in the hierarchical space normal form, we

need to expand the function f around the bifurcation point (S∗
E, L

∗
E, J

∗). The expanded

function reads as follows:

f(Si
E, L

i
E, J

i) = f(S∗
E, L

∗
E, J

∗)

+

(
∂f
∂Si

E

∣∣∣
S∗
E ,L∗

E ,J∗

∂f
∂Li

E

∣∣∣
S∗
E ,L∗

E ,J∗

∂f
∂Ji

∣∣
S∗
E ,L∗

E ,J∗

)
Si
E − S∗

E

Li
E − L∗

E

J i − J∗



+
1

2


Si
E − S∗

E

Li
E − L∗

E

J i − J∗


T


∂2f
∂(Si

E)2

∣∣∣
S∗
E ,L∗

E ,J∗

∂2f
∂Si

E∂Li
E

∣∣∣
S∗
E ,L∗

E ,J∗

∂2f
∂Si

E∂Ji

∣∣∣
S∗
E ,L∗

E ,J∗

∂2f
∂Li

E∂Si
E

∣∣∣
S∗
E ,L∗

E ,J∗

∂2f
∂(Li

E)2

∣∣∣
S∗
E ,L∗

E ,J∗

∂2f
∂Li

E∂Ji

∣∣∣
S∗
E ,L∗

E ,J∗

∂2f
∂Ji∂Si

E

∣∣∣
S∗
E ,L∗

E ,J∗

∂2f
∂Ji∂Li

E

∣∣∣
S∗
E ,L∗

E ,J∗

∂2f
∂(Ji)2

∣∣∣
S∗
E ,L∗

E ,J∗



Si
E − S∗

E

Li
E − L∗

E

J i − J∗


+O(3), (22)
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where we have:

∂f

∂Si
E

∣∣∣∣
S∗
E ,L∗

E ,J∗
= −2γEτEχ1J

∗ + (γEτEχ1J
∗ − γEτE(χ2J

∗L∗
E + χ3)− 1),

∂f

∂Li
E

∣∣∣∣
S∗
E ,L∗

E ,J∗
= −γEτEχ2J

∗S∗
E + γEτEχ2J

∗,

∂f

∂J i

∣∣∣∣
S∗
E ,L∗

E ,J∗
= −γEτEχ1(S

∗
E)

2 + γEτE(χ1S
∗
E − χ2L

∗
ES

∗
E + χ2L

∗
E),

∂2f

∂(Si
E)

2

∣∣∣∣
S∗
E ,L∗

E ,J∗
= −2γEτEχ1J

∗,

∂2f

∂Si
E∂L

i
E

∣∣∣∣
S∗
E ,L∗

E ,J∗
= −γEτEχ2J

∗,

∂2f

∂Si
E∂J

i

∣∣∣∣
S∗
E ,L∗

E ,J∗
= γEτE(−2χ1S

∗
E + χ1 − χ2L

∗
E),

∂2f

∂Li
E∂S

i
E

∣∣∣∣
S∗
E ,L∗

E ,J∗
= −γEτEχ2J

∗,

∂2f

∂(Li
E)

2

∣∣∣∣
S∗
E ,L∗

E ,J∗
= 0,

∂2f

∂Li
E∂J

i

∣∣∣∣
S∗
E ,L∗

E ,J∗
= γEτEχ2(1− S∗

E),

∂2f

∂J i∂Si
E

∣∣∣∣
S∗
E ,L∗

E ,J∗
= γEτE(−2χ1S

∗
E + χ1 − χ2L

∗
E),

∂2f

∂J i∂Li
E

∣∣∣∣
S∗
E ,L∗

E ,J∗
= γEτEχ2(1− S∗

E),

∂2f

∂(J i)2

∣∣∣∣
S∗
E ,L∗

E ,J∗
= 0.

We simplify the expression in equation (22) obtaining
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dSi
E

dt
= f(Si

E, L
i
E, J

i) = ζ1(S
i
E)

2 + ζ2S
i
E + ζ3, (23)

ζ i1 = −γEτEχ1J
i,∗,

ζ i2 = (−2γEτEχ1S
i,∗
E (J i − J i,∗)− γEτEχ2L

i,∗
E (J − J i,∗)

−γEτEχ2J
i,∗Li

E + γEτEχ1J
i − (1 + γEτEχ3)),

ζ i3 = (−γEτEχ1J
i,∗(Si,∗

E )2 + γEτEχ2S
i,∗
E (J i,∗Li

E + J iLi,∗
E − J iLi

E)

−γEτEχ1J
i,,∗Si,∗

E + (1 + γEτEχ3)S
i,∗
E + γEτEχ2(J

iLi
E − J i,∗Li,∗

E )),

The above equation (23) corresponds to the bifurcation in hierarchy space normal

form. We solve the steady state of the above equation (23) self-consistently and predict

the firing rate of the delay period working memory states. The self-consistent equations

read as

Si
E =

−ζ i,sce2 −
√

(ζ i,sce2 )2 − 4ζ i,sce1 ζ i,sce3

2ζ i,sce1

(24)

ζ i,sce1 = −γEτEχ1J
i,∗,

ζ i,sce2 = (−2γEτEχ1S
i,∗
E (J i − J i,∗)− γEτEχ2L

i,∗
E (J − J i,∗)

−γEτEχ2J
i,∗

N∑
j=1

FLNijS
j
E + γEτEχ1J

i − (1 + γEτEχ3)),

ζ i,sce3 = (−γEτEχ1J
i,∗(Si,∗

E )2 + γEτEχ2S
i,∗
E (J i,∗

N∑
j=1

FLNijS
j
E + J iLi,∗

E

−J i

N∑
j=1

FLNijS
j
E)− γEτEχ1J

i,,∗Si,∗
E + (1 + γEτEχ3)S

i,∗
E

+γEτEχ2(J
i

N∑
j=1

FLNijS
j
E − J i,∗Li,∗

E )),

∆i = (ζ i,sce2 )2 − 4ζ i,sce1 ζ i,sce3 ≥ 0,

Si
E ≥ 0.
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To solve the self-consistent equations, first, we solve equation (19) numerically and ob-

tained J i,∗ and Li,∗
E for the bifurcation point of the ith brain area. Second, we determine

the excitatory gating variable Si,∗
E by inserting J i,∗ and Li,∗

E into equation (16) and solving

numerically the equation (16). Third, we insert (S∗
E, L

∗
E, J

∗) into the self-consistent equa-

tions in equation (24). Lastly, we solve the self-consistent equations in equation (24) and

then predict the firing rate pattern of activity during an active state as shown in Fig. 4B.

The normal form in equation (23) can be further reduced to a more general expression as

reads below

dSi
E

dt
= f(Si

E, L
i
E, J

i)

= a1(S
i
E)

2 + (a2J
i + a3L

i
E + a4)S

i
E + (a5J

i + a6L
i
E + a7J

iLi
E + a8),

a1, . . . , a8 ∈ R, (25)

where a1, . . . , a8 are parameters calculated re-arrenging terms in equation (23). The

parameter values are a1 = −3.3, a2 = 0.08, a3 = −0.67, a4 = 3.11, a5 = 0.1, a6 = 0.3,

a7 = 0.3127, a8 = −1.017 for a state like Fig. 4B. Remarkably, the bifurcation in the

hierarchy space normal form has a similar mathematical form (up to a translation) as the

saddle-node bifurcation [43]. However, unlike the saddle-node normal form, cortical areas

are coupled through the constant and linear coefficients. These coefficients depend on the

hierarchy through J i and the long-range excitatory input current Li
E. These coefficients

represent the network’s effect. Therefore, the above equation shows that the bifurcation in

space depends on both macroscopic gradients of neuronal properties and the neocortical

network structure.
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Numerical methods for finding active states.

In a network between 1000-10000 brain areas, it is infeasible for our computational re-

sources to find all the possible active states. Therefore, we try to get as many unique

active states as possible by using as many different initial conditions. In practice, we

ranked all the 1000 cortical areas by their hierarchical position and then divided all the

1000 cortical areas into 20 groups along the hierarchical position. Therefore, each group

has 50 cortical regions that are contiguous in hierarchical position. To reduce the vari-

ation of the initial condition, we set the initial condition for each brain area within the

same group to be the same.

We obtain the steady state by re-writing equations (13) as self-consistent equations

for the variables Si
E and Si

I , and iterating these equations for finding the steady state

solutions for the neural dynamics. The iterated equations read

Si
E =

τEγEϕexc(J
i(WEES

i
E + µEEL

i
E)−WEIS

i
I + I iext,E)

1 + τEγEϕexc(J
i(WEES

i
E + µEEL

i
E)−WEIS

i
I + I iext,E)

,

Si
I = τIγIϕinh(J

i(WIES
i
E + µIEL

i
E)−WIIS

i
I + I iext,I), (26)

where the long-range excitatory inputs for the ith brain area is given by Li
E =

∑N
j=1 FLNijS

j
E.

In any given initial condition, we use only two different initial values for all areas within

a group: SE = 1 or SE = 0. Each group may take different values of SE. Using the above

self-consistent equations, we search for the steady states from 220 = 1, 048, 576 different

initial conditions.

We iterate the equation (26) until the mean absolute difference between two consecu-

tive iterations is smaller than 10−10, or the iteration number is large than 10000. However,

in practice, no initial condition has more than 10000 iterations for 1000 brain areas. After

generating an active state, we determine whether it is unique by computing the absolute
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difference between it and all the unique active states we had before. Once the sum of the

absolute difference of all the brain areas is large than 0.05, we would define it as a new

unique state and keep it. Through this process, we obtained 4333 (one of the states in

Fig. 5A is the resting state) distinct active states after trying 1, 048, 576 initial states. For

all the distinct active states, we checked the local stability of the state by calculating all

the eigenvalues of the Jacobian matrix. We found that the real part of all eigenvalues in

all the active states is negative. Therefore, all the states are locally stable.
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Table 1. Parameters for Numerical Simulations

Parameter Description Value

WEE, WEI local excitatory coupling to E and I

population

276.48pA, 251pA

WIE, WII local inhibitory coupling to E and I

population

129.6pA, 54pA

µEE, µIE Long-range excitatory coupling to E

and I population

69.12pA, 62.809pA

τE, τI , τAMPA Main E synaptic time constants, I

synaptic time constants, AMPA recep-

tor time constants

60ms, 5ms, 2ms

γE, γI E and I synaptic rise constants 0.76, 1

Iext,E, Iext,I External background inputs 329.5pA, 260pA

a, b E population f-I curve 0.27Hz/pA, 108Hz

d E population f-I curve 0.17 (Fig. 2 Fig. 4D

Fig. 5 Fig. 6), 0.157

(Fig. 3 Fig. S4

Fig. S5A Fig. S6B)

c1, c0 I population f-I curve 0.308Hz/pA, 77Hz

h Normalized hierarchical position [0, 1]

η Scaling factor of hierarchical position 0.2778

σnoi Standard deviation of noise 24pA (Fig. 2C Fig. 2D

upper Fig. 3C

Fig. 3D upper),

29pA (Fig. S2H left),

8pA (Fig. 5B), 6pA

(Fig. S7A), 10pA

(Fig. S7B), 16pA

(Fig. S7C)
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Auto-correlation function of excitatory firing rate and estimated

time scales.

We calculate the auto-correlation function of each cortical area based on the excitatory

firing rate time series. The sample rate and total length of the firing rate time series

are 200Hz and 80 seconds which leave out the transient period. First, we calculate the

auto-correlation function using the autocorr function in Matlab and set the maximum lag

as 50 seconds (which is equal to 10000 sample steps). After that, we estimate the time

scale of the brain area based on the auto-correlation function. Since the auto-correlation

function could have more than one time-scale, we fit the auto-correlation using both the

single-exponential and double-exponential functions, which shows as follows:

Single-expoential function:

ae
−∆T

τ + c, (27)

Double-expoential function:

ae
−∆T
τ1 + (1− a)e

−∆T
τ2 + c, (28)

where ∆T is the time lag of the auto-correlation function, τ is the estimated time constant

of a brain area with the single-exponential function, τ1 and τ2 are the two estimated time

constants of each brain area with double-exponential function. For the double-exponential

function, we define a combined time constant τc = aτ1 + (1− a)τ2. However, if a < 0.07

or a > 0.93, we will choose τ2 or τ1 as the final time constant of double-exponential

fitting, respectively. Otherwise, we choose τc as the final time constant of the double

exponential fitting. We fit the auto-correlation function with the single-exponential and

double-exponential function using the fit function in Matlab. For the fit function, we set

the upper and lower bound for each parameter as a ∈ (0, 1), τ ∈ (1,∞), τ1 ∈ (1,∞),
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τ2 ∈ (1,∞), c ∈ (−1, 1), the algorithm of fitting procedure is Levenberg-Marquardt.

We determine the final time constant of each brain area based on the root-mean-square

error (RMSE) of the fitting. If the RMSE of the single exponential fitting is larger than

two times the RMSE of the double exponential fitting, we choose the double exponential

fitting τc as the final time constant of the brain area. Otherwise, we choose the single

exponential fitting τ as the final time constant of the brain area.
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Supplementary figures
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Figure S1: The supplementary figure of generated connectivity, hierarchy, and

local circuit model. (A) The generated super neocortex network with 1000 brain areas

is consistent with the macaque neocortex network statistic. (B) The three-dimensional

embedding hyperbolic shapes of generated super neocortex network of panel A. (C) il-

lustrate Euclidean (upper) and hyperbolic (bottom) distance in the three-dimensional

embedding of the super neocortex network. (D) The Euclidean (upper) and hyperbolic

(bottom) hierarchical position of all the brain areas. The blue, brown, and yellow lines

correspond to the two-dimensional, three-dimensional, and four-dimensional embedding

of generated super neocortex model. (E) The NMDA and GABAergic gating variables’

steady states vary with the hierarchical position of an isolated brain area with simplified

dynamics. Additionally, this isolated brain area has the same parameter settings as Panel

F of Figure 1 in the main text. (F) The upper part displays the bifurcation diagram of

an isolated brain area with simplified dynamics, with a gain parameter of d = 0.157. In

the lower part, the steady states of the NMDA and GABAergic gating variables in this

isolated brain area vary with its hierarchical position. (G) The three-dimensional em-

bedding hyperbolic shape of generated super neocortex with 10000 brain areas. (H) The

Euclidean (upper) and hyperbolic (bottom) hierarchical position of all the brain areas

for the 10000 brain area network. The blue, brown, and yellow lines correspond to the

two-dimensional, three-dimensional, and four-dimensional embedding of generated super

neocortex model with 10000 brain areas. 54
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Figure S2: The supplementary figure of bifurcation in hierarchical space. (A)

Firing rate of all the inhibitory populations for the same parameter set of panel A of

Fig. 2 of the main text. (B) The firing rate of the excitatory (upper) and inhibitory

(bottom) population of both active (blue) and resting (brown) state of all the brain

areas in the generated super neocortex network with 10, 000 brain areas. (C) The spatial

distribution of monotonic active state persistent firing rate (upper) and resting state firing

rate (bottom) in the actual ellipsoid space with 10, 000 brain areas. (D) The time constant

of all the brain areas at the monotonic active state of panel B with 10, 000 brain areas

and noise strength σ = 24pA. (E) The distribution of bin average (left) and standard

deviation of bin averaged time constant (right) along the hierarchical position change with

the noise strength, which increases from 15pA to 27pA, of 5 noise ensemble. Continue at

the next page.
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Continue with figure S2’s caption. In this panel, we use the bin averaged time constant

of the same set of panel A with bin size equal to 0.05 hierarchical position interval. We

averaged from 5 ensemble realization for each time constant bin. (F) The distribution of

bin average (left) and standard deviation of bin averaged time constant (right) along the

hierarchical position change with the noise strength, which increases from 15pA to 27pA,

of 5 noise ensemble and 10 network ensemble. The bin size is the same as in panel E,

but the average included 10 in different super neocortex networks. We averaged from 5

noise ensemble realization and 10 different super neocortex network for each time constant

bin. (G) The average time constant of 10% largest time constant (left) and maximum

time constant (right) change with the network size. The 10 dots at a specific number of

brain areas mean the 10 different super neocortex network. The shaded region represents

within one standard deviation. (H) The time constant of 10 chosen cortical areas in the

persistent activity state (right) and 10 selected areas in the resting state (left). The states

correspond to the states in panel A of Fig. 2. (I) The average and standard deviation

of the firing rate of 10 chosen cortical brain areas in the persistent activity state and

its corresponding firing rate time series. (J) The autocorrelation and double exponential

fitting of two selected brain areas’ h = 0.305 and h = 0.405. The brain areas h = 0.305

and h = 0.405 are at the bottom and top of the active states’ inverted V shape of the

time constant.
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Figure S3: The delay activity state and time constant for brain networks with

10000 brain areas and d = 0.157. (A) Firing rate of all the inhibitory populations for

the same set of panel A of Fig.3 of the main text with d = 0.157. (B) The firing rate of

the excitatory population of both active (blue) and resting (brown) state of all the brain

areas in the generated super neocortex network with 10, 000 brain areas and the same

parameter setting as panel A. (C) The firing rate of the inhibitory population of both the

active and resting state of all the brain areas with the same setting as panel B. (D) The

time constant of all the brain areas at the monotonic active state of panel B with 10, 000

brain areas and noise strength σ = 24pA. (E) The distribution of bin average (left) and

standard deviation of bin averaged time constant (right) along the hierarchical position

change with the noise strength, which increases from 15pA to 27pA, of 5 noise ensemble.

In this panel, we use the bin averaged time constant of the same set of panel A with bin

size equal to 0.05 hierarchical position interval. We averaged from 5 ensemble realization

for each time constant bin. The other parameters are the same as in panel D. (F) The

distribution of bin average (left) and standard deviation of bin averaged time constant

(right) along the hierarchical position change with the noise strength, which increases

from 15pA to 27pA, of 5 noise ensemble and 10 network ensemble. The bin size is the

same as in panel E, but the average included 10 in different super neocortex networks.

We averaged from 5 noise ensemble realization and 10 different super neocortex network

for each time constant bin.
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Figure S4: The solution surface of d = 0.157. The neocortex model’s resting (brown)

and persistent activity state (blue) lie on top of the solution surface (d = 0.157). In this

case, the active state has a continuous transition without a firing rate gap.
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A B

Figure S5: Cusp geometry determines the bifurcation in hierarchical space. (A

and B) The geometry of the solution surface and the cusp point determine the bifurcation

in hierarchical space. The blue dots correspond to the persistent activity state of the

neocortex model with d = 0.157 (panel A) and d = 0.17 (panel B), respectively. For

comparison proposes, the axes β1 and β2, which correspond to the two control parameters

in the cusp bifurcation normal form (see Methods), overlay on the solution surface. From

the figure, we know that for areas low in the hierarchy, the firing rate increases smoothly

with h and LE. Beyond this cusp point, for hierarchy values h and long-range excitatory

input current LE in the ranges 0.6− 1 and 0.1− 0.2, respectively, the solution surface is

folded.
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Figure S6: Time constant around cusp point and geometry of solution surface of

network with 10000 brain areas with threshold-linear transfer function. (A-B)

The time constant of all the brain areas arrange in the h and ⟨LE⟩ space for d = 0.17

and d = 0.157 with 1000 brain areas, respectively. The ⟨LE⟩ is the average long-range

gating variable of 80 seconds. The noise strength of panels A and B is the same as that

of panel D of Fig.2 and S3, respectively. The black line marked out the h and LE value

of the estimated ”cusp point.” (C) The critical line and firing rate distribution in h and

LE space for the threshold-linear transfer function with 10000 brain areas. (D) the top

view of panel C.
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Figure S7: The supplementary figure of the diversity of distributed working

memory states. (A-C) The firing rate (blue) and time constant (brown) of active state

S1, S3, and S4 (left) for each cortical area, respectively. The spatial distribution of active

state S1, S3, and S4 (right) firing rate in the generative model ellipsoid, respectively. (D-

E) The spatial distribution of active state S1, S2, S3, and S4 time constants in the

generative model ellipsoid, respectively.
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Figure S8: The supplementary figure of bifurcation in the hierarchical space

of connectome-based cortical models of macaque monkey and mouse. (A)

The average firing rate versus the standard deviation of each brain area of the macaque

neocortex with 40 brain areas. (B) The normalized hierarchical position or spine count

data of the 40 brain areas. (C) The firing rate of excitatory population A (blue), B

(brown), and inhibitory population (yellow) of the 40 brain areas. (D) The autocorrelation

function and the related single or double exponential fitting function of the eight chosen

brain areas in panel D of Fig.1 in the main text. (E) Spatial activity map of resting

state (left) and the monotonic delay period working memory state (right) of the macaque

neocortex model with 40 brain areas with the model in [24]. (F) The spatial time constant

map of 40 brain areas for resting state (left) and delay period working memory state (right)

corresponds to the states of panel E. (G) Spatial activity map of resting state (left) and

the delay period working memory state (right) of the large-scale mouse brain model with

43 brain areas with the model in [25]. (H) The spatial time constant map of 43 brain

areas for resting state (left) and delay period working memory state (right) corresponds

to the states of panel G.
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