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Abstract

The marmoset monkey has become an important primate model in Neuroscience. Here, we characterize salient statistical
properties of interareal connections of the marmoset cerebral cortex, using data from retrograde tracer injections. We found
that the connectivity weights are highly heterogeneous, spanning 5 orders of magnitude, and are log-normally distributed.
The cortico-cortical network is dense, heterogeneous and has high specificity. The reciprocal connections are the most
prominent and the probability of connection between 2 areas decays with their functional dissimilarity. The laminar
dependence of connections defines a hierarchical network correlated with microstructural properties of each area. The
marmoset connectome reveals parallel streams associated with different sensory systems. Finally, the connectome is
spatially embedded with a characteristic length that obeys a power law as a function of brain volume across rodent and
primate species. These findings provide a connectomic basis for investigations of multiple interacting areas in a complex
large-scale cortical system underlying cognitive processes.

Key words: allometric scaling, distance-dependent structural connectivity, hierarchy, network, primate

Introduction
Cognitive processes involve multiple interacting brain areas.
However, the underlying architecture for interareal interactions,
represented by neuronal connections, is not yet fully under-
stood. Given current progress toward large-scale, simultaneous
recordings from many areas, there is an even greater need to
understand the principles of neural connectivity, in order to
enable mechanistic interpretation of the emerging patterns of
activity.

The last decade has seen a rapid change in neuroanatomy,
from descriptive studies focused on few areas and nuclei at a
time to those aimed at identifying the organizational principles,
based on comprehensive and quantified large-scale datasets.
Although studies in mice have been at the forefront of this effort
(e.g., Gămănuţ et al. 2018), translation to principles applicable
to the human brain also requires knowledge of the network
properties of the nervous system in other mammals, including
in particular nonhuman primates (e.g., Van Essen and Glasser
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2018). For example, the primate prefrontal cortex has expanded
and become more complex through the addition of new areas
(Mansouri et al. 2017), and some of the networks of brain areas
that are involved in high-order cognitive processes (and are
affected in psychiatric conditions) differ significantly from those
found in rodents (Schaeffer et al. 2020). Moreover, primates have
a large portion of the cortex devoted to vision, including many
areas devoted to fine recognition of objects and to the complex
spatial analyses required for oculomotor coordination (Solomon
and Rosa 2014). The auditory cortex is similarly specialized,
including a network of areas for identifying and localizing vocal-
izations (Miller et al. 2016), whereas the motor cortex contains
a unique mosaic of premotor areas for planning and executing
movements (Bakola et al. 2015). Therefore, to facilitate transla-
tion of discoveries in animal models to improvements in human
health, studies of nonhuman primates are crucial to fill the gap
between rodent and human models.

Macaques are the nonhuman primate genus for which the
most comprehensive knowledge of the connectional network
of the cortex has been achieved, initially by studies based on
meta-analyses of the literature (Bakker et al. 2012), and more
recently by retrograde tracer injections obtained with a consis-
tent methodology (Markov et al. 2013, 2014a, 2014b). Analyses
of macaque and mouse data have already highlighted putative
organizational principles of the mammal cortical mesoscale
connectome (Ercsey-Ravasz et al. 2013; Song et al. 2014; Horvát
et al. 2016; Gămănuţ et al. 2018). However, extrapolating from
any single species to human is problematic without knowledge
of the scaling rules that govern anatomical similarities and
differences (Chaplin et al. 2013).

The marmoset is a nonhuman primate model with character-
istics that complement those of the macaque in terms of facil-
itating analyses of brain anatomy, development, and function.
Marmosets have a relatively short maturation cycle, which facil-
itates the development of transgenic lines and studies across
the life span (Sasaki 2015). At the same time, the key anatomical
features that motivate studies of the macaque brain are present
(Kaas 2021), including networks of frontal, posterior parietal,
and temporal association cortex (Palmer and Rosa 2006a; Reser
et al. 2009, 2013; Burman et al. 2011, 2014). The volume of the
marmoset brain is approximately 12 times smaller than that of
the macaque brain, which in turn is 15 times smaller than the
human brain, offering potential insights on scaling properties of
the cortical network.

Here, we provide the first account of the statistical properties
of the marmoset cortical connectome, taking advantage of an
online database of the results of retrograde tracer injections
into 55 (out of the 116) cortical areas currently recognized for
this species (Majka et al. 2020). The dataset consists of con-
nectivity weights, laminar origin of the projections and wiring
distances. This allowed us to explore the statistical properties of
the cortico-cortical connections and the architecture of the con-
nectome by defining its hierarchical organization, and the char-
acteristics of its spatial embedding. Furthermore, we studied
how microstructural properties within each cortical area relate
to the hierarchical organization of the connectome, providing
a direct link to different scales within the cortex. In addition,
we note conserved properties of the cortico-cortical connections
across species, as well as differences that are species, or brain
size, dependent. Finally, we present an allometric scaling law of
the spatial localization of the connections with brain size, which
enables us to extrapolate this connectional attribute to humans.

Materials and Methods
Connectivity Data

The marmoset connectivity data consist of the first large-
scale cortico-cortical connectivity dataset, which is avail-
able through the Marmoset Brain Connectivity Atlas portal
(http://marmosetbrain.org). The detailed methods regarding
data collection have been described elsewhere (Majka et al.
2016, 2020). In brief, 143 retrograde tract-tracing experiments
were performed in 52 young adult (1.3–4.7 years) common
marmosets (Callithrix jacchus; 31 male and 21 female), using 6
types of retrograde tracers: DY (diamidino yellow, 35 injections),
FR (fluororuby: dextran-conjugated tetramethylrhodamine, 35
injections), FB (Fast blue, 29 injections), FE (fluoroemerald:
dextran-conjugated fluorescein, 23 injections), and CTBgr and
CTBr (cholera toxin subunit B, conjugated with Alexa 488 or
Alexa 594 (12 and 9 injections, respectively)). The centers of
these injections were located in 55 cortical areas (Fig. 1a), some
of which received more than one injection (Supplementary
Tables 1, 2, and 3). All experiments conformed to the Australian
Code of Practice for the Care and Use of Animals for Scientific
Purposes and were approved by the Monash University Animal
Experimentation Ethics Committee (Majka et al. 2020). The use of
retrograde tracers allowed quantized visualization of individual
cell bodies and their precise location relative to cortical layers,
which subsequently allowed for precise quantification of the
labeled cells. Each injection of a retrograde tracer in a cortical
area (named as target area) results in labeling the neurons that
project to it. It has been shown that the majority of the projec-
tions to the injected site stem from within the same cortical
area (Markov et al. 2011). Similarly, in the marmoset, most of the
projections are from within the injected area, but these intrinsic
connections are not considered here, as the focus is primarily
on interareal networks. Based on the parcellation under consid-
eration (Paxinos et al. 2012) the labeled neurons found in each
cortical area (referred to as source areas) were counted and cat-
egorized based on their laminar position. If the labeled neurons
were located above the center of layer 4, they were categorized
as supragranular neurons, and infragranular neurons otherwise.
At the same time, the stereotaxic coordinates of each cell were
recorded to allow area-independent analyses (Majka et al. 2020).

By normalizing the number of labeled neurons in each
cortical area (other than the target area) with the total number
of labeled neurons in all cortical areas (except the target
area) in the same hemisphere, we obtained the “fraction of
extrinsic labeled neurons (FLNe, or FLN for simplicity),” which
represents the connection weight from the source area to
the target area (Markov et al. 2014a). Specifically, if X is an
injected cortical area with a retrograde fluorescent tracer, then
the fraction of labeled neurons (FLN) found extrinsic to it, for
example in area Y, is defined as FLNe(X ← Y) ≡ FLNXY =

number of labeled neurons in area Y
total number of extrinsic labeled neurons , (Fig. 1b). The FLNXY can be

interpreted as the probability of an extrinsic labeled neuron
that projects into the target area X, being in area Y. In Figure 1b,
the arithmetic average value of the FLN for each target-source
pair across injections within the same target area is shown. The
bars in the density plot in Figure 1d (as well as in all density
plots accordingly) are the counts of log10FLN values falling in
each bin, divided by the bin size (bin size = 0.5) and by the total
number of the nonzero FLN values (3474 out of 55 × 116 = 6380
in total possible interareal connections were present). Within
the injected area the FLN value is set to zero, and therefore
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also excluded from the density plot. The line is the maximum
likelihood Gaussian fit on the log10FLN values.

Network-Related Properties

For the topological properties of the connectome, we binarized
the FLN connectivity matrix (Fig. 1c) by assigning the value 1
(presence of connection) when FLN > 0 and 0 (absence of
connection) otherwise, and considered the edge-complete N×N
(N = 55) network where all inputs and outputs are known
(Fig. 2a). The “in-degree” of an area X (kin

X ) is the number of
inputs to this area, meaning the number of areas that project
to it. The “out-degree” of an area X (kout

X ) is the number of
outputs from this area, meaning the number of areas that this
area projects to. In Figure 2b the density of in- and out- degree
of the edge-complete subnetwork (excluding self-connections)
was binned, with bin size 5. The height of each bar denotes the
counts divided by the bin size and the total number of areas
(N). The black lines are the maximum likelihood Gaussian fits
on the normalized in- and out- degree values. The clique size k
is a k × k subnetwork that is fully connected (100% density). In
Figure 2e, left, and Supplementary Figure 1b, for a clique of size
κ we plot the base 10 logarithm of cliques found in the edge-
complete network, divided by the maximum number of cliques
of size k that could be found in the edge-complete network, by
taking the n choose k combinations. We plot the same also for
the average random network of same size with same in- and out-
degree sequences. The probability of connections as a function
of similarity distance (Fig. 2d) was computed following the same
method as in Song et al. (2014)).

Hierarchical Structure

The FLN found in the supragranular layers of the source area
can be used to calculate the hierarchical rank of each area, and
it is related to hierarchical distance (Barone et al. 2000; Markov
et al. 2014b; Chaudhuri et al. 2015). This fraction of supragranular
labeled neurons (SLN) is given by SLN(X ← Y) ≡ SLNXY =
number of supragranular labeled neurons in area Y

number of labeled neurons in area Y (Fig. 3a), where X is the

area injected with retrograde tracer (target area) and Y is the
source area whose neurons project to area X. In Figure 3b the
weighted average across injections in the same target area is
shown. The areas were ordered with increasing hierarchical
index values (Supplementary Fig. 2b, right). Areas APir, Pir, Ent,
and A29a-c are not shown in the matrix because a layer 4
could not be identified, and therefore the SLN is not defined.
In Figure 3c, the bars are counts of FLN and SLN within the
corresponding bin size (bin size of SLN = 0.05, bin size of log10FLN
= 0.289) divided by the bin sizes of SLN and FLN and the total
number of the nonzero SLN values. In Figure 3d we categorized
the FLN values based on whether they are greater than 0.5,
corresponding to a feedforward (FF) projection, or smaller than
0.5, corresponding to a feedback (FB) projection, and plotted the
probability density as in Figure 1d.

The hierarchical index for each cortical area hi (Fig. 4a) was
computed via a beta-regression model (Cribari-Neto and Zeileis
2010), where for any target-source pair of areas the difference of
their indices can predict the SLN in the source area, as was done
for the macaque cortical areas (Markov et al. 2014b; Chaudhuri
et al. 2015). This relationship is expressed through the following
equation: SLN(X ← Y) ≈ g−1(hX − hY), where g−1 is the logit
link function. To obtain the hierarchical indices, we used the
model fitting function “betareg” in R software, which results in

high correlation between predicted and observed SLN values
(Supplementary Fig. 3c). Nevertheless, a linear regression model,
as in the case of the macaque hierarchy, gives similar results
(Supplementary Fig. 3a,b). In the model, we considered the SLN
values of all existing projections from all the injections.

The circular embedding in Figure 4c is a polar plot of the tar-
get areas Ai, with radial coordinate R(Ai) = √

1 − hi and angular
coordinate θ (Ai) = θi, where θi is the angle assigned to each area
such that −log10(FLN(Ai, Aj)) = r min(|θi − θj|, 2π − |θi − θj|), where
r is a free parameter, and computed following the same method
applied to the macaque cortical areas (Chaudhuri et al. 2015).
The angle of area V1 was assigned to be zero, and the system
of coordinates was shifted such that the highest area in the
hierarchy is at the center of the plot.

Wiring Distances and Exponential Distance Rule

If X and Y are 2 cortical areas, then the wiring distance d ≡
dX↔Y between them is defined as the shortest path through the
white matter, avoiding the gray matter, between their barycen-
ters. The definition is the same as in the studies where the
wiring distance of the macaque and mouse was measured and
used for the exponential distance rule (EDR) that shows the
exponential distribution of the projection length (Ercsey-Ravasz
et al. 2013; Horvát et al. 2016). The details of the way the wiring
distance were computed can be found in Majka et al. (2020). In
brief, the shortest path between the barycenters of 2 areas was
computed by simulating 3-dimensional trajectories between the
areas, where each voxel in the 3-dimensional template of the
marmoset cortex was assigned different viscosity parameters.
The fastest trajectory corresponded to the shortest path. The
interareal wiring distances were used in Figures 6a,b and Sup-
plementary Figure 4b. For calculations of the EDR (Fig. 6c and
Supplementary Fig. 5), we used the projection lengths of each
labeled neuron, from the injection site to its coordinates mea-
sured with the method described above, after projecting them
to the mid-thickness surface in order to avoid bias between
distances of supragranular and infragranular neurons. In the
EDR plots, each bar represents the counts of the projection
lengths lying on the bin divided by the total number of projection
lengths (1 966 028 in total) including the projections lengths of
the labeled neurons found within the injected area. The red plot
in Figure 6b,c is the linear fit to the log bar plot of the projection
lengths, as applied in previous studies (Ercsey-Ravasz et al. 2013;
Horvát et al. 2016). Similar fits are also drawn in the common
template case (Supplementary Fig. 5).

Local Microstructural Properties

We extracted the spine counts of neurons in different marmoset
cortical areas from studies where a uniform method was used
(intracellular injection of Lucifer yellow in fixed slices), and the
same types of spines have been measured (those at the basal
dendrites of pyramidal neurons in layer III), in marmosets of
the same age as the ones of the current study (from 18 months
to 4.5 years old). We have collected the spine count for 15
cortical areas based on the nomenclature of the papers, which
correspond to 22 cortical areas according to the current (Paxinos
et al. 2012) parcellation. Details of the spine count and the
corresponding references are shown in Supplementary Table 4
and Supplementary Figure 6. In Figure 5, the hierarchical values
of the 22 areas have been normalized to 1 and then averaged
among areas that correspond to the same spine count (e.g., the
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Figure 1. Cortico-cortical connectivity weights. (a) The analysis is focused on 55 cortical areas highlighted in different colors on the 2-dimensional flattened map of

the marmoset cortex. The gray shaded areas are those for which no tracer injection was available. (b) Schematic description of the FLN found in area Yn after the
retrograde tracer injection i in the cortical area X (FLNi

XYn). (c) The weighted and directed marmoset cortical interareal connectivity matrix. The rows are the 55 target
areas and the columns the 116 source areas that provide inputs to the target areas. Each entry in the matrix is the base 10 logarithm of the arithmetic mean of the FLN
(log10FLN) across injections within the same target area. Gray: absence of connections, green, along the diagonal line: presence of intra-area connections (they have

not been quantitively measured and the corresponding FLN is set to 0). The vertical green line defines the limit of the edge complete 55 × 55 subnetwork in which all
inputs and outputs are known. (d) The distribution of the connectivity weights, shown in (c), reveals that the connectivity weights are highly heterogenous, they span
5 orders of magnitude, and they are log-normally distributed. Bin size = 0.5 on logarithmic scale. The black line is Gaussian fit to the log10FLN values.

hierarchical index of the area A8b/A9 is the average normal-
ized hierarchical index of areas A8b and A9). In Supplementary
Figure 6b, we show that if we instead keep the hierarchical
rank of each area and duplicate the spine count for the merged
areas (e.g., area A8b has the same spine count with area A9 but
different hierarchical index) the correlation of the spine count is
still high. The brain volumes of the marmoset, macaque, mouse,

rat, and human have been obtained from the literature (Zhang
and Sejnowski 2000) (Supplementary Table 5).

Data and Code Availability

The cortico-cortical connectivity datasets analyzed in the
current study are available under the terms of Creative
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Figure 2. Marmoset network connectivity properties. (a) The edge-complete subnetwork, in which all inputs and outputs are known, shows a dense matrix of topological

connections. Black: existence, white: absence of a connection. (b) In- (top) and out- (bottom) degree distribution of the target areas. Gray lines are Gaussian fits to the
data. (c) Average fraction of 2- (left) and 3- (right) node motif counts of the edge-complete subnetwork to the 2- and 3-node motif counts, respectively, of a randomized
version of the edge-complete network keeping the in- and out-degree the same across 100 realizations. Error bars are one standard deviation of these fractions. (d)
Proportion of connection as a function of the output (left) and input (middle) similarity distance. Black circles are the number of present connections divided by the

number of possible connections in the distance bin. Black line is maximum likelihood fit on the unbinned data. Light gray line is prediction for the reciprocal pairs
from the fitted black plot and light gray squares are the proportions of reciprocal pairs in the given bin. Dark gray line is the prediction for the unidirectional pairs and
dark gray triangles are the proportions of unidirectional pairs in the given bin. Right: Distribution of the output (black) and input (gray) similarity distances. (e) Left:
Base 10 logarithm of the proportion of cliques as function of the clique size in the data and the average proportion of cliques in 1000 realizations of a random network

of same size where the in- and out- degree sequences are the same as in the data (error bars are one standard deviation). Right: 5 cliques of size 17, combinedly formed
by 20 areas that constitute the core of the marmoset cortical connectome.
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Figure 3. Structural hierarchy. (a) Schematic description of the computation of the supragranular labeled neurons found in area Yn after the retrograde tracer injection
i in the cortical area X (SLNi

XYn). Projections with SLN > 0.5 (red entries in (b)) are considered as FF projections and those with SLN < 0.5 are FB projections (blue entries
in (b)). (b) The SLN matrix. The rows are the 55 target areas and the columns the 112 source areas that provide inputs to each target area, ordered according to the

computed hierarchy (Fig. 4a, Supplementary Fig. 2b, right). Each entry in the matrix is the weighted mean supragranular labeled neurons across injections within the
same target area. Gray: absence of connections, black: presence of recurrent connections. (c) Two-dimensional distribution of the FLN and SLN values. The distribution
of SLN is not dependent on the strength of connections, except, as expected, at the edges of the distribution formed by very few labeled neurons. (d) Distribution of
the FLN values of the FF connections (red; SLN > 0.5) and of the FB connections (blue; SLN < 0.5, with the first being stronger than the latter (higher mean; the 2

distributions are different (2-sided 2-sample Kolmogorov–Smirnov test: p = 2.58 × 10−40, Hedges’ g effect size: g = 0.52), with different mean (2-sided 2-sample t-test:
p = 1.93 × 10−43) but same variance (2-sided 2-sample F-test: p = 0.86).

Commons Attribution-ShareAlike 4.0 License and publicly
available through the Marmoset Brain Connectivity Atlas
portal (http://marmosetbrain.org). Software was written in the
MATLAB (https://www.mathworks.com/products/matlab.html),
R (https://www.r-project.org/), and Python (https://www.pytho
n.org/) programming languages, based on the algorithms of
the corresponding published articles and are available upon
reasonable request.

Results
Connectivity Weights are Highly Heterogeneous and
Log-Normally Distributed

We have analyzed the results of 143 retrograde tracer injections
placed in 52 young adult marmosets (1.3–4.7 years; 31 male, 21
female; Supplementary Tables 1 and 2, available through the
Marmoset Brain Connectivity Atlas (http://marmosetbrain.org)

(Majka et al. 2020). The center of each injection was assigned to
1 of 55 target areas from the Paxinos 116-area parcellation by
a process that is detailed in Majka et al. (2020). The 55 target
areas were distributed across the marmoset cortex (Fig. 1a and
Supplementary Table 6). The use of retrograde tracers allows
quantification of the number of neurons that project from 115
potential source areas to a given target area.

A quantitative measure of the connectivity weight from each
source area to a target area (Fig. 1b) is defined as the number
of projection neurons found in each source area divided by
the total number found across all source areas in the same
hemisphere, called the FLN. This analysis, which excluded con-
nections from cells located in the same cytoarchitectural area
(intrinsic connections), resulted in a 55×116 connectivity matrix
(Fig. 1c). We found that the marmoset connectivity weights are
highly heterogeneous, spanning 5 orders of magnitude, and are
log-normally distributed (Fig. 1d), similar to macaque monkey
(Markov et al. 2011, 2014a; Ercsey-Ravasz et al. 2013).
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Figure 4. Hierarchical structure. (a) Hierarchy of the edge-complete network. (b) Flat map of the marmoset cortex, where the color of the shaded areas follows the same
coloring scheme as in (a). (c) Two-dimensional representation of the connectivity strength between areas. The radial direction (distance from the outer edge) is defined

by the hierarchical position, and the angular distance is given by the inverse of the strength of the connection. It reveals that functionally related areas are grouped
together, sensory areas form parallel streams of processing, and different association areas are related to different sensory modalities.

The Connectome is Dense, Heterogeneous,
and has High Specificity
In the graph theory framework, the cortex can be considered
as a network where nodes correspond to areas, and edges to
the connections between them. To characterize the network
properties of the marmoset cortex, we considered the edge-
complete (N × N = 55) subnetwork, for which all inputs and
outputs are known. This corresponds to approximately half of
the full mesoscale connectome of this species (55/116 = 47.4%).

The interareal network density ρ = M/N(N − 1), defined as
the fraction of existing connections (M) to all possible ones,
was found to be 62.43%. Even though the network is dense
(Fig. 2a), there is high heterogeneity in the number of inputs and
outputs of an area, as shown by its broad in- and out- degree

normal distributions (Fig. 2b). Early analyses of cortico-cortical
connectivity emphasized the reciprocity of connections as a
prominent property (Felleman and Van Essen 1991). In the edge
complete network of the marmoset connectome 50.3% are recip-
rocal connections, 24.24% are unidirectional, and 25.45% are
absent in both directions (similarly in macaque with densities
52.71%, 26.26%, and 24.26% respectively). Although reciprocal
connections are the most abundant, as well as stronger on
average than the unidirectional (Supplementary Fig. 7a), bidi-
rectionally absent connections are overrepresented when com-
pared with those in an average random network that has same
in- and out- degrees (and hence density), whereas unidirec-
tional connections are underrepresented (Fig. 2c, left). Similar
conclusions are reached when 3-node motifs, which are basic
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Figure 5. Microstructural properties along the hierarchy. Spine count of basal
dendrite in a layer 3 pyramidal neuron is correlated with hierarchical position.
r is the Pearson correlation.

network building blocks (Milo et al. 2002), are considered (Sup-
plementary Fig. 7b). The motifs that are overrepresented in
the marmoset connectome are those that include reciprocally
present and absent connections (Fig. 2c, right). In addition, these
appear more often (data/random ratio > 2) than 2-node motifs
(data/random ratio < 2). Finally, using a measure of functional
similarity between any pair of areas defined by the degree of
their shared inputs or outputs (Song et al. 2014), the more
functionally related 2 areas are, the more likely they are to be
connected (Fig. 2d).

Another network feature used to characterize the structure
of heterogeneous dense networks is cliques, which are subnet-
works of fully interconnected areas (Ercsey-Ravasz et al. 2013;
Horvát et al. 2016; Goulas et al. 2019). The proportion of cliques of
any size in the marmoset connectome is much higher than that
of a random network with same in- and out- degree sequences,
indicating high specificity (Fig. 2e, left). The largest clique size
is 17, and there are 5 such cliques formed by overall 20 areas
(Fig. 2e, right); these define the so-called core of the connectome,
which has 98.42% density. This is broadly compatible with the
core reported in Goulas et al. 2019, with small differences being
due to the use of the updated dataset (Majka et al. 2020) in the
present analysis. The remaining areas constitute the so-called
periphery, which form a subnetwork with density 44.29%. The
density of the connections between core and periphery areas is
69.07%. The weights of the connections between areas within
the core, and within the periphery, are found to be stronger
than those between core- and periphery (Supplementary Fig. 1a).
Areas of the putative default mode network (DMN), including
those in the posterior parietal cortex (PGM, PG, OPt, AIP), pos-
terior cingulate cortex (A23a, A23b), and dorsolateral prefrontal
cortex (A8aD, A6DR) lie in the core structure, but not those in
the medial prefrontal cortex (A24d, A32, A32V), reflecting recent
studies in the marmoset (Buckner and Margulies 2019; Liu et al.
2019).

FF Projections Tend to be Stronger than FB Projections

The structural connectivity of the mammalian cortex is char-
acterized both by the weights of connections between areas
and by their laminar organization. A structural hierarchy of
the macaque cortex has been defined based on the laminar

spatial profile of the connections, according to which ascending
(FF) pathways originate primarily from the supragranular layers
and target layer 4 of the target area; conversely, descending
(FB) pathways originate mostly from the infragranular layers,
and target supragranular and infragranular layers (Rockland and
Pandya 1979). This led to a hierarchical organization of the
cortex (Felleman and Van Essen 1991; Barone et al. 2000; Markov
et al. 2014b; Chaudhuri et al. 2015). A similar description of
information flow has been proposed based on the architectonic
type of each area leading to a structural model of the cortex that
connects connectivity to evolution, and development (Barbas
2015; Garcia-Cabezas et al. 2019).

In this framework, the global hierarchical organization can
be computed based on the percentage of supragranular neu-
rons involved in the different connections: FF connections are
formed by high percentages of supragranular neurons in source
areas, and FB connections by low percentages. We calculated the
percentage of supragranular labeled neurons (SLN) for a given
tracer injection as the number of labeled neurons above layer 4
divided by the total number of all labeled neurons found in the
source area (Fig. 3a). When multiple injections were placed in the
same area, the SLN was calculated as the weighted average value
for the injections that revealed a given connection (Fig. 3b). We
found that marmoset cortical connections span the entire range
(0–1) of possible SLN values (Fig. 3c), similar to the macaque
SLN distribution, which was shown to be approximately uniform
(Markov et al. 2014b). Furthermore, we found that predominantly
FF (SLN > 0.5) connections tended to be stronger than predomi-
nantly FB projections (higher mean FLN by a factor of 2; Fig. 3d).
The trend is similar in the macaque, as was shown in Markov
et al. 2014b, but less pronounced (Supplementary Fig. 8).

Laminar Organization of Connections Reveals
Modal Hierarchies

To characterize the global hierarchy, we followed a framework
used in previous studies (Markov et al. 2014a; Chaudhuri et al.
2015) in which hierarchical indices are assigned to each area
such that for any pair of cortical areas the difference of their
hierarchical indices predicts the SLN of their projection (Mate-
rials and Methods). Ordering these indices in Figure 4a reveals
the hierarchy of the edge-complete network. Sensory areas are
situated at the bottom of the hierarchy providing FF inputs to
most other areas, and association areas form mostly FB pro-
jections (Fig. 4a). Furthermore, motor areas tend to be concen-
trated above posterior parietal and prefrontal areas (similarly in
macaque cortex but to a lesser extent, Supplementary Fig. 2a),
with the ventral premotor cortex being situated at the top of the
hierarchy.

This hierarchical ordering aligns the cortical areas based on
SLN, but does not capture topological properties of the con-
nectivity, for example, the fact that many connections do not
exist. This caveat is mitigated by considering also the core-
periphery structure. In this representation, functionally related
sensory areas are grouped together in the wings of a “bowtie”
graph, with the core occupying the center (Markov et al. 2013)
(Supplementary Fig. 9). The core structure receives effectively
stronger FF inputs from visual areas, somatosensory and medial
prefrontal areas and effectively stronger FB projections from
auditory, posterior parietal, and motor areas.

The bowtie graph is based on topological binary connec-
tions. By including the weights of connections, we can extract
information about the overall underlying cortical architecture,
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represented by a polar plot on a 2-dimensional plane (Chaudhuri
et al. 2015). In this representation (Fig. 4c), both the weight
of the connections (inverse of the angle between areas) and
their hierarchical index (distance from the edge) are considered.
Areas deemed to correspond to low hierarchical levels appear in
the periphery of the graph, with hierarchical level progressing
toward the center. This analysis shows that the marmoset corti-
cal network is better described by a series of modal hierarchies,
which converge toward a region formed by multimodal and
high-order premotor areas. For example, a hierarchy of visual
areas is revealed, grouped together in one quadrant of the plot,
which progresses toward parietal areas and frontal areas that
are involved in visual cognition (e.g., LIP, Opt, PGM, the frontal
eye field [area A8aV] and ventrolateral prefrontal area A47L).
The somatosensory and motor areas form another hierarchical
grouping in a different quadrant, and areas that are involved in
visuomotor integration and planning lie between the visual and
somatosensory/motor clusters (e.g., PEC, MIP, and AIP). Finally,
the auditory cortex forms a third grouping in a separate quad-
rant of the plot, with multisensory areas of the temporal lobe
(e.g., caudal TPO, PGa-IPa) separating them from visual areas.
Interestingly, the prefrontal areas that align best with the audi-
tory hierarchy are those in which single-unit activity is related to
orientation to sounds in space (e.g., area A8aD) and processing
of vocalization sounds (e.g., areas A32/A32V). Areas associated
with the DMN (Buckner and Margulies 2019; Liu et al. 2019) tend
to be located near the center of the diagram (e.g., A23a, A6DR).

Microstructural Properties of the Cortex Reflect
the Hierarchical Organization

An emerging theme of large-scale cortical organization is that
biological properties of cortical areas show spatial gradients
that correlate with hierarchical level (Chaudhuri et al. 2015; Burt
et al. 2018; Fulcher et al. 2019; Wang 2020). Microscale properties
are correlated with macroscale connectivity patterns (Scholtens
et al. 2014). In addition, previous studies in the macaque (Elston
and Rosa 1998) suggested that hierarchical processing is asso-
ciated with progressively greater numbers of synaptic inputs
(leading to greater allocation of space to neuropil, hence lower
neuronal densities). The analysis illustrated in Figure 5 lends
support to this hypothesis for the marmoset cortex, in an anal-
ysis that combines the newly quantified hierarchical rank and
estimate of spine counts on the basal dendritic trees of layer
III pyramidal neurons (see Supplementary Table 4 and Sup-
plementary Figure 6 for sources of data and harmonization of
nomenclatures). The average spine counts are highly correlated
with hierarchical level (r = 0.81). This correlation is as high as
the average spine count correlation with the spatial location of
the areas along the rostrocaudal axis (Supplementary Fig. 10a,b),
which was suggested as another strong predictor of network
architecture based on developmental considerations (Cahalane
et al. 2012). This suggests the rostrocaudal axis as proxy for
hierarchy.

Given that spine count increases along the hierarchy, while
neural density decreases (Supplementary Fig. 10c, left), it could
be that the spine density (spine count/number of neurons in a
unit of cortex volume) is invariant across cortical areas. However,
our data show that the spine count increases as the inverse cube
of neural density (Supplementary Fig. 10d), thus supporting pre-
vious suggestions that hierarchical processing is associated with
progressively greater numbers of synaptic input. Note of course
that the spine count corresponds to the spines of the basal

dendrites of the average layer III pyramidal neuron, whereas the
neural density to all neurons. It has been suggested that the
number of neurons in a cortical column is a better correlate
of hierarchical processing (Atapour et al. 2019), but we found
weaker correlations (Supplementary Fig. 10c, right). Finally, our
results support the proposal that both neural density and spine
count are good predictors of the laminar origin of projections
(Beul and Hilgetag 2019), since they are highly correlated, and
both correlate strongly with the hierarchy.

Spatial Embedding of the Connectivity

Parcellated areas in a neocortical network are traditionally con-
sidered as nodes of a topological graph, without considering
their spatial relationships. However, in addition to its statistical
and topological properties, the cortical connectome is spatially
embedded. It has been proposed that the metabolic cost of
sending information from one area to another increases with
distance, being reflected in an EDR (Ercsey-Ravasz et al. 2013)
according to which the projection lengths decay exponentially.
Incorporation of this attribute in generative models of the con-
nectome helps explain network properties such as efficiency
of information transfer, wiring length minimization, 3-motif
distribution, and the existence of a core (Ercsey-Ravasz et al.
2013; Song et al. 2014; Horvát et al. 2016; Wang and Kennedy
2016).

To study the spatial organization of the marmoset cortical
connectome we used estimates of the distances between the
barycenters of cortical areas, obtained with an algorithm that
simulates white matter tracts connecting points on the cortical
surface (Majka et al. 2020). In agreement with observations
in other species [macaque (Ercsey-Ravasz et al. 2013), mouse
(Horvát et al. 2016)] we found that the wiring distances are
normally distributed (Fig. 6a). The distribution of the wiring
distances of the pairs for which we have connectivity data (55 ×
116 matrix, Fig. 1c) overlaps with that for all the cortical areas
(116 × 116), indicating that this subset of data is representative
of the full network.

We show that the more distant two areas are, the lower the
probability of a projection from one to the other, as evidenced
by reduced FLN (Fig. 6b). However, analyses based on FLN are
anchored on estimates of the borders of cytoarchitectural areas,
which in most cases are imprecise (Rosa and Tweedale 2005).
This limitation can be overcome by measuring the wiring dis-
tance between each labeled neuron and the corresponding injec-
tion site, in an area-independent manner. Based on the stereo-
taxic coordinates of each injection site and labeled neuron, we
calculated the shortest distance across the white matter corre-
sponding to each connection detected in the database (Majka
et al. 2020). This included the projection lengths of 1 966 028
labeled neurons, including both those estimated to be in the
same area that received the injection (intrinsic connections)
and those in other areas. The cost of each neuron to project
to longer distances can then be expressed by the distribution
of the projection lengths of all the retrogradely labeled neurons
(Fig. 6c), which illustrates the probability of a projection length
d, irrespectively of the areas involved.

As in previous studies in macaque and mouse (Ercsey-Ravasz
et al. 2013; Horvát et al. 2016; Wang and Kennedy 2016), we found
that the histogram of axonal projection lengths approximately
follows an exponential decay (Fig. 6c) with decay rate λ = 0.3;
that is, the probability of a projection of length d is given by
p(d) = ce−λd. Approximating the projection probability with the
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Figure 6. Exponential distance rule. (a) Distribution of the interareal wiring distances among all 116 areas (gray bars) and between the target-source pairs of areas (pink
bars). Bin size is 2 mm. Solid lines are Gaussian fits to the data. The normal distributions for these 2 samples of data indistinguishable (2-sided 2-sample Kolmogorov–

Smirnov test: p = 0.97). (b) The base 10 logarithm of the fraction of the extrinsic labeled neurons (log10FLN) as a function of interareal wiring distance. Black dots
and error bars are the mean and standard deviation within a window of 173 data points (bin size is 20) and the red plot is the same as in (c). (c) The histogram of the
projection lengths of all labeled neurons (both intrinsic (551 664 labeled neurons) and extrinsic (1 414 364 labeled neurons), in total 1 966 028 labeled neurons). Bin size
is 2 mm and the bars are the counts of the projection lengths lying in the bin size divided by the total number of the projections. The red line is a linear fit to the base

10 logarithm values of the histogram (log10(p(d)) = −0.1295 log10(projection length) − 0.0262 giving p(d) = ce−λd, λ ≈ 0.3, c ≈ 0.94, where d is the projection length).

FLN (p(d)≈FLN), it was analytically shown that we can replicate
the log-normal distribution of the connectivity weights (Erc-
sey-Ravasz et al. 2013). In the marmoset, this approximation is
also valid since the decay of the probability of projection lengths
(as seen by the decreasing trend of the average values; black
dots and the corresponding error bars in Fig. 6b) agrees with the
log10FLN decay with wiring distance (red plot in Fig. 6b). We note
that the scatter in Figure 6b is large, but it is comparable to the
scatter in macaque and mouse where the EDR trend has been
reported. In addition, the curvature of the average log10FLN and
the small deviation of projection lengths from the log decay at
distances around 20 mm may suggest the possibility of a more
complex relation of the projection lengths distribution. Nev-
ertheless, we showed that the projection lengths distribution
can be approximated by the EDR, which is an overall statistical
property of the cortex.

Exponential Decrease in Wiring Distance Scales with
Brain Volume

Finally, we address the question of how the EDR of cortical
connectomes scales across species. It was previously shown that
the decay rate of the EDR is larger in macaque than in the mouse
following normalization of the distances by the average inter-
areal wiring distance (common template) (Horvát et al. 2016).
This suggests that the larger the brain, the fewer are the long-
range connections linking different cortical systems (as shown
schematically in Fig. 7, bottom).

This principle was upheld in our analysis of the marmoset
cortex (Supplementary Fig. 5), where the decay rate in the
marmoset shows an intermediate value. Plotting the present
data relative to the previous studies in which similar methods
were used (macaque and mouse) as a function of the gray matter
volume, we found that the decay rate of the EDR (λ) scales with
gray matter volume following a power law (Fig. 7, top) with
an exponent of −2/9. Given that WM ∼ GM4/3 (where WM:
white matter volume and GM : gray matter volume) (Zhang and
Sejnowski 2000), and if we define the linear dimension d as
WM1/3, the decay rate of the axonal projections scales with the
inverse square root of the white matter linear dimension, λ ∼
d−1/2. It is surprising that the dependence of the characteristic
spatial length for EDR is slower than the linear dimension
of the white matter. The implication is that the interareal

Figure 7. Cortical-connectivity spatial length as a function of brain size: extrap-
olation to humans. Top: The base 10 logarithm of the decay rate of the EDR
(λ) of the mouse, marmoset, and macaque, computed in the same way in all 3

cases. The plot is a linear fit on these 3 points with a slope of ≈ −2/9 (log10(λ) =
−0.2290 log10(gray matter volume)+0.3559). The red square is the predicted value
of the decay rate of the EDR of the rat which is validated by indirect methods

(Noori et al. 2017) of computing it, and the intersection of the blue dotted lines
is the extrapolation of the decay rate of spatial dependence of cortico-cortical
connectivity in the human species. Bottom: A schematic representation of the
decrease of long-range connections as the gray matter gets bigger, showing that

the bigger the brain the more local the connectivity.

connections become more spatially restricted in a larger cortex,
which presumably is desired for increasing complexity of
modular organization. This power law predicts the decay rate for
the rat cortex to be λrat,predicted ∼ 0.57 mm−1, which is validated
by that estimated indirectly for the rat (λrat,data = 0.6 mm−1) by
fitting the EDR to properties of the rat connectome (Noori et al.
2017). Finally, using this relation we can extrapolate the decay
rate of the projection lengths of the human cortical connectome,
which is predicted to be λhuman,extrapolated ∼ 0.1 mm−1 (Fig. 7).
We should note that (Mota et al. 2019) have challenged the
universal scaling of the white matter volume with the gray
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matter volume across mammalian species (Zhang and Sejnowski
2000). However, the differences between clades they reported are
small, suggesting that they would not significantly impact on
this result.

Discussion
We studied the statistical, architectonic, and spatial characteris-
tics of the marmoset cortical mesoscale connectome, based on
the largest available dataset for cellular-level connectivity in a
primate brain (http://marmosetbrain.org). Our main findings are
3-fold. First, the marmoset cortical connectome is highly dense
at the interareal level, characterized by high heterogeneity of
inputs and outputs as well as connectivity weights. Moreover,
connections are highly specific, evaluated by the presence and
absence of reciprocal connections, the dependence of connec-
tions on the functional similarity, the distribution of cliques,
and the core-periphery structure. Second, based on the laminar
origin of the projections, we also provided here, for the first
time, a quantified hierarchical structure of the marmoset cor-
tex which, in conjunction with connectivity weights, revealed
parallel processing streams of sensory and association areas,
which converge toward a highly connected core. Third, interareal
connections obey the same approximate EDR for marmoset as
for macaque and mouse cortex. Intriguingly, the characteristic
spatial length of the interareal connections revealed an allomet-
ric scaling rule as a function of the brain size among mammals,
leading to a predicted value for the human cortex and that of
other species, which can be tested experimentally.

Scaling across Species

Current estimates of anatomical connectivity in the human
brain are based on diffusion tensor magnetic resonance imag-
ing tractography, which has been shown to be only modestly
informative in studies involving direct comparisons with gold-
standard neuronal tracer data (Donahue et al. 2016). Hence,
comparative studies that provide insight on the scaling rules
of connectivity in nonhuman primates are essential to provide
valuable insight on how the increase in brain volume in human
evolution is likely to have affected network properties.

Marmosets are New World monkeys, a group that shared
a last common ancestor with macaques and humans approxi-
mately 43 million years ago (Perelman et al. 2011). In contrast, the
divergence between rodents and primates is estimated to have
occurred around 80 million years ago (Foley et al. 2016). Here,
we provide evidence toward the common and species-unique
cortical connectivity properties. We show that the connectivity
weights of the marmoset are log-normally distributed, similar to
those in the macaque (Markov et al. 2011, 2014a; Ercsey-Ravasz
et al. 2013) and mouse (Wang et al. 2012; Oh et al. 2014; Gămănuţ
et al. 2018), indicating that this is a general property of the
mammalian cortico-cortical connections. In addition, the range
of connectivity weights encompasses 5 orders of magnitude,
with a gradual increase in mean connectivity weight as the brain
gets smaller (Supplementary Fig. 11). Current estimates indicate
∼ 40 cytoarchitectural areas in the mouse brain, excluding
subdivisions of the hippocampal formation (Oh et al. 2014), 116
in the marmoset (Paxinos et al. 2012), and 152 in the macaque
(Saleem and Logothetis 2012). Thus, one possibility to account
for the above observations is that the dilution of connectivity
reflects a gradual redistribution of connections across a larger
number of nodes, in larger brains. To test this, we compared the

density of the edge-complete graph for available data obtained
in the macaque, mouse, and marmoset. Perhaps surprisingly,
the results (Supplementary Fig. 12) revealed that this is not the
case: the density of the cortico-cortical graph is very similar
in macaque and marmoset, despite substantial differences
in cortex mass and number of cytoarchitectural areas. The
above conclusion is robust across the application of different
thresholds for what is considered a valid connection, an analysis
that minimizes the possibility of artifacts related to assignment
of cells to adjacent areas due to uncertainty in histological
assessment of borders. Both primates differ from the mouse,
in which the graph density is much higher irrespective of
the threshold applied (Supplementary Fig. 12). Thus, although
one may expect an inverse relationship between connection
densities and brain volume (Ringo 1991; Gămănuţ et al. 2018), our
results also suggest a difference between primates and rodents.
The present observations are in line with the suggestion that
the lower graph density and lower relative fraction of long-range
connections in primate brains, as opposed to rodent brains, are
likely to render the former more susceptible to disconnection
syndromes such as schizophrenia and Alzheimer’s disease
(Horvát et al. 2016). This has likely implications for the design
of translational research aimed at alleviating human mental
health conditions (see also Van Essen and Glasser 2018; Buckner
and Margulies 2019).

Since FLN can be viewed as area-dependent probability of
interareal connection, our data suggest scaling of the weights
of cortico-cortical connections in such a way that the larger the
brain, the larger the proportion of very sparse connections. The
extrapolation of these results suggests that the human cortex is
likely to be characterized by a comparatively more distributed
architecture, showing an even larger proportion of numerically
sparse connections. Further, given the scaling of the EDR with
brain size, the data also predict that the larger human brain
likely shows a more marked predominance of local connectivity,
resulting in a larger number of subnetworks linked by a core
(Fig. 7, bottom), as previously suggested (Buckner and Krienen
2013; Horvát et al. 2016).

Comparative Aspects of the Cortical Network Properties

We have shown that both the marmoset and macaque connec-
tomes exhibit high and similar density. In addition, their in- and
out-degree distributions, and the 2- and, 3-node motif distribu-
tions, are similar (Supplementary Figs 7c,d and 13), indicating
conserved topological properties independent of the brain size.
Another conserved property is that functionally related areas
are most likely to be connected. This is related to the wiring dis-
tance, with the decay rate of the probability of connections of the
marmoset following closely that of the macaque (Supplemen-
tary Fig. 4) (Song et al. 2014). Furthermore, the marmoset cortex
has more fully interconnected large subnetworks (clique size
> 6) in comparison with the macaque (Supplementary Fig. 1b),
supporting the view that the smaller the brain, the higher the
interconnectivity, even among primates. Finally, both the mar-
moset (Fig. 2e, right) and the macaque (Ercsey-Ravasz et al. 2013)
show a similar core structure consisting mainly of association
areas.

Variability of Injections

Repeated injections in what are currently considered single
cytoarchitectural areas (Supplementary Table 3) revealed vari-
ability in their patterns of afferent connections (Supplementary
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Fig. 14a). In similar studies of the macaque and mouse con-
nectomes (Markov et al. 2011, 2014a; Gămănuţ et al. 2018), it
has also been shown that the connectivity weights are variable,
but less so in the mouse compared with the macaque. One
interpretation of these observations is that connectivity pat-
terns across individuals are more consistent in smaller brains,
which have fewer subdivisions. This could result from differ-
ences in postnatal refinement of patterns of connections in
different individuals, which could be more significant in light
of more complex behaviors and interactions with the environ-
ment. However, other potential sources are within area variabil-
ity (e.g., differences between the connections of regions serv-
ing foveal and peripheral vision (Palmer and Rosa 2006b), and
between parts of the motor cortex related to limb and face move-
ments (Burman et al. 2014), hemispheric differences (a subject
for which little is known in nonhuman primates), and those
related to the characteristics of individual injections (Majka
et al. 2020). In previous studies, there was deliberate targeting
of the same part of the area across subjects, whereas in our
sample the injections covered different parts across and within
subjects (Supplementary Table 2). Thus, the macaque samples
were inherently homogeneous, whereas ours may better reflect
the real variability of connections of cytoarchitectural areas. In
order to assess this variability thoroughly, a larger statistical
sample is required. Nevertheless, the qualitative results based
on the weighted values (the FLN and SLN) should be robust
to appropriately applied thresholds based on variability across
injections. As an example, we show that the decay of the FLN
with distance is not affected by considering only the FLN with
smaller coefficient of variation across injections in the same
target area (Supplementary Fig. 14b).

Another potential source of variability is the inclusion of
injections that crossed the estimated borders between 2 cytoar-
chitectural areas (Majka et al. 2020). This is intrinsically difficult
to evaluate in many cases, since the borders of many areas
are not sharp (Rosa and Tweedale 2005). Here, injections were
assigned to areas based on estimates of how close the injection
was to the border and of percentages of the injections contained
in each area (see Discussion and Supplementary Table 1 in Majka
et al. 2020). However, considering only the injections estimated
to be confined at least 80% within the target area (120 injec-
tions in 50 target areas; Supplementary Fig. 15b), or injections
confined 100% within a target area (79 injections in 34 target
areas; Supplementary Fig. 15c) does not substantially affect our
conclusions (Supplementary Figs 12, 16, and 17).

Hierarchical Organization

Our analysis of the hierarchical structure of the marmoset cor-
tex indicates that some of the premotor areas, including the
ventral premotor cortex (area 6Va), are situated at the top of
the hierarchy (Fig. 4). In other words, such areas form a large
proportion of projections with characteristics of FB projections
(low SLN). This appears in conflict with the data so far obtained
in the macaque, in which association areas such as the pre-
frontal cortex lie at the highest hierarchical levels (Chaudhuri
et al. 2015) (Supplementary Fig. 2). In addition, the intermedi-
ate functional groups were less clearly differentiated. To some
extent, this may simply reflect differences in the availability
of data. For example, to date, data from the macaque cortical
network do not include injections in ventral premotor cortex
(areas F4/F5). Conversely, data obtained in the rostral part of
the superior temporal polysensory cortex (area TPO, or “STPr”
in the macaque) are not available for the marmoset, where only

the caudal part of TPO was injected. Functionally, if the final
goal for the cortex is to generate behaviors, it could be expected
that the flow of information culminates in motor areas involved
in higher-order planning of sequences of movements, such as
A6Va and A6DR, which integrate stimulus-initiated and inter-
nally initiated information, toward generation and evaluation
of actions. The ventrolateral posterior region of the frontal lobe
has expanded considerably in human evolution (Chaplin et al.
2013), including the emergence of Broca’s area in the human
brain, suggesting a high-order station for integration of infor-
mation from various sources, toward the generation of complex
behavior. However, including the orthogonal dimensions of the
presence/absence of connections and weights of connections
enabled us to obtain a more comprehensive insight into the
interareal architecture, where there are parallel sensory streams
associated with different higher-level areas. Given the larger
number of target areas and pathways studied, this configuration
appears clearer than in previous studies of the macaque cortex
(Chaudhuri et al. 2015).

Future Directions: Large Scale Models
of the Mammalian Brain

One of the principal open problems in systems neuroscience
is understanding the structure-to-function relationship. Toward
achieving this goal, there is an increasing interest in modeling
whole-brain dynamics, as opposed to modeling individual areas.
Early models incorporated neuroimaging-based structural con-
nectivity data (Cabral et al. 2017; Demirtaş et al. 2019). The major
advantage of these studies is that they can model the human
brain based on noninvasive data. However, there are important
caveats to these modeling studies including the low resolution
of the imaging techniques and, critically, directionality of the
resulting structural connectivity matrix. On the other hand,
we show that the reciprocity of connections, and absence of
connections, are prominent attributes of the connectome (Fig. 2c
and Supplementary Fig. 7), which begs the question whether
and how unidirectional connections are important to functions.
More recently, there have been a series of large-scale network
models that incorporate the weighted and directed structural
connectivity obtained via retrograde tracing methods, as well as
the hierarchical organization of the areas based on the laminar
distribution of the projections (Chaudhuri et al. 2015; Mejias
et al. 2016; Joglekar et al. 2018). The results presented here pro-
vide a foundation for a future large-scale network model of the
marmoset cortex, which will serve to clarify the computations
underlying marmoset brain function and behavior. Ultimately,
the increased knowledge of the scaling properties of the cortical
cellular network in nonhuman primates, together with large
scale in silico models of other mammals and comparisons of
data obtained with neuroimaging techniques (Hori et al. 2020),
will help bridge the gap between animal models and humans,
leading to a better understanding of normal and pathological
functions, as well as brain evolution.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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