
Spatial embedding of structural similarity in the
cerebral cortex
H. Francis Songa, Henry Kennedyb,c, and Xiao-Jing Wanga,d,1

aCenter for Neural Science, New York University, New York, NY 10003; bStem Cell and Brain Research Institute, INSERM U846, 69500 Bron, France; cUniversité
de Lyon, Université Lyon I, 69003 Lyon, France; and dNYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai, Shanghai, China

Edited by Robert Desimone, Massachusetts Institute of Technology, Cambridge, MA, and approved October 15, 2014 (received for review July 24, 2014)

Recent anatomical tracing studies have yielded substantial
amounts of data on the areal connectivity underlying distributed
processing in cortex, yet the fundamental principles that govern
the large-scale organization of cortex remain unknown. Here we
show that functional similarity between areas as defined by the
pattern of shared inputs or outputs is a key to understanding the
areal network of cortex. In particular, we report a systematic
relation in the monkey, human, and mouse cortex between the
occurrence of connections from one area to another and their
similarity distance. This characteristic relation is rooted in the
wiring distance dependence of connections in the brain. We
introduce a weighted, spatially embedded random network model
that robustly gives rise to this structure, as well as many other
spatial and topological properties observed in cortex. These
include features that were not accounted for in any previous
model, such as the wide range of interareal connection weights.
Connections in the model emerge from an underlying distribution
of spatially embedded axons, thereby integrating the two scales of
cortical connectivity—individual axons and interareal pathways—into
a common geometric framework. These results provide insights into
the origin of large-scale connectivity in cortex and have important
implications for theories of cortical organization.

cortex | large scale | complex network | monkey | model

The cerebral cortex can be divided into a number of distinct
areas according to anatomy and function. Understanding the

complex pattern of connections among these areas is necessary
for elucidating the structural basis of distributed processing in
the brain, yet the principles that govern this large-scale organi-
zation are not fully understood. In particular, although cortical
organization has been characterized extensively within the
framework of “complex networks” (1, 2), there are few generative
models that explain how the observed features of areal connec-
tivity may arise (3–5).
In contrast to the large and sparsely connected architecture of

many networks (including the neuronal network of the brain),
cortical areal networks are relatively small and densely connected:
the mouse neocortex consists of roughly 40 areas per hemisphere
with ∼50% of the possible connections present (6, 7), and the
macaque neocortex consists of roughly 100 areas per hemisphere
(8) with ∼60% of the connections present (9). In such networks,
the properties that define conventional complex networks—the
degree distribution (number of areas connected to an area), av-
erage path length (smallest number of connected steps between
a pair of areas), and clustering (density of connections among
areas connected to the same area)—are not very informative. For
instance, in a network with overall connection density p0 greater
than 0.5, almost all pairs of areas are connected by a path of
length one or two, and the average path length is close to
1 · p0 + 2 · ð1− p0Þ= 2− p0 whether the structure is random, reg-
ular, or in between (10). As a result, canonical complex networks
such as the Barabási–Albert model of “scale-free” networks (11)
and the Watts–Strogatz model of “small-world” networks (12),
which were developed specifically to account for the behavior of
these quantities, have limited applicability to the areal network of
cortex (5, 7, 10).

Fundamentally, existing complex network models provide an
incomplete description of the cortical areal network because they
neglect the underlying spatial structure that shapes connectional
topology (4, 5, 13, 14). Recent data indicate that interareal
pathways consist of spatially heterogeneous axonal projections
whose distribution exhibits two striking properties: first, the
number of axons that project from one area to another varies
over several orders of magnitude across cortex (7, 15), and sec-
ond, connections between different cortical areas correspond to
only a small fraction of all axons, most of which project to within
the same area and contribute to the local circuit (9, 16). Thus, a
proper description of the cortical network requires integrating
interareal pathways and the axons that compose them into a com-
mon framework encompassing both global and local structure.
To address these challenges, we present an analysis of cortical

connectivity that reveals a key organizing principle common to
three mammalian species with widely different brain sizes,
namely monkeys, humans, and mice. Our starting point was that
connectional similarity of pairs of areas, defined by their shared
inputs or outputs (“connectional fingerprints”), reflects the
functional organization of cortex (17–19). A major finding of this
work is a systematic relation between the occurrence of con-
nections from one area to another and their similarity distance as
defined by the amount of shared connections. This relation,
which is observed in all datasets we examined, has its basis in the
dependence of connections on wiring distance (4). We developed
a simple, spatially embedded random network model that gives
rise to the structures revealed by our analysis. Notably, to our
knowledge, it is the first generative model that relates binary
features to the underlying weighted structure through a well-
defined geometric coarse-graining.
The model we propose reproduces numerous spatial and to-

pological properties of the macaque cortex. These include graph-
theoretic measures such as degree sequence, path length, clus-
tering coefficient, and motif distribution, as well as features that
were not accounted for in any previous model, such as the wide
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range of interareal connection weights. Because our model
cortex is embedded in a spatial continuum, moreover, it can be
partitioned into regions with an arbitrary spatial resolution. Such
an approach makes it possible to study the same axonal network
using alternative methods of parcellation, an important issue for
modeling data obtained from diffusion-based tractography at
varying spatial scales (20). Taken together, our results provide
a promising direction for the investigation of the structure and
origin of areal connectivity in cortex.

Results
Similarity Distance. We first investigated the binary connection
structure of the macaque cortex, the proper understanding of
which is critical to developing a theory of its weighted connec-
tivity. The binarized intrahemispheric connection matrix C,
where Cts = 1 if there is a directed connection from source area s
to target area t and 0 otherwise (Fig. 1A), was obtained from
recent retrograde tracer injections in 29 representative target
areas and labeling in all 91 source areas (9). The connectivity is
dense: 62% of the possible interareal connections are present,
which is a much higher proportion than in previously available
data [e.g., from CoCoMac (17, 21)] as a result of the consistency
of the cortical parcellation, comprehensive hemispheric exami-
nation, and optimized tract-tracing methods (22).
We used “cosine similarity distance” to quantify the amount

of shared outputs between areas s and s′:

Dss′ = 1−
P

tCtsCts′ffiffiffiffiffiffiffiffiffiffiffiffiP
tC

2
ts

q ffiffiffiffiffiffiffiffiffiffiffiffiffiP
tC

2
ts′

q : [1]

Here the sum over t runs through the target areas excluding s and
s′, i.e., Dss′ does not depend on Css′ and Cs′s. Thus, the similarity
distance between two areas is not an explicit function of whether
connections between them are present.
Because the connection matrix in Fig. 1A reflects injections into

a subset of all cortical areas, it is a priori unclear how reliable the
resulting similarity distances are. To ascertain this, we computed
the analogously defined input similarity distances, whose “true”
values can be determined from Fig. 1A, but only between pairs of
injected areas. A comparison of these values with those obtained
by sampling (SI Appendix, Fig. S1) suggests that output similarity

distances computed from the sampled target areas are represen-
tative of the true distances we would obtain if the full connection
matrix were available. Moreover, cosine similarity distance is only
one of many possible measures of shared connections, or “struc-
tural equivalence” (23, 24), and our results are qualitatively the
same for other normalized measures (SI Appendix).

Structural Similarity and the Functional Organization of Cortex. As
a measure of the amount of shared outputs, the similarity dis-
tance between two areas indicates their functional similarity.
This is revealed in a classical multidimensional scaling (MDS)
analysis of “similarity space,” which places areas in a Euclidean
space most compatible with the interareal distance relations
given by Eq. 1 (Fig. 1B). Although we must be cautious in
drawing detailed conclusions from such visualizations, they
capture the broad functional layout of cortex. For instance, in
this map, many sensory and motor areas are grouped by function
and located along the periphery, with primary sensorimotor
areas at the edge and areas involved in “higher-level” processing
closer to the center. The most highly connected—and inter-
connected—areas are placed at the origin of the MDS map due
to the requirement that they be close to many areas. In-
terestingly, the center of the map also comprises areas from
physically distant parts of cortex, showing that the relation be-
tween similarity distance and anatomical distance is not trivial
[their correlation is significant ðP< 0:01Þ but moderate, Spear-
man’s r= 0:42 (see Fig. 3A, Inset)].
The definition in Eq. 1 can also be applied to the weighted

connection matrix from which the binarized matrix was derived.
The result (SI Appendix, Fig. S2) is a more clustered map with
fewer areas in the center, which can be understood from the fact
that the connection weights vary over five orders of magnitude
across cortex (15). Thus, the similarity distances and resulting
MDS map are dominated by the strongest connections, many of
them between nearby areas (19).
We applied the same analysis to a recently published con-

nection matrix of the mouse cortex (6). The known functional
modules of the mouse cortex are again grouped in the MDS map
of similarity space, and suggest certain homologies with the
macaque cortex (Fig. 1C; see SI Appendix, Fig. S3 for all mod-
ules). SI Appendix, Fig. S4 presents the corresponding map of
human cortical connectivity obtained from diffusion spectrum

A

B C

Fig. 1. Similarity distances reflect the functional
organization of cortex. (A) Binarized intrahemi-
spheric connection matrix of the macaque cortex.
The 29 × 29 edge-complete subnetwork is high-
lighted in blue. (B) First two dimensions of the clas-
sical MDS analysis of similarity distances (23),
accounting for ∼46% of the variance. Areas closest
to the origin (“association and cognitive” areas) and
a subset of those on the periphery (“sensory and
motor” areas) are highlighted to emphasize the
overall organization of the map, but these dis-
tinctions are not meant to be definitive. For the
former, lighter gray indicates areas that are closest
to the origin only in the 2D projection and not in the
full MDS coordinate system. Note the difference in
scale. (C) MDS map (47% of variance) of mouse
cortex; see the original reference (6) for a list of
areas and details of subnetwork and module
assignments. Colors were selected to highlight ho-
mologies with the macaque cortex in B.
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imaging (DSI) (25), for which we can additionally incorporate
interhemispheric connections.

Similarity Distance and Connectivity. It was previously observed
that similarity distances are correlated with the presence of
connections (26), which is intuitively understood from the fact
that areas separated by small similarity distances tend to be
functionally similar, and functionally similar areas are likely to be
connected. Indeed, we found that a systematic relation exists
between the occurrence of a connection from one cortical area
to another and the similarity distance between them.
We established this in two different ways (Fig. 2A, Left): first,

by binning the similarity distances and computing for each bin
the fraction of all possible connections between pairs of areas
that are present in the data, and second, by applying binomial
regression with a probability of connection—a modified logistic
function—that depends on the similarity distance (SI Appendix).
This relation is a natural generalization of clustering, which
quantifies the connectedness of a set of areas having one shared
connection (12) but is uninformative in a highly connected net-
work. The results are in strong contrast to an uncorrelated model
such as the Erd}os–Rényi (ER) random network (red), in which
every connection is present with an independent probability that
is trivially a constant function of the similarity distance. Fur-
thermore, similarity distances in the macaque cortex have
a smooth and broad distribution (Inset). This is again in contrast
to an ER network, for which the distribution can be calculated
theoretically (SI Appendix) and is narrowly peaked around the
mean because every area looks equally similar to every other
area (Inset, red).
An interesting feature of the connection matrix of Fig. 1A,

specifically the edge-complete subnetwork for which both inputs
and outputs are known, is that many areal pairs are not re-
ciprocally connected (9). If we assume that connections between
two areas with similarity distance d occur with independent
probability p̂ðdÞ in the two directions, then the relation in Fig. 2A
(Left) can be used to predict the occurrence of unidirectional
½2p̂ð1− p̂Þ� and reciprocal ðp̂2Þ connections (Right). Moreover,
although we have focused on output similarity distances to in-
clude all 91 areas in the analysis, Fig. 2A also holds if input
similarity distances are used instead (Fig. 2B).

These results are not unique to the macaque cortex. In data
from human DSI (25), the relation between connectivity and
similarity distance is qualitatively similar (Fig. 2C). Although the
distributions of similarity distances differ slightly (Inset), the
discrepancy can be largely accounted for by first, symmetrizing
the edge-complete subnetwork of the macaque connection ma-
trix to account for the absence of directional information in DSI,
and second, removing its weakest connections to match the
overall density of connections in the human data. Here the
weakest connections were defined as those with the smallest
number of neurons labeled in the retrograde tracer study of the
macaque cortex. In contrast, removing randomly chosen con-
nections leads to a profile similar to that of the ER network in
Fig. 2A (red curves).
The corresponding analysis for a connection matrix derived

from the CoCoMac database of macaque connectivity (17, 21)
likewise shows that discrepancies are attributable to the absence
of weak, long-distance connections (Fig. 2D) (19, 22). In this
case, the distribution of similarity distances is narrowly peaked
near d= 1, in contrast to the broad distribution of similarity
distances observed in the recent macaque (Fig. 2A, Inset), human
(Fig. 2C, Inset), and mouse (Fig. 2E, Inset) data. Comparable
relations between the proportion of connections and similarity
distance also are found in the mouse cortex (Fig. 2E); here the
availability of the full, directed connection matrix confirms that
inputs and outputs have similar statistics (see also SI Appendix,
Fig. S5), which is somewhat surprising given the presence of
many nonreciprocally connected pairs of areas.
The physical origin of the relation between connectivity and

similarity distance may be partly inferred by noting that the oc-
currence of connections has, qualitatively, the same dependence
on interareal, center-to-center wiring distance (Fig. 3A) as it
does on similarity distance (Fig. 3C). This is somewhat obscured
in the data in part due to the difficulty of estimating wiring dis-
tances through the white matter (as opposed to Euclidean dis-
tances between the centers), particularly for spatially distant areas.
However, the simultaneous presence of both relations—which is
also the case in other types of spatial networks (SI Appendix, Fig.
S6)—suggests that the dependence on similarity distance is in-
tuitively related to the dependence on wiring distance (Fig. 3A,
Inset): cortical areas tend to form connections with spatially

A

C D E

BFig. 2. Proportion of connections and similarity
distance. (A, Left) Symbols show the number of
present connections divided by the number of pos-
sible connections in each distance bin. The ML fit
(solid blue) was obtained from binomial regression
of unbinned data (SI Appendix). The same relation
for the equivalent ER network is shown in red. (Inset)
Distribution of similarity distances fit to the dis-
tribution of distances in an ellipsoid with radii
ð1, λ1, λ2Þ=2. The theoretical result for the ER net-
work (SI Appendix) is shown in red. (Right) Symbols
show binned estimates of the proportion of unidi-
rectionally and reciprocally connected pairs in the
edge-complete subnetwork as a function of similar-
ity distance. Solid lines are predictions from the ML
curve in A. Self-connections are considered re-
ciprocal. (B) Same as A but for input similarity dis-
tances, as indicated by the empty symbols. (C) Same
as A, Left, but for the left and right hemispheres of
the human cortex (25). “Matched macaque” is the
result of symmetrizing and removing the weakest
connections to match the overall proportion of
connections in the human. The solid line is the ML fit
to the matched macaque. (D) Same as A, Left, but for
a 71-area connection matrix derived from CoCoMac
(17, 21). Recent macaque data were matched to the same connection density as the CoCoMac network by removing the weakest connections. (E) Same as A
but for the mouse cortex (6), showing that the proportion of connections as functions of output (filled symbols) and input (empty symbols) similarity distances
are similar. The solid blue line is the ML fit to the former. (Inset) The distributions of output (shaded) and input (solid line) similarity distances.
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nearby areas, so two spatially nearby areas are likely to form
connections with the same areas including each other.

Generative Model. Motivated by the results of our data analysis,
we developed a simple, spatially embedded model of weighted
cortical networks. Here we describe the minimal version of this
model, whose specification requires only six parameters.
Our starting point was the observation that the overall distri-

bution of interareal wiring distances is well described by the
distribution of distances in a spheroid (i.e., a rugby ball) with
radii að1; λ; λÞ (Fig. 3B). We therefore approximated this distri-
bution in the model by randomly placing the “centers” of the N
areas at positions ~Ri, i= 1; . . . ;N, in a spheroid (Fig. 3F, Left
Inset). Cortical area i is then defined as all points in the spheroid
closer to ~Ri than to any other center, i.e., the model parcellation
is mathematically a Voronoi partition (27) of the spheroid. Al-
though the true cortical sheet is nearly 2D, this 3D Euclidean
manifold provides a useful approximation to its convoluted ge-
ometry with respect to axonal pathways. More formally, this
space may be considered an abstract embedding space with an
unknown dimensionality that can, in principle, be inferred from
the data by using a model comparison procedure (28).
For each axon generated as described below, its source and

target areas are determined by the axon’s initial and terminal
coordinates (Fig. 3F). The initial positions of axons are sampled
uniformly in the spheroid. Inspired by the growth of real axons
that are guided by a variety of attractive and repulsive molecular
cues (29, 30), we assume that each area exerts a distance-
dependent attractive “force,” and the trajectory of each axon
is determined by the sum of these forces. The effect on an
axon originating at~s is summarized by the vector

~L
�
~s
�
=−

XN

i=1

~s−~Ri

j~s−~Rijβ+1
; [2]

where j · j indicates the vector’s magnitude and β determines the
distance dependence of the cue, respectively. The direction of
the axon’s growth is given by the unit vector ℓ̂=~L=

��~L�� computed
from the sum over forces in Eq. 2, while the length of the axon, ℓ,
is drawn from an exponential distribution with scale parameter Λ
(Fig. 3F, Right Inset). The axon terminates at position~t=~s+ ℓ̂ℓ,
with the constraint that axons must remain within the bounds of
the spheroid. A simple but important consequence of the combi-
nation of Eq. 2 (specifically, the exponent β) and the exponential
distribution of axon lengths is that most axons terminate in the

same area from which they originate, capturing the predomi-
nantly local character of axonal projections observed in the
macaque data (15, 16). The process is not strongly affected
by small, “noisy” rotations of ℓ̂ in a random direction. Fig. 4
presents a step-by-step illustration of the model.
We emphasize that the generation of axons as described here is

not dynamic: both the direction and length of an axon are calcu-
lated once, and in particular, the forces that determine the di-
rection of axon growth are evaluated only at the initial position of
the axon. For the simple cortical manifold used here, this effective
mechanism was sufficient to reproduce many features of the data
while retaining the advantage of being computationally fast. We
expect that a dynamical growth model will be necessary in future
studies that incorporate a more realistic cortical geometry.

Comparison of Model and Data. Fig. 3 shows that a realization of
the model closely reproduces the macaque data. The number of

A B C D

E F G H

Fig. 3. Weighted, spatially embedded random
network model of the macaque cortex. (A) Pro-
portion of directed connections and occurrence of
reciprocal and unidirectional pairs as a function of
interareal (center-to-center) wiring distance, data.
(Inset) Relationship between similarity ðdsÞ and
wiring ðdw Þ distances in the edge-complete sub-
network. (B) Distribution of wiring distances fit by
the distribution of distances in a spheroid. (C and D;
from Fig. 2 A and B) Same as A but as a function of
(C) output and (D) input similarity distances. (Insets)
Distribution of similarity distances. (E) Same as A, for
the model. (F) Schematic of the model, displayed
for two dimensions. A cortical area is defined by
a “center” (plus symbols) and all points in the
spheroid closer to it than to any other center. (Left
Inset) Distribution of center-to-center distances in
the model network, with the same fit (solid line)
from B. Axonal connections are established in the
direction determined by the sum of attractive forces originating from all areal centers, with lengths sampled from an exponential distribution (Right Inset) (4).
(G and H) Same as C and D but for the model. In all relevant cases, the occurrence of reciprocal (squares) and unidirectional (triangles) connections are
compared with p̂2 (orange line) and 2p̂ð1− p̂Þ (green line), respectively, where p̂ is the ML estimate of the proportion of directed connections (blue line). See SI
Appendix, Figs. S7 and S8 for the same figure but using alternative measures of similarity distance.

A CB

D FE G

Fig. 4. Model illustration. (A) The model cortex is a continuous volume in
a 3D Euclidean space in the shape of a spheroid with major radius a and
aspect ratio λ, here represented in 2D as an ellipse for illustration purposes.
(B) N areal centers are chosen randomly from the spheroid (plus symbols).
(C) The configuration of the areal centers defines the parcellation of the
model cortex into N areas (various colors) through a Voronoi partition of
the spheroid, i.e., each area is the set of points closer to a given center than
to any other center. (D–G) How a single axon is generated; this is repeated
na = 2 × 106 times in the model shown in Fig. 3. (D) The source of an axon
(blue dot) is sampled uniformly from within the spheroid. (E) The direction
of the axon is determined by the sum of the forces which attract the axon to
the areal centers (see Eq. 2). The individual forces decay with the distance to
the areal centers (arrows) according to an inverse power law with exponent
β, with the strengths represented here by the red intensity from light (weak)
to dark (strong) red. (F) With the direction fixed, the axon extends from the
source (blue dot) to the target (orange dot); the length is determined by
sampling from an exponential distribution with spatial scale Λ. (G) The areas
corresponding to the source and target of the axon are assigned according
to the parcellation from C.
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areas in the model network is the same as the parcellation of
Fig. 1A, N = 91. The spheroid dimensions, a= 31:4 mm and
λ= 0:69, were estimated by maximum likelihood (ML) from the
empirical distribution of interareal wiring distances (SI Appen-
dix). The remaining three parameters—Λ= 5 mm, β= 2:5, and
total number of axons na = 2× 106—were chosen to approximate
the overall proportion of connections (62% in both model and
data), the fraction of within-area connections [68–89% in the
eight areas in which this was measured (15), 69 ± 19% in the
model], and the shape of the similarity distance distribution
observed in data. Thus, three of the six parameters were fixed
quantitatively by the data, whereas the other three—corre-
sponding to spatial properties that could not be inferred easily
from the data—were not. In future studies, it will be of interest
to use a more formal procedure for fitting all model parameters
to best reproduce a selected set of summary statistics computed
from the data (28).
The variability in the gross statistical properties of the resulting

networks is generally small: the overall proportion of connections,
for instance, was p0 = 62:0± 3:2% over 1,000 realizations of the
model with the same parameters. This binary connection density
depends on the number of axons; moreover, the larger the
number of axons, the more likely “weak” connections will exist.
Because the number of axons na is large, the main source of
variability across different realizations is the random configura-
tion of areal centers; for the same cortical parcellation, and hence
“growth environment,” simulated networks are quite similar at
the areal level despite the inherent randomness of the model at
the axonal level. These results shed light on how the brain may be
wired consistently through a combination of specific patterning
and general connection rules (31).
The model also reproduces many common measures of net-

work structure (1, 2), such as the in- and out-degree sequences
(degree in descending order, normalized by 91 sources and 29
targets, respectively) and clustering coefficients (Fig. 5 A and B,
Left; see SI Appendix for the precise definition). The model
captures the wide range in the number of axons that connect
different areas, which can be compared with data using the
fraction of labeled neurons (FLN) (Fig. 5 A and B, Right). FLNs,
which are derived from the number of connections and represent
normalized information “bandwidth” rather than actual (synap-
tic) strengths, are defined relative to a target area as the fraction
of axons originating from each external area (15); they span

approximately five orders of magnitude in both model and data.
Finally, the distribution of three-area motifs (32) is well de-
scribed by the model (Fig. 5C).
One indication that the proposed model applies to the mam-

malian cortex in general rather than being specific to the ma-
caque cortex is that the macaque connectivity data can be
“matched” to the mouse connectivity data systematically. To il-
lustrate this, we observe that the small discrepancy between data
and model for the triad distribution in Fig. 5C can be largely
eliminated (Pearson’s r= 0:98, P< 0:01; Fig. 6A) by matching the
density of connections in the edge-complete subnetwork of the
macaque connection matrix to the model density. As before, this
is done by removing the weakest connections. Likewise, match-
ing the overall connection density of the macaque to the mouse
results in triad distributions that are strikingly similar (Pearson’s
r= 0:99, P< 0:01; Fig. 6B). Matching the model network of Fig. 3
to the mouse connection matrix thus gives similar results
(Pearson’s r= 0:99, P< 0:01; Fig. 6C), suggesting that weak,
mostly long-distance connections present in the primate cortex
but absent in the rodent cortex may play a role in shaping
functional differences between the two species.

Discussion
Our analysis of the macaque, human, and mouse cortical areal
networks suggests that there is a common logic to the large-scale
organization of cortex. Many aspects of this structure are cap-
tured by a simple, generative random network model in which
interareal connectivity emerges as a coarse-grained description
of heterogeneously distributed, spatially embedded axons. The
model highlights the need for caution in interpreting certain
features of the cortical network: many such features are sur-
prising only if our expectations are based on inappropriate null
models (33). For instance, motif distributions observed in the
macaque and mouse cortex are reproduced easily with our ran-
dom network model, indicating that they do not necessarily re-
flect specialized computational roles.
Previous modeling studies have used connection rules with a

distance dependence at the level of areas (3, 5). However, the
distance traveled by an axon between two cortical areas may be
substantially different depending on where in the respective
areas the axon originates and terminates. Thus, it may be more
realistic to assume an effective distance distribution at the level

A C

B

Fig. 5. Comparison of graph-theoretic measures and connection weights
between model and data. (A) Data; (B) model. (Left) Normalized in- and out-
degree sequences and clustering coefficients (for areas in the edge-complete
subnetwork). In-degree represents input from all 91 source areas, for the 29
injected areas; out-degree represents output to the 29 injected areas, from
all 91 source areas. (Right) Dispersion of FLN as a function of interareal
wiring distance. (C) Comparison of the triad distribution in model and data.

A B C

Fig. 6. Similarity of triad distributions in different networks. (A) Edge-
complete subnetwork of macaque (overall density of connections p0 = 66%)
matched to model ðp0 = 62%Þ. (B) Edge-complete subnetwork of macaque
ðp0 = 66%Þ matched to mouse ðp0 = 33%Þ. (C) Model network from Fig. 3
ðp0 = 62%Þ matched to mouse ðp0 = 33%Þ. In all cases, the weakest con-
nections in the more densely connected network were removed to match
the overall proportion of connections of the less densely connected network.
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of axons. Our model uses an “exponential distance rule” (EDR)
for the length of spatially embedded axons, which has strong
empirical support and was already shown to describe many
properties of the macaque cortex (4). We have demonstrated
that a model incorporating EDR into a fully geometric frame-
work generates, in a natural way, the quantitative relation be-
tween interareal connectivity and similarity distance (Fig. 2A),
and between interareal connectivity and center-to-center wiring
distance (Fig. 3A). Furthermore, this geometric approach has
the advantage that once the axons are generated, the cortex can
be divided into any number of areas with arbitrary spatial res-
olution, independent of the parcellation that generated the
connection matrix.
The fundamental advantage of using a generative model of

connectivity is that one can evaluate the evidence for competing
models and use Bayesian model comparison to ask which aspects
of the model are important for explaining empirical observations
(28). For example, it might be that one, two, or four dimensions
for the embedding manifold provide a better explanation for the
observed distributions, which could be evaluated by using the
probability of empirical distributions (say, of similarity distances)
under each model. After optimizing the model parameters using
their ML values, the resulting likelihood may be used as a proxy
for model evidence. Future work will investigate the use of
Bayesian model comparison to optimize formal aspects of the
model and address related questions.
Elaborations of the minimal model will also allow future work

to incorporate additional properties of the cortical network. For
instance, the uniform sampling of the initial positions of axons
might be modulated to better reflect the heterogeneity of con-
nection patterns within areas (9). The model cortex might ex-
pand during the axon generation process to mimic simplified
notions of growth and development. The distribution of axon
lengths can depend on the total cue strength, and there can be
multiple cues with both repulsive and attractive interactions (34),
allowing for greater specificity of connections. The distinction

between superficial- and deep-layer axons, which are essentially
geometric properties and are strongly related to whether the
axons are feedforward or feedback in nature (35), can also be
included in the model. Realistic cortical geometries are clearly
important. Together with dynamical axon growth and the in-
clusion of subcortical structures (particularly thalamus), such
extensions would allow the model to more faithfully capture the
process of cortical wiring as it occurs in the brain.

Conclusion
The present work highlights functional similarity represented by
shared connections as an important principle for understanding
the large-scale structural organization of the mammalian cortex,
and demonstrates that simple generative principles respecting the
spatially embedded nature of cortex can account for numerous
features of cortical connectivity. The dynamical and functional
implications of this structure remain important questions for
future investigation.

Materials and Methods
All data are available from the references given in the main text; see SI
Appendix for further details. SI Appendix additionally describes the ML es-
timation procedure used to establish the relation between the proportion of
connections and similarity (wiring) distance, and the derivation of the dis-
tribution of similarity distances in ER networks. Alternative definitions of
similarity distance, formulas for the distribution of distances in the spheroid
and ellipsoid, and the definition of clustering coefficient are also summa-
rized in SI Appendix.
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