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From biophysics to cognition: reward-dependent adaptive
choice behavior
Alireza Soltani1 and Xiao-Jing Wang2
In neurobiological studies of various cognitive abilities,

neuroscientists use mathematical models to fit behavioral data

from well-controlled experiments and look for neural activities

that are correlated with parameters in those models. The

pinpointed neural correlates are often taken as evidence that a

given task is performed according to the prescription of the

applied model, and the relevant brain areas encode parameters

of such a model. However, to go beyond correlations toward

causal understanding, it is necessary to elucidate at multiple

levels the neural circuit mechanisms of cognitive processes.

This review focuses on recent studies of reward-based

decision-making that have begun to tackle this challenge.
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Introduction
As it has become increasingly common to study high-level

cognitive processes using neural recording from behaving

animals and human brain imaging, perhaps we are entering

a new era of consilience between the science of the brain

and the science of the mind. This exciting trend has also

raised many new challenges, among which is the issue of

bridging the language of cellular neurophysiology and the

language of cognitive psychology: how should major ques-

tions in these fields be redefined in common terms so that

they can be rigorously investigated at both levels. Consider

reward-based decision-making, the process of choosing

from a setof alternatives that is informedby their respective

expected rewards. This topic is at the forefront of neuro-

biology, cognitive science, and neuroeconomics [1,2�,3,4].

One common approach in the field is reinforcement learn-

ing (RL), of which a key concept is reward values. Unlike

signals in sensory systems such as vision or olfaction, reward
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valuesignalsarestillnotwelldefinedinneuronal terms, and

valuation processes involve many different systems (see

other articles in this issue). Another approach is Bayesian

inference that plays a key role in psychological decision

theories and provides inspiration for neurobiological stu-

dies of decision-making [5]. Yet, it is notoriously difficult to

experimentally demonstrate that humans or animals

behave optimally or that neural populations represent

probability densities, as predicted by Bayesianists.

To make progress, in our view, obstacles must be over-

come to bridge gaps between levels of description, from

behavior to neural systems, microcircuits, and cellular

mechanisms. In this endeavor computational models play

a critical role because they can be simultaneously studied

at multiple levels in order to link observations at these

different levels. This article aims at illustrating how such

an approach is applied to reward-based decision-making.

Specifically, we focus on two issues. First, inasmuch as a

choice entails selection of an option among possible

alternatives (e.g. behavioral responses), how are expected

reward value and prior probability of choice alternatives

learnt through a subject’s encounters with the environ-

ment? Second, how are these different types of infor-

mation represented and subsequently combined with

sensory data to subserve a perceptual decision or action

selection? This article will not cover human studies;

instead our emphasis is on electrophysiological and mod-

eling studies on the biophysical mechanisms of reward-

based decision processes. By focusing on electrophysio-

logical studies that quantitatively assess behavior and

report activity of single neurons in behaving animals,

biologically realistic modeling strives to elucidate neural

circuit mechanisms that explain how the recorded neural

activity is generated and how they give rise to the

observed decision behavior.

Representation of reward value
At a given time, our deliberation on choices presented to

us is influenced by our past experiences about the out-

comes of similar choices that may have resulted in reward,

no reward, or punishment. Therefore the important ques-

tions are how the values of previous rewards are encoded

and integrated over time, and how this reward value

representation precisely affects decision-making. Accord-

ing to RL models [6], each potential action is associated

with an ‘action value,’ a measure of the reward expected

from taking such an action. Action values are updated by a

reward prediction error, the difference between the actual

and the expected reward.
endent adaptive choice behavior, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.07.003
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It was first discovered in primates that phasic activity of

midbrain dopamine (DA) neurons represents a reward

prediction error signal at the time an outcome is revealed

[7]. Since then similar observations have also been made

in rodents [8�]. Presently, the precise neural metrics of the

expected reward is unknown, as is the nature of neural

inputs received by the DA neurons that enable them to

compute reward prediction error signals. By estimating

value as a weighted average of rewards in previous trials, it

was found that DA neurons predominantly encode the

positive prediction error, that is, when the outcome is

better than the expected value [9]. At the same time, the

activity of DA neurons signals negative errors as well,

albeit with a smaller change of neural activity. A recent

work reported the finding that neurons in the lateral

habenula signal negative reward prediction errors by an

increased activity, and microstimulation of habenula inhi-

bits DA neurons [10], suggesting that the lateral habenula

may be a source of negative prediction error signals.

It has also been shown that DA neurons signal prediction

errors in a context-dependent manner [11�] and adapt

their gain according to the variance of rewards [12].

Moreover, neural activity correlated with both positive

and negative prediction errors has also been observed in

the medial frontal cortex, a cortical area involved in

outcome monitoring [13�]. Unlike DA cells, both positive

and negative prediction errors in the medial prefrontal

cortex are signaled by an increase in firing activity, in two

different neural populations.

A number of electrophysiological studies have investigated

the neural representation of reward values [1,14]. One

important issue is to differentiate between neural activities

that reflect action values (specific for choice options), or

their overall value (summated over all options and hence,

insensitive to response choice). For example, in an exper-

iment in which monkeys played an interactive game with a

computer opponent, it was found that activity of neurons in

the dorsolateral prefrontal cortex was modulated by choice,

reward, and their combination in the previous and current

trials [15]; whereas activity of neurons in the dorsal anterior

cingulate cortex (ACCd) was modulated mostly by the sum

of the values of alternative choices [16�].

Robust action value signals have been consistently

reported in the striatum. In a monkey study using a

stochastic choice task design, a subset of neurons in

the striatum were found to encode the values of possible

actions but were not selective for the chosen responses,

for example, a neural firing activity was high if the value

associated with action A was large, regardless of whether

this option was actually chosen or not [17�]. In another

stochastic decision task, during the delay period before

the monkeys make choices, many neurons in the striatum

displayed activity that was correlated with the value of

each action [18]. Different types of neural activity in the
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striatum covaried with either action values before move-

ment execution or the value of the chosen action after a

behavioral response occurred [19].

Another important issue is how the brain assigns in a

common currency, values to potential reward outcomes.

The orbitofrontal cortex (OFC), which receives infor-

mation from all sensory modalities and is extensively

connected with the limbic system, appears to play a

central role in this process [20]. In an economic choice

task in which there was no ‘correct response’ and choices

were based on subjective preferences, a population of

neurons in the OFC was found to represent the economic

value of the chosen option [21]. In addition to the reward

magnitude, OFC neural activity also encodes the prob-

ability and the amount of delay in time of reward delivery;

whereas decision costs such as effort appear to be

represented elsewhere such as in the ACC [14]. Under-

standing how these various factors are computed by

neural circuits and combined in a valuation process

represents a major challenge for future research.

Finally, several studies have estimated reward value as a

leaky integrator of past rewards, and concluded that the

time constant of this integration is on the order of a few

trials [22–24,16�], suggesting a characteristic time of tens

of seconds.

Modulation by reward signal
How are reward values in brain areas such as the striatum,

OFC, and ACC, computed based on feedback signals

through reward? One possibility is that reward signals

mediated by DA, gate synaptic plasticity thereby imple-

menting reward-dependent learning. As we argue in the

next section, such a learning mechanism can be used to

compute and store reward values. Indeed, there is evi-

dence that long-term potentiation (LTP) and long-term

depression (LTD) are modulated by the activation of DA

signals in many brain areas such as the hippocampus,

prefrontal cortex, and striatum [25,26].

The cortico-striatal synapses are the best-studied system

for the modulatory effect of DA on plasticity. In an early

study on the role of DA in reward-dependent learning, it

was shown that the induction of LTP in cortico-striatal

synapses required the presence of DA [27]. In this in vivo
experiment, an extracellular stimulation protocol induced

LTD at cortico-striatal synapses; the stimulation of DA

neurons in the substantia nigra pars compacta with

optimal frequency resulted in DA release in the striatum,

and led to a switch from LTD to LTP. This and other

experiments gave rise to the idea that Hebbian plasticity

in cortico-striatal synapses can be modulated by the

presence or the absence of DA signaling [25].

A recent study challenged this view by showing that

without manipulation of DA signaling, both LTP and
endent adaptive choice behavior, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.07.003
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LTD can be induced at the cortico-striatal synapses by

different temporal patterns of activity in striatal neurons

[28]. In a more recent study, it was shown that DA

activation was necessary for spike-timing-dependent

plasticity (STDP) at cortico-striatal synapses [29�].
Specifically, blocking the D1/D5 receptors prevented

the induction of both LTD and LTP in cortico-striatal

synapses, whereas blocking D2 receptors had differential

effects on LTP and LTD induction. Whereas Fino et al.
[28] found that LTP (respectively LTD) was induced

when the postsynaptic spikes occurred before (after) the

presynaptic spikes, Pawlak and Kerr [29�] found the

opposite. A possible explanation of this discrepancy is

that GABAergic synaptic transmission, which could inter-

vene in network dynamics, was blocked in [29�] but not in

[28]. In addition, a recent study demonstrated that cholin-

ergic interneurons have an important role in DA-depend-

ent plasticity in the striatum [30].

Several studies showed that DA can also transform LTD

to LTP in the rat prefrontal cortex, and this effect

requires activation of both D1 and D2 receptors [31].

Moreover, using a mouse preparation, it was shown that

activation of the dopamine D1 receptor facilitated the

maintenance of LTP, whereas the D1 antagonist blocked

the maintenance (but not the induction) of LTP in the

prefrontal cortex [32]. DA application had no effect on the

LTD induction in heterozygous mice that lacked D1

receptors. Similar findings were also obtained in the rat

hippocampus, where the activation of D1/D5 receptors

reversed LTD induced by low-frequency stimulation

[33]. These results may indicate a role of D1/D5 receptors

in maintaining activity-dependent LTP and reducing

LTD at hippocampal synapses.

Overall, these findings provide growing evidence for

important modulatory effects of DA on LTP and LTD

in the striatum and prefrontal cortex. However, most of

these studies were carried out in vitro, with bath application

of DA or DA receptor blockers. It remains to be determined

whether such manipulation of baseline DA is meaningful

to understanding the impact of phasic activity of DA

neurons in vivo, or whether it is more akin to tonic firing

[34] or slower changes of activity in DA neurons [35�].

Learning reward value
With a growing body of work on representations of reward

value, the question of how reward value is learnt and

updated over time at the cellular level has gained

urgency. This is the topic of several recent computational

studies, which implement specific forms of reward-de-

pendent synaptic plasticity into spiking neural networks

that perform various types of behavioral tasks

[36,37�,38,39�].

One proposed scenario for reward-dependent learning

assumes that a global reward signal modifies the prob-
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ability p of release of transmitter vesicles at ‘hedonistic’

synapses [36]. It was shown that a network with such

hedonistic synapses could perform gradient learning that

results in optimal reward harvest. The stochastic nature of

transmitter release is a crucial component for optimiz-

ation in this model. Because usually there is a temporal

gap between the reward signal and the activity that results

in the reward (i.e. distal reward problem), a signal known

as the eligibility trace is required to ‘remember’ synaptic

activities before the arrival of the reward signal. The

eligibility trace in this model tracks the success and

failure of transmitter release over time. In this way only

synapses that contribute to the rewarded outcomes are

strengthened. In this model, learning occurs on a spike-

by-spike basis (i.e. if a presynaptic spike leads to trans-

mitter release, the synapse is ‘rewarded’ with an increase

in p; otherwise it is ‘punished’ with a decrease in p), which

seems to be at odds with the much slower time course of

reward-related DA signaling [40]. Moreover, it has been

shown that the behavior of human subjects in a sequential

economic decision game can be explained by adding an

eligibility trace, which persists over actions in time, to the

temporal difference learning model [41].

Another study examined the distal reward problem using

an eligibility trace for synaptic changes that follow a

STDP rule and are multiplicatively modulated by a

DA signal [39�]. It was shown that a spiking network

model endowed with this learning rule could simulate

classical (Pavlovian) and instrumental (operant) con-

ditioning. Moreover, by assuming that synapses onto

DA neurons follow the same learning rule, the model

replicates the observation that during the Pavlovian con-

ditioning, the neural response of DA neurons shifts back-

ward in time, from the unconditioned stimulus to the

conditioned stimulus.

The aforementioned studies focused on reward-depend-

ent learning rules, rather than the neural network that

produces behavior. In contrast, in our recent work

[37�,38,42], a stochastic reward-dependent Hebbian

plasticity rule was incorporated in a biophysically-based

recurrent (attractor) network model of decision-making

[43]. This same model was applied to several monkey

experiments and shown to account for both behavioral

and neurophysiological observations, such as stochastic

foraging [37�], playing a competitive matching-pennies

game [38], and arbitrary sensorimotor mapping [42]. The

learning rule is a stochastic Hebbian rule [44] gated by

reward signal, based on the experimental findings that the

presence or absence of DA signaling can alter the direc-

tion of synaptic plasticity. For instance, after the network

generates a categorical decision, LTP occurs if the choice

is rewarded; otherwise LTD occurs. Interestingly, it was

realized that according to this learning rule, the rewarding

value of each choice is learnt and stored in a set of plastic

synapses in the form of return (i.e. the amount of reward
endent adaptive choice behavior, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.07.003
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Figure 1

A mechanism for leaky integration of rewards over trials. (a) In each trial, one of the choices is selected by recurrent dynamics of a decision-making

network consisting of neural pools that are selective for choice alternatives and compete against each other. Each decision leads to a feedback

signal, which indicates whether the choice is rewarded or not. Based on a plasticity rule which depends on the choice and reward outcome, synapses

onto decision neurons undergo stochastic modification. Namely, if a neural pool fires at a high rate and wins the competition, and the choice is

rewarded (respectively, not rewarded), synapses onto these neurons are potentiated (+) (depressed (�)). If firing activity is low (for those neurons that

loses the competition), no synaptic modification occurs (o). (b) Synapses are binary, Down and Up states corresponding to depressed and

potentiated states, respectively. In every trial in which the condition for modification is met for a set of synapses, synapses in this set are updated

probabilistically: for potentiation a fraction of synapses switch from the Down state to the Up state (and vice versa for depression). Here for

illustration purposes we show a set of 10 synapses onto one of the decision neural pool, and how their states change in four trials for a given synaptic

modification sequence (shown at the bottom). The state of each synapse is shown by a filled circle. Different colors indicate the trial number in

the past when the synapse was updated: red (last trial), yellow (second trial in the past), green (third trial in the past), blue (fourth trial in the past), gray

(more than four trials in the past). The current state of the set of plastic synapses shows the sum of updates in past trials but more synapses have been

updated by reward in most recent trials. Therefore, synapses integrate reward while more recent rewards have a stronger influence on the current state

of synapses and the choice behavior. The integration of past rewards is leaky because there is a finite number of synapses with discrete states, so that

more recent modifications override previous ones.
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per choice selection), rather than in the form of income

(i.e. the amount of reward per trial).

In this model valuation occurs at the synapse level,

whereas selection is carried out by the decision neural

circuit. In a single trial, decision-making takes place

through stochastic attractor dynamics that integrates

inputs and generates winner-take-all competition be-

tween neural pools selective for different alternatives

(say target A versus target B in a binary choice). Across

trials, the decision behavior is statistically described by

the probability of choosing one of the options, as a

sigmoid function of the difference in synaptic strength

of inputs to the two competitive neural pools. These

synapses are dynamically updated in each trial, leading

to adaptive choice behavior.

Stochastic choice behavior in our model originates from

irregular spiking activity of decision neurons. This varia-

bility enables the model to explore both alternatives and

avoid repetitive selection of only one option even if it is

more rewarding. This randomness is also crucial for

performance in interactive games when it is desirable

for decision makers to be unpredictable to opponents

[38].

It can be shown that this model is similar to the imple-

mentation of a certain type of RL model known as the

state-less Q-learning, but the underlying learning mech-

anism is different [38]. Ongoing LTP and LTD lead to

leaky integration of past rewards, with a time constant

that depends on not only the learning rate but also the

reward statistics in the environment (i.e. the probability

of reward delivery assigned to each choice) [37�]. As

illustrated in Figure 1, plastic synapses act as leaky

integrators of past rewards associated with specific

actions. Thus, this model provides a possible synaptic

explanation for reward integration on single [16�,22,23] or

multiple timescales [42]. Moreover, this model supports a

local (in time) mechanism for producing the observed

global matching behavior (i.e. the proportional allocation

of choices matches the relative reinforcement obtained on

those choices), namely melioration through probabilistic

selection of the more valuable option in individual trials.

Alternatively, it has been proposed that matching beha-

vior can result from a synaptic plasticity rule that is driven

by the covariance between reward and neural activity

[45].

Therefore, existing models suggest that reward value can

be computed through plastic synapses onto neural popu-

lations that instantiate choice selection. Hence, these

neurons are modulated by action values. The experimen-

tal implication is that neurons selective for action-specific

rewards may actually underlie action selection, rather

than encoding action values separately from the decision

process itself, unless they are explicitly shown to be
Please cite this article in press as: Soltani A, Wang X-J, From biophysics to cognition: reward-dep
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insensitive to choices [18,19,22]. Another issue high-

lighted by modeling work is the need for a mechanism

that bridges the temporal gap between an action and its

outcome in typical situations when outcomes are revealed

only long after actions take place. Most proposed mech-

anisms for the distal reward problem require a form of

eligibility traces, of which the cellular basis remains

elusive [46].

Representation of prior information
Our behavior is often cued by prior information about

possible outcomes. In perceptual or economic decision-

making, prior probability is often instructed in terms of

identification of possible choice alternatives or is learned

through experience of the number of times that each

alternative choice is rewarded. In general, it is difficult to

design an experiment that examines the effect of prior

information on behavior independent of reward infor-

mation. This is because in most paradigms prior infor-

mation is instructed by reward.

In a seminal work on saccadic movement toward one of

many visual targets, Basso and Wurtz showed that

buildup neurons in the superior colliculus (SC) decreased

their activity as the probability of the saccade to their

response field (RF) was diminished (either by varying the

number of possible targets or through learning) [47�,48].

This modulation of SC buildup neurons may partly be

caused by an enhanced inhibition from the substantia

nigra pars reticulata, where neural activity was found to

increase with the number of target alternatives [49]. This

finding was supported by a slightly different experiment

reporting that, as the probability of saccade to the RF of

SC neurons was increased, the pretarget activity of these

neurons increased, and this modulation was negatively

correlated with the saccadic reaction time (RT) [50].

Moreover, SC neurons showed anticipatory activity when

a reward was expected in their RF [51].

In contrast, modulation by the number of targets is more

complex in the frontal eye field (FEF), a cortical com-

mand center for saccadic eye movements within the

frontal lobe. Lee and Keller showed that, as the number

of alternatives was increased, the activity of visual

neurons (primarily responsive to visual stimuli) in FEF

decreased, whereas the activity of visuo-motor neurons

(whose activity is selective for both visual inputs and

saccade responses) increased [52�]. Taken together, prior

information influences preparatory neural activity of

neural circuits (such as SC and FEF) involved in action

selection and execution.

In value-based choice tasks, many studies have shown

that prior knowledge about reward probability of response

alternatives modulates neural activity in multiple brain

regions, including midbrain DA neurons [53], caudate

[54], posterior parietal cortex (area LIP) [55], and various
endent adaptive choice behavior, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.07.003
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parts of the prefrontal cortex [14]. For instance, in a cued

saccade task in which two alternatives were rewarded

with different probabilities or magnitudes, the activity of

LIP neurons was positively modulated by the probability

and the magnitude of reward of the choice into the

neuron’s RF [55]. Similarly, the precue activity of caudate

neurons increased or decreased as the monkey learned

whether the preferred saccade direction of the recorded

neuron was rewarding or not in a block of trials [54].

These observations, however, can be interpreted in terms

of modulation by reward values of which reward prob-

ability is an integral part, rather than prior per se.

Overall, these findings indicate that preparatory activity

in different brain areas is correlated with the number of

alternative choices and the probability that an outcome

is rewarded. The output of these neurons can be used

in different ways to influence decision: either by pro-

viding an extra input to bias selection toward a more

probable alternative or by adjusting the decision

threshold for choice selection. Future experimental

and modeling work is needed to differentiate these

two scenarios.

Combination of information from multiple
sources
As we discussed, if reward values and prior information

are learnt through reward-dependent synaptic plasticity

in a decision circuit, this information should be combined

with sensory data to guide behavior. The combination of

different sources of information has been the subject of

numerous behavioral studies, which are strongly influ-

enced by Bayesian inference theories [56,57,5]. This line

of work has been mostly concerned with integrating

sensory information from different modalities, or accumu-

lation of information over time. Little is known about how

sensory information is combined with reward values and

probabilities in a decision process.

A recent experiment was specifically designed to explore

neural mechanisms for the combination of prior prob-

ability and sensory information (ME Mazurek et al., Soc

for Neurosci Abstr 2005, 621.3). Monkeys chose between

two color targets corresponding to two alternatives for

the net direction of a random dot motion stimulus. The

prior probability that the motion direction was toward

one of the color targets was kept constant in a block of

trials, and was changed from one block to the next (for

instance, 1:1, 1:3, 3:2, etc.). It was found that the mon-

keys’ choice behavior was biased toward the more prob-

able alternative, and the RT for selection of this

alternative was shorter. LIP neurons recorded from

behaving monkeys showed ramping activity correlated

with the integration of sensory data over time; the slope

of ramping activity of a given neuron increased (respect-

ively decreased) as the prior probability that the motion

was toward the target in the neuron’s RF had increased
Please cite this article in press as: Soltani A, Wang X-J, From biophysics to cognition: reward-dep
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(decreased). Such modulation of neural activity may be

useful to influence perceptual decisions at the beha-

vioral level.

Interestingly, we found that the same recurrent decision

circuit model discussed above, with two additive sets of

synaptic inputs, can capture both behavioral and neural

observations in this experiment (A Soltani, PhD thesis,

Brandeis University, 2006). One input pathway conveys

sensory (visual motion) inputs onto the two competing

neural pools. Color target inputs arrive onto the decision

circuit in another input pathway, passing through

synapses endowed with reward-dependent plasticity as

in [37�]. The outcome of each trial provides a feedback

signal (reward or no reward), by which the plastic

synapses for each color target dynamically learn to esti-

mate a function of prior probability that the target corre-

sponds to the correct choice. We found that the difference

in the strengths of plastic synapses provides an extra input

to decision neurons that biases the choice behavior toward

the more probable alternative and shortens RT for selec-

tion of this alternative. In addition, this extra signal

increases the rate of ramping activity in the decision

neurons, as observed in the LIP. It is note worthy that

a change in the ramping slope is in contrast to the

Bayesian prescription that the optimal strategy for incor-

porating priors in a ramping-to-threshold decision process

is to modify the starting point (or equivalently the

decision bound) [2].

There is now a sizable body of work documenting that

LIP neurons are modulated by the time integration of

sensory stimuli in perceptual decisions [2], the magni-

tude and probability of reward in free-choice tasks

[55,22], and the combination of evidence from different

shapes in a probabilistic categorization task [58]. There-

fore, LIP may play an important role in the integration

of different types of information in oculomotor decision-

making. The output signal of this integration can be

used to guide eye movement or shift attention. How-

ever, it is currently unknown whether neural signals

observed in LIP are generated locally, or if they emerge

as the collective behavior of a larger circuit encompass-

ing interconnected parietal and frontal areas. Further-

more, it remains to be determined whether LIP is a

more general-purpose system of information integration,

even in decisions that do not involve saccadic eye

movements.

Conclusions
The articles reviewed here illustrate recent works that aim

at relating RL theories and cellular mechanisms of reward-

based decision-making. Presently, there still exists a wide

gap between these different levels of description of adap-

tive choice behavior, but our knowledge has greatly bene-

fited from exchanges and collaboration between

disciplines. Future research in this direction will help us
endent adaptive choice behavior, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.07.003
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understand the neural representations of reward value,

prior information, and how they are combined in the brain.
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