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Robust Spatial Working Memory
through Homeostatic Synaptic Scaling
in Heterogeneous Cortical Networks

labeled and arranged in space according to their pre-
ferred locations, the activity pattern during the delay
period would be localized, with the memory of the stimu-
lus location being encoded in the peak location of the
network activity profile. Such bell-shaped firing patterns
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(“bump” states) provide a population representation of
the remembered spatial cue (Figure 1B), which can be
used to guide the behavioral response. Working memorySummary
function arises from the ability of the network to sustain
localized persistent firing patterns by virtue of its internalThe concept of bell-shaped persistent neural activity
reverberatory dynamics during the delay period whenrepresents a cornerstone of the theory for the internal
the specific external input is no longer present (Wang,representation of analog quantities, such as spatial
2001). The bump states can, in this sense, be interpretedlocation or head direction. Previous models, however,
as dynamical attractors of the working memory network.relied on the unrealistic assumption of network homo-

A theoretical framework has been developed for un-geneity. We investigate this issue in a network model
derstanding the properties of neural activity recordedwhere fine tuning of parameters is destroyed by heter-
during the maintenance of spatial information. Thisogeneities in cellular and synaptic properties. Hetero-
framework assumes that the localized neural firing pat-geneities result in the loss of stored spatial information
terns are self-sustained by synaptic interactions in ain a few seconds. Accurate encoding is recovered
local recurrent network (Ben-Yishai et al., 1995; Camperiwhen a homeostatic mechanism scales the excitatory
and Wang, 1998; Compte et al., 2000; Zhang, 1996; Sam-synapses to each cell to compensate for the heteroge-
sonovich and McNaughton, 1997). A crucial feature ofneity in cellular excitability and synaptic inputs. More-
these models is the assumption that the local networkover, the more realistic model produces a wide diver-
is homogeneous, with the properties of all the cells insity of tuning curves, as commonly observed in
the network being identical. As a result, any localizedrecordings from prefrontal neurons. We conclude that
activity pattern displaced spatially leads to another ac-recurrent attractor networks in conjunction with ap-
tivity pattern of the same shape but peaked at a differentpropriate homeostatic mechanisms provide a robust,
location. For large networks, this ensures that the con-biologically plausible theoretical framework for under-
tinuous nature of spatial information is preserved by astanding the neural circuit basis of spatial working
continuous family of bump attractors, each encodingmemory.
a different stimulus location. This paradigm has been
successful in describing the phenomenology of spatialIntroduction
working memory experiments (Camperi and Wang,
1998; Compte et al., 2000), place cell activity (TsodyksNeural correlates of the internal representation and
and Sejnowski, 1997; Samsonovich and McNaughton,memory of spatial information (such as an angle or a
1997), and head direction-related activity (Skaggs et al.,location) have been observed in many brain regions.
1997; Zhang, 1996; Redish et al., 1996; Xie et al., 2002),Examples include mnemonic persistent activity in the
and it has also been postulated to play an importantprefrontal and parietal cortices associated with working
role in the optimal read out of noisy population codesmemory (Gnadt and Anderson, 1988; Funahashi et al.,
(Deneve et al., 1999). Furthermore, behavioral results in

1989; Chafee and Goldman-Rakic, 1998; Rainer et al.,
monkeys (White et al., 1994) and humans (Ploner et al.,

1998), head direction-selective activity in cortical and
1998) show that the accuracy of saccades to remem-

subcortical structures (Rank, 1985; Taube, 1995; Sharp bered target locations decreases as the memory period
et al., 2001), and place cell activity in the hippocampus increases in a way consistent with the predictions of
(O’Keefe and Dostrovsky, 1971; Wilson and McNaugh- a model with a continuum family of bump attractors
ton, 1993; McNaughton et al., 1996). Neurons in these (Compte et al., 2000).
areas encode and store spatial information, even when The homogeneity assumption is, however, biologically
explicit sensory stimuli are absent. For instance, if a unrealistic. Indeed, in a given neural population, the
monkey must remember the spatial location of a tran- membrane properties vary considerably from cell to cell
sient stimulus for a few seconds in order to perform (see, for example, Mason and Larkman, 1990), and the
a delayed behavioral response, single neurons in the number and efficacy of synaptic connections are also
dorsolateral prefrontal cortex display location-specific variable (Braitenberg and Shütz, 1991). The effect of
activity that persists during a delay period after the stim- heterogeneities in these models has not been systemati-
ulus has been withdrawn (Goldman-Rakic, 1992). The cally characterized, but previous studies suggest that
spatial selectivity of a cell’s memory activity can be even with a small amount of heterogeneity most of the
quantified in terms of a broad bell-shaped tuning curve continuum of bump attractors disappear; only a few
with the maximum at the cell’s preferred location. Given (two or three) discrete spatially localized attractor states
this type of encoding, if neurons of the network were survive (Zhang, 1996; Tsodyks and Sejnowski, 1997;

Stringer et al., 2002). In the context of a spatial working
memory task, if a typical cue-specific localized pattern*Correspondence: xjwang@brandeis.edu
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this kind, thought to promote stability in neural circuits,
have been uncovered (Marder, 1998; Turrigiano, 1999).
We incorporated into our model an activity-dependent
scaling of synaptic weights (Turrigiano et al., 1998;
O’Brien et al., 1998; Desai et al., 2002) which up- or
downregulates excitatory inputs so that the long-term
average firing rate is similar for each neuron. We found
that synaptic scaling effectively homogenizes the net-
work despite considerable heterogeneity in single cell
and synaptic properties, including parameters regulat-
ing the scaling process itself. As a result, robust working
memory function is recovered under biologically plausi-
ble conditions.

Results

We investigated the active maintenance of spatial infor-
mation in the presence of heterogeneities using a recur-
rent cortical network model of spatial working memory.
The model (see Experimental Procedures) consists of
two reciprocally connected cell populations: pyramidal
cells (labeled by their preferred cues � from 0� to 360�
on a circle) and interneurons (see schematic Figure 1A).
In most simulations, the excitatory recurrent connec-
tions were all to all, with a magnitude that decayed as
a function of the difference between the cells’ preferred
cues. In some simulations (see below), the pyramidalFigure 1. Spatial Working Memory in the Homogeneous Network
cells were connected probabilistically and with random

(A) Schematic description of the network architecture. Excitatory
synaptic efficacies. In these simulations, the probabilitypyramidal cells are arranged according to their preferred cues
of connection decreased as the difference between the(arrows). The excitatory-excitatory synaptic strength decreases as

a function of the difference between the preferred cues of cells. cells’ preferred cues increased. Without heterogeneity,
Connections to or from inhibitory interneurons are uniform. the network model reproduces the salient electrophysio-
(B) Spatiotemporal network activity in a bump state. (Left) Raster- logical observations from the behaving monkey in an
gram for the excitatory population. A dot at position (t, �) represents oculomotor delayed-response (ODR) task. A transient
a spike fired at time t by a cell with preferred cue �. The blue line

spatial input triggers a localized activity pattern in therepresents the time evolution of the peak location calculated by the
network (Figure 1B). This bump state outlasts the stimu-population vector method. (Right) Localized activity profile during

the memory period calculated by counting the number of spikes lus, resulting in a persistent activity state sustained by
fired by each cell in the delay and dividing by the delay duration. excitatory synaptic reverberations. The ideal memory
(C) Time evolution of the peak location of a localized firing pattern function of the network is realized when all cells are
(“bump state”) in a homogeneous network of 1024 excitatory cells identical. In this case, when different stimuli are used
(see Experimental Procedures) during the delay period. Each line

in different trials, in any given trial the peak locationcorresponds to a simulation in which the stimulus was at a different
of the persistent firing pattern (as measured with thelocation. The peak location of the bump provides a good estimate

of the location of the remembered cue during the delay period. population vector method [Georgopoulos et al., 1982])
remains close to the stimulus location throughout the
memory period, so that the stimulus location can be
accurately read out several seconds after the stimulusof activity is not stable and instead drifts systematically
offset (Figure 1C).toward one of the few stable positions, the memory of

the initial cue would be lost, and the network would lose
its functional relevance. It is therefore unclear whether Effect of Heterogeneity

This network behavior is extremely sensitive to hetero-this paradigm provides a satisfactory model for the inter-
nal representation of spatial information in the brain, geneities. When the leak potential VL (membrane resting

potential) varies from cell to cell according to a Gaussianwhen realistic levels of neural heterogeneities are taken
into account. distribution (mean �VL� � �70mV and standard devia-

tion SD(VL) � 1mV), the bump state elicited by a stimulusIn this study, we use a biologically plausible network
model to characterize in detail the effect of heterogene- at any location systematically drifts toward one of two

privileged positions in the network (Figure 2A, top left).ity on the stability of persistent bump states and show
that, in the absence of “fine tuning” in the cellular proper- In this condition, after a delay period of 5 s, an estimate

of the position of the cue from the peak location of theties of different cells, the network does not support spa-
tial working memory function. This fine tuning problem bump would lead to the incorrect conclusion that 19 out

of the 20 stimuli were shown at one of the two privilegedis a general feature of systems encoding internal repre-
sentations of analog features (Seung, 1996; Wang, locations. We found that the drift speed v(�) of a bump

state is unique at each spatial location �. This means2001). A possible solution to the problem is that the
network learns to tune itself through an activity-depen- that knowing only the peak location � of the bump state

at any given time is enough to know the speed v(�) atdent mechanism. Several homeostatic mechanisms of
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Figure 2. Effect of Heterogeneity on Working
Memory Function

(A) (Top left) Time evolution of the bump’s
peak location in simulations in which stimuli
at different locations were used in different
trials. The leak potential for each of the 1024
excitatory cells was drawn randomly from a
Gaussian distribution with SD � 1mV, i.e.,
VL � �70mV � 1mV. The memory of the cue’s
location is lost in a few seconds in the pres-
ence of heterogeneity. (Top right) Spatial dis-
tribution of local average excitability in this
network. Regardless of the initial peak loca-
tion of a bump (encoding the spatial stimulus),
the bump drifts toward one of the two loca-
tions corresponding to the maxima of U(�).
(Bottom) Trajectories obtained by numerical
integration of the simple model (Equation 1).
This model reproduces the systematic drift
observed in the original spiking network
model (top left).
(B) Mean drift speed v versus number of excit-
atory cells NE. Each point represents the
mean � SEM of 100 networks of the same
size with a given level of heterogeneity.
Squares, heterogeneity as in Figure 2A. (Inset)
Log-log plot of the data in squares along with
a linear fit with slope �0.5. The mean drift
speed decreases as �1/√N. The circle, up-
ward triangle, and diamond show the in-
crease in v each time a new source of hetero-
geneity (Cm � 0.5 � 0.05 nF; Vth � �50mV �

1mV; gL � 2.5 � 0.25 nS, respectively) is
added, and the downward triangle corre-
sponds to networks with VL � �70mV � 2mV.
The mean drift speed increases fast with the
level of heterogeneity at fixed N. Star, value
of v for the example shown in (C), which be-
longs to the distribution represented by the
downward triangle.
(C) (Top) Spatial distribution of end locations
calculated from Equation 1 in a typical net-
work with VL � �70mV � 2mV and a realistic

number (NE � 4096) of connections per cell. Each colored dot represents the peak position (see Experimental Procedures) of the bump after
a delay period of 6 s, for a trial in which the stimulus was at the center of the square of the same color. One hundred trials per stimulus are
shown. If the dot is within the large circle around the square of the same color, the memory-guided saccade is considered as correct in that
trial. The spatially biased and nonuniform saccade distribution is inconsistent with the behavioral data from ODR experiments. (Bottom)
Function U(�) for this network, using the same scale as in (A). Vertical lines represent the eight locations of the bump states at the beginning
of the delay; the colors match those of colored dots in the above scatter plot. Over time, the dots move toward maxima of U(�).

which the bump is moving through that location. No dures). This simple model accurately describes the time
evolution of the bump state’s peak location �(t ) obtainedextra information about, for instance, the location of the

stimulus at the beginning of the trial or the time since in the simulations of the original spiking network model
(Figure 2A, bottom).the trial started is needed. Interestingly, the drift speed

is determined by the distribution of local average excit- This formulation allows us to draw an analogy be-
tween the drift of a bump state’s peak location and theability U(�) (shown in Figure 2A, top right) across the
motion of a particle with speed v(�) at each location �.network. U(�) measures the average excitability of a local
The function �U(�) can, accordingly, be interpreted asregion of the network around � with a size of the order
an “energy function.” The drift speed is determined byof the width of the localized activity profile (see Experi-
the gradient dU(�)/d�, and the privileged locations withmental Procedures). Specifically, we observed that
high local excitability are given by the maxima of U(�),v(�) � k dU(�)/d�, where k is a constant (see Experimental
at which v(�) � 0. Intuitively, due to the random distribu-Procedures). We used this finding to build a phenome-
tion of single cell parameters across the network, somenological model of the dynamics of the bump state in the
clusters of cells become slightly more excitable thanpresence of heterogeneity, described by the dynamical
others. The regions where this average local excitabilityequation
is high constitute the privileged locations in the network,
and the difference in excitability between nearby loca-d�

dt
� k

dU(�)
d�

� 	(t), (1)
tions determines how fast the bump moves through
them. This explains how the presence of heterogeneity
results in the systematic drift of the bump states.where 	(t ) is a white noise (see Experimental Proce-
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One could argue that, with a sufficiently large number saccadic responses for several stimuli would never be
classified correctly, whereas others would always resultof synaptic inputs, heterogeneity could be averaged out

in each local network region, so that the drift speed in successful saccades. These features are clearly in-
consistent with the experimental results from ODRshould decrease as the number of inputs increases. We

studied the effect of increasing the number of inputs by tasks, in which behavioral performances of �90% cor-
rect saccades are observed, regardless of the stimulusincreasing the size of the network (see Experimental

Procedures). We quantified the overall effect of hetero- location. Given this level of performance and because
in the real biological network every single biophysicalgeneity by the average across the network of the abso-

lute value of the drift speed v � �|v(�)|��. In Figure 2B, parameter is expected to be heterogeneous, we con-
clude that large numbers of connections per se do notwe show that, for a fixed level of heterogeneity (the same

used in Figure 2A), the mean drift speed v indeed de- solve the heterogeneity problem.
creases with the network size N as �1/√N (Figure 2B,
inset). This type of scaling with N is a general feature Homogenization by Synaptic Scaling
of heterogeneities in single-neuron parameters and can We showed that drifts of stimulus-elicited bump states
be obtained analytically (details of the calculation can are related to the differences in excitability between
be obtained from the authors upon request). In these nearby network regions. This observation suggests that
simulations, connectivity was all to all and homoge- if some homeostatic mechanism could regulate and ap-
neous across cells. In Zhang (1996), heterogeneities in proximately equalize the excitability of all neurons, then
the synaptic efficacies in a fully connected network were the network could be effectively homogenized, and sys-
considered, and their effect on the mean drift of the tematic drifts of memory activity patterns would be re-
bump states was shown to decrease as �1/N. Intuitively, duced or eliminated. We investigated the hypothesis
the extra factor �1/√N comes from averaging the N that a homeostatic mechanism might lead to an effective
independent fluctuations associated with each afferent homogenization of the network. Among the several
synaptic connection. We also considered sparse con- types of known homeostatic processes (Marder, 1998;
nectivity (see Experimental Procedures), so that each Turrigiano, 1999; Desai et al., 1999; Soto-Treviño et al.,
neuron is randomly connected to C other neurons on 2001), we focused in this study on the activity-depen-
average. The effect of this type of connectivity can be dent scaling of synaptic strengths, a mechanism discov-
shown to scale as �1/√CN. Thus, for large sparse net- ered in experiments on neocortical neurons in culture
works, one expects heterogeneity in synaptic properties slices and in vivo. By means of this mechanism, the
to have a weaker influence than cellular heterogeneities distribution of excitatory synaptic contacts to a cell is
on the stability of the bump states. Since simulating up- or downregulated multiplicatively in such a way as
large sparse networks is computationally very costly, to control its overall level of activity over long periods
we have obtained most of our results in fully connected of time (Turrigiano et al., 1998; O’Brien et al., 1998; van
networks with no synaptic heterogeneities. The final Rossum et al., 2000; Desai et al., 2002). We have imple-
check of our mechanism, however, has been performed mented the dynamics of the scaling process through
in a sparse network with random synaptic efficacies (see the following equation:
Figure 6).

Although the effect of heterogeneity decreases with

g

dg(�)
dt

� �g(�)(r(�) � rtg(�)), (2)
increasing network size, we found that increasing the
level of heterogeneity (by increasing the variance of the

where 
g is the characteristic time of the process, g(�)heterogeneous parameter or by taking into account het-
is a factor that multiplies all the excitatory synaptic con-erogeneities in other single-cell parameters, like capaci-
ductances to a pyramidal cell with preferred cue �, r(�)tance, Cm, firing threshold, Vth, etc.) at fixed network size
is the instantaneous firing rate of the cell, and rtg(�) isresults in a dramatic increase of the mean drift speed
the cell’s “target” firing rate, some level of long-term(Figure 2B). With realistic levels of heterogeneities, the
activity that the scaling process tries to impose on eachmean drift speed is large even with N �5000 synaptic
neuron. In our simulations, rtg is drawn, for each cell,inputs per cell, a number typical for a cortical pyramidal
from a Gaussian distribution with a mean equal to theneuron. At high enough levels of heterogeneity, the
average excitatory activity when the network (withoutbump states stop being stable, and the network shows
heterogeneities) is in a bump state and a standard devia-a spatially disordered pattern of neural activity (data not
tion equal to either zero (rtg identical for all cells) or toshown).
some fixed fraction of the mean (see below).Figure 2C shows a typical example of a network of

The characteristic time of the scaling process found4096 excitatory and 1024 inhibitory cells with a 2mV
experimentally is long (hours to days) (Turrigiano et al.,standard deviation in VL. In this network (corresponding
1998). A long characteristic time of homeostatic regula-to a particular realization [star in Figure 2B] of the distri-
tion is necessary, so that different cells can have differ-bution of heterogeneity marked by the downward trian-
ent levels of activity to encode information at shortergle in Figure 2B), the peak position of the bump state
time scales. However, simulations and analysis of the6 s after stimulus offset is plotted across 100 trials for
behavior of large networks became infeasible if the sys-each of eight equispaced locations (see Experimental
tem contained widely different time scales. To bypassProcedures). The spatial distribution of final peak loca-
this difficulty, we have focused only on the estimationtions is strongly nonuniform. If the final peak location
of the steady-state value of the scaling factor for eachof the bump were used to guide a saccade toward the

location of the previously shown stimulus in this case, pyramidal cell. In order to do this, we assume that the



Homeostatic Regulation of Spatial Working Memory
477

Figure 3. Network Homogenization by Activ-
ity-Dependent Synaptic Scaling

(A) (Left) Time evolution of the bump’s peak
location in simulations in which stimuli at dif-
ferent locations were used, for the same net-
work in Figure 2A after scaling. The system-
atic drift speed is almost completely
suppressed. (Right) Spatial distribution of lo-
cal excitability before (dashed) and after
(solid) scaling. Scaling flattens out the excit-
ability distribution, rendering the network ef-
fectively homogeneous.
(B) Mean drift speed before and after scaling
in networks with 256 excitatory cells with a
10% heterogeneity in leak potential (1mV;
cyan), membrane capacitance (red), thresh-
old potential (1mV; yellow), and leak potential
plus membrane capacitance (magenta).
Points with the same color refer to different
sample realizations of heterogeneity distribu-
tion. Scaling is robust to different sources of
heterogeneity.
(C) (Top) Scaling factor versus membrane ca-
pacitance for each cell in a network with Cm �

0.5 � 0.05 nF after scaling. (Bottom) Same
for a network with VL � �70mV � 1mV. The scaling factor is mostly determined by the values of the heterogeneous parameters for each cell.
Note that the scaling factor is only a few percent of the baseline synaptic strength.
(D) Firing rate as a function of the recurrent synaptic drive, gsyn, for 50 neurons chosen at random from a network with a 10% heterogeneity
level in VL, Cm, Vth, and gL. The excitatory synaptic current to each cell is Isyn � g gsyn(V � Vsyn), where g is the scaling factor. (Left) Before
scaling (g � 1). (Right) After scaling, g reaches its steady state, gss, when the long-term firing rates of all cells become equalized in spite of
their heterogeneous cellular properties. The shown range of the synaptic drive, gsyn, corresponds to the one that cells experience in the
recurrent network.

network is exposed to many spatial stimuli (one after factor of each neuron, with the location of the bump
state at (360/40)i, i � 1, 2,...,40. This ensures that allanother) over a long period of time. Since what matters
neurons have effectively the same average long-termfor the steady state of the very slow scaling process is
firing rate. After scaling, the systematic drift in the peakthe integrated activity of each cell across different stim-
location of the bump state is almost completely sup-uli, we have replaced this temporal average by a spatial
pressed despite heterogeneity. Figure 3B shows theaverage carried out over several network simulations
reduction in drift speed when heterogeneities in differentrun in parallel. In each simulation, a bump state is gener-
single-cell parameters are considered. Although someated by a cue at a given location, and the different
parameters have a larger impact than others on thelocations for the different simulations are evenly distrib-
stability of the bump states, the scaling process is simi-uted (see Experimental Procedures). By means of this
larly effective in homogenizing all sources of heteroge-procedure, we have been able to use Equation 2 with
neity that we have studied (Figure 3B). The homeostaticr(�) equal to the average of the instantaneous firing rate
process adjusts the synaptic strength only by a fewof each cell across the different simulations run in paral-
percents (Figure 3C). The steady-state scaling factor oflel and with a value of 
g similar to the other time con-
a cell depends, primarily, on the single-cell propertiesstants of the problem.
of the cell. Indeed, the steady-state scaling factor ofThe effect of scaling on the working memory function
each neuron can often be predicted with high accuracyof the network can be assessed by studying the dynam-
from its cellular parameters (e.g., as a linear function ofics of the bump states when the scaling factor of each
its capacitance or leak potential) (Figure 3C).cell is set fixed and equal to its steady-state value. After

The effectiveness of the scaling process lies in itsscaling, i.e., when the scaling process has reached its
ability to homogenize the input-output relationships ofsteady state, all excitatory synaptic conductances are
different cells in response to synaptic inputs. In Figuremultiplied by the steady-state scaling factor gss, which
3D, we have plotted the firing rate as a function of theresults in excitatory synaptic currents of the form
excitatory synaptic input gsyn in Equation 3 for 50 cells
with different single-cell parameters before (gss � 1) andIsyn � gssgsyn(V � Vsyn), (3)
after scaling. The range of values of gsyn used in the

where the parameter gsyn is the total excitatory conduc- figure corresponds to that experienced by the cells in
tance due to all the excitatory synaptic inputs to that the network. Before scaling, the firing rate for a fixed
neuron. value of gsyn varies widely from cell to cell due to hetero-

The systematic drift of the bump state after scaling geneities in VL, Cm, etc. (Figure 3D, left). The synaptic
is shown in Figure 3A for the same level of heterogeneity scaling process uses the long-term average firing rate
considered in Figure 2A. In all the simulations in Figure as a feedback signal to adjust g dynamically. After scal-
3, the parameter rtg was chosen to be identical for all ing, g reaches an optimal value, gss, so that the firing

rate as a function of the synaptic drive, gsyn, within thecells, and 40 cues were used to calculate the scaling
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neuron’s operational range, becomes virtually the same
for all cells, independently of their intrinsic membrane
parameters (Figure 3D, right). Note that scaling does not
affect the response of the cells to an injected current;
hence the experimentally measured firing frequency as
a function of the injected current intensity (i.e., the single
cell’s f-I curve) should still display a high degree of
heterogeneity.

Because synaptic scaling does not exactly compen-
sate for various kinds of heterogeneous single-cell pa-
rameters, network homogenization is not perfect. None-
theless, it is remarkably efficient, as can be seen by the
fact that, after scaling, the distribution of the average
local excitability U(�) becomes essentially flat across the
network (Figure 3A, right). Although U(�) is not exactly
uniform, the differences in local excitability across the
network become so small that the main determinant of
the movement of the bump becomes the noisy input
from external background activity, so that, similarly to
the case when the network is homogeneous, the peak
location of the bump state wanders slowly and quasiran-
domly, as in a diffusion process (Compte et al., 2000).

Heterogeneity in the Long-Term Firing Rate
across the Network
In the homeostatic process, we assumed a uniform dis-
tribution of many (40) cues, so that the long-term activity
was roughly the same for all neurons. What happens
when there is a biased distribution of spatial stimuli? Figure 4. Robustness of Homogenization by Synaptic Scaling with
We considered this question by using a decreasing num- a Decreasing Number of Discrete Cues
ber of cues for the calculation of the scaling factors in The scaling factors were computed using 20 (A), 8 (B), and 4 (C) cues.
the same network studied in Figures 2A and 3A. Figure The network is the same as in Figures 2A and 3A. (Left) Temporal

evolution of the bump peak location in simulations where 20 (evenly4 shows the working memory behavior of the network
spaced) cues were used in different trials. (Right) Local averageafter scaling using 20, 8, and 4 cues. Only when just
excitability U(�) for this network, with the same scale as in Figuresfour cues were used the performance of the network
2A and 3A. In the case with four cues (bottom), the dashed lines on

was compromised. In this case, during the homeostatic the right panel represent the network subregions of higher local
process, neurons with preferred locations close to the average excitability, which are those in between the four cues used
four used stimuli have higher firing rates, which result during the homeostatic scaling process. Homogenization by scaling

is efficient as long as the number of cues for scaling is larger thanin smaller scaling factors. Therefore, after scaling, those
the number of nonoverlapping network activity profiles which cancells have a lower excitability, and bump states tend to
be fit in the network (approximately four).drift away from them. The opposite is true for neurons

whose preferred locations are in between the cues used
in the homeostatic process: with larger scaling factors cell randomly from a Gaussian distribution with a stan-
they are more excitable and tend to attract the bump dard deviation equal to 10% of the mean. Figure 5A
states (marked by dashed lines in Figure 4C, right). How- shows that, although this increases slightly the mean
ever, the scaling mechanism works well even with eight drift speed v, the increase remains constant as the level
cues. In general, as long as the number of cues is larger of heterogeneity in other single-cell parameters is in-
than the number of nonoverlapping activity profiles that creased. This is in contrast to the case without homeo-
can fit into the network (approximately four), homogeni- static scaling, where the mean drift speed grows dra-
zation by scaling is efficient. Thus, wide network activity matically with the amount of cellular heterogeneities.
profiles (equivalent to wide tuning curves for single cells) Since larger cellular variability just results in larger cell-
reduce the need for homogeneity in the distribution of to-cell differences in scaling factor after scaling has
spatial stimuli encoded by the network. taken place, the extent to which the input-output curves

of different neurons are aligned after scaling is approxi-
mately independent of the level of heterogeneity in cellu-Heterogeneity in the Target Firing Rate

Our homeostatic mechanism is based on a dynamical lar properties. Thus, after scaling, one expects the per-
formance of the network to be mainly related to the levelregularization of the long-term neural firing rate to a

target rtg. However, since the biophysical parameter rtg of heterogeneity in the target rate of different neurons.
To assess the effect of heterogeneity in rtg in realisticof the scaling process is also expected to vary from

cell to cell, the scaling mechanism is useful only if the conditions, we used a large network (NE � 4096), with
a 10% heterogeneity level in the four cellular propertiesworking memory behavior is robust when the parameter

rtg itself is heterogeneous. We tested the effect of hetero- which have a significant effect on the firing rate (see
legend of Figure 5). Figure 5B shows the mean driftgeneity in the target firing rate by assigning rtg for each
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Figure 5. Robustness of the Scaling Mecha-
nism in the Presence of Heterogeneity in the
Target Firing Rate of Different Cells

(A) Mean drift speed versus the level of heter-
ogeneity before scaling (triangles), after scal-
ing with SD(rtg) � 0 (squares), and after scaling
with a 10% heterogeneity in the target firing
rate of different cells (rtg � 13.5 � 1.35 Hz)
(circles) for networks of 256 excitatory cells
with heterogeneity in the leak potential and
the membrane capacitance.
(B) Mean drift speed versus the level of heter-
ogeneity in rtg for networks of 4096 excitatory
cells and a 10% heterogeneity level in the
leak potential and conductance, membrane
capacitance, and voltage threshold. For each
heterogeneity level, four data points corre-
spond to different random realizations of the
distribution of heterogeneities. Note different
scales in the drift speed in (A) and (B).
(C) Temporal evolution of the bump peak lo-
cation for 20 trials that started at different cue
locations, for a network with 50% heteroge-
neity in rtg (marked with a black square in [B]).
The memory of the transient input is main-
tained accurately despite the large amount
of heterogeneity.
(D) Relative variability in the distribution of
neuronal excitability as a function of the level
of heterogeneity in several cellular properties.
All refers to the combined heterogeneity in
the four cellular parameters. After scaling
with heterogeneity in rtg (bars on the right),
the distribution of excitability across the net-
work is much more narrow that the one re-
sulting from heterogeneity in other cellular
properties in the absence of scaling. In the
simulations of this figure, we used 20 cues to
calculate the scaling factors.

speed as a function of the heterogeneity level in rtg, up ideal for the homogenization of the spatial working mem-
ory network.to 50%. The deterioration in performance as rtg becomes

more variable is extremely slow. As is shown in Figure
5C for a network with 50% heterogeneity in rtg (corre- Diversity of Single-Neuron Tuning Curves
sponding to the square in Figure 5B), once the location We performed a final set of simulations to check that
of the bump is selected by a transient stimulus, no sub- the network could accurately encode spatial information
stantial systematic drift is observed. This shows that after synaptic scaling, when all sources of heterogenei-
the network is much more tolerant to heterogeneity in ties were present at the same time. The results are
rtg (which is a parameter of the scaling process itself shown in Figure 6. The network is composed of NE �
and is not regulated homeostatically) than to heteroge- 20,000 randomly connected excitatory cells, each cell
neity in the other cellular parameters (which scaling receives C � 2000 synapses on average (the connection
makes largely irrelevant). To gain some intuition about probability obeys a binomial distribution, with p � C/N �
this surprising result, we assessed in Figure 5D the vari- 0.1). Synaptic efficacies are also random (see Experi-
ability in long-term firing rates as the level of heterogene- mental Procedures). A 20% level of heterogeneity in four
ity in four cellular parameters is increased. In addition, cellular parameters and the target firing rate was used.
we also show the variability in long-term firing rates In this case, the synaptic scaling factors have a standard
that would result from scaling with comparable levels deviation of 8% of the baseline (unity) and range from
of heterogeneity in rtg. This shows that heterogeneity in 0.6 to 1.3. Clearly, the location of the transient cue can
rtg leads to smaller cell-to-cell differences in long-term be read out with little error after 6 s of delay. We explicitly
firing rates than heterogeneity in any other parameter checked that this behavioral performance could not sim-
alone and, of course, also smaller than all of them com- ply be explained by the large network size. Without ho-
bined. Due to this remarkable property, a mechanism meostatic scaling, no bump state is stable, and the net-

work settles into a disorganized state of high activity.using long term-firing rate as a feedback signal seems
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Figure 6. Robust Encoding of Spatial Infor-
mation by Synaptic Scaling and a Wide Diver-
sity of Tuning Curves in a Highly Heteroge-
neous Network

The network is composed of NE � 20,000 ran-
domly connected excitatory neurons, with an
average of C � 2000 synapses per cell and
with random synaptic efficacies (see Experi-
mental Procedures). A 20% heterogeneity in
VL, Cm, Vth, and gL was used, and the scaling
factors were obtained using eight cues and
a 20% heterogeneity in rtg.
(A) Temporal evolution of the bump peak lo-
cation in 20 trials, with transient stimuli at
different locations. The memory of the initial
cue is well preserved during the 6 s delay
period.
(B) Examples of tuning curves from ten neu-
rons. The firing rate of each cell for the 20
stimuli in (A) are shown as empty dots. Solid
lines are obtained by fitting the data for
each cell with the formula r(�) � c1 �

c2(exp(c3cos(2�(� � �pref)/360)), where �pref
is the preferred cue of the cell, r is its firing
rate, and c1, c2, and c3 are constants charac-
terizing the shape of the tuning curve.
(C) Tuning curve half-width versus tuning
curve height (see Experimental Procedures)
for the 20,000 neurons. The ten neurons in
(B) are indicated by dots of the same color
as the corresponding tuning curves. On the
left and top are the corresponding histograms
of half-width and height.
(D) Tuning curve height (top) is significantly
and half-width (bottom) is more weakly corre-
lated with the target firing rate of each cell.

Therefore, despite a large amount of heterogeneity, the ity in both tuning characteristics is evident, but the two
do not appear to be strongly correlated. The main deter-recurrent network as a whole acts as if it was effectively

homogeneous and is able to support a (quasi) continuum minant of the height of the tuning curve of each cell is
its target firing rate, whereas the correlation is weakerof bell-shaped persistent activity patterns.

At the same time, each individual neuron has a special for the tuning curve width (Figure 6D).
In spatial working memory experiments, prefrontalcombination of cellular and synaptic parameters that

varies considerably from cell to cell. Therefore, single neurons were found to display a wide range of tuning
curves. Some are sharply tuned; others are broadlyneurons display a great variety of tuning curves. Ten

examples are shown in Figure 6B. For each neuron, simula- tuned (Funahashi et al., 1989; Chafee and Goldman-
Rakic, 1998). This diversity of spatial selectivity of mne-tion data are fitted by r(�) � c1 � c2(exp(c3cos(2�(� �

�pref)/360)). The amplitude is given by the peak firing rate monic neural activity is reproduced by our model.
Activity-dependent synaptic scaling is therefore effi-minus the baseline, and the tuning width is defined at

60% of the peak amplitude. In Figure 6C, the half-width cient in its homogenization of the working memory net-
work, even in the presence of heterogeneities in theand peak amplitude of the tuning curve from single neu-

rons are plotted against each other (color-coded dots parameters which regulate the scaling process itself.
Thus, it provides a robust solution to the heterogeneitycorrespond to the examples shown in Figure 6B). Also

shown are their histograms. A more than 2-fold variabil- problem in networks with a continuous family of local-
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ized activity patterns. We conclude that this theoretical tent states represents a fundamental and difficult prob-
lem which is the focus of this paper.framework represents a biologically plausible instantia-

tion of spatial working memory at the circuit level.
Uniform Distribution of Long-Term Activity
across the Network

Discussion Effective or functional homogeneity is an essential re-
quirement for spatial working memory function achieved

Using a biologically plausible cortical network model through a quasicontinuum of attractor states. Our re-
of spatial working memory, we studied the effect of sults show that functional homogeneity can be dissoci-
heterogeneity on the active maintenance of spatial infor- ated from homogeneity in network parameters; it can be
mation in the form of persistent localized activity pat- realized by activity-dependent regulatory mechanisms
terns. We found that the network’s memory behavior is even in the presence of cellular heterogeneities. In order
extremely sensitive to even a small amount of heteroge- for such a mechanism to be effective, the distribution
neity. This sensitivity results in the loss of stored infor- of long-term activity across the network has to be unbi-
mation about a stimulus location in just a few seconds ased. This would be the case if the network is exposed
of the mnemonic delay period. The effects of heteroge- to a uniform distribution of spatial cues over a long
neities are still unacceptably large even in networks with period of time. This is a reasonable assumption, since
a realistic number of connections per cell (N �5000 in if a cortical circuit subserves spatial working memory
fully connected networks, and N �20,000, C �2,000 in for the animal, it should be constantly used by the animal
sparse networks). This is partly due to the weak depen- in its daily life, and spatial cues that occur in the real
dence of the effect of heterogeneities on the network world are likely to be uniformly distributed.
size, according to a scaling law �1/√N (Figure 2B), a One may ask whether the required functional homoge-
characteristic feature of disorder in single-cell proper- neity of long-term neural firing rates can be altered by
ties. By contrast, the heterogeneity effect decreases overtraining an animal with a biased nonuniform distri-

bution of cues, for instance, by using only eight stimuli asmuch faster for sparse connectivity (�1/√CN) and for
in a typical ODR experiment. The answer is not obvious,disorder in the synaptic coupling strength (�1/N ).
since it depends on the relative importance of the eightWe found that when a homeostatic synaptic scaling
cues used in the laboratory versus all the cues pro-mechanism was incorporated into the model, robust
cessed by the same working memory circuit in the ani-short-term storage of spatial information could be
mal’s everyday life. Nevertheless, we tested the ro-achieved in spite of biologically plausible levels of heter-
bustness of the homeostatic mechanism in our model,ogeneity. Homeostatic plasticity scales the excitatory
by varying the number of cues used to find the scalingsynaptic inputs to each cell to achieve a similar level of
factors (Figure 4). As expected, we found that scalinglong-term activity for each neuron across the popula-
starts to fail when the number of cues becomes smallertion, a process with a characteristic rate of 25%–50%
than the number of nonoverlapping activity profiles thatchange per 24 hr (Turrigiano et al., 1998). If the overall
fit in the network. Given the typical width of the neuron’ssynaptic input to each cell is roughly the same during
tuning curves, of �90�, scaling ceases to be effectivethis period, the fine-grained (a few percent) adjustment
when only four cues or less are used. However, in theof synaptic strengths by homeostatic scaling results in
context of the task, the use of a very small (two to four)the alignment of the firing frequency versus synaptic
number of items is incompatible with the premise thatinput relationship of single cells with different biophysi-
the network subserves the encoding of an analog quan-cal properties (Figure 3D). This process renders the net-
tity (the spatial location) in a continuous manner. Finally,work effectively homogeneous.
let us emphasize that our simulations with a small num-The homeostatic mechanism is effective even in the
ber of cues were done only to assess the robustnesspresence of a large amount of heterogeneity in the scal-
of the proposed homeostatic mechanism. To properlying process itself (Figure 5). The only substantial effect
investigate the effect of a limited number of stimuli dur-of increasing variability in the target firing rate is a pro-
ing training, the model should take into account the maingressive destabilization of the uniform spontaneous
driving force for learning during the animal’s training,state. For heterogeneities larger than �20%, it sponta-
namely, Hebbian long-term plasticity. Synaptic scalingneously evolves into a bump state (data not shown).
in itself should not be viewed as a learning mechanismThis raises the experimental question of the actual vari-
that creates the persistent firing patterns and deter-ability of long-term (hours to days) firing rate across
mines the animal’s psychophysical performance. In-neurons in a cortical local network. On the other hand,
stead, in addition to Hebbian plasticity, homeostatic reg-it remains to be seen whether, in our model, the sponta-
ulation fine tunes the synapses (by a few percent) toneous state would be more robust with some adjust-
homogenize the network.ments of network parameters or when other forms of

homeostatic mechanisms (see below) are included. Fi-
nally, it is conceivable that bistability between a resting Diversity of Neuronal Responses

In our network, heterogeneities in cellular parametersstate and bump attractors involves additional mecha-
nisms (such as a neural population which acts as a (especially in the target firing rate) lead to a sizable

degree of diversity in stimulus selectivity characteristics,simple bistable switch but with persistent activity which
is not stimulus selective). In any event, elucidating the such as tuning curve height and width (Figures 6B–6D).

It would be interesting to do a quantitative analysiscircuit mechanisms for a continuum of localized persis-
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to estimate if this level of diversity is compatible with networks with a continuum of localized activity profiles.
Future studies are needed to explore the differential/the available neurophysiological data or if additional

sources of diversity are needed. A main source of tuning cooperative roles of these different processes in net-
work homogenization and robust memory behavior.diversity unrelated to random heterogeneities is likely

to be the plurality of cell populations. For example, pyra-
midal neurons and different subtypes of interneurons Robustness in Continuous Attractor Networks
are expected to exhibit different tuning curves (indeed, Robustness represents a major open issue for many
a recent study indicates that fast-spiking putative models of brain systems involved in the internal repre-
interneurons show broader tuning curves than regular- sentation and short-term memory of analog quantities,
spiking putative pyramidal cells [Constantinidis and such as stimulus location (Funahashi et al., 1989) or
Goldman-Rakic, 2002]). It is therefore important to em- frequency (Romo et al., 1999), head direction (Sharp et
phasize that diversity of tuning properties should not al., 2001), eye position (Robinson, 1989), place in the
be expected to arise exclusively from heterogeneity in environment (McNaughton et al., 1996), and possibly
cellular or synaptic properties. The same point applies numerical magnitude (Nieder and Miller, 2003). An accu-
to other forms of diversity of mnemonic activities, such rate way to retain the analog nature of the encoded
as ramping up or ramping down time courses of delay information is by means of a continuum of neuronal firing
period activity (see, e.g., Chafee and Goldman-Rakic, patterns (continuous attractors) (Ben-Yishai et al., 1995;
1998). These various neural firing patterns during the Camperi and Wang, 1998; Compte et al., 2000; Zhang,
delay period are likely to have meaningful computational 1996; Samsonovich and McNaughton, 1997; Seung et
roles (like time integration, planning) and should be dis- al., 2000). However, whether the brain does use a contin-
tinguished from heterogeneity at the cellular or circuit uum of internal representations has not yet been demon-
level. strated. In physiological experiments, discrete sets of

stimuli (e.g., eight spatial cues in working memory exper-
Experimental Questions and Tests iments) are commonly used. This is partly due to the
There are two main general assumptions in our imple- limited time a neuron could be recorded stably while
mentation of the scaling process (described by Equation the complete stimulus set could be sampled. It would
2). The first one is that the goal of this process is to be highly desirable if the encoding scheme of analog
control the long-term activity of the cell, by keeping it stimuli could be rigorously tested in future experiments.
close to some target value. Experiments with neuronal If the brain does use continuous internal representa-
cultures show that the down- and upregulation of synap- tions, then regardless of the particular encoding
tic strengths in response to pharmacologically induced scheme, a fundamental trade off exists between the
prolonged changes in activity tend to restore the stable accuracy of memory maintenance and the fine tuning
activity level that the neurons had before the pharmaco- of network parameters. Our results show that, by using
logical agents were applied (Turrigiano et al., 1998). a feedback signal based on long-term neural activity,
However, it remains to be determined quantitatively homeostatic control mechanisms are able to relax con-
whether firing rates are indeed conserved. Our results straints on a large number of biophysical parameters,
showing that scaling is still effective in the presence of thereby allowing efficient maintenance of information
cell-to-cell fluctuations in target firing rate indicate that when fine tuning is destroyed by biologically plausible
the conclusions of this study would still be valid in the levels of heterogeneity. The present study suggests that
absence of a precise conservation of long-term activity. the interplay between these adaptive processes and the
The second assumption is that scaling takes place in dynamics of recurrent cortical circuits could underlie
each neuron on the basis of information regarding only the robustness of delicate computational and memory
this neuron, in particular, its firing rate. Evidence indi- operations in complex neural networks.
cates that the signal used for the downregulation of
synaptic strength is the average level of postsynaptic Experimental Procedures

depolarization (Leslie et al., 2001), which is a property
The Modelof the single neuron. Additional experiments are needed
The model used has been described in detail in (Compte et al.,to further test this important assumption and to identify
2000). Single neurons are described by the leaky integrate-and-

underlying molecular mechanisms (Rutherford et al., fire model (Tuckwell, 1988); synaptic currents are calibrated by the
1998; Zafra et al., 1991; Wetmore et al., 1994). measurements of excitatory and inhibitory postsynaptic currents in

cortical neurons. We have used the same values for all single-cellAlthough we have only considered one form of activ-
and synaptic parameters as those listed in Compte et al. (2000),ity-dependent regulation, it is conceivable that the ho-
except for the value of the four recurrent synaptic conductances.meostatic process involves a regulatory network with
There are NE and NI excitatory and inhibitory cells in the network.multiple interconnected components, including those
In the fully connected simulations, we set NI � NE /4, and the values

affecting intrinsic membrane properties (ion channels) of the four unitary maximal synaptic conductances were NMDAR-
(Marder, 1998; Desai et al., 1999; Stemmler and Koch, mediated conductance to pyramidal cells GEE � 0.931/NE �S and

interneurons GEI � 0.75/NE �S, and GABAAR-mediated conductance1999), presynaptic mechanisms (Murthy et al., 2001;
to pyramidal cells GIE � 1.024/NI �S and interneurons GII � 0.825/Burrone et al., 2002), and strength of inhibitory synapses
NI �S. In some simulations, the connections within the pyramidal(Soto-Treviño et al., 2001; Kilman et al., 2002). Another
cell population were random and sparse. In these simulations, themechanism which should be explored is the contribution
probability of connection p(�i � �j) between two excitatory neurons

of bistability at the single-cell level (Camperi and Wang, i and j decreases with the difference between their preferred cues.
1998; Lisman et al., 1998; Koulakov et al., 2002; Stringer We used the same functional form for p(�i � �j ) as the spatial connec-

tivity in the fully connected network (Compte et al., 2000) but withet al., 2002; Egorov et al., 2002) to the robustness of
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a prefactor chosen so that �
j
p(�i � �j) � CE. Since the connection neous network (when U(�) is flat and dU(�)/d� � 0), the simple model

reproduces the random walk process of the original spiking network
is all or none, CE is the average number of synaptic connections

of size N (Compte et al., 2000).
per cell. In all our sparse simulations CE � 0.1NE . If any two pyramidal
cells happened to be connected, their synaptic connection had

Calculation of the Two-Dimensional Saccade Distributionsmaximal NMDAR-mediated maximal conductance of GEE �0.931w,
Although our model is one dimensional, we show the distributionwhere w is a random gaussian variable (independent for each syn-
of peak locations after 6 s of delay in Figure 2C in two dimensions,apse) with mean 1/CE and standard deviation 0.1/CE. In these simula-
to ease the visual comparison with the behavioral data on the spatialtions, NI � CE /4.
distribution of memory-guided saccades (e.g., Figure 1 in ChafeeA mean-field version of the model (described in detail in Brunel
and Goldman-Rakic, 1998). To do this, we fix the eccentricity onand Wang [2001]) was also used. The mean-field calculation we use
the two-dimensional plane. For each of the eight stimuli, we calcu-expresses the instantaneous firing rate of the cell as a function of
late the mean angular location of the bump state after 6 s acrossthe statistical properties of its inputs, as determined by the mean
the 100 trials. Each particular trial is then located at a randomlyand the fluctuations in its synaptic currents mediated by NMDA-,
chosen position on a circle, with the center at the mean locationAMPA-, and GABAA receptors.
and a radius equal to the distance between the mean and the finalHeterogeneity in a cellular parameter is introduced using a random
peak location of the bump in that trial.distribution across the network. When the heterogeneity is in a

voltage parameter such as the resting potential VL or spike threshold
Steady State of the Scaling ProcessVth, what matters is the magnitude of heterogeneity (the standard
To find the steady-state scaling factor for each cell, we used thedeviation) compared to (Vth � Vreset) � �50 � (�60) � 10mV. Hence
mean field version of the model. For the particular realization of thethe percentage of heterogeneity is expressed relative to 10mV, e.g.,
network parameters under study, we created Nrep identical replicas10% means 1mV.
of this network. In each replica, a very weak, spatially localized
current was persistently applied at some location to anchor theThe Local Average Excitability U(�)
corresponding bump state. The location of the anchored bump stateThe function U(�) represents the local average excitability around
in the ith replica was i360�/Nrep, where i � 1,…, Nrep. Thus, if each�. To calculate it, we first quantify the excitability E(�) of each cell.
network was made of N neurons, NNrep equations were integratedIntuitively, we measure the excitability of a cell as its long-term
simultaneously to simulate the time evolution of the firing rate ofaverage firing rate over a long period of time when the distribution of
each neuron in each replica. N additional equations for synapticspatial stimuli processed by the network is assumed to be unbiased.
scaling (Equation 2) were also simultaneously integrated. The scal-Specifically, for each neuron the average is performed for its firing
ing process was said to have reached steady state when allrate over Nc � 256 bump states, each with the same synaptic input
N(Nrep �1) dynamical variables had converged numerically. Typi-profile as in the homogeneous network but with different peak loca-
cally, we used Nrep � 8, 20, 40.tions interspaced by 360�/Nc. Since the bump is displaced one full

circle, the complete set of excitatory synaptic inputs {Ii}, i � 1, 2,...,
Fitting of Single-Neuron Tuning CurvesNc, is the same for every neuron. The excitatory synaptic inputs
The tuning curves in Figure 6 were calculated by fitting the 20 firingspanned by this set correspond to the range of excitatory synaptic
rates for each neuron from the simulations in Figure 6A with theinputs used in Figure 5D. According to this definition, cell �1 is more
four parameter curve r(�) � c1 � c2(exp(c3cos(2�(� � �pref)/360)).excitable than cell �2 if, given the set of synaptic inputs {Ii}, the long-
We defined the height as c2(exp(c3) � exp(�c3)) and the half-widthterm firing rate of �1 is larger than that of �2. Since the distribution of
at approximately 60% of the peak firing rate by solving  from thesingle-cell parameters is random across the network, E(�) fluctuates
equation exp(c3cos(�/360)) � exp(�c3) � exp(�0.5) (exp(c3) �abruptly from one cell to another. To calculate U(�), we smooth out,
exp(�c3)).or average locally, the function E(�). We found empirically that a

good agreement between the simple model Equation 1 and direct
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