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Recent studies have shown that reverberation underlying mnemonic
persistent activity must be slow, to ensure the stability of a working
memory system and to give rise to long neural transients capable of
accumulation of information over time. Is the slower the underlying
process, the better? To address this question, we investigated 3 slow
biophysical mechanisms that are activity-dependent and prominently
present in the prefrontal cortex: Depolarization-induced suppression
of inhibition (DSI), calcium-dependent nonspecific cationic current
(ICAN), and short-term facilitation. Using a spiking network model for
spatial working memory, we found that these processes enhance
the memory accuracy by counteracting noise-induced drifts, hetero-
geneity-induced biases, and distractors. Furthermore, the incorpor-
ation of DSI and ICAN enlarges the range of network’s parameter
values required for working memory function. However, when a pro-
gressively slower process dominates the network, it becomes
increasingly more difficult to erase a memory trace. We demonstrate
this accuracy–flexibility tradeoff quantitatively and interpret it using
a state-space analysis. Our results supports the scenario where
N-methyl-D-aspartate receptor-dependent recurrent excitation is the
workhorse for the maintenance of persistent activity, whereas slow
synaptic or cellular processes contribute to the robustness of
mnemonic function in a tradeoff that potentially can be adjusted
according to behavioral demands.
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Introduction

Working memory is thought to be represented by persistent
activity (Fuster and Alexander 1971; Gnadt and Andersen
1988; Funahashi et al. 1989; Amit 1995; Goldman-Rakic 1995;
Miller et al. 1996; Romo et al. 1999; Wang 2001; Major and
Tank 2004). Such activity patterns are likely sustained by posi-
tive feedback processes in a neural circuit, but the precise me-
chanisms remain unresolved. Computational models stressed
the role of recurrent synaptic excitation (Amit 1995; Amit and
Brunel 1997; Camperi and Wang 1998; Durstewitz et al. 2000;
Brunel and Wang 2001) that depends on the N-methyl-
D-aspartate (NMDA) receptors (Wang 1999; Compte et al. 2000;
Lim and Goldman 2013), a prediction supported by findings
from a recent experiment (Wang et al. 2013).

Other synaptic and cellular process, present in the prefrontal
cortex (PFC), are likely involved in mnemonic persistent activ-
ity, including short-term facilitation (STF; Hempel et al. 2000;
Wang et al. 2006; Mongillo et al. 2008; Szatmary and Izhikevich
2010; Hansel and Mato 2013), depolarization-induced suppres-
sion of inhibition (DSI; Carter and Wang 2007), and calcium-
dependent nonspecific cationic current (ICAN; Egorov et al.
2002; Tegnér et al. 2002; Fransén et al. 2006; Yoshida and

Hasselmo 2009; Kulkarni et al. 2011; Kalmbach et al. 2013).
STF and ICAN provide feedback excitation, whereas DSI is a dis-
inhibition process. All are activity-dependent, thus become se-
lective for neurons that show elevated persistent activity.
Furthermore, these mechanisms operate with biophysical time
constants much slower than the NMDA receptor-mediated syn-
aptic excitation. Therefore, the long-standing question (Major
and Tank 2004) has gained urgency: What may be the relative
contributions to working memory function of these slow syn-
aptic and cellular processes versus the recurrent network
mechanism?

We analyzed the role of slow biophysical processes in mne-
monic persistent activity, using a biologically based continuous
spiking circuit model for spatial working memory. This model
system is endowed with a resting state and a continuum of spa-
tially tuned persistent activity patterns (“bump attractors”) for
memory storage of an analog quantity such as spatial location
(Camperi and Wang 1998; Compte et al. 2000; Gutkin et al.
2001; Laing and Chow 2001; Renart et al. 2003; Carter and Wang
2007; Wei et al. 2012; Murray et al. 2014). During a mnemonic
delay period, a bump attractor drifts over time (Compte et al.
2000; Carter and Wang 2007; Murray et al. 2014), resulting
in random deviations of the memory away from the
to-be-remembered sensory cue. Additionally, heterogeneity in
single neurons disrupts the continuous family of attractors
(Ben-Yishai et al. 1995; Tsodyks and Sejnowski 1995; Zhang
1996), leading to systematic drifts of memory trace (Renart et al.
2003; Itskov et al. 2011). Furthermore, the system may be per-
turbed by external distractor stimuli. Interestingly, we found
that while STF, DSI, and ICAN enhance the accuracy of a memory
trace, they hinder rapid memory erasure and network reset. The
latter is functionally desirable, since behavior demands that
brief transient inputs should be sufficient to switch a working
memory system from its resting state to a memory state or vice
versa (Compte et al. 2000; Gutkin et al. 2001). Therefore, our
study reveals a fundamental tradeoff between robustness and
flexibility of working memory function instantiated by slow
neurobiological mechanisms in a recurrent network.

Materials and Methods
In an oculomotor delayed response (ODR) task, the sensory stimulus
is a visual cue and the motor response is a saccade to the cued location.
A subject is briefly shown a visual cue that must be remembered
during a delay period of a few seconds. This memory is subsequently
used to perform a memory-guided behavioral response (the saccade).
During the delay period, many neurons in the dorsolateral PFC show
high persistent activity that is spatially selective (Funahashi et al.
1989). The present work uses a spiking network model for the ODR
task that has been tested thoroughly (Compte et al. 2000; Carter and
Wang 2007; Wei et al. 2012; Murray et al. 2014). The parameters were
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modified starting with the original “control parameter set” in Compte
et al. (2000). The model consists of a population of excitatory pyram-
idal cells and a population of inhibitory interneurons. Pyramidal cells
are arranged in a ring-like fashion and labeled by their preferred cue
direction, from 0 to 360°. A schematic of the network structure is
shown in Figure 1A.

Single Neuron Model
Both pyramidal cells and interneurons are modeled as leaky integrate-
and fire-units (Tuckwell 1988). Each type of cell is characterized by
total capacitance Cm, total leak conductance gL, leak reversal potential
VL, threshold potential Vth, reset potential Vres, and refractory time τref.
The values that we use in the simulations are Cm = 0.5 nF, gL = 25 nS,
VL =−70 mV, Vth =−50 mV, Vres =−60 mV, and τref = 2 ms for pyram-
idal cells; and Cm = 0.2 nF, gL = 20 nS, VL =−70 mV, Vth =−50 mV,
Vres =−60 mV, and τref = 1 ms for interneurons. The subthreshold
membrane potential, V(t), follows:

Cm
dV ðtÞ
dt

¼ �gLðV ðtÞ � VLÞ � IsynðtÞ
where Isyn(t) is the total synaptic current to the cell.

Synaptic Interactions
The network consists of NE = 2048 pyramidal cells and NI = 512 inhibi-
tory interneurons. Neurons receive recurrent, background, and external
inputs. Excitatory synaptic currents are mediated by 2-amino-3-
(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid receptors (AMPARs)
and NMDARs, and inhibitory synaptic currents are mediated by
γ-aminobutyric acid type A receptors (GABAARs). The total synaptic
current to each neuron is

Isyn ¼ INMDA þ IAMPA þ IGABA þ Iext
where Iext delivers stimulus input to pyramidal cells. The dynamics of
synaptic currents for neuron i follow:

Ii;AMPA ¼ ðVi � VEÞ
X
j

g ji;AMPAs j;AMPA

Ii;NMDA ¼ ðVi � VEÞ

P
j
g ji;NMDAs j;NMDA

1þ ½Mg2þ� expð�0:062Vi=mVÞ=3:57

Ii;GABA ¼ ðVi � VIÞ
X
j

g ji;GABAs j;GABA

where VE = 0 mV and VI =−70 mV and gji,syn denotes the synaptic
conductance strength on neuron i from neuron j. NMDAR-mediated
currents exhibit voltage dependence controlled by the extracellular
magnesium concentration [Mg2+] = 1 mM (Jahr and Stevens 1990).

Given a spike train {tk} in the presynaptic neuron j, the gating vari-
ables sj,AMPA and sj,GABA for AMPAR- and GABAR-mediated currents,
respectively, are modeled as:

ds
dt

¼
X
k

dðt � tkÞ � s
ts

The gating variable sj,NMDA for NMDAR-mediated current is modeled as:

dx
dt

¼ ax

X
k

dðt � tkÞ � x
tx

ds
dt

¼ asxð1� sÞ � s
ts

with αx = 1 (dimensionless), τx = 2 ms, and αs = 0.5 kHz. The decay time
constant τs is 2 ms for AMPA, 10 ms for GABA, and 100 ms for NMDA.
For simplicity, background inputs are mediated entirely by AMPARs,
and recurrent excitatory inputs are mediated entirely by NMDARs, as
they are critical for the stability of persistent activity (Wang 1999;

Compte et al. 2000; Wang et al. 2013). All cells receive background exci-
tatory inputs from other cortical areas. This overall external input is
modeled as uncorrelated Poisson spike trains to each neuron at a rate of
νext = 1800 Hz per cell, with AMPAR maximal conductances of 3.1 nS on
pyramidal cells and 2.38 nS on interneurons.

Network Connectivity
As stated above, pyramidal cells are organized in a ring architecture
and are tuned to the angular location on a circle (0–360°, Fig. 1A), with
uniform distribution of their preferred angles. The network structure
follows a columnar architecture, such that pyramidal cells with similar
stimulus selectivity are preferentially connected to each other. The syn-
aptic conductance on neuron i from neuron j, gji,syn =W(θj− θi)Gsyn,
where θi is the preferred angle of neuron i, and W(θj− θi) is the
connectivity profile normalized such that:

1
360W

Ð 360W

0W W ðuÞdu ¼ 1

For pyramidal-to-pyramidal connections, W(θj− θi) = J−+ (J+− J−) exp
[−(θj− θi)

2/2σ2]. We use J+ = 1.62 and σ = 14.4°. J− is determined using
the normalization condition of W. All other synaptic connection pro-
files are unstructured. Synaptic conductance strengths are given by
GEE = 0.381 nS, GEI = 0.292 nS, GIE = 1.336 nS, GII = 1.024 nS.

Stimulus
Inputs are modeled as an injected current with a Gaussian profile,
I(θ) = I0 exp[−(θ− θc)

2/2σI
2], where the maximum current I0 = 200 pA,

except otherwise noted. θc is the stimulus location, and the width
parameter σI = 18°.

Slow Calcium-Dependent Nonspecific Cationic Current
ICAN can trigger a sustained depolarization outlasting the stimulus for
several seconds (Haj-Dahmane and Andrade 1998; Strübing et al. 2001;
Egorov et al. 2002; Tegnér et al. 2002). The activation of this current
requires a rise in intracellular calcium. In some simulations (results in
Figs 2, 4, and 5), ICAN was added to the network model (described
above) according to the following equation (Tegnér et al. 2002):

ICAN ¼ �gCANm
2
CANðV � ECANÞ

dmCAN

dt
¼ fCAN � m1ð½Ca2þ�Þ �mCAN

tCANð½Ca2þ�Þ
� �

m1ð½Ca2þ�Þ ¼ a½Ca2þ�2
a½Ca2þ�2 þ b

tCANð½Ca2þ�Þ ¼ 1

a½Ca2þ�2 þ b

with gCAN = 1.5 nS, ECAN = -20 mV, β = 0.002 ms−1, α = 0.0056 ms−1

μM−2. φCAN is used to adjust the effective time constant of ICAN, without
changing the steady-state levels of activity.

Calcium influx to pyramidal cells is triggered by spikes and obeys
first-order kinetics as follows (Liu and Wang 2001):

d½Ca2þ�
dt

¼ aCa

X
i

dðt � tiÞ � ½Ca2þ�
tCa

When an action potential fires (at time ti), [Ca
2+] is incremented by αCa

(0.2 μM). The calcium concentration decays back to zero exponentially,
with a time constant τCa (240 ms).

Depolarization-Induced Suppression of Inhibition
DSI is detected in various regions of the brain (Llano et al. 1991; Pitler
and Alger 1992; Trettel and Levine 2003). DSI is dependent on endo-
cannabinoids that are released by active pyramidal cells, triggered by
calcium influx (Ohno-Shosaku et al. 2001; Wilson and Nicoll 2001;
Wilson et al. 2001). These endogenous cannabinoids retrogradely
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activate type 1 cannabinoid receptors (CB1R) located on the axon
terminals of interneurons that coexpress GABA and cholecystokinin
(Katona et al. 1999; Marsicano and Lutz 1999). The activation of CB1R
results in the suppression of transmitter release to postsynaptic pyram-
idal cells.

DSI was added to the network model (Figs 3–5) as previously de-
scribed in Carter and Wang (2007) and the same parameters were
used, unless noted otherwise. Briefly, the inhibitory synaptic conduct-
ance gGABA to a pyramidal cell is multiplied by a factor D, which is pro-
portional to the fraction of inhibitory synapses that are sensitive to
cannabinoid and their presynaptic release probability. D varies
between 0 and 1. There is no DSI effect if D is set to 1. DSI is the frac-
tional reduction in inhibitory event size or frequency. The dynamics of
D are described by the following equation (Carter and Wang 2007):

dD
dt

¼ fD � 1�D
tD

� bD � ½Ca2þ� � ðD � DminÞ
� �

where [Ca2+] represents the intracellular calcium concentration in the
pyramidal cell and has the same kinetics as ICAN. When [Ca2+] accumu-
lates, D decreases with a rate controlled by βD (1.66 × 10−5 μM−1 ms−1,
leading to disinhibition. D is bounded below at Dmin, which deter-
mines the maximum disinhibition and biophysically corresponds to
the maximum number of synapses that are cannabinoid-sensitive
multiplied by the maximal reduction in release probability at each
synapse due to DSI. Unless stated otherwise, Dmin was set to 0.96, cor-
responding to a maximum DSI of 4%. When the pyramidal cell ceases
to be active, D recovers back to a maximal value of 1 with a time con-
stant τD (16.7 s). The factor φD accounts for temperature sensitivity and
was used to adjust the effective time constant of DSI without changing
the steady-state levels of activity.

Short-Term Facilitation
In simulations where we incorporated STF (results in Figs 6–8), only
the recurrent excitatory synapses are facilitatory. To implement STF,
the parameter αx is multiplied by F, which is the facilitation factor and
obeys the following dynamical equation (Matveev and Wang 2000):

dF
dt

¼ aF

X
i

dðt � tiÞð1� FÞ � F
tF

The parameter αF controls the facilitation potency and was set at
0.6. The facilitation factor F changes smoothly during a spike, but
undergoes a discrete jump in the limit of approximating the spike by a
delta function. In the numerical simulation, F is updated at each spike
time as: F+ = 1− (1− F−) e−αF, where F− and F+ correspond to the
values just before and after the spike, respectively.

Parameter Change
A key manipulation in our study is to gradually change the timescale of
a biophysical process. For ICAN, we varied the parameter φCAN, which
scales the speed of the channel kinetics without affecting the averaged
steady-state level of the activity variable mCAN. Similarly, we varied the
parameter φD to systematically change the time constant of DSI while
preserving the average level of the activity variable D. Unlike ICAN or
DSI, for STF the activity variable F undergoes discrete jumps in time
and what matters is its value immediately after each jump due to a pre-
synaptic spike, rather than the temporal average. For this reason, we
varied τF directly (see Results for more details).

When a slow mechanism is added to a network model, the overall
level of activity of the excitatory population changes significantly, to a
degree correlated to the nature and strength of the mechanism. This
changes the shape of a population activity pattern and may even
disrupt its stability. For this reason, when ICAN, DSI, or STF were
present in the model, GEE was adjusted from 0.381 to 0.378, 0.379, or
0.383 nS, respectively. This way, the network maintained consistently
a fixed steady-state activity across all simulations, allowing a fair com-
parison between scenarios.

Analysis of Simulation Data
To determine the remembered cue location at any given time, we used
the population vector, which is a simple readout of the peak location
of a spatially tuned persistent activity pattern (Georgopoulos et al.
1982).

The minimum time to shutdown (tSHUT,MIN), in Figures 2E, 3E, and
6A, was determined as follows. For each time constant (τ), a range of
shutdown pulse durations (tSHUT) was considered. For each τ and
tSHUT, a set of model simulations was run, where an inhibitory input
current lasting for tSHUT was applied when the network was in a bump
attractor state. At the end of each simulated trial (seconds after pulse
offset), whether the bump state was still present or not was judged
through the maximum of the firing rate profile. If >95% of simulations
of a set yielded successful shutdowns, the corresponding pulse dur-
ation was accepted. Finally, for each τ, tSHUT,MIN was chosen as the
minimum of those accepted pulse durations.

Bistability Analysis and Bifurcation Diagrams
To plot the bifurcation diagrams in Figures 4 and 7B, we ran simula-
tions across a range of values for the varied parameter (GEE and F
profile, respectively) with and without cue input and measured the
firing rate during the delay. The maximum firing rate across the
network indicated whether the system had evolved to the memory
state (typically >20 Hz) or remained at the baseline state (<5 Hz).

The simulations presented in Figure 7 were obtained with a modi-
fied model where the facilitation factor F is not a variable but is treated
as a parameter with a particular spatial profile, obtained as follows. For
τF = 1 s, we determined the F profile at the onset of a shutdown input,
averaged over a number of trials from previous simulations where F
was a variable (τF = 1 s, N = 400 trials, Fig. 7A, black curve). During the
shutdown period, there is no spiking activity and F simply decays ex-
ponentially with τF. To reproduce this process, new F profiles were
mathematically determined by decay of the original profile for periods
of 4–328 ms, in 4 ms steps (gray profiles in Fig. 7A, only 16 examples
are shown). Similar procedures were applied to τF = 0.5, 2, 3, and 4 s.
The profiles for longer τF are broader, as seen in Figure 6B. These facili-
tation profiles were supplied to the population of excitatory cells. Note
that in both versions of the model relevant for these simulations (F as a
variable or as a parameter), the stimulus was presented at the same
location (180°).

SimulationMethod
The model was implemented in python in the Brian simulator
(Goodman and Brette 2009). The equations were integrated using a
second-order Runge-Kutta algorithm (time step = 0.02 ms). The simula-
tions were carried out in the cluster facilities of the Yale University
Biomedical High Performance Computing Center.

Results

Our working memory model was designed for an ODR task,
which proceeds from cue (angle) presentation, to a delay
period and memory-guided behavioral response. The cue
stimulus activates a group of pyramidal neurons with preferred
directions around the sensory cue (first step current, lower
panel of Fig. 1B). If the firing rate of this subpopulation of
neurons is sufficiently elevated and mutual excitation among
them is strong enough, reverberation can give rise to self-
sustained persistent activity after the stimulus offset (plateau
in Fig. 1B, upper panel; Wang 2001). At the end of the delay, a
negative input is applied to all excitatory neurons in the
network (Fig. 1B, lower panel, second step current). This shut-
down pulse should be sufficient long to switch the network
back to the baseline resting state.

The spatiotemporal activity pattern of the network model is
shown in Figure 1C (left panel). The memory trace is encoded
as a population activity pattern that persists during the delay
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period. The spatial profile of the bump state, corresponding to
the activity during the delay period, has a typical Gaussian
shape (Fig. 1C, right panel). The population vector (shown in
yellow) quantifies the peak location of the bump attractor as
the internal representation of the sensory cue at any instant. In
this example, the remembered cue location fluctuates slightly
around the initial cue (180°) and remains reasonably close to it
at the end of the delay period. Consequently, in this trial, the
PFC circuit model successfully encodes and maintains a spatial
memory trace, leading to an accurate readout.

Dominant Time Constant Determines Memory Accuracy
The analysis of simulations across trials reveals that the remem-
bered cue (the population vector) as encoded by the network
activity pattern displays random drifts over time (Fig. 1D). This
is because the system is endowed with a continuous family of
bump attractors, each for a directional angle as an analog quan-
tity. During a delay period, irregular neural activity leads to
random shifting of the network state among those bump

states. At the end of a trial, if the drifts have grown over time
greatly, the remembered cue location could be located signifi-
cantly away from the sensory cue angle. This is shown in some
trials of Figure 1D, with deviations of >20°. These simulations
therefore show a relatively low accuracy of memory representa-
tion, which implies poor performance. Note that, across trials,
the average of random drifts is zero (i.e., there is no systematic
drift), whereas the variance increases roughly linearly over
time (Camperi and Wang 1998; Compte et al. 2000; Renart
et al. 2003; Carter and Wang 2007). This variance of population
vector (VPV) quantifies the magnitude of random drifts, which
we used as a measure to assess the network’s function: the
smaller is the VPV, the more accurate is the representation of a
memory trace, and the better is the behavioral performance.

A key ingredient in our working memory model is that per-
sistent activity is stabilized by slow reverberation mediated by
the NMDARs at the recurrent excitatory synapses (Wang 1999).
The NMDAR-dependent synaptic current has a time constant τS
on the order of 50–100 ms. We hypothesized that, the longer is
τS, the more robust will be the memory trace. To test this

Figure 1. Persistent activity and random drifts of a memory trace in a spiking network model for spatial working memory. (A) Schematic of the network connectivity (all-to-all)
between the excitatory (blue circles) and inhibitory (yellow circle) neurons. Light gray and black connectors indicate, respectively, excitatory and inhibitory synapses. Each excitatory
cell is selective for a direction (black arrows), and the strength of connection between 2 excitatory cells is a decreasing function of the difference in their preferred directions. (B)
Lower panel: applied current to excitatory cells. The first positive step current corresponds to cue presentation. The second negative current represents a shutdown signal. Upper
panel: average firing rate of a group of 200 neurons (with preferred directions around cue location) during a trial. The activity ramps up during cue presentation, persists during delay,
and is reset to a spontaneous baseline by the shutdown pulse. (C) Left panel: spatiotemporal pattern of excitatory cells of the same simulation as in (A) (cue presented at 180°).
Each dot represents a spike. The yellow line is the population vector, which traces the peak of the bell-shaped persistent activity pattern (bump attractor) as the internal
representation of the cue location. Right panel: Population firing profile, averaged over the delay period. (D) Remembered cue as measured by the population vector from 20 sample
trials with the same cue location. The memory traces drift away from the initial cue during the delay, the VPV across trials quantifies this deviation so that the smaller is the VPV, and
the more accurate is the memory readout. (E) Drift magnitude at 5–6 s of the delay period, as measured by the VPV (N= 500 trials), is plotted as a function of the time constant of
the NMDAR-mediated synaptic excitation τS. The VPV decreases steeply with increasing τS; the fitting line is an exponential function for ease of eye inspection.

4 Slow Mechanisms in Working Memory Model • Pereira and Wang

 at N
ew

 Y
ork U

niversity on Septem
ber 25, 2014

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/


possibility, we gradually varied the value of the NMDAR decay
time constant, and measured the variance of the remembered
cue location during a delay interval across hundreds of trials.
The VPV decreases with increasing τS (Fig. 1E). The VPV is
206.2 deg2 with τS equal to 100 ms. A substantial reduction in
the VPV is observed when τS is increased 3-fold (300 ms,
σ2 = 61.5 deg2). This result serves as a proof-of-principle of the
idea that extending the dominant time constants decreases
random drifts of persistent activity and improves the accuracy
of memory representation. In the following, we will consider 3
slow, biophysically plausible mechanisms that are present in
the PFC and may improve working memory function.

ICAN Increases Memory Stability but Decreases System
Flexibility
Figure 2A shows the spiking activity of an integrate-and-fire
single neuron model endowed with the slow inward current

ICAN. An external current results in action potentials that
induce calcium influx, which in turn activates ICAN. After the
stimulus offset, the activation of ICAN decays slowly, which
allows it to provide positive feedback that is enough to trigger
a few additional spikes (afterdischarges). It is worth noting
that we assumed that ICAN is not sufficiently strong to produce
stable persistent activity in an isolated neuron (Fig. 2A), and
we were interested in examining the contribution of the
activity-dependent ICAN in single neurons to the maintenance
of a persistent firing pattern in a recurrent working memory
circuit.

We ran simulations with ICAN present in excitatory cells and
measured the VPV of the delay period memory trace across
trials. We tested 2 different values of max τCAN that lie within the
experimentally measured range (Partridge and Valenzuela 1999;
Faber et al. 2006; Gross et al. 2009; Sidiropoulou et al. 2009).
With a shorter max τCAN (1 s), the VPV increases quasi-linearly
with time (Fig. 2B, black curve). In contrast, with max τCAN = 3 s,

Figure 2. Tradeoff between memory accuracy and flexibility with ICAN. (A) An integrate-and-fire neuron model endowed with ICAN. A step current (bottom panel) induces initial firing
activity (upper panel). Each spike triggers a small calcium influx (middle upper panel), which leads to a slow activation of ICAN (middle lower panel). When the applied current stops,
the high level of ICAN activation is sufficient to induce afterdischarge of spikes. (B) Variance of the remembered cue location (VPV) during the delay period with max τCAN of 1 (black
trace) and 3 (red trace) s (N= 500 trials). A longer time constant leads to smaller random drifts after an initial time needed for the mechanism to take effect. (C) With max
τCAN = 500 ms, a negative pulse of 200 ms to excitatory cells is required in order to shutdown the bump state at the end of delay. Lower panel shows applied current with 2
negative pulses of lasting 100 (red) and 200 (blue) ms. Middle and upper panels: the average population firing rates and ICAN activation, respectively, of 200 cells in the bump state
around the initial cue location, under the 2 conditions (the same color scheme, N= 10 trials). With 100 ms, ICAN activation decays by a small amount but immediately increases
after the shutdown input is over, providing the necessary positive feedback for the return of the high-firing memory state. After a longer shutdown pulse (200 ms), the activation
decays to such an extent that ultimately leads to the resting state. (D) State space analysis with the population rate and the ICAN activation shown in (C) plotted against each other
in phase space. Each trajectory corresponds to a trial and starts immediately at the shutdown pulse offset. Red trajectories evolve to the bump attractor; blue proceed to shutdown
(resting state). There is a clear diagonal boundary that separates the 2 attractors (dashed black curve), suggesting the presence of an unstable manifold. (E) Tradeoff between
decrease in variance of remembered cue location (VPV) and minimum time to shutdown (tSHUT,MIN), with increasing max τCAN. Open circles were determined as in Figure 1E, with
max τCAN between 50 ms and 4 s. Filled circles express tSHUT,MIN (see Materials and Methods) (N= 500 trials). The 2 data sets are fitted as a sum of 2 exponentials (VPV) or as a
simple exponential (tSHUT,MIN). A compromise corresponds to an optimal value of max τCAN≈ 1.5 s.
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the VPV shows a pronounced increase during the first second of
the delay period and then plateaus in the range 10–15 deg2

(Fig. 2B, red curve). A possible explanation for the initial rise in
drifts (which is not visible for max τCAN = 1 s) is that, with a
slower time constant, the ICAN takes longer to be activated and
does not provide robustness against drifts as promptly. The
crossover between the 2 time courses shows that shorter τCAN is
more advantageous for shorter delay periods, whereas slower
τCAN increases memory accuracy in longer delays.

The increase in memory robustness provided by ICAN,
however, is just one of the effects this current has in the
working memory model; the incorporation of a slow mechan-
ism also makes it harder to erase memory. At the end of a
delay period, memory erasure was simulated using a negative
current input to all excitatory cells, which completely silences
the network. If this pulse is not sufficiently long, the network
returns to the memory state, with high ICAN activation and ele-
vated neural firing (Fig. 2C, red traces, 100 ms pulse). With a
longer shutdown pulse, in contrast, ICAN deactivates to a suffi-
ciently low level that does not allow the return of the high
spiking activity and the network is switched off from a bump
attractor state (Fig. 2C, blue traces, 200 ms pulse).

To further demonstrate the role of ICAN in the memory erasure
process, we studied the dependence between this current’s acti-
vation and the activity level of the network. We recorded simul-
taneously the activation variable of ICAN (mCAN) and the firing
rate of the network and plotted them in a state space, for several
trials (Fig. 2D). We only recorded neurons around the cue loca-
tion and in simulations that successfully maintained a memory
during the delay. All trajectories initiate immediately after the
shutdown (“pulse offset”). There is a clear divergence between 2
kinds of traces: In a given trial, the system’s trajectory either
revert back to the memory state (red traces, “bump”) or decays to
the resting state (blue traces, “shutdown”). A boundary (dashed
line) separates the regions of attraction of the 2 states. This result
shows that even though a relative weak ICAN [which by itself
does not yield persistent activity in a single neuron (Fig. 2A)]
does not determine whether a network generates persistent
activity per se, it can have a remarkably significant impact on the
network’s behavior.

Therefore, ICAN stabilizes the memory trace by reducing
memory drifts over time; at the same time it renders the
network less flexible, that is, it may be harder to load inputs
and discard old memories. This accuracy–flexibility tradeoff

Figure 3. Tradeoff between memory accuracy and flexibility with DSI. (A) Schematic of network model of spatial working memory endowed with DSI. This mechanism is
implemented as a cell-specific reduction in inhibitory input conductance. Adapted from Carter and Wang (2007). (B) Left panel: spatiotemporal pattern of excitatory cells endowed
with DSI (τD = 5 s). Cue was presented at 180° during the 0.75–1 s interval. A shutdown pulse of 500 ms was applied at 8 s. The yellow lines represent the remembered cue
location during delay and after shutdown pulse. Right panel: population firing profiles, averaged over the delay period (blue) or over the last second of the simulation (red), showing
that the bump state survives the shutdown input and the memory trace is not erased. (C) Spatiotemporal representation of the activation variable (D) of DSI (inverted scale, 1
means no DSI) of the same trial. Only the (D) value of 41 cells (recorded equidistantly in the network) is plotted. The lingering DSI trace, visible after the shutdown pulse, is
sufficient to induce the re-emergence of the bump state (in B). (D) The accuracy–flexibility tradeoff with DSI. The variance of the remembered cue location (VPV) during the delay
period with effective τD of 1 (black trace) and 5 (red trace) s (N= 500 trials). In the former scenario, the VPV keeps increasing almost linearly. In contrast, in the latter, it stabilizes
after an initial period of 2 s. (E) Tradeoff between decrease in the VPV (open symbols) and tSHUT,MIN (closed circles), as τD is increased from 50 ms to 5 s (N=500 trials). The VPV
was determined during 2 intervals of the delay period: 5–6 s (open circles, same as Figs 1E and 2E) or 12–13 s (open squares). The data sets were fitted by solid curves for eye
inspection.
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was demonstrated more explicitly when we varied max τCAN
parametrically (Fig. 2E). The increase in max τCAN decreases
the variance of the remembered cue location (the VPV, open
circles), but increases the minimum time required to shutdown
the network (filled circles). A “sweet spot” corresponds to the
crossover point of the 2 curves (max τCAN = 1–2 s), where the
VPV is close to the minimum while tSHUT,MIN is reasonably
short (a few hundreds of milliseconds). However, an optimal
compromise for a working memory circuit could be different
depending on the functional demand that may emphasize
either accuracy or flexibility.

DSI Also Shows Tradeoff Between Accuracy
and Flexibility
DSI is a cannabinoid-dependent process through which synap-
tic inhibition to excitatory neurons is reduced by the magni-
tude of DSI, which in turn is controlled by the activity of the
same E cells (Fig. 3A). Thus, for each neuron, a higher level of
excitation leads to a weaker inhibition, resulting in an effective
positive feedback. In the control network employed in this
study, the recurrent excitation mostly mediated by the NMDAR
is balanced by lateral inhibition, which prevents the outburst
in activity. The incorporation of DSI only reduces inhibition by
a modest degree (controlled by the parameter Dmin) and does

not significantly alter the balance E/I. As a result, the firing
activity remains at reasonable levels without diverging.

The cells that are most active during an ODR task are those
around the peak of the bump activity pattern (Fig. 3B, cue loca-
tion at 180°). Therefore, due to its activity-dependence, DSI is
the strongest in this group as well. This is depicted in the blue
region of the spatiotemporal activity pattern in Figure 3C (note
the inverted scale, with hotter colors representing less DSI acti-
vation). This creates a favorable bias for the network at the lo-
cation of the sensory cue, thereby reducing spontaneous drift
and stabilizing the neuronal representation of the remembered
cue (Carter and Wang 2007).

To quantify this DSI-induced effect, we determined the vari-
ance of the remembered cue location (the VPV). We proceeded
in a similar way as described above, and the results are remark-
ably similar. When DSI is controlled by a long time constant
(5 s), there is an initial period of rise in drifts (Fig. 3D, red
trace, first 2 s of delay), similar to a network without DSI.
However, once the mechanism is fully activated (with a longer
delay), the VPV does not grow any longer, reaching a plateau
instead. For the shorter time constant (1 s), the variance
increases almost monotonically (Fig. 3D, black trace).

Another notable feature in the particular sample trial of
Figure 3B,C is the persistence of the inhibition suppression.
Given the slow nature of its decay (τD = 5 s), DSI does not

Figure 4. Multistability analysis of the working memory model as a dynamical system reveals that ICAN and DSI increase the robustness of memory function. Simulations were ran
with (black dots) or without (red dots) cue presentation, for a range of recurrent excitatory conductance (GEE) values. The maximum firing rate among all excitatory cells, at the end
of the delay period, is either low (2–6 Hz) corresponding to the resting state or higher than 20 Hz corresponding to a memory sate. The resulting state diagram is shown for the
control network without slow mechanisms (A), with only DSI (B) or ICAN (C) or both (D). The range of GEE values for multistability are delimited by 2 vertical dashed lines. The
presence of DSI (B) and ICAN (C) alone increased the multistability range and also the firing rate separation between memory and resting states. These effects are larger when both
mechanisms are combined (D).
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have sufficient time to fade away during a negative pulse
lasting 0.5 s (compare with Fig. 1C). The remaining trace of
disinhibition is strong enough to restart the memory bump at
approximately the same angle, without a new cue presentation
(Fig. 3B, right panel, red profile).

As shown in Figure 3E (open symbols), the duration of a
step current required to reset the network increases dramatical-
ly with τD (0.5 s: tSHUT,MIN = 130 ms; 5 s: tSHUT,MIN = 3.75 s). On
the other hand, the variance of the remembered cue location,
the VPV, is larger in simulations with short τD and decreases
for progressively longer τD, reaching a low plateau for τD larger
than 1 s. Compared with the control (Fig. 1E with τS = 100 ms,
VPV = 206 deg2) with the same delay period duration of 5–6 s,
a circuit endowed with DSI displays a smaller variance of drifts
overall (VPV = 70.5 deg2 with τD = 50 ms and 42.1 deg2 with
τD = 5 s; Fig. 3E, open circles). With larger delays (12–13 s), the
simulations show higher variance due to the accumulation of
drifts over a longer time (Fig. 3E, open squares). However, in
agreement with the traces in Figure 3D, this relative increase of

VPV due to longer delays is mostly observed for shorter τD and
is minimal for longer ones. Therefore, our analysis shows a
tradeoff between the ease of shutdown and memory accuracy,
which is the same with DSI as that observed with ICAN.

ICAN and DSI Enhance the Robustness of Working Memory
We next examined the network behavior when the model
system is endowed with a combination of both DSI and ICAN.
To quantify the robustness of the working memory system, we
determined the range of the parameter space where there is co-
existence of a resting state (low-firing rates) with memory
states (high rates). This multistability range corresponds to the
regime where the system remains in the resting state in the
absence of stimulation, but encodes a memory after a cue pres-
entation, which is the desirable behavior of a working memory
system. We determined the regime boundaries for a range of
the recurrent connectivity strength between excitatory neurons
(GEE) in the form of bifurcation diagrams (Fig. 4). When DSI
and ICAN are not present, the multistability range (bounded by
2 dashed lines) is restricted to a narrow range around GEE =
0.38 nS (Fig. 4A). If either DSI or ICAN is incorporated (same as
in previous simulations: 4% DSI or gCAN = 1.5 nS), the lower
boundary of the range is extended to smaller GEE values
(Fig. 4B,C). The maximum broadening effect occurs when
both slow mechanisms are present (Fig. 4D). This is readily
understood: with the help of DSI and ICAN, less recurrent exci-
tation is required to generate persistent activity.

A second noteworthy feature of Figure 4 is that the slow bio-
physical mechanisms increase the firing rate of memory states
while that of the resting state remains roughly the same. This
is because DSI and ICAN are activity-dependent, therefore
minimal in the low-firing spontaneous activity, but significant
in the high-rate memory states. This leads to a larger separation
between the resting and memory states. Consequently, a
random fluctuation in spontaneous spiking activity will be less
prone to give rise to a “false” memory, and the network func-
tion is more reliable.

To conclude, ICAN and DSI are beneficiary to the system by
making it less sensitive to variations of the network properties
(such as GEE), and less prone to spontaneous transitions by
noise between the resting state and memory states. Both
effects enhance the robustness of working memory behavior.

ICAN and DSI Counteract Heterogeneity
A continuum of attractor states requires that the network is
homogeneous and neurons are homogeneous, so that the
system is translationally invariant (Ben-Yishai et al. 1995).
Under this condition, if a localized pattern of activity is spatial-
ly displaced, it will lead to another identical pattern centered at
the new location. However, any neural network shows a
certain degree of variability across cells (Marder and Goaillard
2006). A homeostatic mechanism that equalizes the long-term
firing rates of all cells to a predetermined level was shown to
recover the accuracy of the memory trace (Renart et al. 2003).
Alternatively, can DSI and ICAN remedy the system’s vulnerabil-
ity to heterogeneity, by virtue of reinforcing a privileged loca-
tion in the network in an activity-dependent manner? To
investigate this question, we implemented a modest amount of
heterogeneity, by assuming that the leak potential VL varies
from cell to cell according to a Gaussian distribution [mean VL

=−70 mV and standard deviation SD(VL) = 1 mV].

Figure 5. DSI and ICAN stabilize the memory trace in the presence of heterogeneity
across neurons in the network. Simulations were carried out where the cue was
applied at 20 evenly spaced locations along the 360° space. The maintenance and
retrieval of memory require that the remembered location at any given point in time
should closely match that of the to-be-remembered cue. (A) The remembered cue
locations of the simulations with the control parameter set systematically drift to a few
privileged locations. (B) When DSI (4% maximum effect) and ICAN (gCAN= 1.5 nS)
were incorporated in the network, the internal representation of the cue location
becomes much better (the population vector is nearly stable across time). (C) The
mean drift from the original cue location (at the end of a 9-s delay) is greatly reduced
with DSI and ICAN compared with the control (N= 500 trials). The time constant for
DSI and ICAN were, respectively, 2 and 0.5 s.
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Across a large number of trials, the input cues are presented
at 20 angle locations equally distributed along the 360° of a
circle. When both mechanisms are absent, the remembered
cue locations display systematic drifts and, as previously re-
ported (Renart et al. 2003), tend to converge to a few privi-
leged locations (Fig. 5A, θ = 180 and 320°). These locations are
determined by the heterogeneous distribution of the cellular
excitability across the network, which disrupts the continuous
family of bump attractors. The mean drift from the cue location
is minimal in networks with DSI and ICAN (8.9 ± 6.9°) and sig-
nificantly different (2-sample t-test, P = 5 × 10−110) from that of
the control network (46.7 ± 32.5°; Fig. 5C).

Intuitively, when DSI and ICAN are included, the remem-
bered cue locations show much smaller drifts (Fig. 5B). Both
mechanisms add a second layer of activity-dependency besides
NMDAR and operate on a slow timescale. Therefore, their pres-
ence “anchors” the original location of the bump attractor that
encodes the sensory cue. These slow mechanisms are powerful
enough to overcome the disrupting effect of heterogeneity.

Short-Term Facilitation Increases Memory Accuracy
Finally, we considered the effect of STF in our working
memory model. STF shares similar features with ICAN and DSI,

namely activity-dependence, positive feedback, and slow time
course of activation (Zucker 1989; Fisher et al. 1997; Tsodyks
and Markram 1997; Abbott and Regehr 2004). It is especially
prevalent in excitatory synapses between pyramidal cells in the
frontal cortex (Hempel et al. 2000; Wang et al. 2006).

The implementation of STF in the model reduced random
drifts of the memory trace during the delay. Compared with
the control network (Fig. 1E, τS = 100 ms, VPV = 206 deg2), the
variance of the remembered cue location was lower for any τF
(Fig. 6A, open circles, VPV ranges 71–126 deg2). However,
contrary to DSI and ICAN, the VPV increased rather than de-
creases with longer τF. This unexpected result is elucidated by
the analysis of a profile of the peak value of the facilitation
variable F, for a bump attractor. For each cell in the network,
every time there is a spike, F is increased by a discrete jump
and the resulting value F+ is used to update the synaptic con-
ductance. Between spikes, F decayed until the next spike takes
place. Thus, neurons in the bump that had elevated firing rates
also show higher F+ (profile in Fig. 6B). For longer τF, the
decay is very slow, resulting in more temporal summation and,
eventually, in a saturation of F+ (Fig. 6B, gray dashed double
arrow). A wide steady-state F+ profile effectively removed the
facilitation effect in that spatial region and selective enhance-
ment created by the activity-dependent-positive feedback. For

Figure 6. STF of recurrent excitatory synapses reduces random drifts. (A) tSHUT,MIN (filled circles) increases with τF (fitted with an exponential equation). Likewise, the variance of
the remembered cue location (VPV) also increases with slower STF (exponential fit), but remains much smaller than that in the absence of STF (VPV = 206 deg2 in Fig. 1E,
τS = 100 ms; N=500). (B) Steady-state profiles of F+ (the facilitation variable, F, after a spike) for 5 different τF (7 s after delay start, N= 400). For longer time constants, the
peak of the profile broadens (dashed gray double arrow), resulting in a region effectively without facilitation. This explains increased drifts with longer τF. (C) Phase space plot of F and
the population firing rate. Each trajectory corresponds to a trial and starts immediately at the shutdown pulse offset. The network either revert back to the mnemonic bump state
(trials in red) or rest to the resting state (trials in blue), depending on the stochastic network dynamics. The F variable fluctuates from trial to trial and is significantly larger in red
trajectories than blue ones (see Results). Note that, at the pulse offset, the population of excitatory cells was silent. However, due to the temporal sliding window (50 ms) used to
calculate firing rates, the trajectories depicted start at >0 Hz.
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this reason, augmenting the STF time constant increased
memory drifts and, consequently, increased the variance of the
remembered cue location (Fig. 6A, open circles).

This saturating feature was not observed with the other
2 slow mechanisms because of the following differences
between the biological processes. The magnitudes of ICAN and
DSI vary quasi-continuously over time through their depend-
ence on intracellular calcium, which accumulates and declines
slowly. Furthermore, they influence the excitability of the cell
at almost any point in time. Therefore, the spatial profile of the
activity variable (mCAN or D, respectively) can be fixed and
remains not saturating, when the time constant is varied
through a scaling factor (φCAN or φD). On the other hand, STF is
not a continuous process, but acts only during synaptic events.
This means that the value of the variable F is only used at times
of spikes (F+) and ignored when it decays away between
spikes. For this reason, a scaling method is not appropriate,
because it would only preserve the time-averaged steady state
of F but not the steady state of F+.

Similarly to what is observed for ICAN and DSI, prolonged
STF time constant makes it more difficult to reset the network
(Fig. 6A, filled circles). When τF is 0.5 s, the required time to
shutdown is just 50 ms. At the other end of the tested range, a

τF of 4 s requires a negative input pulse lasting for at least 1.4 s
to erase a memory trace.

The minimum shutdown time is determined by the decay
for F during the inhibitory input. At the end of the shutdown
phase, the magnitude of F for neurons in the bump attractor
reaches a level that depends on the pulse duration and τF. This
level fluctuates from trial to trial, and has a large influence on
whether the bump reappears or not in any given trial. In
Figure 6C, are shown the system trajectories (state space) of
F versus firing rate, for 40 trials with τF = 1 s. This facilitation
time constant corresponds to a minimum time to shutdown of
90 ms (Fig. 6A), which means that shorter pulses should not be
able to shutdown the network. The red traces (tSHUT,MIN = 50 ms,
leading to return of the bump state) start at an average of
F = 0.89 ± 0.02, whereas the blue ones (tSHUT,MIN = 100 ms,
leading to shutdown) begin at F = 0.84 ± 0.04—a significant
difference (2-sample t-test, P = 8.58 × 10−6). Longer τF requires
longer shutdown pulses in order for F to decay to a low
enough level, so that the recurrent excitation is too weak to
enable the bump to reemerge.

To shed further insights into how the degree of facilitation
decay over the entire neuronal network determines the success
of the memory shutdown, we ran new simulations in a

Figure 7. A simplified model with fixed F profile shows that the network is multistable within a range of STF values. (A) The black curve corresponds to the orange profile (τF = 1 s)
in Figure 6B, and the other curves were obtained by assuming an exponential decay in time of the black profile, during different temporal intervals (see Results). (B) Bifurcation
diagram for τF = 1 and 2 s (upper and lower panels, respectively). Simulations were run with (black dots) or without (red dots) cue presentation, and plotted is the maximum firing
rate among all excitatory cells, at the end of the delay period. In these simulations, F did not change dynamically but was set as a parameter and given spatial profiles as those
shown in (A). The peaks of the corresponding F profiles are shown in the abscissa. Below F1, the network was always in the resting state. Above F2, no cue was necessary to initiate
a bump. (C) F1 and F2 as a function of τF = 0.5, 1, 2, 3, 4 s (fit with single exponentials). The shaded area represents the presence of multistability.
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modified model where the facilitation factor F is no longer a
variable but is treated as a parameter. To each simulation, we
assigned a fixed F spatial profile. For realistic purposes, these
are all mathematically derived (time decay) from the average
facilitation profile at the end of delay of previous simulations,
where F was a variable (Fig. 7A, see Materials and Methods).
This replicates the decay of F during the shutdown phase, with
different pulse durations. In these simulations, Fpeak is a par-
ameter that characterizes the profile of facilitation expected
after a shutdown pulse with a given duration—lower Fpeaks
correspond to longer pulses. Roughly, the profiles that result
from decays longer than tSHUT,MIN should not be able to sustain
a bump without cue. The emergence of either a resting (low
rates) or a memory state (high rates) as a function of Fpeak was
presented in bifurcation diagrams (Fig. 7B, τF = 1, 2 s). The
thresholds F1 and F2 delimit the bistability regime (Fig. 7B,C;
Fig. C, shaded area). With longer STF time constants, it is ne-
cessary to reach a profile with lower Fpeak such that simulations
without cue input remain in the resting state (below F2). This
behavior roughly corresponds to the increase in tSHUT,MIN for
longer τF, in simulations where F changes dynamically.

As was shown in a recent study using a firing-rate model,
systematic drifts of memory trace due to heterogeneity could
be dramatically reduced by STF (Itskov et al. 2011). We
checked the effect of STF in our spiking network model in the
presence of cellular heterogeneity [〈VL 〉 =−70 mV and SD(VL)
= 1 mV]. It is evident by visual inspection that, with STF, the
memory storage of the sensory cue is more stable over time
(Fig. 8A), compared with those under the control condition
without STF (Fig. 5A). This impression is confirmed statistically
(Fig. 8B). There is a significant (2-sample t-test) decrease in the
mean drifts between the control network (without STF,

46.9 ± 33.4°) and each of the 3 scenarios with a different τF
(1 s, 32.7 ± 24.7°, P = 2 × 10−11; 2 s, 34.8 ± 24.1°, P = 8 × 10−9;
3 s, 38.6 ± 27.5°, P = 1 × 10−4).

In summary, like ICAN and DSI, STF reduces noise-induced
random drifts or heterogeneity-induced systematic drifts of
memory traces, thereby rendering working memory function
more robust. In contrast to the other 2 slow mechanisms, a
longer time constant of STF leads to larger drifts of a memory
trace, but drifts remain smaller than those in the control
network without STF.

SlowMechanisms Protect Memory Against Distractors
A cortical circuit assigned to store a particular stimulus in
memory may receive, at any point in time, additional external
signals with the potential to alter its network state and output.
Depending on the nature of the new, distractor signal, the
circuit may respond within a range of possible behaviors. It
can erase the previous memory and encode the new one. The
second stimulus can also modify quantitatively the established
memory. Finally, the circuit may filter out the distractor com-
pletely. Considering the influence that slow mechanisms have
on memory robustness and flexibility, they may also play a
crucial role in this process.

In our network model, if we apply a particular distractor
stimulus during the delay period, the new remembered cue
location will shift toward its location and away from the cue
stimulus angle. The deviation of the bump peak location is
clearly visible for a network with the control parameter set
(Fig. 9A, upper panel, θ1 = 178°, θ2 = 244°). The magnitude
of this deviation (θ2− θ1) depends on the angular difference
between the cue stimulus (θS) and the distractor (θD). The
distraction increases with θD− θS before reaching a
maximum. Beyond this point, the influence of the distractor
decreases abruptly and the final location of the bump is
much closer to the cue angle. Longer distractor durations
result in significantly larger deviations of the final memory
trace (Fig. 9B, 500 ms).

When DSI is incorporated in the network, the deviation of
the bump induced by a distractor is visibly smaller (Fig. 9A,
lower panel, θ1 = 185°, θ2 = 196°) than in the control network.
This outcome is observed across the range θD− θS and for all
distractor durations (Fig. 9C). Consequently, the maximum dis-
traction (Fig. 9D, upper panel) with DSI is smaller and grows
slower with distractor duration (150 ms, 11.5 ± 3.7°; 500 ms,
29.0 ± 4.8°) than in control conditions (150 ms, 41.6 ± 12.3°; 500
ms, 135.0 ± 25.6°). The angle difference between distractor and
cue that originated those maximum distractions [(θD− θS)max]
corresponds to the distractor location that has maximum
influence on the memory bump. This indicator was higher
with control parameters than with DSI for all distractor dura-
tions. Remarkably, the presence of the slow mechanism re-
sulted in a more stable (θD− θS)max (150 ms, 90°; 500 ms, 110°)
than in the control network (150 ms, 110°; 500 ms, 155°).
Similar results were obtained with ICAN and STF (Supplemen-
tary Fig. 1).

Taken together, these results suggest that DSI decreases the
influence of all distractors regardless of their location. More-
over, it reduces the range of distractor locations that significant-
ly deviate the memory bump. Finally, the protection against
farther distractors is almost independent of their duration.

Figure 8. STF stabilizes the remembered cue locations in the presence of
heterogeneity across neurons in the network. In stimulations, the cue location was
applied at 20 evenly spaced locations along the 360° space. (A) The remembered cue
locations with STF (τF = 1 s) show visibly less drifts than the control (Fig. 5A). (B) The
mean heterogeneity-induced systematic drifts (at the end of a 9-s delay) for
the network model without STF (control) or with STF operating at 3 different time
constants (N= 400).
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Discussion

Until now it is commonly recognized that a working memory
circuit should not be conceptualized in terms of rapid switches
between attractor states. Instead, reverberation underlying
persistent activity must be slow, likely involving the NMDARs
at recurrent excitatory synapses (Wang 1999; Wang et al.
2013). Slow network dynamics enables a single microcircuit
mechanism to subserve working memory and decision-
making. The latter requires accumulation of information over
time by virtue of slow neural transients such as quasi-linear
ramping activity (Wang 2002, 2008). It is noteworthy that per-
sistent activity during a mnemonic delay period often displays
slow temporal variations, as well as a rich heterogeneity across
neurons (Batuev et al. 1979; Baeg et al. 2003; Miller et al. 2003;
Goldman 2009; Machens et al. 2010; Barak et al. 2013; Stokes
et al. 2013).

Is the slower the underlying mechanism, the better? In the
present work, we investigated 3 biophysical mechanisms in a

network model of spatial working memory. ICAN, DSI, and STF
are present in frontal neurons and are activity-dependent. They
provide positive feedback to active excitatory cells and operate
on a slow timescale. Our main finding was that slow timescale
has a tradeoff effect. ICAN, DSI, and STF render working
memory representation more robust. However, their slow
decay leaves a lingering memory trace even after the termin-
ation of persistent firing activity, which makes it difficult to
reset the circuit by brief inputs, a fundamental requirement for
normal function of a working memory system. These findings
suggest that recurrent attractor dynamics are the “working
horse” for mechanisms that sustain delay activity, and that
very slow processes contribute to the accuracy of memory
maintenance.

RandomDrifts
Our study started with the premise that very slow processes are
not necessary for the generation of persistent activity per se,

Figure 9. Slow mechanisms preserve cue representation and decrease the influence of long distractor stimuli. (A) Smoothed spatiotemporal activity pattern of the network’s
excitatory cells under control conditions (upper panel) or with DSI (lower panel), in the presence of a distractor. An initial cue stimulus (peak angle θS = 180°, 750 ms–1 s, first pair
of vertical dashed lines) drives the network to the memory state. The application of a distractor during the delay period (peak angle θD = 300°, 100 pA, 6–6.25 s, second pair of
dashed lines) pulls the location of the bump closer to it. In these 2 example trials, the deviation of the bump, measured as the difference between the remembered cue location
after the distractor (θ2, 8 – 9 s) and before (θ1, 4.5–5.5 s), is larger in the control network than with DSI. (B) The average difference between θ2 and θ1 as a function of the
difference in peak angles of distractor (θD) and cue stimulus (θS), for 3 distractor durations (N= 150). The deviation increases and approaches the perfect distraction (diagonal
dashed line) before declining for more distant distractors. Longer durations produce generally larger deviations that have a maximum at larger distractor angles. (C) Same as in (B)
but for network with DSI. The differences in remembered cue locations are visibly smaller than with the control network for all 3 distractor durations (N= 150). (D) Distraction
indicators for sets of trials with different distractor durations, under control network (grey symbols) or with DSI (black symbols). Upper panel: the maximum distraction is small and
increases almost linearly in a network with DSI. Under control conditions, this measure is larger throughout the whole range and has a more prominent increase. The edge-colored
data points were taken from (B) and (C) with the same color scheme. Lower panel: similarly, the distraction angle (θD− θS) at which the maximum deviation of the bump is
observed is wide and increases with duration in the control network, but is narrower and almost stable when DSI is present. This slow mechanism limits the effects of closer
distractors and protects the memory against farther ones almost independently of their duration.
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but may play a role in determining the accuracy and robustness
of a working memory circuit’s behavior. It has been previously
reported that, in continuous attractor networks, a mnemonic
activity pattern (bump attractor) exhibits random drifts that ac-
cumulate over time and deviate the stored spatial information
away from the cue location (Camperi and Wang 1998; Compte
et al. 2000; Carter and Wang 2007). This decreases the accuracy
of the memory readout. We found that the incorporation of
DSI, ICAN, or STF helps to reduce random drifts of a memory
trace. Moreover, we demonstrated that this stabilizing effect is
dependent on the effective time constant of the mechanism
considered. For ICAN and DSI, the increase in τ is associated
with a decrease in random drifts before reaching a plateau
(∼1–2 s). In contrast, with STF, although it also increases accur-
acy when compared with the control network, random drifts
actually increase with τF. We showed that this happens
because, for longer time constants, the facilitation variable F
saturates around the bump, effectively removing facilitation in
that part of the network.

Heterogeneity-Induced Drifts
A different type of drifts of memory trace arises from hetero-
geneity across neurons, which is detrimental to the realization
of a continuous family of attractors. A homeostatic mechanism
that scales the excitatory synapses was shown to recover the ac-
curacy of the remembered cue location under those conditions
(Renart et al. 2003). This activity-dependent mechanism scales
the excitatory synaptic weights of each cell, so that the long-
term average firing rate is similar for all and equal to a prede-
termined level. Recently, it was demonstrated using a
firing-rate model that STF slows down the velocity of drifts in
the presence of synaptic heterogeneity (Itskov et al. 2011).
Building upon these insights and following our successful sta-
bilization of random drifts, we tested the effect of the 3 slow
mechanisms on our spiking model in the presence of cellular
heterogeneity. A combination of ICAN and DSI effectively coun-
teracted the tendency of a bump to drift to privileged locations,
during a relatively long delay period. Likewise, STF significant-
ly reduced systematic drifts due to heterogeneity, strengthen-
ing the previous results with a biophysically realistic spiking
network model.

Memory Flexibility
Whereas slow biophysical mechanisms increased the accuracy
of memory representation, they have the opposite implications
on the flexibility to switch between dynamical states. The
precise mechanism used by the brain to erase a working
memory trace remains poorly understood. We used a negative
current of sufficiently strong amplitude to bring neurons below
the firing threshold, which is the most efficiently way to switch
off from a memory state. If we used a different input to only
reduce the firing rate rather than silencing neurons, the dur-
ation of that input would need to be longer than tSHUT,MIN. This
analysis leads us to very similar conclusions regarding ICAN,
DSI, and STF. The minimum duration of the pulse required to
shutdown the network dramatically increases with the effect-
ive time constant of the mechanism.

Our study approaches a relevant debate regarding the basis
of neural circuit mechanism of working memory. At one
extreme, a working memory system is viewed in terms of fast
switches between multiple steady-state attractors, with

virtually no transient. At the other extreme, there are no mul-
tiple attractors but a single resting state. In this scenario, a tran-
sient cue simply perturbs the system to another location in the
state space, and the network has a short-term memory merely
in terms of very slow decay (returning to the resting state) after
the stimulus offset. This typically requires really slow biophys-
ical time constants, such as those provided by ICAN, DSI, and
STF. Our model is not yet at this extreme, but it should follow
from our results that the scenario without multiple attractors
would have the same problem of shutting down.

We also studied how a slow mechanism may help preserve
the location of the memory bump against distractor stimuli.
DSI limits the effects of closer distractors and protects the
memory against farther ones almost independently of their
duration. Whereas this effect is desirable to discard unwanted
stimuli, it also uncovers the potential for intertrial persistency.
When a new cue is presented at a different location, the trace
of disinhibition from the previous trial will act as a distractor
and pull the location of the new bump toward the old one.
Taken together, these results establish a tradeoff between
memory accuracy and flexibility.

An accuracy–flexibility tradeoff can also be obtained by the
modulation of the strength of the slow mechanisms instead of
their time constant. The strengthening of DSI or ICAN increases
the memory trace stability but, on the other hand, increases the
ease to shutdown (Supplementary Fig. 2). However, in these si-
mulations, the overall firing rates increase when the slow mech-
anism became stronger, which presents a confounding factor
that hinders the comparison between different strengths.

SlowMechanisms Modulate Dynamics of a Working
Memory System
The bifurcation analysis of the network model with GEE as a
control parameter revealed that, in the presence of DSI and
ICAN, the model system shows a wider multistability range
and a larger separation between the firing rate of persistent
activity and resting states. A wider multistability range
implies a higher degree of robustness because normal func-
tion is less sensitive to variations of network properties. A
larger separation of firing rates implies that it is harder for
spontaneous transitions between states to occur merely by
noise. We also showed that the realistic range of the facilita-
tion factor F contained a multistability range that shifts with
the time constant τF. These raise the possibility that, in a
working memory circuit such as PFC, some modulatory me-
chanisms could flexibly tune slow biophysical processes for
optimal behavior.

Figure 10 offers a conceptual understanding common for all
3 slow mechanisms. This schematic depiction is partly
deduced from the phase space plots in Figures 2D and 6C. It
shows, in a state space, how activity of neurons engaged in
working memory storage and the activation variable (X) of any
of the 3 slow mechanisms interact with each other dynamical-
ly. Just before the shutdown pulse (Fig. 10A), the phase plane
consists of a stable manifold, which separates the resting and
memory attractors, and an unstable manifold. The intersection
between the 2 lines creates an unstable saddle point. During
the shutdown pulse presentation (Fig. 10B), only the resting
state exists. The negative input pulse immediately inhibits all
firing activity and X decays exponentially. At the pulse offset
(Fig. 10C), the system regains its previous landscape with both
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attractors. Afterwards, the network trajectory depends on the
extent of X decay, which is an exponential function of the dur-
ation of the pulse. If X is below the stable manifold, the system
will progress to the resting state, resulting in a successful shut-
down (blue trace). Otherwise, if X decayed less and remains
above the stable manifold at the pulse offset, the system will
revert back to the mnemonic attractor state (red trace).

Accuracy–Flexibility Tradeoff
The circuits of the PFC that encode working memory, like all
systems in the nervous system, have a rich variety of processes
that modulate their performance. In this study, we considered
a group of mechanisms that may be involved in the dynamical
stabilization of the memory trace. The apparent conflict result-
ing from a tradeoff between accuracy and flexibility of the
memory trace may turn out to be significant for neuronal
modulation. According to environmental conditions and be-
havioral task demands, the network may be instructed to tilt
the balance in favor of increased accuracy at the expense of
flexibility. Under these circumstances, ICAN, DSI, or STF may
be strongly activated so that the memory is encoded as precise-
ly as possible. On the other hand, when the task requires faster
response to cue stimulation, the network may be tuned to de-
crease the activation of the slow mechanisms or shorten their
time constants. This prevents the previous memory from inter-
fering with the encoding of the new stimulus. Interestingly, we
reveal the location of “sweet spots” for the models with ICAN
and DSI. In these time constant ranges (1–2 s), these slow me-
chanisms stabilize the memory to a great degree without sig-
nificantly hampering the shutdown process. This observation
raises the question of whether a working memory system in
the brain can be tuned to that optimal configuration and what
might be a neurobiological mechanism for achieving such opti-
mality. Future experiments and theory are worth pursuing in
this direction.

It has been proposed that an emphasis on robust online re-
presentation of information versus rapid switching could be
adjusted by dopamine signaling, with D1 (respectively D2) re-
ceptors acting in favor of robustness (respectively flexibility;
Durstewitz and Seamans 2008; Rolls et al. 2008). Additionally,
several other pathways modulate the 3 slow mechanisms. The

channels that mediate ICAN are highly sensitive to muscarinic
and metabotropic receptor activation (Haj-Dahmane and
Andrade 1998; Sidiropoulou et al. 2009), DSI is obviously de-
pendent on endocannabinoids (Ohno-Shosaku et al. 2001;
Wilson and Nicoll 2001; Wilson et al. 2001) and STF is con-
trolled by synaptic vesicles release (Hempel et al. 2000). Our
results suggest that slow processes, including those studied
here, are potentially effective targets of action by dopamine or
other neuromodulators, which can optimally adjust the trade-
off between robustness of memory storage and cognitive flexi-
bility. This prediction may be tested through experiments to
understand precisely how modulation occurs and to determine
under which circumstances each slow mechanism is predomin-
ant in the encoding of working memory in the PFC.

At the present time, there still exists a large gap between
neural circuits and behavior (Carandini 2012); this wide gap
must be bridged in order to achieve our goal of understanding
the brain mechanisms of cognitive functions and their impair-
ments associated with mental disorders. The present work
illustrates how biophysically based computational modeling,
in interplay with experimentation, can help make progress in
this direction, through elucidation of how specific cellular and
synaptic processes shape network activity patterns (persistent
activity) and contribute to a key functional requirement (accur-
acy–flexibility tradeoff) in a cognitive process.

Supplementary Material
Supplementary material can be found at: http://www.cercor.oxford
journals.org/.
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Figure 10. Schematic phase-plane diagram of our working memory model, during 3 stages of a shutdown process. This scheme applies to all 3 slow biophysical mechanisms
considered in this paper, with X representing the activation variable of ICAN, DSI, or STF. The inset in (B) displays the timing of the 3 stages according to the presentation of the
negative shutdown input. (A) The state space displays a stable manifold (line with converging arrows) and an unstable manifold (line with diverging arrows), and their intersection
creates a saddle point. There are 2 stable steady states (filled circle) representing a memory state and a rest state. At the end of delay, the system is in the memory state.
(B) During the application of the negative pulse, there is only one steady state (filled circle), with a low-firing rate and low X magnitude. After the quick suppression of all firing
activity (“FAST”), the system moves along the direction of the exponential decay of X (“SLOW”) over the duration of the pulse. (C) The attractor landscape (A) is restored after the
pulse offset. Depending on whether the state of the system at the offset of the shutdown input is on the left or the right side of the stable manifold, the system will revert back to
the memory state (red trajectory) or reset to the resting state (blue trajectory, successful shutdown).
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