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During foraging behavior, action values are persistently encoded in neural activity and
updated depending on the history of choice outcomes. What is the neural mechanism
for action value maintenance and updating? Here, we explore two contrasting
network models: synaptic learning of action value versus neural integration. We show
that both models can reproduce extant experimental data, but they yield distinct
predictions about the underlying biological neural circuits. In particular, the neural
integrator model but not the synaptic model requires that reward signals are mediated
by neural pools selective for action alternatives and their projections are aligned
with linear attractor axes in the valuation system. We demonstrate experimentally
observable neural dynamical signatures and feasible perturbations to differentiate
the two contrasting scenarios, suggesting that the synaptic model is a more robust
candidate mechanism. Overall, this work provides a modeling framework to guide
future experimental research on probabilistic foraging.

foraging | value-based decision-making | reinforcement learning | neural integrator

During foraging, action values are stored in short-term memory over times of several
behavioral trials, much longer than intrinsic neural time scales. The stored action values
bias actions to increase reward acquisition. Action values are updated depending on the
history of choices and rewards. Single-neuron activity in the monkey posterior parietal
cortex (1, 2), the mouse medial prefrontal (mPFC) (3) and retrosplenial cortex (RSC)
(4), is correlated with estimated action values. The activity of some of these neurons is
persistent, lasting for seconds during the entire inter-trial interval (ITI) and updated after
the trial ends (3, 4).

Such value encoding and update during foraging has traditionally been explained
by reward-dependent synaptic plasticity (5, 6). In these models, Hebbian plasticity
combined with reward signals (7) modifies synapses that connect feedforward inputs to
a recurrent network that displays winner-take-all dynamics. Action values are encoded
in the feedforward synaptic weights to action-encoding selective populations, biasing the
network’s winner-take-all dynamics. However, this stands in contrast with recordings of
neurons in the mice mPFC and RSC that display graded persistent encoding of action
value (3, 4).

Artificial neural networks (ANNs) can be trained to produce foraging behavior without
synaptic changes in synaptic weights (8). These ANNs incorporate mechanisms referred to
as gates with unknown neuronal bases which enables them to maintain signals in memory
for extended periods (9, 10). It remains uncertain whether foraging without changes in
synaptic weights represents a robust principle underlying foraging in the brain. However,
these findings in conjunction with the observed persistent graded activity proportional
to action values (3, 4), as well as recent studies on the role of the orbitofrontal cortex in a
probabilistic reversal learning task (11), have raised an interesting alternative mechanism
for foraging without synaptic changes by virtue of neural integration such as what is
found in line attractor models (12, 13).

In this work, we investigated these two contrasting mechanisms for foraging: reward-
dependent synaptic plasticity and neural integration of values which does not rely on
synaptic weight changes. We build biologically plausible yet simple models based on
the two above scenarios. Both recapitulate the behavior and important features of
neural dynamics during foraging (3, 4). However, they differ qualitatively in their
network architecture, dynamical properties, and response to perturbations. We found the
synaptic mechanism is much more robust to perturbations in the neural activity and the
connectivity than the neural integration of values. The neural integrator model requires
vectorial reward prediction error (RPE) signals in an on-manifold alignment with the line
attractor axes. Last, we investigated a structured foraging task characterized by extreme
anticorrelated changes in reward probabilities. In similar tasks, leveraging information
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about the task structure proves advantageous for maximizing
reward acquisition strategies (14). We predict that in these tasks
the neural integrator requires selective changes in the vectorial
RPE alignment, whereas the synaptic model accommodates these
updates by unselective changes of shared inhibition. We outline
experimental predictions that can be used to disprove these
theories using current neurotechnologies. Our work provides
a modeling framework to investigate the neural mechanisms
underlying foraging behavior.

Results
Two Mechanisms for Value Maintenance and Update. In the
neural integrator model (Fig. 1A), action values are stored in
directions in the neural space of slow variation in population
activity or line attractor axes. The neural integrator integrates
rewards by updating action values by an input proportional to
the reward prediction error (RPE) in the direction of action
value encoding (Fig. 1A). In this mechanism, changes in the
synaptic efficacy are not needed for action value update, similar
to a theoretical proposal in RNN-based agents (8). On the
other hand, in the synaptic model (Fig. 1C ), a scalar feedback
triggered by reward enables Hebbian plasticity on the recurrent
connections of the valuation network, in turn modifying in a
reward-dependent manner the synaptic efficacy on the network’s
recurrent connections (5, 6). Since synaptic inputs drive spiking
activity, action values modulate neuronal activity. Action values
are maintained in neural space in a single fixed-point attractor
that shifts its location on a trial-by-trial basis (Fig. 1C ).

We explore these two contrasting neural mechanisms un-
derlying action value maintenance and its reward-dependent
update during foraging. We develop circuit models for the two
mechanisms that allow us to explore experimental tests for these

two mechanisms. These models were guided by anatomical and
physiological evidence of the neural circuits involved in foraging
behavior (3, 15). We aim for these models to be simple enough
to be suitable for mechanistic understanding and mathematical
analysis, but to include key details to the extent their predictions
can be interpreted in actual brain circuits.

We first focus on the dynamic foraging task (DFT) (2–4, 16,
17) (Materials and Methods). Briefly, in this task, after a go cue,
the subject freely chooses among two contingencies that deliver
reward with nonstationary probabilities. The reward probability
for the two contingencies changes in blocks of tens to hundreds of
trials. On each trial, a go cue instructs the subject to make a choice
and collect reward. After a reward is delivered probabilistically,
the subject waits an ITI of several seconds after the next go cue.
Different from the two-armed bandit task (18), the reward is
baited (2–4, 16, 17) in this task: once the reward is assigned, it
remains assigned to the contingency until its consumption even
if the contingency is not chosen.

The network architecture consists of two inter-connected
areas, each modeled as recurrent networks (Fig. 1 B and D).
Action values for the two contingencies are maintained and up-
dated depending on reward in the “valuation network.” Actions
are selected depending on action values in the “action selection
network.” This architecture is inspired by the separation between
the limbic and motor information streams during decision-
making (15, 19).

In the neural integrator model, action values for the two con-
tingencies are maintained by the population activity in two linear
axes embedded in a high-dimensional neural space (the space
spanned by the activity of all neurons in the network) (Fig. 1A)
that we refer as line attractor axes. In our model, immediately
after the action is selected, the reward is delivered, the RPE is
computed, and the corresponding action value represented in the

A B E

C D F

Fig. 1. Neural integrator (Top row) vs. synaptic model (Bottom row) for foraging behavior. (A) Maintenance and neural integration of values. The value for the
two contingencies is maintained in two different line attractors embedded in high-dimensional neural space. Increasing color opacity represents increasing
value. After the reward is collected in the task, RPE signals align to the line attractor corresponding to the chosen contingency update values by stirring the
neural activity along the corresponding line attractor. Changes in value are not caused by changes in synaptic weights. (B) Network architecture for the neural
integrator. Action value is maintained in the valuation network. These values are read out by the action selection network for producing the choice through a
winner-take-all dynamics. RPE signals are computed by subtracting from the trial-by-trial reward the action value encoded in the valuation network (see dashed
line arrow). The RPE signal is routed in a contingency-dependence fashion to the valuation network to update action value. (C) Maintenance and integration of
values through synaptic plasticity. The value of the two contingencies is maintained in neural space in a single fixed-point attractor. Changes in synaptic weights
shift the location of the fixed-point attractor in neural space on a trial-by-trial basis. (D) Network architecture for the synaptic model. Values are maintained
by two selective populations in the valuation network. As in (B), values are read out by the action selection network for producing the choice. Feedback choice
signals elevate the activity of selective populations in the valuation network. RPE signals are computed by subtracting from the trial-by-trial reward the action
value encoded in the valuation network (see dashed line arrow). The RPE is combined with elevated activity to produce synaptic plasticity. The dynamics of one
trial for the valuation (Left) and action selection (Right) networks for the Neural integrator (E) and synaptic model (F ). Reward is delivered immediately after the
choice is selected (second dashed line). Our model assumes that RPE is computed instantaneously after reward delivery.
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line attractor axes is updated (Fig. 1B). Importantly, although
the two line attractor axes are orthogonal in neural space, the
network connectivity is recurrent, and overlapping populations
encode action values for the two contingencies (SI Appendix,
Fig. S1). Two predictions can be derived directly from our neural
integrator model’s assumptions:

1. RPE signals have to be at least partially aligned to the action
value encoding axis corresponding to the chosen contingency
to produce sizable changes in value (see more in the “Response
to Perturbations”). Therefore, unlike the view in which the
RPE is a global scalar signal (20), for the neural integrator
model, RPE must project to a selective neural population in a
choice-dependent manner to update a particular action value
in any given trial.

2. For choice signals from the action selection network to not
disrupt the value encoding in the valuation networks we expect
feedback to be very weak or approximately orthogonal to the
line attractor axes (see more on “Response to Perturbations”).
Therefore, in our neural integrator model, we did not include
such feedback (Fig. 1B).

In the synaptic model, the recurrent synaptic weights in the
valuation network are updated according to the three-factor
learning rule (Eq. 18). After the action is selected, the pre
and post-synaptic activity of chosen selective populations in
the valuation network is transiently elevated after the action
is selected due to the feedback from the action selection
network (Fig. 1 D and F ). In contrast, little to no feedback
activity is produced in the corresponding unchosen population,
presenting low pre and post-synaptic activity. In our model,
immediately after the choice is selected reward is delivered, and
RPE is computed. Then, the transient elevated activity in the
corresponding chosen populations will drive Hebbian plasticity
gated by a global RPE signal (5, 6, 21) (Fig. 1 C and D)
(Materials and Methods). Thus, only the recurrent synapses of
the corresponding chosen populations will modify their synaptic
efficacy. Two conceptually different predictions from the neural
integrator model can be directly derived from the synaptic model:

1. RPE acts as a global signal gating plasticity in the three-factor
learning rule of the recurrent synapses of the value network.

2. Selective feedback from the action selection network is needed
for value learning in the valuation network.

The dynamic mechanism for maintaining and updating action
values is qualitatively different for the synaptic model compared
with the neural integrator. For the synaptic model, action values
are maintained in a single fixed-point attractor in neural space.
After the reward is collected in the task, a global RPE signal
will gate synaptic changes through a three-factor learning rule.
Changes in synaptic weights stir the location of the fixed-point
attractor in neural space (Fig. 1C ). Therefore, in this model,
changes in synaptic weights are needed for action value update.

Foraging Behavior. Can we differentiate these models during
foraging in the DFT?

At a single trial level, both models display value-dependent
persistent activity during the inter-trial interval (ITI) (Fig. 1
E and F and SI Appendix, Fig. S1) as it has been observed
experimentally (3, 4). After the action selection network makes
a choice, the activity is modified in both models, and action
value representations are updated and persist during the next ITI

(Fig. 1 E and F ) (3, 4). Importantly, as discussed above, in the
synaptic model, selective choice signals in the valuation network
feedback from the action selection network before reward delivery
for action value update. For the neural integrator, these signals
are not present by construction (Fig. 1 E vs. F ) since they would
disrupt action value encoding (see next section).

During a simulated DFT session the reward delivery is
stochastic, and the probability of reward for the two contingencies
changes in blocks of 100 trials (Materials and Methods), making
it necessary for the models to update the value representations
to maximize the reward consumption. The instantaneous pro-
portion of choices closely follows the instantaneous proportion
of baited reward for the two models (Fig. 2 A and B). This
dynamical matching is also displayed in a block scale in which, for
each block, the slope of the choice ratio, which is the slope of the
cumulative choice of contingency A vs. B, matches approximately
the baited probability ratio for each block. (2–4, 17) (Fig. 1 E and
F ). We found that the two models display probability matching
(16) for a large parameter range.

For the neural integrator, the action value representations
encoded in the population activity projected in the line attractor
axes dynamically change across trials and they are correlated with
the baited rewards (Fig. 2C ). Similarly, the synaptic model’s
selective populations firing rates during the ITI encoding action
value also correlate with the baited reward (Fig. 2D). Overall,
both models display qualitatively similar dynamics of value
encoding across trials consistent with the value representations
observed in the cortex during foraging (3, 4).

The ITI activity in the action selection network also presents,
a rather small, action value encoded in its persistent firing. The
average firing rate is correlated to the action value encoded by
the valuation network in both models (SI Appendix, Fig. S2 A
and B) due to the feedforward connections from the action value
network to the valuation network (Fig. 1 B and D).

The trial-by-trial dynamics of action value representations in
both models is mathematically very similar to the Q-learning
algorithm in Reinforcement Learning (18) (Materials and
Methods and SI Appendix). As in the Q-learning algorithm,
maintained action values bias action selection performed in our
case by the action selection network. Also, as in the Q-learning
algorithm, RPE signals are integrated by updating action values
in both models. In the neural integrator, this is performed by
the neural activity itself, while in the synaptic model, by changes
in the synaptic efficacy. We fit the networks’ behavior in Fig. 2
A and B and estimate the action values using a variant of the
Q-learning algorithm (4) (SI Appendix, Eqs. 49 and 50, Fig. S2
C and D, and Table S1). The trial-by-trial dynamics of the action
values for the two choices QA and QB follow closely the mean
projections and the mean activity of the valuation network for
the neural integrator and synaptic model respectively for the
corresponding choices (Fig. 2 C and D, faint vs. solid lines). The
action values are strongly positively correlated with the valuation
network’s population activity for both models (SI Appendix,
Fig. S2 E and F ). The relative value QA − QB, a quantity that
is monotonically encoded in the neural activity of the mPFC
and RSC of the mouse (3, 4), is monotonically encoded in the
difference of the projections and activity for the neural integrator
and synaptic model respectively (Fig. 2 G and H ). This analysis
shows that action values computed using solely the behavior
of the network have a graded representation in the population
activity of both networks.

We fit a reduced version of both network models using mouse
behavior during the DFT (Fig. 3 and SI Appendix, Fig. S3, and
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A B

C

E G F H

D

Fig. 2. Foraging behavior for the neural integrator (Left) and synaptic model (Right). (Top row) Foraging behavior during a DFT session (A and B). The base
reward probability (red) changes in blocks of 100 trials (Materials and Methods), and the network adjusts its choices, maximizing the baited reward. Black and
gray ticks indicate the rewarded and unrewarded trials respectively with choices A (Top) and B (Bottom). The network’s proportion of choices (black trace) closely
follows the proportion of baited reward (green trace) which are smoothed using a causal Gaussian kernel with a SD of four trials. (C) Mean projections of the
valuation network’s activity on the line attractors axes during the ITI across trials. (D) Mean activity of the valuation network’s selective populations during
the ITI across trials. The faint lines plotted in the Right Y-axis correspond to the action values QA and QB , which are estimated from the choices and rewards
obtained by the network using a variant of Q-learning (SI Appendix, Eqs. 49 and 50). (E and F ) Cumulative choice (black) and rate of baited rewards for the neural
integrator and synaptic model, respectively. Relative value defined as QA − QB vs the difference mean projections on the line attractors axes (G) and mean
activity of the selective populations (H) on the valuation networks for the neural integrator and synaptic model respectively.

SI Appendix for a description of the fitting procedure). We found
that both models have comparable performance with standard
behavioral models for foraging (3, 4, 22, 23).

Importantly, although both models display qualitatively
similar dynamics across trials for encoding value, they have
qualitatively different network mechanisms for value encoding
and update. These differences can be uncovered by their response
to perturbations, as shown in the next section.

Response to Perturbations in Neural Activity. A central differ-
ence between these models is their response to perturbations.

When a perturbation targets action value encoding popula-
tions in the valuation network during the ITI the models behave

qualitatively differently. In the case of the synaptic model, because
action values are stored in the synaptic efficacies, disruptions in
the action value encoding due to selective perturbations always re-
bound to previous values (Fig. 4A). By contrast, in the case of the
neural integrator, perturbations of population activity during the
ITI can modify the action value encoding (Fig. 4B). Importantly,
however, the effect highly depends on the way of perturbation
(Fig. 4D). While on-manifold perturbation dramatically modifies
action value encoding, random perturbations have to be much
stronger (∼3 to 5 times than on-manifold perturbations) to have
comparable effects to on-manifold perturbations (Fig. 4B and SI
Appendix, Fig. S4). Uniform (spatially correlated) perturbations
where all neurons are perturbed by the same constant amount,

A B

R-W

Base reward Choice R-W Neural Integrator Synaptic model

Trial #

Neural
Integrator

Synaptic
Model

Fig. 3. Foraging behavior for a mouse vs. network models during an example DFT session. (A) Foraging behavior of a mouse during a DFT session (Materials
and Methods). The base reward probability (red) changes in blocks. Black and gray ticks indicate the rewarded and unrewarded trials respectively for Right (Top)
and Left (Bottom) choices. Black trace: the proportion of choices smoothed using a running average of 10 trials. The behavior was fitted using a Rescorla–Wagner
model (22) (R-W) (orange), the neural integrator (blue), and a synaptic model (green). (B) Model fitting AIC and BIC scores. In this task, the contingencies are
licking Left and Right (Materials and Methods).
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Fig. 4. Response to perturbations: neural integrator vs. synaptic model. (A) Top panel: valuation network’s response to a perturbation during the ITI (yellow-
shaded region) for the synaptic model. Bottom panel: Action selection network’s response. (B) Examples of on-manifold, random, and uniform brief (100ms)
perturbations (starting at the vertical dashed lines and indicated at the yellow-shaded region) in the valuation network for the neural integrator. Top panel:
Activity of 50 representative neurons color-coded according to the magnitude of the corresponding entries of the first line attractor axis EvA. Random and uniform
perturbations are four times larger in magnitude than the on-manifold perturbation. For the stimuli’s parameters see SI Appendix, Three Classes of External
Perturbations. (C) Projection drift due to noise for 1,000 realizations. The dashed red line indicates the initial projection’s value. (D) Schematic of on-manifold
and random perturbations. (E) Schematics for the engineered perturbation experiment for the neural integrator. Neurons are ranked according to the entries
of the line attractor axis corresponding to one of the contingencies EvA. (F ) Change in action value encoding when the first, 1 to 10th, 1 to 100th, and all ranked
neurons are stimulated as in B with the same magnitude. (G) number of stimulated neurons vs. the magnitude of the perturbation response (SI Appendix).

reminiscent of optogenetic manipulations, could also disrupt
action value encoding as on-manifold perturbations if they are
strong enough (∼3 to 5 times than on-manifold perturbations)
(Fig. 4B and SI Appendix, Fig. S4). Importantly, strong input
noise degrades value encoding leading to drifts in the projections
of neural activity in the line attractor axes (Fig. 4C ). In the
neural integrator, perturbations can be further engineered by
ranking neurons by the strength of their encoding to one of the
two contingencies. We found that perturbing the first 10% of
the highest action value encoding neurons produces an 83% of
change in action value encoding (Fig. 4D).

We investigate the valuation network response to randomly
fluctuating inputs in both models by injecting noisy input
currents (Eq. 16) for the synaptic model and Eq. 39 for the neural
integrator, respectively). In the synaptic model, the timescale of
response to noisy input currents of the selective populations in the
valuation network is correlated with action values. In contrast, in
the neural integrator, it is not (Fig. 5). The reason is that in the
synaptic model, an increase (decrease) in the strength of excitatory
recurrent slows down (speeds up) the network’s dynamics (SI
Appendix, Synaptic Model). The neural integrator does not rely
on synaptic efficacy changes for action value updates. As a result,
there is no association between action value encoding and the
time-scale of the fluctuations in neural activity due to noisy
inputs.

Response to Connectivity Perturbations. Synaptic strengths
fluctuate in time due to unreliable synapses (24), short-term (25),
and long-term plasticity (26). How do synaptic fluctuations affect
action value encoding in both models?

In our neural integrator, for constructing the line attractor
axes, we set the two eigenvalues corresponding to these axes
to have a real part equal to zero (Fig. 6A and Eq. 29). These

eigenvalues are fine-tuned, and slight departures of a distance
� from the imaginary axis cause neural activity to drift with a
time scale � ∝ 1/� (12, 27) (Fig. 6B). Therefore, our model
predicts that for slight departures from � = 0, action value
encoding drifts during the ITI. However, cellular mechanisms
can be incorporated into neural integrators to attenuate this drift
(27) (Discussion). When multiple action values are encoded in
the neural integrator, the probability of encountering significant
drifts in at least one of the line attractor axes due to connectivity
perturbations increases with the number of action values being
maintained (refer to SI Appendix, Fig. S5 A and B).

In contrast to the neural integrator, the average neural activity
in the synaptic model is robust against synaptic fluctuations.
Random synaptic strength fluctuations (SI Appendix, Synap-
tic Perturbations) do not disrupt the average value encoding
(Fig. 6C ). This is also the case when multiple action values are
maintained (SI Appendix, Fig. S5C ).

Overall, the synaptic model exhibits significantly greater
robustness against synaptic perturbations in the encoding of
action values compared to the neural integrator.

Possible Mechanisms for Anti-Correlated Action Value
Updates. In both models, values are independently updated
across trials, similar to model free reinforcement learning
algorithms (18), in which action values are updated using only
the previous history of choices and rewards (SI Appendix, Fitting
Network Models on Behavioral Data). However, hidden causal
structures in the environment can often be used for optimally
updating action values during foraging. For example, this is
the case in variations of the DFT in which the changes in the
probability of rewards are strongly anti-correlated (14). In this
case, opposite action values updates are optimal for maximizing
reward during the task. What are the circuit mechanisms for anti-
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A

B

Fig. 5. Time scale of the response to noisy input currents: neural integrator (A) vs. synaptic model (B). (Left) Schematics of the synaptic changes for two
consecutive trials during foraging. (Middle) Network dynamics during the ITI for two consecutive trials. (Right) Autocorrelation function (AF) for two consecutive
trials. The AF is also computed analytically for the synaptic model (dashed lines; see SI Appendix).

correlated action values updates in structured environments? We
explored two possible scenarios in the neural integrator and the
synaptic model.

For the neural integrator, one possible scenario for anti-
correlated action value updates is that the line attractor axes
are anti-correlated (Fig. 7 A, Left), and a contingency-dependent
RPE signal is aligned with one of the axes. In this case, RPE
signals produce anti-correlated action values updates (Fig. 7 A,
Right). An alternative scenario is that the RPE signal is comprised
of two inputs, each one aligned with one of the two line attractor
axes and with opposite signs (Fig. 7 B, Left). This scenario also
leads to opposite changes in action value representations (Fig. 7
B, Right).

For the synaptic model, anti-correlated synaptic changes
(Fig. 7 C, Left) for the corresponding selective populations
produce anti-correlated action value updates (Fig. 7 A, Right).
An alternative scenario relies on strong shared inhibition (Fig. 7
D, Left) that anti-correlates neural activity (SI Appendix, Synaptic
Model). In this scenario, synaptic changes in only one selective
population produce anti-correlated action value updates (Fig. 7
D, Right and SI Appendix).

Discussion
We investigated two contrasting models for action value encoding
and update mechanisms in foraging behavior: a synaptic model
and a neural integrator. The synaptic model maintains action
values in synaptic strength and updates them through synaptic
plasticity, whereas the neural integrator maintains action values
in a continuous attractor through neural activity and updates
via on-manifold perturbations. It is worth noting that we use
an extension of the concept of line attractor (12) to several line
attractors in a high dimensional state space of neural population
activity (13).

Our models successfully replicate both choice behavior and key
observations in neuronal recordings. Specifically, our modeling
requires that RPE signals in the neural integrator are vectorial and
action-specific on-manifold signals, whereas the synaptic model
exhibits global RPE signals. Furthermore, we found that the
neural integrator is more susceptible to perturbations in neural
activity and connectivity, while the synaptic model displays
remarkable robustness against such perturbations.

When examining anti-correlated activity updates necessary
for optimal performance in foraging tasks with hidden causal
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Fig. 6. Response to synaptic perturbations: synaptic model vs. neural integrator. (A) Eigenvalue spectra of the neural integrator connectivity L (Eq. 30 in
Materials and Methods). The eigenvalues corresponding to the line attractor axes (Fig. 1A) are at a � distance from the imaginary axis (i.e., zero real value).
(B) The exponential time decay of the network activity projected on one of the line attractor axes for different values of �. (C) The effect of random synaptic
perturbations on the synaptic model (SI Appendix, Synaptic Perturbations). Each excitatory population A (blue) and B (red) are comprised of N = 200 neurons
(faint lines). The average activity across neurons for each selective population is shown with tick lines color-coded accordingly.
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A B

C D

Fig. 7. Possible mechanisms for anti-correlated action value updates. (A) Left: Action values encoded in anti-correlated line attractor axes are updated in
opposite directions by an RPE signal aligned to one of the axes. (B) Left: Action value encoding update RPE signal comprised of two inputs, each one aligned with
one of the line attractor axes but with opposite signs. Right (A and B): Projections dynamics. (C) Left: Anti-correlated synaptic changes in the synaptic model.
(D) Left: Synaptic changes in the synaptic model of only one selective population produce anti-correlated action value updates due to strong inhibition. Right
(C and D): Population activity dynamics. The RPE signal is delivered and the synaptic update is performed at 2.5 s (dashed line). The RPE signal has a duration
of 100 ms.

structures, we found that the synaptic model efficiently accom-
modates these updates by solely increasing the amount of shared
inhibition, offering a parsimonious explanation for the synaptic
changes necessary for learning new tasks structures

Our initial findings suggest that the synaptic model is a
compelling candidate for the maintenance and update of action
values in the brain, given its robustness and because its observed
dynamics align with multiple experimental observations. We
identified requirements for neural integrator model that presently
lack experimental support, including the assumption that differ-
ent dopamine neural populations are selective for action values
and project to a valuation system in such a way to be well
aligned with the line attractor axes. Overall, our work provides
a computational framework to guide future research in order
to disprove these two candidate mechanisms for foraging in the
brain.

Network Architecture. Consistent with the observed functional
separation between valuation and action selection in the cortical-
basal ganglia-thalamocortical limbic and motor loops during
decision-making (15, 19), we build a network model with two
distinct connected networks that separately realize valuation and
action selection. In the action selection network, actions are
selected by a winner-take-all dynamics elicited by a transient
go signal. Importantly, in our models (both the synaptic model
and neural integrator), this go signal acts in a non-selective
multiplicative fashion transiently modifying the overall recurrent
connections of the action selection network (Eq. 8–12 on
Materials and Methods) and momentarily creating two stable
attractors that represent chosen actions (28, 29) without the need
of reset the network. This multiplicative mechanism is consistent
with experimental evidence in decision-making tasks in which go
signals input the thalamus from the midbrain (30). These inputs
can effectively increase the recurrent connectivity in the cortex
due to the recurrent thalamocortical loop (31, 32).

Due to the feedforward connections from the valuation
network to the action selection network, the ITI activity in the
action selection network also presents a rather small, action value
encoding in its persistent firing (Fig. 1 E and F and SI Appendix,
Fig. S2 A and B). Our models’ predictions are consistent with
the observed value encoding in the rat’s secondary motor cortex
during foraging (33).

Our models provide contrasting predictions for the feedback
projections from the action selection to the valuation network.
In the neural integrator, there is no feedback from the action
selection network. This aims to avoid choice signals disrupting
action value encoding. It is expected that, in this scenario, any
feedback projections from the action selection network to be weak
or approximately orthogonal to the line attractor axes, to maintain
the action value encoding. In contrast, in the synaptic model,
choice signals feedback from the action selection network are
necessary for reward-dependent learning (Materials andMethods).
In this scenario, we expect feedback from the action selection to
the valuation network to play a causal role in learning.

Synaptic Model. In the valuation network of our synaptic model,
recurrent connections undergo reward-modulated plasticity.
Trial-to-trial changes in its recurrent synaptic strengths cause
a graded variation of neural activity during ITIs in proportion to
action values updates that are consistent with recorded activity
in the mPFC and RSC (3, 4). Our results contrast with classic
synaptic models for action value maintenance and update during
foraging in which plasticity is limited to the feedforward input
projections (5, 6). In these models, action selection is biased
by action value encoded in the strengths of these feedforward
projections and the network performs action selection by a
winner-take-all dynamics that resets after each trial, at odds with
recent experimental observations (3, 4).

Recent work studying foraging on the fly suggests that synaptic
plasticity might be the mechanism underlying foraging behavior
in this animal (34).

In the synaptic model, the timescale of the response of the
selective populations to noisy input currents is correlated with
action values. Consistent with this prediction, such dependence
on the autocorrelation function with value has been observed in
value-based tasks in monkeys (35).

Neural Integrator. For the neural integrator model, we assumed
two line attractors encoding action values (Fig. 1A). We showed
that this model can account for graded changes of neural firing
during ITIs, but requires that value updating is realized by an
action-specific vectorial RPE signal projecting to value-coding
neurons in a special way along a specific action value axis (e.g.,
for action A, not B), in a given trial. These signals could be
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mediated by dopamine cells (36), norepinephrine cells (37), or
subcortical input (38). The latter implies that these projections
target selective neural populations in a choice-dependent manner,
an assumption not supported in the case of dopamine by presently
known evidence but testable in the future.

Robustness to Perturbations. In the synaptic model, the dynam-
ics during the ITI is given by a single stable fixed-point attractor.
We predict that optogenetic perturbations in the neural activity
during the ITI recover to similar firing rate levels, enabling the
robust encoding of action value against perturbations.

For the line attractor, the effect of a perturbation in neural
activity diminishes as it becomes more misaligned with the line
attractor axes. However, our findings indicate that even a strong
perturbation with minimal alignment to the line attractor axes
can result in significant disruptions to action value encoding. We
predict that brief and strong optogenetic perturbations during
the ITI will disrupt action value encoding in this scenario. We
also predict that optogenetic perturbations can be engineered to
maximize its effect by targeting the neurons with higher action
value encoding. Random persistent input current fluctuations
induce drift in action value encoding, predicting deterioration of
the action value maintenance for long ITIs. Our study primarily
focuses on linear neural integrators or those with weak nonlin-
earities. It is possible that incorporating strong nonlinear effects
(39) or the implementation of an approximately continuous
line attractor consisting of multiple discrete stable attractors
(40) could produce some enhancement in the robustness of the
network.

In the neural integrator, the connectivity is fine-tuned,
resulting in a manifold of marginally stable states. Even small
perturbations in the synaptic connectivity caused by fluctuations
in the synaptic efficacy can lead to persistent drifts in neural
activity. Furthermore, as the number of action values maintained
increases, the likelihood of significant drifts in the encoding of
action values also rises. Consequently, the neural integrator is
very susceptible to synaptic perturbations. In contrast, the
synaptic model exhibits stability against synaptic fluctuations.
Action values in this model remain largely unaffected by such
perturbations.

Overall, our findings show that the synaptic model provides a
significantly more robust mechanism for action value encoding.

Structured Tasks. In both models, action values are updated
depending on the history of choices and rewards, with no use
of the specific structure of the task. Furthermore, our network
models are algorithmically very similar to the Q-learning algo-
rithm (18) (SI Appendix). Consequently, from a reinforcement
learning standpoint, our models are considered model free (18),
which refers to the fact that they do not use information about the
environment’s structure for performing the action values updates
encoded in the synapses and neural activity in the respective
models.

In many situations, it is advantageous to learn the causal
structure of the world for maximizing reward consumption
(41, 42). During value-based decision-making in uncertain envi-
ronments with underlying hidden structures, inferring the causal
structure of the task can lead to higher rewards (14, 43–45). One
interesting scenario for foraging is a recently proposed task in
which a hidden state induces anti-correlated and extreme changes
in reward probabilities (14).

In our models, anti-correlated updates of the firing rate activity
of selective populations could capture the hidden structure of this

task. In the neural integrator, anti-correlated line attractor axes
lead to anti-correlated action-value updates. However, adapting
to new task structures may involve learning new alignments
between line attractor axes effectively changing the manifold
structure, which may require global changes in synaptic con-
nectivity. It is unclear whether this can be flexibly achieved using
local learning rules. In contrast, anti-correlated updates can also
be achieved in the line attractor by adjusting the RPE alignment
with the line attractor axes. Consequently, when learning new
tasks, only modifying RPE signal alignments becomes necessary
in this scenario. To our knowledge, there is no evidence of such
RPE characteristics in the dopamine system.

In the synaptic model, anti-correlated changes in firing rates
and action value encoding can be achieved using local three-factor
learning rules by leveraging the amount of shared inhibition
in the network. Our results demonstrate that if there is strong
shared inhibition among selective populations, synaptic changes
in the recurrent connections of one population give rise to anti-
correlated changes in firing rates. Interestingly, we hypothesize
that for learning new tasks inhibitory plasticity (46, 47) could
sculpt the correlation structure of the firing rate updates. This
leads to a possible flexible mechanism for learning new causal
structures in the environment.

Foraging in Naturalistic Environments. While animals are for-
aging in a naturalistic environment, they must remember the
expected reward at each location and estimate the travel cost to
other locations to decide on actions (48). We wish to emphasize
that in our model, we consider an environment in which there
is only one location and two options that are simultaneously
presented. Therefore, from a reinforcement learning perspective,
our task involves a single state and two actions (18). In contrast, in
a more naturalistic foraging scenario, distinct choice alternatives
(i.e., actions) are available at various time points or locations (i.e.,
states, such as food patches) (49–51). Our models would need
significant modifications to handle environments with multiple
states and/or actions. For example, if a limited and fixed number
of actions are taken in each state, e.g., stay vs. leave, if leave goes
left vs. right. It would suffice to maintain in memory the location
values by a valuation network as shown in SI Appendix, Fig. S5.
An action selection network model similar to the one presented
in this work can decide whether to stay or leave and the direction
of travel by comparing the value of the current location (state) vs.
the integrated value of the rest of the environment discounting
travel costs. It remains to be seen how our model can be extended
for such foraging in naturalistic environments.

Materials and Methods

Foraging Task
Dynamic Foraging Task. We implement a dynamic foraging task (DFT) similar
to the one in refs. 3 and 4 in both our network simulations and behavioral
experiments. Briefly, in this task, after a go cue (auditory for the mice), the subject
chooses freely among two alternatives (by licking one of two custom-built lick
ports for the mice) that deliver a reward (water for the mice) probabilistically.
After an inter-trial interval (ITI) of the order of several seconds (3 s in the case of
the network and 5.79 s median ITI in the case of the mice), the next go cue is
presented. Depending on their choice, a reward is delivered with a probability
that changes randomly in blocks of 100 trials for the network (Fig. 2 A andB). For
the behavioral experiments in mice, the number of trials in each block is drawn
from a bounded exponential distribution ranging from 40 to 100 trials. For this
task, the reward schedule uses baited rewards (e.g., see refs. 2–4, 23), that is
that once the reward is assigned, it remains in the corresponding contingency
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(network)/port (mice) for its consumption. The reward probabilities for the two
contingencies (pA, pB) (network)/(pRight, pLeft) (mice) were chosen randomly
from {(0.225,0.225), (0.4,0.05),(0.05,0.4), (0.3857, 0.0643),(0.0643, 0.3857)}.

Animal Procedure and Behavioral Task. All animal procedures were in
accordancewithprotocolsapprovedbytheJaneliaResearchCampusInstitutional
Animal Care and Use Committee and have been described before (52, 53).
Briefly, C57BL/6J mice were each implanted with a titanium head post
(http://dx.doi.org/10.17504/protocols.io.9a8h2hw) and housed individually in
a reverse 12-h dark/12-h light cycle. After recovery from the head post surgery,
the mice were water restricted and then habituated for 2 d prior to task training.

Behavioral sessions lasted 1 to 2 h during the dark phase. Mice were head
restrained while resting in a 31.8 mm acrylic tube (8486K331, McMaster-Carr)
inside a dark and sound-attenuated box. The go cue (3 kHz, 100 ms) was
presented by a speaker (TW025A20, Madisound). Water reward (2 to 4 μL) was
delivered by solenoid valves (LHDA1233215H, The Lee Co) through two lick
ports, spaced 4.5 mm apart (8987K47, McMaster-Carr). Licks were detected by
a custom circuit (JF-SV-LP0001, Janelia Research Campus). Task events were
controlled by a Bpod State Machine (Sanworks) and programmed in PyBpod
(https://github.com/hanhou/Foraging-Pybpod).

Network Models
Network Architecture. As described in the main text, we develop two network
models for contrasting two different mechanisms for action value maintenance
and update during foraging: i) neural integration and ii) synaptic learning. Both
models have similar network architecture consisting of a mesoscopic network of
two inter-connected areas. Each area is modeled as a recurrent network. Action
values are maintained and updated depending on reward in a network we refer
to as the valuation network (Fig. 1 B and D). For action selection, action values
are read out from the valuation network and projected for biasing actions in a
network we refer to as the action selection network (Fig. 1B andD). The dynamics
of the action selection network is the same for both models.

Asdescribedbelow,twocriticaldifferencesexistbetweentheneural integrator
and the synaptic model architectures. First, there are feedback projections
between the action selection and the valuation network in the synaptic model,
while in the neural integrator, these projections do not exist. Second, in the
neural integrator, reward prediction error (RPE) signals are selectively projected
to the two action value axes, while in the synaptic model, RPE is a global signal
projected to the whole valuation network (see more in sections below).

Action Selection Network. For the action selection network, we use a reduced
mean field model that has been shown to be a good approximation of the
dynamics of a full recurrent network of spiking neurons (29). This reduced model
represents thedynamicsof thefractionofactivatedN-methyl-D-aspartate(NMDA)
receptors of two selective excitatory populations. These populations represent
the two contingencies. The dynamics is described by the below equations

dsA
dt

= −
sA
�

+ (1− sA)F(IA), [1]

dsB
dt

= −
sB
�

+ (1− sB)F(IB). [2]

with  = 0.641 and � = 100 ms. The function F is the input–output transfer
function given by

f(I) =
Af I− Bf

1− exp(−Df (Af I− Bf ))
, [3]

where Af = 270 Hz/nA, Bf = 108 Hz, and Df = 0.154 s (29, 54).
The synaptic currents are given by a recurrent (IrA and IrB), a background

synaptic noise (InA and InB), and a nonselective external go signal (Igo
A and Igo

B )
components

IA = IrA + InA + Igo
A , [4]

IB = IrB + InB + Igo
B . [5]

The recurrent component is given by

IrA = WsA − JsB + I0 + jFFxA(t), [6]

IrB = WsB − JsA + I0 + jFFxB(t). [7]

Here W = 0.2609 corresponds to the average recurrent synaptic weights
for each selective population, J = 0.0497 corresponds to the effective
shared inhibition weights, and I0 = 0.3381 to the background current. For
these parameter values, the action selection network is in a winner-take-all
regime suitable for decision-making (29). The parameter jFF corresponds to the
feedforward connections from the valuation to the action selection network.
The variables xA(t) and xB(t) represent the mean activity of the two selective
populations rA(t) and rB(t) in the case of the synaptic model and the two
projections mA(t) and mB(t) in the case of the neural integrator respectively
(seefollowingsectionsfor thedetailedimplementationof thevaluationnetwork).
For the synaptic model jFF = 0.2 for Fig. 1F and jFF = 0.04 for Fig. 2 B, D, F,
and H. For the neural integrator jFF = 0.0015 for Fig. 1B and jFF = 0.003 for
Fig. 2 A, C, E, and G. The equations for the background synaptic noise due to
AMPA synapses are given by

�AMPA
dInA
dt

= −InA + �AMPA
√
�AMPA�A(t), [8]

�AMPA
dInB
dt

= −InB + �AMPA
√
�AMPA�B(t). [9]

Here �A(t) and �B(t) are Gaussian noise variables. The time scale of AMPA
synapses is �AMPA = 2 ms. Last, the intensity of the noise for the synaptic
model is �AMPA = 0.003 for Figs. 1 and 4 and �AMPA = 0.03 for Fig. 2. For
the neural integrator is�AMPA = 0.003 for Fig. 1 and�AMPA = 0.02 for Fig. 2.

In our model, the go input currents Igo
A and Igo

B correspond to transient non-
selective inputs that lasts until one of the populations reaches a set firing rate
(F(IA) or F(IB)) threshold of 30 Hz. Consistent with recordings in the Anterior
Lateral Motor cortex (ALM) during motor initiation (55) and as proposed in
theoretical studies (31, 32), we hypothesize transient nonselective go signals
gate actions to the motor thalamus. Since the recurrent thalamocortical loop
involving ALM and ventromedial (VM) thalamic nucleus is causally involved in
motor initiation (30, 56), the net effect of an input to the thalamus corresponds
to transient effective synaptic weights (31, 32) given by

Igo(t)A = wgo(t)sA, [10]

Igo(t)B = wgo(t)sB, [11]

where

wgo(t) =


0 t < tgo
0.1 tgo ≤ t ≤ t∗

0 t∗ < t
. [12]

We define t∗ as the time when the firing rate one of the populations, either
F(IA) or F(IB), reaches the threshold of 30 Hz.

The numerical integration time step used was dt = 0.1 ms.
Network dynamics. For the synaptic model, the network dynamics are given by
the linearized dynamics of a network of two excitatory selective populations to
the two contingencies in the DFT with shared inhibition

�
drA
dt

= −rA + wA(k)rA −
�
2

(rA + rB) + IA + Ifb,A, [13]

�
drB
dt

= −rB + wB(k)rB −
�
2

(rA + rB) + IB + Ifb,A. [14]

Here the variables rA and rB correspond to the mean firing rates of the
two selective populations. The parameters wA(k) and wB(k) correspond to the
mean synaptic efficacy of the recurrent connections in the trial k. The synaptic
efficacies are plastic and change on a trial-to-trial basis according to a learning
rule specified in the next section. The parameter � = 0.05 corresponds to the
effective, shared inhibition. The background input current is given by

IA = ĪA + ��A(t) [15]

IB = ĪB + ��B(t)
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with the parameters ĪA = ĪB = 0.1. The variables �A(t), �B(t) are white
Gaussian noise with mean zero and variance equal to 1. The input current is
noisy with parameter� = 0.14 only for simulations in Fig. 5. Otherwise,� = 0.
The timescale of the dynamics is taken as � = 10 ms. The numerical integration
time-step used was dt = 10 ms. The currents Ifb,A = wfbsA and Ifb,B = wfbsB
correspond to the feedback current from the action selection network. We use
wfb = 0.2. In Fig. 7C wA = 0.87, wB = 0.62, and � = 0.25. In Fig. 7D
wA = 0.87, wB = 0.62, and � = 0.45.

Although extremely simple, this model captures essential features of an
E-I network and has the advantage that several quantities can be calculated
analytically. This model has a single fixed-point attractor corresponding to the
dynamics’ stationary state. We analytically calculate its fixed point (SI Appendix,
Synaptic Model).

SynapticModel’s Reward-Dependent Learning Rule. In the synaptic model,
the recurrent connections synaptic efficacies of the two selective populations in
the valuation network wA(k) and wB(k) are learned using a reward-dependent
plasticity rule (5, 6, 21) in a trial-by-trial (where k is the trial index) basis. In our
three-factor learning rule the synaptic changes are given by

Wx(k + 1)− Wx(k) = (R(k)− [rx(k)]+)f(rx(k))2H(Wx(k))
x = A, B. [16]

Here the reward is a binary variable R ∈ {0, 1}. The function [•]+ is the
rectifier linear function with a minimum equal to 0 and a maximum equal to 1.
The functionH(x) given by

H(x) =

{
1 if 0 ≤ x ≤ 1
0 otherwise,

[17]

enforces a hard constraint on the synaptic weights preventing a firing rate insta-
bility. This could be implemented by homeostatic plasticity mechanisms (57).

The reward prediction error (RPE) at trialk is given by the difference RPE(k) =
R(k) − [rx(k)]+. Here rx(k) is the mean firing rate of the population in the
valuation network corresponding to the chosen contingency x = A, B at trial k.
Then Eq. 16 reads as

Δwx(k) = wx(k + 1)− wx(k) = RPE(k)f(rx(k))2H(Wx(k))
x = A, B. [18]

We assume that the RPE is computed elsewhere in the brain, for example, in
the Ventral Tegmental Area (VTA) (20).

The Hebbian term of the three-factor learning rule (21), which is the product of
a non-linear function of pre and post-synaptic activity of the selective populations,
is given by the term f(rx)2 = f(rx) · f(rx) for x = A, B. Notice that the Hebbian
term is squared because the pre and post-synaptic activity is the activity of the
selective populations A or B. This term will modify the recurrent connections of
the selective populations wA(k) and wB(k). In our model, the function f is a
highly non-linear step function

f(s; k) =

{
0 if s < �x(k) + Δ√
AH if �x(k) + Δ ≤ s

x = A, B. [19]

Here, �A(k) and �B(k) correspond to the running temporal firing rate
average of population A and B in the valuation network, respectively, at trial k.
The above function induces plasticity in synapses where the firing rates are Δ
larger than the average firing rate of the previous trial. This class of nonlinear
plasticity rule that potentiates firing rate outliers has been recently inferred from
in vivo data (58, 59).

In our model, we assume a slow exponential kernel of the order of seconds
for computing the running averages �A(k) and �B(k). Since, in our task, the
ITI period is much longer than the response period, we can replace �A(k) and
�B(k)by the mean firing rates during the ITI. After the go signal, when the choice
is selected by the action selection network, the chosen selective population in
the action selection network will elevate its firing rate (Fig. 1F). The feedback

projections from the action selection to the valuation network will produce a
transient elevated activity in the corresponding population. In contrast, little
to no feedback activity is produced in the corresponding unchosen population
(Fig. 1 B, Bottom Row Left). This selective feedback activity in the valuation
network and our learning rule in Eq. 19 produce changes in the recurrent
synaptic efficacies of only the chosen populations in the valuation network.
Therefore, the final learning rule we use in our numerical simulations is

wA(k + 1) = �wwA(k) + AHRPE(k)H(WA(k)) if A is chosen, [20]
wB(k + 1) = �wwB(k) + AHRPE(k)H(WB(k)) if B is chosen, [21]

and

wA(k + 1) = �wwA(k) if B is chosen, [22]
wB(k + 1) = �wwB(k) if A is chosen. [23]

The parameter�w ∈ [0, 1] represents to a trial-by-trial forgetting parameter.
If �w = 1, there is no forgetting across trials, while if �w = 0, the synaptic
efficacies modifications are forgotten in one trial. We choose no forgetting
�w = 1 for simulations in Fig. 2, and we fit this parameter using behavioral
data in Fig. 3 (SI Appendix, Fitting Network Models in Behavioral Data). The
parameter AH in Eqs. 19–21 corresponds to the maximum amplitude of the
Hebbian term in our three-factor learning rule. For the network simulations in
Fig. 2 AH = 0.12 while we fit this parameter using behavioral data in Fig. 3
(see SI Appendix, Fitting Network Models in Behavioral Data for the parameter
values of the fit and SI Appendix, Fig. S3).

For the synaptic update in Fig. 7C, ΔwA = −0.25 and ΔwB = 0.25 while
for Fig. 7DΔwA = 0 and ΔwB = 0.33.

High-Dimensional Neural Integrator. For constructing a neural integrator in
high dimensional neural space, our starting point is a recurrent linear network
with N number of units. The following linear equations give the dynamics

dui
dt

= −ui +
N∑
j=1

Jijuj + Ii [24]

of the synaptic current ui for each neuron (60). In this network model, the
connectivity is random. Each entry is drawn from a normal distribution with zero
mean and variance equal to g2/N. The external input to the network is given by
the vectorEI. For all the simulations in the paper, we used g = 0.5.

By defining the below matrix

W = J− I, [25]

where I is the identity matrix. Then Eq. 24 can be written in vectorial form as

dEu
dt

= WEu +EI. [26]

Using the singular value decomposition (SVD) the matrix W can be written
as the sum of rank-1 matrices scaled by the corresponding singular vectors

W =

N∑
�=1

��Eq�EvT�. [27]

Here the singular vectors are ordered from larger (�1) to smaller (�N). We
constructed a neural integrator for encoding two action values similarly as in
ref. 13. For constructing a neural integrator with two integration modes, we
subtract to the matrix W the rank-1 matrices in Eq. 27 corresponding to the two
smaller singular values, i.e.,

L = W− �NEqNEv
T
N − �N−1EqN−1Ev

T
N−1 − �

[
EvNEv

T
N + EvN−1Ev

T
N−1

]
. [28]

Notice that here introduce a rank-2 normal perturbation that will lead to drifts
of time scale � ∼ 1/� in the directions EvN−1 and EvN. We then use this new
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matrix L as the connectivity matrix of our neural integrator, which now has two
integration modes.

This model can be extended for maintaining p values of actions, by
constructing a network with p line attractor axes:

L = W−
p−1∑
�=0

�N−�EqN−�Ev
T
N−� − �

p−1∑
�=0

EvN−�Ev
T
N−�. [29]

The dynamics of the neural integrator is given by

dEu
dt

= LEu +EI. [30]

We compute the firing rates as a nonlinear transformation of the synaptic
currents using a sigmoidal transfer function Er = tanh(Eu). By projecting the
network activity Er(t) onto the right singular vectors we decompose the activity
in N network modes

mk(t) = Evk
T
Er(t) =

N∑
j=1

vk,jrj(t) k = 1, . . . , N. [31]

When we project Eq. 30 in the two line attractor axes that maintain the
corresponding action values in our DFT. Assuming that the transfer function is
linear, such thatEr(t) = Eu(t), we obtain

dmN
dt

= 〈EI, EvN〉 − �mN [32]

dmN−1
dt

= 〈EI, EvN−1〉 − �mN−1. [33]

For � = 0 reads

dmN
dt

= 〈EI, EvN〉, [34]

dmN−1
dt

= 〈EI, EvN−1〉, [35]

which correspond to the equations of two independent one-dimensional neural
integrators. Where 〈·, ·〉 corresponds to the inner product of two vectors.

In our model we assume J to be independently and identically distributed

(i.i.d.) from a Gaussian distribution, i.e., W
i.i.d.
∼ N(0, g2/N). The input current

to the network is given by

EI = EIRPE(t) +EIext(t). [36]

HereEIRPE(t) is an input proportional to the RPE that updates the action value
after reward delivery by briefly pushing or pulling in the direction of the action
value axis corresponding to the chosen contingency (i.e., in the directions EvN−1
and EvN for the contingency A and B respectively). TheEIRPE(t) is given by

EIRPE(t) =


0 t ≤ Tchoice
ARPERPE(k; x)Evx Tchoice < t < Tchoice + 100 ms
0 Tchoice + 100 ms ≤ t

. [37]

Here the RPE is given by

RPE(k) = R(k)− qx(k) x = A, B. [38]

Here qx(k) corresponds to the quantile of the projection of the population
activity on the line attractor axis corresponding to the chosen contingency (i.e.,
A or B) (SI Appendix, Neural Integrator). The rationale for using the quantile is
to normalize this value to take values between 0 and 1 to be comparable to
the reward (i.e., R ∈ {0, 1}) since the projection can have arbitrary values. We
believe this normalization necessary for computing the RPE in our model could
be performed by subcortical structures as the VTA (36, 61).

The parameter ARPE is the strength by which the RPE signal modifies the
population activity. For Fig. 1E ARPE = 0.1 and for Fig. 2 ARPE = 0.3.
The RPE signal stimulates the network after the reward is delivered, which
happens instantly after the choice is made at time Tchoice in our model. Tchoice is
Tgo = 3 s plus the reaction time of the action selection network at a given trial
and therefore varies from trial to trial.

The EIext(t) is an external stimulus to the network. For Figs. 1–3, we set
EIext(t) = E0. In Fig. 5

EIext(t) = � E�(t). [39]

The variables �i(t) for i = 1, . . . , N are i.i.d. white Gaussian noise with
mean zero and variance equal to 1. The input current is noisy with parameter
� = 0.014.

In Fig.7 A and B, a 100-ms external stimulus is delivered starting at 2.5 s.
In Fig.7A, the two line attractor axes exhibit perfect anti-correlation, and the
external stimulusEIext is proportional to one of the line attractor axes, having a
norm equal to 2. In Fig. 7B, the external stimulusEIext is proportional to EvA−EvB,
with a norm equal to 3.

The numerical integration time-step used was dt = 10 ms.

Data, Materials, and Software Availability. The network simulations were
performed using custom Python scripts available at the GitHub reposi-
tory https://github.com/ulisespereira/foraging-integrator-vs-synaptic (62). For
fitting the reduced network models on mice behavior, we used custom Python
scripts which are available at the same repository.
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