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Working memory (WM) is a cognitive function for temporary
maintenance and manipulation of information, which requires
conversion of stimulus-driven signals into internal representa-
tions that are maintained across seconds-long mnemonic delays.
Within primate prefrontal cortex (PFC), a critical node of the
brain’s WM network, neurons show stimulus-selective persistent
activity during WM, but many of them exhibit strong temporal
dynamics and heterogeneity, raising the questions of whether,
and how, neuronal populations in PFC maintain stable mnemonic
representations of stimuli during WM. Here we show that despite
complex and heterogeneous temporal dynamics in single-neuron
activity, PFC activity is endowed with a population-level coding
of the mnemonic stimulus that is stable and robust throughout
WM maintenance. We applied population-level analyses to hun-
dreds of recorded single neurons from lateral PFC of monkeys
performing two seminal tasks that demand parametric WM: ocu-
lomotor delayed response and vibrotactile delayed discrimination.
We found that the high-dimensional state space of PFC population
activity contains a low-dimensional subspace in which stimulus
representations are stable across time during the cue and delay
epochs, enabling robust and generalizable decoding compared
with time-optimized subspaces. To explore potential mechanisms,
we applied these same population-level analyses to theoreti-
cal neural circuit models of WM activity. Three previously pro-
posed models failed to capture the key population-level features
observed empirically. We propose network connectivity proper-
ties, implemented in a linear network model, which can underlie
these features. This work uncovers stable population-level WM
representations in PFC, despite strong temporal neural dynam-
ics, thereby providing insights into neural circuit mechanisms sup-
porting WM.
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The neuronal basis of working memory (WM) in prefrontal
cortex (PFC) has been studied for decades through single-

neuron recordings from monkeys performing tasks in which a
transient sensory stimulus must be held in WM across a seconds-
long delay to guide a future response. These studies discovered
that a key neural correlate of WM in PFC is stimulus-selective
persistent activity, i.e., stable elevated firing rates in a subset of
neurons, that spans the delay (1). These neurophysiological find-
ings have grounded a leading hypothesis that WM is supported
by stable persistent activity patterns in PFC that bridge the gap
between stimulus and response epochs. Because the timescales
of WM maintenance (several seconds) are longer than typical
timescales of neuronal and synaptic integration (∼10–100 ms),
mechanisms at the level of neural circuits may be critical for gen-
erating WM activity in PFC (2). A leading theoretical framework
proposes that PFC circuits subserve WM maintenance through

dynamical attractors, i.e., stable fixed points in network activity,
generated by strong recurrent connectivity (3, 4).

Recent neurophysiological studies have called into question
whether WM activity in PFC can be appropriately understood in
terms of persistent activity and attractor dynamics. These studies
highlight the high degree of heterogeneity and strong temporal
dynamics in single-neuron responses during WM (5, 6), rather
than temporally constant activity patterns. Because only a small
proportion of WM-related PFC neurons show well-tuned, stable
persistent activity, attractor dynamics may not be the domi-
nant form of WM coding. Researchers have emphasized alter-
native forms of population coding, specifically dynamic coding,
in which the mnemonic representation shifts over time during
WM maintenance (7, 8). In turn, such observations have moti-
vated theoretical proposals for alternative neural circuit mech-
anisms for WM that produce dynamical and heterogeneous
activity (9, 10).

These studies centralize a tension between temporal dynamics
and stable coding of stimulus features during WM maintenance.
In high-dimensional state spaces of network activity, however, it
is possible for heterogeneous neuronal dynamics to coexist with
a stable population coding for WM within a specific subspace
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(11). Whether dynamic activity in PFC supports a robust sta-
ble population coding for WM remains unclear. Furthermore,
dynamic coding raises the challenge of how WM information in
PFC can be robustly read out through plausible neurobiological
mechanisms, because a subspace corresponds to a set of readout
weights (12).

To investigate these issues, we applied population-level anal-
yses to two large datasets of single-neuron spike trains recorded
in PFC, from two seminal WM tasks: the oculomotor delayed
response (ODR) task (13, 14) and the vibrotacticle delayed
discrimination (VDD) task (15). In both tasks, PFC popula-
tions exhibit strong temporal dynamics during WM, yet there
exists a subspace, identifiable via principal component analysis
(PCA), in which mnemonic representations are coded stably in
time. This mnemonic subspace supports decoding throughout
WM, performing comparably to dynamic coding subspaces. We
found that population measures dissociate among mechanisms
in three previously proposed WM circuit models. Key features
of the PFC data are not captured by these three models, yet
they are by a simple subspace attractor model. Taken together,
our findings demonstrate a stable and robust population cod-
ing for WM in PFC and pose constraints for circuit mechanisms
supporting WM.

Results
Tasks and Datasets. The ODR and VDD tasks share common
features, facilitating comparison across datasets. Both tasks
demand parametric WM of an analog stimulus variable: visu-
ospatial angle for ODR and vibrotactile frequency for VDD
(Fig. 1 A and B). Both tasks have a 0.5-s cue epoch followed
by a 3-s delay epoch, which is relatively long and allows char-
acterization of time-varying WM representations. The tasks also
contrast in several features, allowing us to test the generality of
our findings. They differ in stimulus modality (visual for ODR
vs. somatosensory for VDD), role of WM in guiding behavioral
response (veridical report of location for ODR vs. binary dis-
crimination for VDD), and prototypical stimulus tuning curves
of single PFC neurons (bell shaped for ODR vs. monotonic for
VDD). Each dataset, collected by a different laboratory, con-
tains spike trains from hundreds of single neurons (645 for ODR;
479 for VDD) recorded from the lateral PFC of two macaque
monkeys (14, 15). To minimize bias in characterizing population
activity, neurons were not preselected for tuning properties.
We used a pseudopopulation approach to study the state–
space dynamics of population activity (8, 12, 16, 17), rather
than the properties of the heterogenous individual neurons
(Figs. S1 and S2). The activity of N neurons corresponds to a
vector in an N -dimensional space, with each dimension repre-
senting the firing rate of one neuron. The time-varying popula-
tion activity for each stimulus condition thereby corresponds to
a trajectory within this space.

Population Dynamics. We first examined the dynamics of pop-
ulation activity during WM by characterizing the similarity of
activity patterns between two timepoints. We calculated the cor-
relation, across neurons, between the population state at one
timepoint and the state at another timepoint, within a stimulus
condition (18). Fig. 1 C and D shows the time course of this
similarity for two reference timepoints: a “sensory” state dur-
ing the cue epoch and a “late memory” state at the end of the
delay epoch. Fig. 1 E and F shows the population correlation
across all timepoints. For both datasets, WM activity patterns
in PFC exhibit strong temporal dynamics with the population
state changing strongly throughout the cue and delay epochs.
The strength of these dynamics can be observed in the late mem-
ory trace (Fig. 1 C and D): The correlation for early in the delay
is as low as it is for the foreperiod. These temporal dynamics at
the population level are consistent with prior characterizations
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Fig. 1. WM tasks and PFC population dynamics. (A) In the ODR task, the
subject fixates on a central point, and a visuospatial cue of variable spa-
tial angle is presented for 0.5 s, followed by a 3-s mnemonic delay. After
the delay, the subject makes a saccadic eye movement to the remembered
location (14). (B) In the VDD task, the subject receives a 0.5-s vibrotactile
stimulus of variable mechanical frequency (cue, f1) to the finger, followed
by a 3-s mnemonic delay. After the delay, a second stimulus (f2) is presented
and the subject reports, by level release, which stimulus had a higher fre-
quency (15). (C and D) Correlation between population states as a function
of time, within the same stimulus condition. The sensory state is defined by
the first 0.25 s of the cue epoch and the late memory state by the last 0.25 s
of the delay epoch. Colored shaded regions mark SEM. (E and F) Correla-
tion between the population states at different timepoints (i.e., time-lagged
autocorrelation). The correlation between states is generally high due to a
broad distribution of overall firing rates across neurons (Fig. S2). The traces
in C and D are slices along the corresponding timepoint.

of delay dynamics at the single-neuron level (5, 6). We note that
trial averaging could obscure dynamics (e.g., oscillations) that are
not phase locked to task timing.

Stable Coding in a Mnemonic Subspace. Are these strong popu-
lation dynamics compatible with stable coding for WM? In the
state–space framework, stable mnemonic coding corresponds
to a fixed subspace within which the neural trajectories during
WM are relatively time invariant and separable across stimu-
lus conditions. To test this hypothesis, we sought to define and
characterize a mnemonic coding subspace. There are a variety
of dimensionality reduction methods to define candidate cod-
ing subspaces. Motivated by the neurobiological relevance of
a mnemonic subspace, which may provide representations for
downstream readout of WM, we sought to define a subspace that
can be plausibly learned for readout via known forms of synaptic
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plasticity. There is an established theoretical literature linking
Hebbian learning to dimensionality reduction via PCA (19–21).
We therefore applied PCA to the time-averaged delay activity
across stimulus conditions (SI Text) (Fig. S3). The leading k prin-
cipal axes, ranked by variance captured, define a k -dimensional
linear subspace, which we denote the mnemonic subspace, which
lies closest on average to the datapoints. Because this subspace is
defined by time-averaged activity, our approach does not explic-
itly use timing information (as in ref. 16). A primary rationale
is that if a subspace is accessible through time-insensitive PCA,
then it can potentially be learned neurally through Hebbian
plasticity.

Surprisingly, we found that when the neural trajectories are
projected into the mnemonic subspace, the resulting delay activ-
ity is remarkably stable in time, even though this subspace is
not designed to minimize temporal variation (Fig. 2 A and B).
Separation and stability of trajectories can be quantified and
compared through the across-condition stimulus variance and
within-condition time variance (Fig. S4). For ODR, the first
two principal components (PCs) of the mnemonic subspace (i.e.,
the projections of the activity along the corresponding principal
axes) largely reflect the horizontal and vertical stimulus dimen-
sions (Fig. 2A and Fig. S3C). For the leftmost three locations,
traces overlap in the PC1–PC2 subspace but are distinguishable
in higher PCs (Fig. S3 E and F). This compressed representation
of the ipsilateral (left) visual hemifield is expected due to the
prominent contralateral bias for coding of visual space in PFC
(13, 22). For VDD, the first PC of the mnemonic subspace pro-
vides a monotonic, quasi-linear ordering of the cue stimulus fre-
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Fig. 2. Stable population coding of WM coexists with strong temporal
dynamics. (A and B) Population trajectories during the WM delay epoch pro-
jected into the mnemonic subspace, defined via PCA on time-averaged delay
activity. Here the x and y axes show the first and second principal compo-
nents (PC1 and PC2) of the subspace. Each trace corresponds to a stimulus
condition, colored as in Fig. 1 A and B. The shading of the traces marks
the time during the delay, from early (light) to late (dark). (C and D) Three-
dimensional projections, illustrating the strong temporal dynamics coexist-
ing with stable coding in the mnemonic subspace. The x and y axes are as in
A and B. The z axis (time PC1) is an orthogonal axis in the state space that
captures time-related activity variance, but does not indicate time explicitly.
Within each plot, all axes are scaled equally.
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Fig. 3. Stimulus variance captured by the mnemonic and dynamic coding
subspaces. The mnemonic subspace is defined using delay activity as in Fig. 2.
The dynamic subspace is defined from data for each timepoint (0.25 s). The
dimensionality of the subspaces is 2 for ODR (A and C) and 1 for VDD (B
and D), matching the dimensionality of the stimulus feature for each task.
(A and B) Stimulus variance captured for stable mnemonic subspace (blue)
and for a dynamic subspace optimized for each timepoint (red). Chance val-
ues for the stable (gray) and dynamic (brown) subspaces were calculated
by shuffling stimulus trial labels. (C and D) Generalizability of the dynamic
subspace across time. The red curve marks the stimulus variance captured
by the dynamic subspace defined at one time for activity at another time
separated by a given time separation, averaged across timepoints during
the delay. The blue dashed line marks the stimulus variance captured by the
mnemonic subspace, averaged across the delay epoch. The gray dotted line
marks the mean chance level during the delay. Shaded bands mark SEM.

quency (Fig. 2B and Fig. S3D). To visualize population temporal
dynamics in relation to the mnemonic subspace, we constructed
3D projections. In Fig. 2 C and D, the x and y axes show the first
two PCs of the mnemonic subspace. The z axis is an orthogonal
axis in the state space that captures a large amount of time vari-
ance during the delay. Mnemonic subspace trajectories vary in
time more for VDD than for ODR, exhibiting a gradual increase
in separation during the delay. As this view shows, WM activity
undergoes strong changes over time without interfering with cod-
ing that is stable and separable within the mnemonic subspace.

Stable and Dynamic Coding. We have shown that the PCA-defined
mnemonic subspace captures a relatively stable stimulus rep-
resentation throughout the WM delay. However, this subspace
may not capture components of the WM representation that
are highly dynamic during the delay. In a dynamic coding sce-
nario, a fixed subspace would fail to capture much stimulus vari-
ance, because stimulus representations change over time, and
a “dynamic” subspace that is reoptimized for each timepoint
would capture a much larger amount of stimulus variance. To
characterize the relative strengths of stable and dynamic cod-
ing, we measured the amount of stimulus variance captured by
a given subspace (i.e., the resulting firing-rate variance across
stimuli when the population activity, at a given timepoint, is
projected into the subspace), for the mnemonic subspace as
well as for a dynamic subspace that is redefined for each time-
point by the same PCA method. To allow proper comparison
between mnemonic and dynamic subspaces, we applied a split-
data approach for cross-validation and used equal amounts of
training data (SI Text).

We found that the mnemonic and dynamic subspaces capture
significantly more stimulus variance than expected by chance for
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all timepoints across the cue and delay epochs (P < 0.01, t test)
(Fig. 3 A and B). The mnemonic subspace encodes a compara-
ble amount of variance across the cue and delay epochs, even
though it was defined using only delay-epoch data, suggesting
that mnemonic coding begins early during stimulus presentation.
Relative to the mnemonic subspace, the dynamic subspace cap-
tures a comparable amount of stimulus variance during the delay,
but substantially more during the cue. This suggests a separate
sensory representation that is activated during stimulus presen-
tation. For VDD but not ODR, the variance increases substan-
tially toward the end of the delay, due to dynamic coding as well
as increased separation within the mnemonic subspace, which
could potentially be due to task differences in response type.
We tested generalizability of the dynamic subspace by measuring
how well the subspace defined at one timepoint captures stim-
ulus variance in activity at a different timepoint. The amount
of variance captured decays smoothly with increasing separa-
tion between these two timepoints (Fig. 3 C and D and Fig. S5),
reflecting the timescales over which dynamic coding evolves. For
zero time separation, the dynamic subspace captures more vari-
ance on average than the mnemonic subspace, but for all separa-
tions greater than 0.5 s, the mnemonic subspace captures more
variance, showing robustness of stable coding in this subspace.

Decoding. The above findings do not directly test whether the
stimulus can be reliably decoded from neural activity. Even
within a fixed subspace, representations could potentially rear-
range within the subspace across time. To explicitly quantify
decoding accuracy from the mnemonic and dynamic subspaces,
we designed a neurobiologically plausible decoder based on the
nearest-centroid classifier (SI Text). This simple classifier has
a straightforward neural interpretation: winner-take-all selec-
tion following readout from the low-dimensional linear readout
weights defining the subspace. We reserve the spike counts for
a given timepoint from a single trial, for leave-one-out cross-
validation. We construct decoding subspaces, mnemonic and
dynamic, as well as the centroids related to each stimulus con-
dition in those subspaces, using equal amounts of training data
from the other trials. The classifier choice is given by the stimulus
condition whose centroid is nearest to the test datapoint (Fig. 4
A and B).

We found that the mnemonic subspace yielded decoding per-
formance that is above chance during the delay epoch and dur-
ing the cue epoch (P < 0.01, t test), even though the subspace
was trained using only delay-epoch data (Fig. 4 C and D and
Fig. S6). Both subspaces produced comparable performance dur-
ing the delay epoch. Errors in the mnemonic subspace were
typically made to similar stimulus conditions (Fig. S6). Rela-
tive to mnemonic, the dynamic decoder performed substantially
better during the cue and early delay. As with variance cap-
tured (Fig. 3B), for VDD decoding improves in the late delay.
For some timepoints the dynamic decoder performed slightly
worse than the mnemonic decoder, potentially due to noisy sub-
space estimation from limited trials. We tested generalizability
across time of the dynamic subspace classifier (Fig. 4 E and F
and Fig. S6) and found a gradual decay in performance with
increasing time separation, consistent with prior studies (7, 8).
Compared with mnemonic, the dynamic decoder had marginally
higher decoding performance at zero time separation, but sub-
stantially lower performance when applied to separations greater
than 0.5 s.

Neural Circuit Models. What implications do these findings have
for the neural circuit mechanisms supporting WM activity in
PFC? To investigate this, we applied the same population-level
analyses to four theoretical models of neural WM circuits. We
first analyzed three previously proposed circuit models (SI Text).
The first model, denoted as a “stable attractor” network, uses

strong recurrent excitation and lateral inhibition to maintain
a stimulus-selective persistent activity pattern as a stable fixed
point of the network dynamics (3, 23). The second model is
denoted as a “feedforward chain” network (9). In contrast to the
recurrent excitation in the stable attractor model, this network
has a feedforward chain structure of excitatory connections, and
information is encoded only transiently in each neuron. In the
third model, denoted as a “chaotic random” network, recurrent
connections are random but strong, placing the network dynam-
ics in a chaotic regime (10, 24). Stimulus presentation temporar-
ily suppresses chaotic activity, allowing the network to reliably
encode the stimulus (25). During the delay, the network activ-
ity evolves chaotically from this stimulus-selective point, gen-
erating activity patterns that are distinguishable across stimuli
but with representations that change over time. We found that
none of these models captured key features of WM popula-
tion coding observed in the PFC datasets (Fig. 5 A–D, Left-
most three columns). The stable attractor model exhibits stable
coding in the mnemonic subspace, but not strong temporal
dynamics, because network activity is at a fixed point during the
delay. In contrast, the feedforward chain and chaotic random
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Fig. 4. Decoding of stimulus via stable and dynamic coding subspaces.
(A and B) Schematic of the subspace decoder. Activity at a given time-
point for a single trial is projected into the subspace, and the classifier’s
winner-take-all readout is the stimulus condition whose centroid is near-
est (dmin). As in Fig. 3, the number of dimensions used for the subspace
is 2 for ODR and 1 for VDD. (C and D) Decoding accuracy over time for
the mnemonic (blue) and dynamic (red) coding subspaces. Chance perfor-
mance for the stable (gray) and dynamic (brown) subspaces was calculated
by shuffling stimulus trial labels. (E and F) Generalizability of the dynamic
subspace across time. The red curve marks the stimulus variance captured
by the dynamic subspace defined at one time for activity at another time
separated by a given time separation, averaged across timepoints during
the delay. The blue dashed line marks the stimulus variance captured by the
mnemonic subspace, averaged across the delay epoch. The gray dotted line
marks chance performance. Shaded bands mark SEM.
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Fig. 5. Population-level analyses measures distinguish theoretical model network mechanisms for population coding and dynamics. We tested four dynam-
ical circuit models, described in the main text: stable attractor, feedforward chain, chaotic random, and stable subspace. The simulated stimulus features are
designed to match the ODR task. (A) Example activity for one neural unit in the network. Each colored trace indicates a different stimulus condition, as for
ODR. (B) Correlation of population state as a function of time, as in Fig. 1 C and D. We show the correlation for each timepoint with the sensory (orange)
and late memory (purple) states. (C) Delay-activity state–space trajectories, as in Fig. 2 C and D. (D) Stimulus variance captured over time, for mnemonic
(blue) and dynamic (red) coding subspaces, as in Fig. 3 A and B.

models exhibit strong temporal dynamics, but both fail to exhibit
stable coding in the mnemonic subspace, because WM represen-
tations change throughout the delay.

Motivated by our empirical findings, we built a simple circuit
model, which we denote a “stable subspace” model, designed on
three principles that constrain the recurrent and input connec-
tivity (SI Text). First, there is a mnemonic coding subspace in
which network dynamics are stable in the absence of stimulus
input. Second, the stimulus input pattern should partially align
with this coding subspace, activating a representation within the
subspace. Third, the noncoding subspace can exhibit temporal
dynamics that are orthogonal to the coding subspace. Druck-
mann and Chklovskii (11) proposed a similar model mechanism.
We found that a linear network model with these properties
can capture the key observed features of population coding and
dynamics (Fig. 5 A–D, Rightmost column). It exhibits stable cod-
ing in the mnemonic subspace and strong temporal dynamics
orthogonal to it. Due to partial alignment of the stimulus input
vector with the mnemonic subspace, there is a sensory repre-
sentation that decays following stimulus removal, whereas the
orthogonal mnemonic representation persists (Fig. 5D, Right).

Discussion
Stable and Dynamic Population Coding. Prior studies have char-
acterized dynamic WM coding by testing how well a decoder
defined at one time generalizes to other times (7, 8). Our find-
ings extend these by showing that dynamic coding during WM
can coexist with stable subspace coding that is comparably strong.
Our analyses reveal both stable and dynamic components of
WM coding, with dynamic components especially strong dur-
ing the cue and early delay. Comparable decoding performance
of the mnemonic subspace during the delay suggests that sta-
ble WM coding in the mnemonic subspace is robust and suit-
able for downstream neural readout of WM signals from PFC.
Our findings also shed light on the relationship between sensory

and mnemonic coding in PFC. Prior dynamic coding analyses
led to proposals of a sequential transition from a sensory rep-
resentation during the cue to a mnemonic representation dur-
ing the delay (8, 18), seemingly in contrast to persistent activity
models of WM. Our findings suggest that during cue presenta-
tion an activated mnemonic representation coexists with a quasi-
orthogonal sensory representation that then decays during the
delay while the mnemonic representation stably persists.

Neural Readout. Our findings of stable coding in a mnemonic sub-
space have implications for possible downstream readout of WM
information from the PFC and how WM information combines
with subsequent input to guide decisions (4). A subspace corre-
sponds to sets of synaptic readout weights to downstream neu-
ral systems. In the state–space framework, dynamic WM coding
poses challenges for neurobiologically plausible readout of WM
information. Purely dynamic coding demands different sets of
readout weights at different timepoints; downstream systems
would need to measure elapsed time to select the appropriate
set of weights. In contrast, stable coding within a fixed subspace
corresponds to a fixed, common set of weights that allows read-
out across time. Fixed decoding weights are especially important
when WM signals must be flexibly and robustly read out under
changes in delay duration. Both tasks analyzed here used a fixed
delay duration and could therefore in principle be implemented
using dynamic coding, with readout from a single set of readout
weights optimized for the end of the delay, yet the PFC popula-
tions nonetheless exhibited robust stable WM coding.

The mnemonic subspace was obtained via PCA on time-
averaged delay activity and therefore does not directly take pre-
cise timing information into account, a feature that strengthens
the neural plausibility of such a subspace being used for WM cod-
ing. Theoretical studies have established relationships between
dimensionality reduction via PCA and unsupervised learning
of readout weights via Hebbian plasticity. There are Hebbian
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learning rules through which readout weights to a downstream
neural system can extract the principal subspace (19, 20), includ-
ing via local synaptic plasticity rules (21). These features are
in contrast to coding subspaces derived from timing-sensitive
dimensionality reduction methods such as difference of covari-
ances (DOC) (16) or demixed PCA (dPCA) (26). DOC and
dPCA define a subspace in which coding has maximized tem-
poral stability, by explicitly using timing information to separate
stimulus-related from time-related activity variance. For these
methods it is unknown how neurobiologically plausible learn-
ing rules could extract the coding subspaces. We propose that
a downstream circuit can harness neurobiologically plausible
synaptic plasticity mechanisms to learn readout of the mnemonic
subspace. Furthermore, a low-dimensional coding subspace
allows information to be transmitted via sparse projections.

Neural Circuit Mechanisms. In addition to their neurobiological
relevance, one strength of these subspace analyses is that they can
dissociate predictions from circuit models that implement WM
maintenance via distinct mechanisms. In contrast, timing-based
DOC and dPCA analyses can yield apparently stable coding even
for dynamic coding mechanisms, such as the random chaotic net-
work (10). Similarly, although the feedforward chain model func-
tions by a quintessential dynamic coding mechanism, one can
construct a subspace in which its WM representations are sta-
ble (9). Our findings thereby provide population-level constraints
on neural circuit mechanisms supporting WM. In particular, they
highlight the need for circuit models that capture both stable cod-
ing and temporal dynamics. We developed a proof-of-principle
linear network model that captures both stable coding in the
mnemonic subspace and strong temporal dynamics orthogonal
to it. Druckmann and Chklovskii (11) found that stable subspace

models can incorporate neurobiological constraints such as
sparse connectivity and that unsupervised Hebbian learning of
recurrent connections can produce a stable coding subspace. Our
empirical findings are in line with this theoretical framework and
suggest that WM activity in PFC may be supported by such stable-
subspace network mechanisms (27). Another direction for future
circuit modeling is to compare empirical population data to activ-
ity in trained recurrent neural networks, which can lie at an inter-
mediate stage of random and structured connectivity (10).

A primary limitation of our datasets is that they were com-
posed of separately recorded neurons, which is common in pseu-
dopopulation state–space analyses (7, 8, 12, 16, 17). It is an
open question how correlated single-trial fluctuations may affect
mnemonic subspace coding and single-trial decoding. Future
studies using large ensembles of simultaneously recorded neu-
rons and single-trial analyses can inform these issues (28, 29).
Simultaneous recordings could also test for transient dynamics
that are not locked to task timing, as well as test theoretical
model predictions for correlated fluctuations within specific cod-
ing subspaces (30).

Materials and Methods
Methods for analyses and models are provided in SI Text. Details of both
datasets have been previously reported (14, 15). All experimental methods
met standards of the US National Institutes of Health and were approved by
the relevant institutional animal care and use committees at Yale University
and Universidad Nacional Autónoma de México.
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Datasets. Full experimental details for both datasets have been
previously reported (14, 15). These two datasets were selected
for analysis by the following criteria. Each dataset contained
spike trains for hundreds of single neurons in lateral PFC that
were not selected or filtered for any task-related tuning prop-
erties, to minimize the bias in capturing population-level cod-
ing. Each task demanded parametric WM of a continuous stim-
ulus feature. Each task used a 3-s delay, which is relatively long
for many primate neurophysiology experiments. The same task
timing, 0.5-s cue and 3-s delay epochs, facilitated comparison of
the two datasets. We reasoned that because the delay duration
is long and fixed, PFC networks may use a dynamic mnemonic
code because the stimulus feature needs to be retrieved from
WM only at a fixed time in the trial. These task features make
these datasets well suited for characterizing stable and dynamic
population codes.

Each dataset was recorded from two rhesus macaque monkeys
(Macaca mulatta) trained to perform WM tasks (four monkeys
total between the two datasets). The ODR task had eight stim-
uli for angular locations (0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦,
and 315◦), and the VDD task had seven stimuli for vibrotactile
frequencies (10 Hz, 14 Hz, 18 Hz, 22 Hz, 26 Hz, 30 Hz, and
34 Hz). The ODR dataset was recorded from the dorsolateral
PFC (areas 8 and 46) of the left hemisphere from both monkeys
(14). The VDD dataset was recorded from the inferior convex-
ity of the PFC of the right hemisphere from both monkeys and
the left one of one monkey (15). Neurons were selected for anal-
ysis by minimal filtering based only on data quality, not on any
stimulus- or task-related selectivity. We required for each neuron
that met the following requirements, following details described
in ref. 18, (i) at least five correct trials per stimulus condition,
(ii) a mean firing rate of at least 1 spike/s in one of the three
task epochs (foreperiod, cue, delay), (iii) not exhibiting excessive
burstiness, and (iv) stability of the foreperiod firing rate across
trials. Only correctly performed trials were analyzed. This min-
imal filtering yielded the analyzed datasets of 645 neurons for
ODR and 479 neurons for VDD.

Population-Level Data Analysis. In this study, we analyzed neu-
ronal activity at the level of the population of N neurons, rather
than at the level of the single neuron, from the perspective of the
neural state space. We define an N -dimensional state space in
which each axis represents the firing rate of a neuron. A pat-
tern of firing-rate activity in the population is represented by
a point in this high-dimensional space. The population firing
rate for a given stimulus condition s and time t is given by the
N -dimensional vector r(s, t). Here, the set of stimuli {s} is the
eight angular locations for ODR and the seven mechanical fre-
quencies for VDD. This population activity vector r(s, t) is esti-
mated from the peri-stimulus time histogram (PSTH). All analy-
ses used time bins of 0.25 s duration.

Population Correlation to Characterize Temporal Dynamics. To
characterize population-level temporal dynamics, we measured
the within-stimulus-condition Pearson correlation coefficient
between the population activity pattern at time t1 and the pat-
tern at time t2,

R(t1, t2) =
Cov(r(t1), r(t2))√

Var(r(t1))×Var(r(t2))
, [S1]

where Cov() and Var() denote the covariance and variance taken
over neurons in the population activity vector r. We computed
this correlation separately for each stimulus condition s and then
averaged across stimuli (18).

To produce a more accurate characterization of the correla-
tion time course, we applied a split-half approach. Specifically,
we split the trials for each neuron to create two firing-rate trajec-
tories r1(t) and r2(t). Then we took the correlation as in Eq. S1,
using r1(t1) and r2(t2). This results in a correlation value less
than 1 for t1 = t2, but gives a more accurate measure of the time
course of the population because noise in estimating the PSTH
does not result in an artificial drop in correlation from t1 = t2 to
t1 = t2±∆t as reported in ref. 18. The estimate of the correlation
can then be corrected for attenuation induced by measurement
of the PSTH by applying the Spearman correction, which uses
the reliability of the measurements. This normalizes the corre-
lation R(t1, t2) by a factor

√
R(t1, t1)R(t2, t2). Reliabilities for

the split data were high (0.93 for ODR and 0.92 for VDD), indi-
cating suitability for correlation analysis. This correction did not
qualitatively alter the correlation time course. Results shown in
Fig. 1 are the correlation values averaged over trial splits for
each stimulus condition and then averaged across stimulus con-
ditions. Note that correlation values shown in Fig. 1 are overall
high, above 0.5, which reflects overall variation in the firing rates
across neurons (Fig. S2).

Coding Subspace via PCA. To define a low-dimensional coding
subspace within the high-dimensional neural state space, we used
PCA, inspired by its connection to Hebbian synaptic learning
(19, 20). Here we describe the analytic procedure. The stimulus-
averaged population firing-rate vector r̄ is given by

r̄(t) = 〈r(s, t)〉{s}, [S2]

where 〈·〉S is the average across the set of stimulus conditions
{s}. In this analysis, we performed PCA only over stimuli, rather
than combining variance over both stimulus and time, as is com-
monly done (16). We therefore characterize how the population
activity covaries across stimulus for a given time interval. We
can define a population activity matrix X as an M ×N matrix,
where M is the number of stimuli. Each row of X gives the mean-
subtracted population activity for each stimulus condition:

X =

 r(s1)− r̄
...

r(sM )− r̄

. [S3]

This formalism applies to the mnemonic subspace (defining X
from time-averaged delay activity) and to the dynamic subspace
(defining X from activity at each 0.25-s time bin).

The population covariance across stimulus conditions is given
by the N ×N symmetric matrix C defined as

C =
1

M − 1
XTX. [S4]

As a symmetric and positive definite matrix, the covariance
matrix C can generically be decomposed as

C = PDPT , [S5]

where P is an orthogonal matrix and D is a diagonal matrix of
positive values. Each column of P is an eigenvector of C. We
denote these unit-length eigenvectors the principal axes. The
diagonal elements of D are the corresponding eigenvalues of C,
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which give the amount of variance of X captured by the cor-
responding principal axis. We assume that the eigenvalues are
ordered by decreasing magnitude.

For these datasets, the number of recorded neurons exceeds
the number of stimulus conditions, N > M . In this case, the M
elements of X define points that generally lie in an (M − 1)-
dimensional subspace within the N -dimensional population
activity space. The covariance matrix C has rank r ≤ (M − 1),
and we can express the decomposition with reduced matrices.
We define W as an N × (M − 1) matrix that is the first (M − 1)
columns of P and Λ is the (M − 1)× (M − 1) quadrant of D. We
then have C = WΛWT . The eigenvalue λi quantifies the amount
of variance captured along each principal axis wi. The first prin-
cipal axis therefore captures the most variance. We construct a
K -dimensional coding subspace by the first K principal axes (or
columns of W, WK ).

We can project the activity vector for a given stimulus condi-
tion s at time t (r(s, t)) into this subspace:

zK (s, t) = WT
K (r(s, t)− r̄). [S6]

We denote the elements of K -dimensional vector zK the PCs.
Note that these can be negative. The PCs can be thought of as
a low-dimensional description of the population activity in this
coding subspace.

To define the coding subspaces W in this study, we choose a
time interval [t1, t2] in which to define C and r̄ in Eqs. S2 and S4.
To define the mnemonic subspace, denoted S, here we used the
2.5-s interval t1 = 0.25 s and t2 = 2.75 s, excluding the initial and
final time bins during the delay epoch to isolate delay activity. For
the dynamic subspace analyses, we similarly defined a dynamic
subspace, denoted T(t), at each 0.25-s time bin. Eq. S6 then gives
how to project the activity at other time points into this subspace.
Fig. 2A and B shows the PCs along the first and second principal
axes (x axis and y axis, respectively), i.e., population trajectories
during the delay epoch for each stimulus, projected along the
first and second principal axes.

To plot 3D population trajectories in Figs. 2C and D and 5C,
we constructed a z axis orthogonal to the mnemonic subspace
S that captures a large component of time-related variance,
defined in a similar method to that used for the stimulus-related
variance. Specifically, we first defined a time-related principal
axis through PCA of the stimulus-averaged delay activity. We
then orthogonalized this axis to the mnemonic subspace S by
subtracting the components within the subspace and renormal-
izing. We emphasize that this z axis is not an explicit representa-
tion of time, but rather an axis in the N -dimensional state space
that captures a large component of time-related variance and is
orthogonal to the stable mnemonic subspace S.

Stimulus Variance Captured for Mnemonic and Dynamic Subspaces.
We can quantify the amount of stimulus variance that is captured
along any given axis, such as those defining a coding subspace.
From the across-stimuli covariance matrix C, the variance cap-
tured (V ) along a unit-length vector a is given by V = aTCa. We
can define the covariance matrix for each time point, C(t). For
the stable subspace SK , we can compute how much stimulus vari-
ance (per neuron) is captured by this subspace (VS ) as a function
of time t , by summing over the K principal axes of the subspace:

VS,K (t) =
1

N
Tr
(

ST
K C(t)SK

)
. [S7]

Similarly, for a dynamic coding subspace defined at each time
point, we can compute how much stimulus variance at time t2 is
captured by a coding subspace defined at time t1:

VD,K (t1, t2) =
1

N
Tr
(

TK (t1)TC(t2)TK (t1)
)
. [S8]

The red curves in Figs. 3A and B and 5D show VD,K (t , t). The
red curves in Fig. 3C and D show the mean value as a function
of ∆t = t2 − t1, i.e., the mean of the off-diagonal elements dur-
ing the delay, 〈VD,K (t , t ±∆t)〉t . We used K = 2 for ODR and
K = 1 for VDD, to match the dimensionality of the stimulus.

As with the correlation analysis, we used a split-half approach
in this analysis, to minimize confounds related to noise in mea-
suring the PSTH. We randomly split the trials in half to define
two PSTHs, r1(s, t) and r2(s, t). One was used as “training” data
to define the coding subspace T(t1), and the other was used as
“testing” data to define the covariance matrix C(t2). To obtain
the level of variance captured expected by chance, we shuffled
stimulus identities across trials.

Another important consideration, to properly compare the
stable and dynamic coding subspaces, is to use an equal amount
of training data to define the two subspaces. The dynamic sub-
space T was defined for a 0.25-s time bin. The stable subspace S
was defined over the middle 2.5-s interval during the delay epoch.
To normalize the amount of training data in these two scenarios,
we defined the stable subspace using data down-sampled from
this interval, to explicitly match the amount of training data used
for the dynamic subspace. Specifically, to extract 0.25 s of train-
ing data from the 2.5-s interval, we used 250 windows of 1-ms
duration evenly spaced across the 2.5-s interval with a random
starting time.

Of note, cross-validation with finite noisy data allows for the
mnemonic subspace to potentially outperform the dynamic sub-
space. For some timepoints the dynamic subspace captured less
stimulus variance than the mnemonic subspace did (Fig. 3 A and
B). This result suggests that estimating the dynamic subspace is
noisier with neuronal spike data from a limited number of tri-
als. This may potentially relate to the temporally correlated vari-
ability of single-neuron spike times in vivo, because the dynamic
subspace is constructed using data from a contiguous 0.25-s inter-
val, whereas the mnemonic subspace used 0.25 s of data that
are distributed throughout the delay, reducing variability in its
estimation.

Decoding Classifier Based on Coding Subspaces. To test the ability
for a given coding subspace to be used to decode the stimulus
from the population activity at a given timepoint, we developed
a simple decoding algorithm, with a neurobiologically inspired
implementation of winner-take-all decision making based on
low-dimensional linear weights to read out from the population
firing-rate pattern. Our classifier is a version of a “nearest mean”
classifier. It is equivalent to maximum likelihood when assuming
that data in each class are described by a multivariate Gaussian
distribution with the same variance across all dimensions (and
zero correlations) and classes.

We performed leave-one-trial-out cross-validation to measure
classifier performance in the following way. We constructed as
testing data a “pseudotrial” population state r̃(t) by drawing
one trial from each neuron for that stimulus condition stest . We
used the remaining data (excluding this pseudotrial) as training
data. The training data were used to define all relevant mea-
sures needed to define a coding subspace WK as described above
(either stable mnemonic or dynamic). From the training data we
define a centroid for each stimulus pK (s) as the delay-averaged
activity projected into the subspace,

pK (s) = 〈zK (s, t)〉T , [S9]

where 〈·〉T is the time average over time during the delay epoch.
The decoded stimulus sd is given by

sd = arg min
{s}

(
‖pK (s)−WT

K (r̃(t)− r̄)‖
)
, [S10]

where ‖ · ‖ is the Euclidean distance.

Murray et al. www.pnas.org/cgi/content/short/1619449114 2 of 8

http://www.pnas.org/cgi/content/short/1619449114


Analogous to the variance-captured analysis described above,
for the dynamic subspace we tested the performance of the clas-
sifier defined for time t1 at decoding the stimulus from activity at
time t2. Fig. 4 A and B shows the performance for the classifier
defined for time t at decoding the stimulus from that same time.
Fig. 4 C and D characterizes generalization of decoding perfor-
mance across time, showing the mean accuracy of a classifier
defined at one time at decoding the stimulus from activity at a
time separated by a lag ∆t .

As with the variance-captured analysis, we normalized the
training data for the stable and dynamic coding subspaces by
down-sampling for the mnemonic subspace (0.25 s). As for
the variance-captured analysis described above, we take K = 2
for ODR and K = 1 for VDD to match the dimensionality of
the stimulus feature: horizontal and vertical positions for ODR
and mechanical frequency f1 for VDD. These dimensionalities
also maximized decoding performance, suggesting that for these
datasets expanding the dimensionality contributed more noise
than signal to the decoding process (Fig. S6 E and F). Chance
performance is 1 out of the number of stimulus conditions (1/8
for ODR, 1/7 for VDD). As described above for the variance-
captured analysis, cross-validation by using separate training and
testing data allows the mnemonic subspace decoder to outper-
form the dynamic subspace decoder, as we observed for some
timepoints (Fig. 4 A and B), which can be attributed to having
only a finite number of trials recorded per neuron.

Computational Models. As described below, we used four dynami-
cal models of WM neural circuits, adapted to model WM activity
in response to ODR stimuli. Population-level analyses followed
the procedures described above for the experimental data.

Stable Attractor Model. For the stable attractor model, we used
a version of a model originally developed to capture WM activ-
ity in PFC during the ODR task (3). Here we use a reduced,
firing-rate version of this “ring” model presented in ref. 23. All
details are reported there and presented here for completeness.
The network consists of neural units representing a pool of exci-
tatory neurons described by a gating variable s that is the frac-
tion of opened NMDA receptors. The dynamics of the gating
variable follow

τ
ds

dt
= − s + (1− s)γf (I ), [S11]

where τ = 60 ms and γ= 0.641. The firing-rate r is a function of
the total synaptic input I ,

r = f (I ) =
aI − b

1− exp(−d(aI − b))
[S12]

with a = 270 Hz/nA, b = 108 Hz, and d = 0.154 s. The total
synaptic input I = Ir +Is +Ib , denoting contributions from recur-
rent, sensory, and background input, respectively. Here we set
the noise current In to zero. The recurrent input is given by
Ir =

∑
j gij sj . Neural pools are tuned to a specific angular loca-

tion, with preferred directions from 0◦ to 360◦. We discretize our
network into N = 256 pools with equally spaced preferred direc-
tions. The synaptic coupling gij follows a Gaussian function

gij (θi − θj ) = J− + J+ exp(−(θi − θj )2/2σ2) [S13]

with σ= 43.2◦, J+ = 2.2 nA, and J−= − 0.5 nA. The stimulus
current Is = I1 exp(−(θ − θs)/2σ2), with θs the stimulus angle,
and I1 = 0.03 nA during the cue epoch and zero otherwise. The
background current Ib = 0.3297 nA.

Feedforward Chain Model. For the feedforward chain model, we
used the implementation of ref. 9 considered therein for its abil-
ity to subserve WM. All details are reported there and presented
here for completeness. In this model, neurons with the same pre-

ferred stimulus θ are structured in a feedforward chain, with lin-
ear dynamics following

rθ,k+1

dt
= − r0,k + wr0,k , [S14]

where w is the synaptic strength. As described in ref. 9, the activ-
ity in time can be solved analytically. Specifically, in response to
a pulse input to the neuron with k = 1, the response of neuron
k =n is given by

rn(t) =
1

n!

(
t ′

τ

)k

exp(−t ′/τ), [S15]

where t ′ is the time elapsed from stimulus onset. Here we model
the stimulus as a pulse to the k = 1 layer of neurons with profile
Is = (1 + cos(θ − θj )). The activity of the network is then

rθj ,k (θ, t ′) =
r0
k !

(1 + cos(θ − θj ))
(
t ′

τ

)k

exp(−t ′/τ). [S16]

As in ref. 9, we used τ = 100 ms. To cover stimuli and time, we
used 64 × 64 = 4,096 neurons in our network, with k between 1
and 64, and 64 values of θj uniformly discretizing 0◦–360◦. We
note that the population-level analyses in this study are invariant
to rotations (9).

Chaotic Random Model. For the chaotic random model, we used a
previously developed random recurrent network model (24) con-
sidered for its ability to subserve WM (10). This model consists
of a network of N neurons defined by

τ
dx
dt

= − x + gJr + s(t). [S17]

Here x is the vector of “activations” analogous to neuronal
inputs, r is the vector of “firing rates” analogous to neuronal
outputs, r = tanh(x) is the sigmoidal transfer function, and s is
the stimulus input vector. The elements of the recurrent cou-
pling matrix J are chosen from a random Gaussian distribution
with zero mean and variance 1/N , Jij =N (0, 1/N ). The factor g
scales strength of recurrent interactions and determines whether
the network is in the chaotic regime. We take g = 3, setting the
network in a chaotic regime in the absence of stimulus, N = 512,
and τ = 60 ms.

The stimulus input vector s is chosen with random weight,
wi =N (0, 1). During stimulus presentation, these neurons
receive input si = Iswi cos(θi − θs), with Is = 6, θs the stimu-
lus angle, and θi the neuron’s preferred stimulus angle that is
selected randomly from a uniform distribution. During stimu-
lus presentation, the network is no longer in the chaotic regime
and goes to a stimulus-selective attractor state (25). After stimu-
lus removal during the delay, the network evolves in the chaotic
regime, with different “initial conditions” determined by the
stimulus.

Stable Subspace Model. For the stable subspace model, we devel-
oped a parsimonious linear model whose core connectivity
properties enable the network to simultaneously exhibit sta-
ble mnemonic coding in a subspace as well as strong temporal
dynamics outside this subspace. We describe the core mathe-
matical properties of the connectivity that enables this and also
provide here the details of an explicit construction for such a con-
nectivity used to generate the model results in Fig. 5 A–D (Right-
most column).

We have a network of N neurons described by firing rate vec-
tor r, whose dynamics are governed by

τ
dr
dt

= (J− 1) r + K s(t), [S18]

where τ is the synaptic/neuronal time constant, J is the recur-
rent connectivity matrix, 1 is the identity matrix implementing
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leak, K is the connectivity matrix from the stimulus input
into the network, and s(t) is the vector of time-dependent
stimulus inputs.

We found several general properties of the connectivity matri-
ces J and K are needed to qualitatively capture observed key fea-
tures of the population activity:

i) For stable coding of M -dimensional stimulus features, J
should have K ≥ M eigenvalues equal to 1, allowing tem-
poral integration along the corresponding left eigenvectors.
These K left eigenvectors of J define the stable mnemonic
coding subspace W.

ii) The columns of stimulus connectivity matrix K must at least
partially overlap with the columns of the coding subspace W,
so that the stimulus feature is integrated within this stable
subspace during stimulus presentation.

iii) There should be non-stimulus–related input that falls outside
of the stable mnemonic subspace; i.e., K does not lie entirely
within W, so that there may be temporal dynamics in the
network during the delay.

Here we give a constructive procedure to build a network that
has the connectivity properties described above. The construc-
tion of the recurrent connectivity matrix J is as follows. We use
the spectral decomposition to write

J = QUDVQT , [S19]

where Q is a rotation matrix, D is a diagonal matrix, and V
and U are N ×N matrices related by V = U−1. In our construc-
tion, the rotation matrix Q is obtained via QR decomposition
of a random N ×N matrix, giving a random coordinate sys-
tem. D is an N ×N diagonal matrix, whose eigenvalues deter-
mine the integration timescales for the corresponding left eigen-
vectors of J.

We define a K -dimensional stable mnemonic coding subspace
by setting the first K diagonal entries of D to 1 (property i above).
For the specific example shown in Fig. 5, we set K = 2 to model
the ODR task with 2D stimuli. For this network the stimulus vec-
tor s is given by

s =

cos(θ − θs)
sin(θ − θs)

1

, [S20]

where θs is the stimulus angle, for −0.5 s < t < 0 s, and 0 other-
wise. As evident in Figs. 3 A and B and 4 A and B, there is a large
stimulus variance during the cue epoch that is not captured by
the stable mnemonic subspace. In the context of this model, this
means that K is overlapping but not perfectly aligned with the
stimulus coding subspace (properties ii and iii above). We can
capture this by having K = Ks + Kn, where Ks is aligned with the
coding subspace and Kn is orthogonal. This allows the network
to show an increase in stimulus variance that is orthogonal to the
stable coding subspace during the cue epoch, which subsequently
decays away during the early delay epoch (Fig. 5D, Right).

There are multiple possibilities to generate strong temporal
dynamics in the subspace orthogonal to our mnemonic coding
subspace W. The mechanism we used in our construction was
for the network to generate transients that arise naturally when
J is highly nonnormal. If these transients occur in directions
orthogonal to the mnemonic subspace, then temporal dynam-
ics will coexist with stable population coding, as observed in
the empirical data. An alternative strategy to generate tempo-
ral dynamics, which is compatible with this model framework, is
to incorporate a time integration mode. If an aligned input is
applied during the delay epoch, the network will generate linear
ramping over time in this integration mode.

To generate a highly nonnormal J that generates long tran-
sients orthogonal to the mnemonic coding subspace W, we used
a constructive procedure to create the matrix U (Eq. S19), so
that the left eigenvectors of U are highly correlated. Specifically,
first we define a random vector y1 for the first eigenvector. We
then choose a second vector y2 = y1 + ε, where ε is a small vec-
tor with Gaussian random elements and then normalized. This is
repeated until there are M1 correlated eigenvectors. The remain-
ing (N −M1) eigenvectors of U are chosen to be orthogonal to
all others.

Above we have described key features of the network connec-
tivity that capture observed population coding and dynamics. It is
possible to incorporate further constraints motivated by cortical
anatomy. Ref. 11 describes a constructive procedure, via numer-
ical optimization, for generating a network that exhibits stable
mnemonic subspace coding and is constrained to have sparse con-
nectivity and to have separate excitatory and inhibitory neurons.

Simulation and analysis codes were custom written in Python
and are available from the authors upon request.
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Fig. S1. Example single neurons, for ODR (A1–A6) and VDD (B1–B6) datasets, highlighting the heterogeneity and temporal dynamics in single-neuron
activity in PFC during WM encoding and maintenance. Plotted is the PSTH for each stimulus condition, with trace colors marking the different stimulus
conditions corresponding to those shown in the task schematics of Fig. 1. The gray shaded region marks the cue epoch. Purely for visualization of example
single-neuron activity in this figure only, PSTHs were smoothed using PCA, which denoises across PSTH traces rather than only over time. For all reported
results, activity is not smooth in any way except for binning in 0.25-s time bins.

Fig. S2. Distribution of mean firing rates across neurons in different task epochs. (A and B) Firing-rate distributions plotted in a lin-log plot, with logarithmic
x axis and linear y axis. The observed distribution of firing rates is approximately a log-normal distribution. Interestingly, when compared across task epochs
(foreperiod, cue, working memory delay), the overall distribution of firing rates does not change substantially. In particular, the distribution during the delay
epoch is essentially the same as during the foreperiod. (C and D) Correlation across neurons of mean firing rates between task epochs. Shown here are the
correlations between delay epoch and the foreperiod epoch. The values of the Pearson’s r correlation coefficient of the log-transformed firing rates are the
following: For ODR, 0.88 for foreperiod–cue, 0.91 for foreperiod–delay, and 0.89 for cue–delay; for VDD, 0.75 for foreperiod–cue, 0.83 for foreperiod–delay,
and 0.66 for cue–delay.
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Fig. S3. PCA of time-averaged delay activity. (A and B) Amount of stimulus variance captured by each principal axis, for time-averaged delay activity. The
number of PCs is one fewer than the number of stimulus conditions. Stimulus variance captured is normalized by the number of neurons. Gray error bars
show the mean and central 95% bounds, calculated through shuffling the stimulus identities of trials. For the ODR dataset, a subspace defined by the first
two principal axes captures 68% of the stimulus variance. For the VDD dataset, a subspace defined by the first principal axis captures 60% of the stimulus
variance. (C and D) Leading PCs, i.e., projections of the time-averaged delay activity along the leading principal axes (2 for ODR, 1 for VDD). For ODR (C),
PC1 and PC2 provide quasi-sinusoidal coding of stimuli. For VDD (D), PC1 provide quasi-linear coding of stimuli. (E and F) Projections along the next two
leading principal axes. (G and H) Population trajectory projected along principal axis 1, showing relative stability of stimulus coding during the delay epoch
as well as in the preceding cue epoch. (I and J) Population trajectory projected along principal axis 2.
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Fig. S4. Stimulus- and time-related variance of delay activity captured by the mnemonic subspace, for each dimension in the mnemonic subspace. (A and
B) The green points show the variance (per neuron), across stimuli, for the time-averaged mean delay activity, i.e., 1

N Vars (Meant(r(s, t)). The orange points
show the average within-stimulus, time-related variance (per neuron) of the trajectory (using 0.25-s time bins), i.e., 1

N Means (Vart(r(s, t)). The orange points
may overestimate the true time-related variance, as variance will be contributed by noisy estimation of the PSTH due to finite numbers of trials. Error
bars denote the 95% range generated by leave-one-neuron-out jackknife resampling, characterizing how much these estimates would change if additional
neurons were included.

Fig. S5. Stimulus variance captured by mnemonic and dynamic subspaces and generalizability of the dynamic subspace. (A and B) Stimulus variance
captured by the dynamic subspace as a function of the training timepoint and testing point. That is, activity at the training time is used to define the
dynamic subspace, and the activity at the testing time is projected into that subspace. The diagonal elements, when training time and testing time are the
same, are plotted in the Fig. 3 A and B. (C and D) The relative difference in stimulus variance captured for dynamic vs. mnemonic subspaces (Vdyn and Vmne,
respectively), as a function of training time and testing time during the cue and delay epochs. That is, the value plotted is z(ti, tj) = Vdyn(ti, tj)/Vmne(tj). Red
(blue) regions show where the dynamic subspace has higher (lower) stimulus variance captured than the mnemonic subspace. These results show that the
dynamic subspace classifier does not generalize well, so that for off-diagonal elements when training time and testing time are separated by more than
0.5 s, the mnemonic subspace shows greater performance. This characterizes the timescales of dynamic coding. Color bars have a logarithmic scale.
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Fig. S6. Decoding performance for a nearest-mean classifier based on mnemonic or dynamic subspaces. (A and B) Decoding accuracy and generalizability
of the dynamic subspace classifier as a function of the training timepoint and testing point. The diagonal elements, when training time and testing time
are the same, are plotted in Fig. 4 B and C. (C and D) The relative difference in stimulus variance captured for dynamic vs. mnemonic subspaces (Pdyn and
Pmne, respectively), as a function of training time and testing time during the cue and delay epochs. That is, the value plotted is z(ti, tj) = (Pdyn(ti, tj) −
Pmne(tj))/Pmne(tj). Red (blue) regions show where the dynamic subspace has higher (lower) decoding accuracy than the mnemonic subspace. These results
show that the dynamic subspace outperforms the mnemonic subspace most during the cue and early delay epochs. Furthermore, the dynamic subspace
classifier does not generalize well, so that for off-diagonal elements when training time and testing time are separated by more than 0.5 s, the mnemonic
subspace shows greater performance. (E and F) Decoding accuracy as a function of the number of dimensions included in the decoding subspace. A
k-dimensional decoding subspace is defined by the leading k principal components. The gray dashed lines mark chance performance. In C and D the
gray shaded line marks the number of dimensions used for each dataset, 2 for ODR and 1 for VDD, which matches the dimensionality of the stimulus. The
decoding accuracy can plateau or decline with increasing dimensionality, because adding another dimension not only increases signal but also increases trial-
by-trial variability that can impair classifier performance. (G and H) Confusion matrix characterizing the pattern of errors made by the mnemonic subspace
classifier. The confusion matrix shows the distribution of classifier predictions for the stimulus condition (columns) for each actual stimulus condition (rows).
For both ODR and VDD, the classification errors (off-diagonal elements of the confusion matrix) are primarily made to stimuli that are near actual stimulus.
(G) For ODR, most errors are due to the compressed representation of ipsilateral space, which produces poor separation among the three left hemifield
stimuli (135◦, 180◦, and 225◦). (H) For VDD, most errors are to adjacent stimuli, and the predicted stimulus is biased toward more central stimulus values.
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