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Hierarchy provides a parsimonious description of various functional 
differences across cortical areas. For instance, the sizes of spatial 
receptive fields increase along the visual hierarchy1, and a posterior-
anterior hierarchy exists for cognitive abstraction within prefrontal 
cortex2. In the temporal domain, higher cortical areas can activate 
selectively for stimuli that are coherent over longer periods of time3,4. 
It remains an open question whether temporal specialization arises 
from a cortical area’s intrinsic dynamical properties, that is, related to 
dynamics that exist even in the absence of direct stimulus processing. 
We hypothesized that differential dynamics would be manifested in 
the timescales of fluctuations in single-neuron spiking activity.

Variable neuronal activity is ubiquitous across the cortex5,6, yet it 
has been unclear what the timescales underlying this variability are 
or whether they differ across areas. Neuronal activity fluctuates over 
a wide range of timescales, with potential contributions from distinct 
underlying mechanisms. For example, the timescales of correlated 
fluctuations of activity within a local microcircuit are likely longer 
than those of single-neuron burstiness and refractoriness7 but shorter 
than those of drifts in arousal. In typical electrophysiological record-
ings from behaving animals, spike trains from a single neuron are 
recorded over many trials of a task. Using single-neuron spike trains, 
we sought to characterize underlying fluctuations in activity that are 
not locked to trial onset. To measure the timescales of these fluctua-
tions, we used the spike-count autocorrelation for pairs of time bins 
separated by a time lag. The spike-count autocorrelation is calculated 

as the correlation coefficient between the number of spikes in each 
time bin across all trials (Online Methods). As the time lag increases, 
the autocorrelation decays according to the fluctuation timescales8 
(Supplementary Note).

We measured intrinsic timescales using single-neuron spike trains 
in data sets from 6 research groups, recorded in a total of 26 monkeys, 
that include 7 cortical areas (Fig. 1a). Five cortical areas are constit-
uents of the visual-prefrontal hierarchy, including sensory, parietal 
association and prefrontal cortex: medial-temporal (MT) area in visual 
cortex, lateral intraparietal (LIP) area in parietal association cortex, 
lateral prefrontal cortex (LPFC), orbitofrontal cortex (OFC) and ante-
rior cingulate cortex (ACC). To test for generality of results outside 
the visual system, we also examined two somatosensory areas: primary 
somatosensory cortex (S1) and secondary somatosensory cortex (S2). 
These areas span multiple levels of the anatomical hierarchy defined by 
the laminar patterns of long-range projections among cortical areas9,10 
(Fig. 1b). For each data set, monkeys were engaged in cognitive tasks. 
We restricted our analysis to one epoch of the task, the foreperiod that 
begins each trial. During the foreperiod, the monkey was in a control-
led, attentive state awaiting stimulus onset (fixation of eye position for 
visual tasks, lever hold for the somatosensory task). This restriction 
minimizes stimulus-related confounds and allows application of the 
same analyses across areas and data sets. This definition of intrinsic 
timescale does not refer to single-neuron physiology or imply that the 
timescale does not change with stimulus conditions.

The decay of autocorrelation with increasing time lag could be 
well fit by an exponential decay with an offset (Fig. 1c). This fit was 
obtained at the population level rather than the single-neuron level 
(Online Methods and Supplementary Figs. 1 and 2), enabling us to 
extract an intrinsic timescale as a population-level statistic for each 
area in a data set. Within each data set, the intrinsic timescales dif-
fered across areas, in the range of 50–350 ms. Over all data sets, we 
found a consistent ordering of the intrinsic timescales across cortical 
areas (P < 10−5, rs = 0.89, Spearman’s rank correlation) (Fig. 1d). 
Sensory cortex showed shorter timescales, parietal association cortex 
showed intermediate timescales and prefrontal cortex showed longer 
timescales, with medial prefrontal area ACC consistently showing 
the longest timescale in our data sets. Both visual and somatosen-
sory systems had hierarchical ordering. Differences in intrinsic 
timescales could not be explained by differences in mean firing 
rates across areas (Supplementary Fig. 3). Notably, this hierarchy of 
intrinsic timescales aligns with the anatomical hierarchy defined by 
long-range projections among cortical areas9,10 (P = 0.002, rs = 0.97,  
Spearman’s rank correlation), although our physiologically defined 
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hierarchy differs from the anatomical hierarchy for OFC. The  
correspondence between physiological, anatomical and functional 
hierarchies suggests the functional importance of these timescales  
in large-scale cortical coordination.

What is the potential relevance of intrinsic timescales to functions 
that may operate over longer timescales? We examined whether the 
intrinsic timescale (in the range of 50–350 ms) may be correlated 
with the capacity for neurons in an area to sustain signals over long 
behavioral timescales (for example, 5–10 s). Neuronal fluctuations 
include contributions that operate over a wide range of timescales. 
Long timescales contribute an effective offset to the autocorrela-
tion (Fig. 2a and Supplementary Note). The offset can therefore 
reflect the strength of fluctuations at long timescales that cannot be 
resolved with a limited duration of the foreperiod. We found that 
the autocorrelation offset positively correlates with the intrinsic time-
scale (P = 0.004, t9 = 3.4, t-test) (Fig. 2b). We also found that the 
offset reflects the strength of trial-to-trial correlations (P = 0.002,  
t9 = 3.9, t-test), indicating that a portion of long-timescale variability 
persists across trials (Supplementary Fig. 4). These results imply that 
hierarchy may exist across multiple temporal ranges.

Of relevance to function, fluctuations at long timescales can include 
contributions from long-lasting memory traces of stimuli or task vari-
ables such as reward. In the Lee data set, which includes areas LIP, 
LPFC and ACC, we previously measured at the single-neuron level the 
temporal modulation of neuronal activity by reward events during a 
decision-making task11 (Supplementary Fig. 5). We refer to the time 
constant characterizing the decay of a neuron’s modulation by reward 
as its reward timescale. Consistent with this link between intrinsic 
timescale and long functional timescales, the order of areas according 
to median reward timescale aligns with the order according to intrinsic 
timescale (Fig. 2c). It is noteworthy that the median reward timescale is 
an order of magnitude longer than the intrinsic timescale. These results 
support the interpretation that intrinsic timescales may reflect areal 
specialization for task-relevant computations over long timescales.

In summary, our physiological analyses show that cortical areas 
follow a hierarchical ordering in their timescales of intrinsic fluctua-
tions. One interpretation of their functional relevance is that these 
timescales set the duration over which a neural circuit integrates its 
inputs12. In this interpretation, shorter timescales in sensory areas 
enable them to rapidly detect or faithfully track dynamic stimuli13,14. 
By contrast, prefrontal areas can utilize longer timescales to inte-
grate information and improve the signal-to-noise ratio in short-term 
memory or decision-making computations12,15. There is known hier-
archical specialization across areas at the functional level in sensory 
and cognitive processing1–3.

The present study leaves as an open question what underlying 
mechanisms contribute to this hierarchy of intrinsic timescales. 

Computational models of recurrent neural circuits have demonstrated 
multiple potential mechanisms12. A longer intrinsic timescale in the cir-
cuit could reflect longer timescales of cellular or synaptic dynamics12.  
Consistent with this mechanism, there are interareal differences in 
the dynamical properties of recurrent excitatory synapses, including 
differential composition of glutamate receptors16, expression of short-
term synaptic plasticity17 and level of neuromodulation18. Interareal 
differences in cellular physiology can also be driven by factors such as 
neuronal morphology19. A longer timescale in the circuit could also 
arise from stronger synaptic connections mediating recurrent exci-
tation, which slows intrinsic dynamics by partially canceling leak12. 
There are increases across the cortical hierarchy in the number and 
density of excitatory synapses onto pyramidal cells20, which may 
reflect increased recurrent strength across areas. Modeling studies 
have further shown that strong recurrent connections can endow 
a cortical circuit with the capability to exhibit persistent activity in 
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Figure 1 Spike-count autocorrelation reveals a hierarchical ordering 
of intrinsic timescales. (a) Data sets span seven cortical areas in the 
macaque monkey: MT, LIP, LPFC, OFC, ACC, S1 and S2. (b) Anatomical 
hierarchy of the areas, based on long-range projection patterns9,10.  
(c) Spike-count autocorrelation was computed for neuronal spiking  
activity during the foreperiod of cognitive tasks. Each panel shows the 
data set for one of six research groups. The decay of autocorrelation was 
fit by an exponential decay with an offset. Some areas in data sets show 
refractory adaptation at short time lags, which were excluded from the  
fit (Online Methods). Solid lines show the exponential fit. Intrinsic  
timescale extracted from the fit is shown for each area. Autocorrelation 
was computed with 50-ms time bins. Error bars indicate s.e.m.  
(d) Intrinsic timescales across the visual-prefrontal hierarchy in five  
data sets (left) and the somatosensory hierarchy (right). Error bars  
indicate standard error of fit parameters.
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working memory and slow accumulation of information in decision 
making15. A hierarchy of intrinsic timescales may link neurophysio-
logical properties to functional specialization.

MethOdS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the  
online version of the paper.
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ONLINe MethOdS
data sets.  All experimental methods met standards of the US National Institutes 
of Health and were approved by the relevant institutional animal care and use 
committees at University of Rochester, Harvard Medical School, University of 
Chicago, University of California, Berkeley, Washington University School of 
Medicine and Universidad Nacional Autónoma de México. Experimental details 
for the data sets have been reported previously21–38. We used single-neuron spike 
train data, recorded in macaque monkeys, from the foreperiod of various cogni-
tive tasks. Although their precise ages were not known, all monkeys used in these 
experiments were adults. For the Romo data set, the foreperiod entailed holding 
a lever by the free hand; for all other data sets, the foreperiod entailed fixation 
of eye position to a central target. Criteria for selecting data sets were that they 
comprised multiple cortical areas and that the task foreperiod had durations of 
at least 500 ms with minimal task-related stimulus during the foreperiod (for 
visual tasks, only a fixation point on the screen). Only completed trials were 
analyzed. Cells and trials were filtered for further analysis by two criteria. To 
allow computation of spike-count autocorrelation, we required that each time 
bin have a nonzero mean firing rate39. To minimize spurious autocorrelation 
caused by very slow drift of firing rates across the recording session, we selected 
the longest block of trials in which the total foreperiod spike count was statisti-
cally stationary across trials40.

The Pasternak data set consists of neurons recorded in MT and LPFC21–25. 
Monkeys compared two motion stimuli separated by a brief delay. The fore-
period duration was either 500 ms or 1,000 ms. For single neurons recorded over  
multiple tasks, each task-neuron pair was treated as a separate single neuron to 
control for task-dependent changes in foreperiod firing. Single-neuron counts 
were 485 from MT (2 male monkeys) and 427 from LPFC (4 male monkeys). 
The Freedman data set contains neurons from MT, LIP and LPFC26,27. Monkeys 
performed a motion-delayed match-to-category task. The foreperiod duration was 
500 ms. Single-neuron counts were 59 from MT (2 male monkeys), 222 from LIP  
(4 male monkeys) and 458 from LPFC (2 male monkeys). The Lee data set  
consists of neurons recorded in LIP, LPFC and ACC28–30. Monkeys performed 
a competitive decision-making task called matching pennies. The foreperiod  
duration was 500 ms. Single-neuron counts were 192 from LIP (1 female, 2 male  
monkeys), 293 from LPFC (1 female, 4 male monkeys) and 146 from ACC  
(2 male monkeys). The Wallis data set contains neurons from LPFC, OFC and 
ACC31–33. Monkeys performed tasks involving value-based choice. The fore-
period duration was 1,000 ms. Single-neuron counts were 946 from LPFC  
(6 male monkeys), 481 from OFC (7 male monkeys) and 841 from ACC (6 male 
monkeys). The Padoa-Schioppa data set contains neurons from LPFC, OFC and 
ACC34–37. Monkeys performed tasks involving value-based choice. The fore-
period duration was 1,500 ms. Single-neuron counts were 1,024 from LPFC  
(1 female, 1 male monkeys), 1,768 from OFC (1 female, 1 male monkeys) and 987 
from ACC (1 female, 1 male monkeys). The Romo data set contains cells from 
S1 and S2 (ref. 38). Two monkeys performed a vibrotactile delayed discrimina-
tion task. The foreperiod duration was variable, with a minimum of 1,400 ms.  
Single-neuron counts were 711 from S1 (2 male monkeys) and 928 from S2  
(2 male monkeys).

Analysis.  Our primary analysis was the temporal autocorrelation of spike counts, 
which we computed in the following way for single neurons. We divided the fore-
period into separate, successive time bins of duration ∆. We set ∆ = 50 ms; results 
were similar for changes of ± 20%. For two time bins, indexed by their onset times 
i∆ and j∆, we computed the across-trial correlation between spike counts N in 
those time bins using the Pearson’s correlation coefficient R:

R N i N j
N i N j

N i N i N j

=
×

=
〈 −( )

Cov(
Var( Var

( ), ( ))
( )) ( ( ))

( ) ( ) (

∆ ∆
∆ ∆

∆ ∆ ∆)) ( )

( ) ( )

−( )〉
( ) × ( )

N j

N i N j

∆

∆ ∆Var Var

in which covariance (Cov) and variance (Var) are computed across trials for 
those time bins and N  is the mean spike count for a particular bin. Notably, 
spike-count autocorrelation corrects for nonstationarity in the mean firing rate 
during the foreperiod (for example, ramping) because covariance and variance 
subtract the mean spike count for each time bin.

(1)(1)

Based on our theoretical calculations for doubly stochastic processes 
(Supplementary Note), the decay of autocorrelation was fit to the population 
of neurons within an area by an exponential decay with an offset as a function 
of the time lag k∆ between time bins (k = |i − j|):

R k A k B( ) exp∆ ∆= −



 +



t

in which τ is the intrinsic timescale and B is the offset that reflects the contribu-
tion of timescales much longer than our observation window. Some areas in the 
data sets showed signs of refractoriness or negative adaptation at short time lags 
(Fig. 1c), which would not be captured by equation (2). To accommodate this 
feature of the autocorrelation data, fitting started at the time lag with maximum 
decrease of the mean autocorrelation. We fit equation (2) to the full autocorrela-
tion data for all neurons and times; fits were therefore performed at the popula-
tion level rather than single-neuron level, yielding a set of fit parameters for an 
area in a data set. For the visual presentation in Figure 1c, autocorrelation was 
averaged across neurons and times. Autocorrelation averaged across neurons but 
not time is presented in Supplementary Figure 1, and autocorrelation averaged 
across time but not neurons is presented in Supplementary Figure 2.

Equation (2) was fit to the autocorrelation data using nonlinear least-squares 
fitting via the Levenberg-Marquardt algorithm (through the SciPy function  
optimize.curve_fit). The parameter covariance matrix generated by the 
Levenberg-Marquardt fitting procedure describes the dependence between 
parameters in fitting an individual area in a data set. A positive (negative)  
off-diagonal term for two parameters indicates that increasing one param-
eter will increase (decrease) the other to optimize the fit. For most areas  
(11 of 16), this term had a negative sign, indicating that the positive  
correlation between τ and B shown in Figure 2b was not a consequence of 
the fitting procedure. Standard error for fit parameters was computed by the  
delete-one jackknife procedure.

To test for hypothesized relationships between two measures, we used a linear 
regression model:

y mx bd k d k
k

= +
∈

∑ d ,
{ }data sets

in which δd,k is a dummy variable, which is 1 if data set d matches k and 0  
otherwise. This model assumes that all data sets have a linear dependence of y on 
x across all data sets (m) and allows data sets to have different constant terms (bk). 
The statistical significance of a regressor, in particular the dependence term m, was 
assessed by a t-test. This regression analysis was applied to test three dependences: 
(i) x is intrinsic timescale, y is autocorrelation offset (Fig. 2b); (ii) x is mean firing 
rate, y is intrinsic timescale (Supplementary Fig. 3); and (iii) x is trial-to-trial cor-
relation, y is autocorrelation offset (Supplementary Fig. 4). We assessed normality 
of residuals for the regression analyses; in all cases, the magnitude of skew was 
<0.4. Statistical significance (defined by P < 0.05), or lack thereof, for each test was 
preserved if a single constant term (bk = b) was used for all data sets.

To test for correlation between the timescale hierarchy and anatomical hierar-
chy, we calculated the Spearman’s rank correlation between the ordering of areas 
by mean timescale and the discrete anatomical ordering shown in Figure 1b. 
The rank correlation coefficient was the same for the visual-prefrontal system 
(MT, LIP, LPFC, OFC, ACC) and for the somatosensory-prefrontal hierarchy 
(S1, S2, LPFC, OFC, ACC). Unless otherwise stated, reported P values are one 
sided as we tested a priori hypotheses of positive correlations between variables. 
Custom Python code was used for all analyses; analysis code is available from 
the authors upon request.

A Supplementary methods checklist is available.

(2)(2)

(3)(3)
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