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Abstract

In contrast to feedforward architecture commonly used in deep networks at the core of today’s AI

revolution, the biological cortex is endowed with an abundance of feedback projections. Feedback

signaling is often difficult to differentially identify, and its computational roles remain poorly

understood. Here, we investigated a cognitive phenomenon, called categorical perception (CP),

that reveals the influences of high-level category learning on low-level feature-based perception,

as a putative signature of top-down signaling. By examining behavioral data from a visual

motion delayed matching experiment in non-human primates, we found that, after categorization

training, motion directions closer to (respectively, away from) a category center became more

(less) difficult to discriminate. This distance-dependent discrimination performance change along

the dimension relevant to the learned categories provides direct evidence for the CP phenomenon.

To explain this experimental finding, we developed a neural circuit model that incorporated key

neurophysiological findings in visual categorization, working memory and decision making. Our

model accounts for the behavioral data indicative of CP, pinpoints its circuit basis, suggests novel

experimentally testable predictions and provides a functional explanation for its existence. Our

work shows that delayed matching paradigms in non-human primates combined with biologically-

based modeling can serve as a promising model system for elucidating the neural mechanisms

of CP, as a manifestation of top-down signaling in the cortex.
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Significant Statement

Categorical perception is a cognitive phenomenon revealing the influences of high-level category

learning on low-level feature-based perception. However, its underlying neural mechanisms are

largely unknown. Here, we found behavioral evidence for this phenomenon from a visual motion

delayed matching experiment in non-human primates. We developed a neural circuit model that

can account for this behavioral data, pinpoints its circuit basis, suggests novel experimentally

testable predictions and provides a functional explanation for its existence. Our work shows that

delayed matching paradigms in non-human primates combined with biologically-based modeling

can serve as a promising model system for elucidating the neural mechanisms of categorical

perception, as a manifestation of top-down signaling in the cortex.
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Introduction

Categorical perception (CP) is a cognitive phenomenon that reveals complex interplay be-

tween analog feature-based perception and discrete categorization (Harnad, 1987). More specif-

ically, category knowledge is thought to warp perception such that differences in appearance

between objects that belong to different categories are exaggerated (expansion), while differ-

ences within the same category are deemphasized (compression). For example, it was shown

that the phonemic categories possessed by adult speakers of English changes these speakers’

perceptual discrimination of consonant-vowel syllables such that intra-category discrimination

performance is worse than inter-category discrimination (Liberman et al., 1957). CP has been

found in various domains, from phonemic perception in speech (Liberman et al., 1957), to per-

ception of facial expressions (Etcoff and Magee, 1992), to perception of low-level visual features

(Goldstone, 1994). Some CP effects arise early in development and persist across adulthood

(such as for phonemes in one’s native language), but other CP effects – generally referred to

as “learned CP” – can appear after episodes of category learning during adulthood, even for

arbitrary, experimenter-defined categories. Given its ubiquity, CP is widely regarded as a key

cognitive process that supports the high-level conceptual process through which people organize

their world and communicate with each other (Harnad, 1987; Goldstone and Hendrickson, 2010).

Despite the importance of CP to cognition, its underlying neural mechanisms are still largely

unknown (Goldstone and Hendrickson, 2010). For instance, it is unclear where in the brain the

influence of categorization experience on perceptual processing occurs and how this influence is

reflected in both the single neuron and neural population levels. What is lacking in CP studies

is a model system that allows researchers to investigate the influences of long-time category

learning on perceptual discrimination through simultaneous behavioral assessment and single

neuron recordings. This was also indicated in a recent CP study with songbirds (Prather et al.,

2009).

Recently, delayed matching experimental paradigms have been established to help unravel

the neural mechanisms of visual categorization in non-human primates (Freedman and Assad,
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2016). In particular, flexible neuronal categorical representations have been found in parietal

and prefrontal areas in monkeys trained to group visual stimuli into arbitrary categories (Freed-

man and Assad, 2006). This suggests the possibility of using these paradigms to study how

the neuronal categorical representations acquired during categorization training influence per-

ceptual processing (i.e., the learned CP effect) in non-human primates. To test this possibility,

we examined behavioral data from a visual motion delayed matching experiment that consists

of both categorization and discrimination tasks. We found that, during the motion direction

discrimination task after categorization training, motion directions closer to the category cen-

ter became more difficult to discriminate than those farther away from the category center, a

signature of CP phenomenon.

To explain this experimental finding, based upon previous biophysical models (Engel and

Wang, 2011; Engel et al., 2015), we developed a neural circuit model of CP that leveraged

existing key neurophysiological findings in visual categorization (Freedman and Assad, 2016),

working memory (Leavitt et al., 2017) and perceptual decision making (Gold and Shadlen, 2007).

By hypothesizing that the category knowledge acquired during categorization training entered

into the discrimination circuit through feedback projections, this model was shown to be capable

of accounting for the behavioral data in our experiment. One key testable prediction from this

model is the existence of a mixture area that integrates feedforward sensory input and feedback

category input. Furthermore, by showing that category knowledge acquired during categoriza-

tion training can help improve perceptual stability in noisy environments, our work provided a

functional explanation for the existence of CP phenomenon. In summary, by providing behav-

ioral evidence for learned CP and developing a computational framework that both integrates

disparate neurophysiological findings and allows us to make specific testable predictions for fur-

ther experiments, our work suggests that delayed matching paradigms in non-human primates

can serve as a promising model system for elucidating the neural mechanisms of learned CP

phenomenon.
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Materials and Methods

Behavioral tasks and stimulus display

Monkeys performed delayed match-to-sample (DMS) and delayed match-to-category (DMC)

tasks using 360° of motion directions as sample and test stimuli. Monkeys released a manual

lever to indicate whether a test stimulus was the same direction (DMS) or same category (DMC)

as a previously presented sample. Monkeys were required to maintain fixation within 2.0-2.5°

of a 0.2° fixation point throughout the entire trial. Sample and test stimuli were 9.0° diameter

circular patches of high-contrast, 100% coherent random dots. Dots moved at 12° per second

and were displayed at a frame rate of 75 Hz. During both the DMS and DMC tasks, twelve

evenly spaced sample directions were used as sample stimuli. During the DMS task, sample and

non-matching test stimuli were separated by either 45°, 60° or 75° to keep monkeys’ performance

on the task above chance but below complete certainty. During the DMC task, test stimuli were

chosen randomly from the same directions as the sample stimuli. In task switching, a trial also

began with the onset of a fixation spot. Monkeys were required to maintain gaze within 2.0° of

a fixation point throughout the trial. Depending on the fixation spot color (magenta or green),

monkeys were instructed to perform different tasks (DMC or DMS, respectively). Stimulus

presentation, task events, rewards, and behavioral data acquisition were accomplished using

an Intel-based PC equipped with MonkeyLogic software running in MATLAB. Gaze positions

were measured and recorded at a sampling rate of 1.0 kHz using an EyeLink 1000 optical eye

tracker (SR Research). Visual stimuli were presented on a 21” color CRT monitor (1,280 × 1,024

resolution, 75 Hz refresh rate, 47-cm viewing distance).

Behavioral training

Monkeys D and H (male Macaca mulatta, 9.0-12.0 kg, 7-9 years old) were each trained on the

motion DMS task for approximately 1 year (about 1,400 correct trials/session). Monkeys were

trained each day on 12 unique sample directions, and test directions were chosen to include a

wide range of angular differences between non-matching sample and test directions. Early DMS
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training sessions focused on large angular differences between sample and test directions (for

example, 90–180°) until monkeys’ accuracy reached a high level. Middle to late stage training

sessions focused on more challenging sample-test differences (for example, 5–30°), and DMS

training continued until the monkeys’ performance improved and stabilized. DMC task training

of Monkeys D and H was conducted in two stages. The first was the mid-training DMC stage

(104 and 70 sessions in monkeys D and H, respectively) in which the category boundary was

introduced and the monkeys were rewarded for indicating (with a lever release) whether the

test stimulus was in the same category as the sample. In this training stage, the 12 sample

directions used for training were shown with equal frequency during each session, and a wide

range of sample-test differences were used. In the second DMC training stage (78 and 65 sessions

in monkeys D and H), we over-emphasized near-boundary (that is, 15° from boundary) sample

stimuli for which the monkeys had shown lower performance in the middle training stage. This

training stage continued until the monkeys’ performance for near-boundary stimuli improved

and stabilized. Monkeys D and H were each trained on task switching more than 6 months.

After that, the monkeys performed both tasks with high accuracy as shown in Fig.1.

All surgical and experimental procedures followed the University of Chicago’s Animal Care

and Use Committee and US National Institutes of Health guidelines. Monkeys were housed in

individual cages under a 12-h light/dark cycle. Behavioral training was conducted during the

light portion of the cycle.

Task protocol in the simulation

In our simulation, an ABA task scheme (Fig. 3A) was used, in which A is a DMS task and

B is a categorization task. The DMS task is the same as the one used in the experiment. In

the categorization task here, one randomly chosen stimulus was presented, and a neural network

was trained to learn its category membership through trial and error. This is different from the

DMC task in the experiment, in which there were two stimuli to be compared with each other.

Description of the computational framework

7

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted June 15, 2020. . https://doi.org/10.1101/2020.06.15.151506doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.151506
http://creativecommons.org/licenses/by-nc-nd/4.0/


The full computational model consists of a categorization circuit and a DMS circuit. In

the categorization circuit, there are three functional areas, including sensory (S), association

(A) and decision (D, including population C1 and C2), of which the sensory and association

areas are shared with the DMS circuit. In the DMS circuit, there are four modules for sen-

sory representation (including sensory, association and mixture areas), working memory (WM),

comparison (including population match-enhancement [ME] and match-suppression [MS]) and

decision (including population match [M] and non-match [NM]).

The categorization circuit. This categorization circuit is the same as the one developed

in the previous work (Engel et al., 2015). All areas, including sensory, association and decision,

are strongly recurrent networks with dynamics governed by local excitation and feedback inhi-

bition. In simulations, we used a reduced mean-field model that has been shown to reproduce

neural activity of a full spiking neural network (Wong and Wang, 2006). The dynamics of each

excitatory population in the mean-field model is described by a single variable s representing

the fraction of activated N-methyl-D-aspartate receptor conductance, governed by

ds

dt
= −s/τs + (1− s)γr, (1)

where γ = 0.641 and τs = 60 ms. The firing rate r is a function of the total synaptic current I:

r = f(I) =
aI − b

1− exp[−d(aI − b)]
, (2)

with a = 270 Hz nA−1, b = 108 Hz and d = 0.154 s.

The total synaptic current I consists of recurrent and noisy components, I = Ir + In.

Recurrent input to a neuron i in the population A originating from the population B (population

B can be either the same as or different from population A) reads:

IB→A
r,i =

1

NB

!

j∈B
gB→A
ij sBj , (3)

where gB→A
ij is the synaptic coupling between the neuron j in the population B and the neuron
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i in the population A. The current is normalized by the number of presynaptic neurons NB.

Noisy current replicates background synaptic input and obeys:

τndIn/dt = −(In − I0) +
√
τnσnη(t), (4)

where η(t) is a white Gaussian noise, τn = 2 ms, σn = 0.009 nA, IS0 = ID0 = 0.3297 nA and

IA0 = 2.5 nA.

The sensory and association areas were each simulated by 128 discrete units with equally

spaced preferred directions from 0° to 360°. Within each area, the synaptic couplings gij between

neurons with preferred directions θi and θj have a periodic Gaussian profile:

g(θi − θj) = J− + J+ exp(−(θi − θj)
2/2σ2), (5)

where σ = 43.2°. Parameters J− and J+ determine the amount of recurrent excitation and

inhibition. In sensory and association areas, JS→S
− = −0.5, JS→S

+ = 1.43, JA→A
− = −10,

JA→A
+ = 0.4 nA.

The decision area consists of two populations (C1 and C2) respectively selective for category 1

(Cat 1) and category 2 (Cat 2), which are driven by the association neurons. When stimulated,

activities of the C1 and C2 populations diverge according to winner-take-all dynamics. This

behavior is attained through global inhibition and structured recurrent excitation within the

decision area: gD→D
ij = Jij with JC1C1 = JC2C2 = 0.3752 nA and JC1C2 = JC2C1 = −0.1137 nA.

During the categorization task, all synapses connecting three areas (from sensory to asso-

ciation, and between association and decision neurons) are plastic and excitatory. Synaptic

strengths of plastic connections are expressed as gij = gmaxcij , where gmax is the maximal con-

nection strength and cij is bounded between 0 and 1, and represents the fraction of potentiated

synapses between neurons i and j. At the end of each trial, all cij are updated according to the
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Hebbian plasticity rule modulated by the reward prediction error as specified below:

c → c+ q(R− 〈R|θ〉)rprerpost, (6)

where rpre and rpost are the trial-average firing rates of pre- and post-synaptic neurons, q is the

learning rate parameter, R is the reward received on each trial (1 or 0 for correct and incorrect

decisions, respectively), θ stands for a motion direction stimulus and 〈R|θ〉 is a stimulus-specific

reward expectation.

Plastic synapses between sensory and association neurons cS→A
ij are initialized with the

periodic Gaussian profile as in equation (5) with JS→A
− = 0, JS→A

+ = 1. Plastic synapses

between association and decision neurons (cA→D
ij and cD→A

ij ) are initialized randomly from a

uniform distribution on [0.25, 0.75]. The maximal connection strengths of plastic synapses are

gS→A
max = 1, gA→D

max = 0.03, gD→A
max = 0.01 nA.

Each simulation trial started with a 200-ms pre-stimulus period (no external input), followed

by a 1-s presentation of a motion direction stimulus and then by a 500-ms inter-trial interval.

When a motion direction stimulus θs is presented, neurons in the sensory population receive

additional input current Is that depends on the neuron’s preferred direction θ:

Is = gs exp(−(θs − θ)2/2σ2
s), (7)

where σs = 43.2°and gs = 0.1 nA. Neurons in the decision circuit receive a non-selective gating

current of 0.01 nA during the stimulus period, which sets the circuit in the decision-making

regime, and a brief −0.08 nA reset current during the first 300 ms of the inter-trial interval,

which represents the corollary discharge and resets activity to the spontaneous level.

The model’s response on each trial is determined by comparing firing rates of two decision

populations with a 20-Hz threshold during the last 25-ms of the stimulus period. The response

is considered invalid if both or neither population reach threshold, or either population reaches

threshold before the stimulus onset. Across trials, choices of the decision area are stochastic and
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are characterized by a sigmoidal dependence of the probability of choice C1 on the difference ∆I

in synaptic input currents to two competing populations. Reward equals R = 1 on valid correct

trials, R = 0 on valid incorrect trials and no plasticity is triggered on invalid trials.

The DMS circuit. The DMS circuit is built upon the one developed in the previous

work (Engel and Wang, 2011). This circuit shares the sensory and association areas with the

categorization circuit. We describe the remaining populations in the DMS circuit here, including

the mixture, WM, ME, MS, M and NM populations. All of these are strongly recurrent networks

with dynamics governed by local excitation and feedback inhibition. More specifically, the

dynamics of each population is described by the mean-field equation (1) with F-I curve (2).

The total synaptic current I in equation (2) consists of recurrent, external sensory and noisy

components, I = Ir + Is + In. Recurrent input to a neuron i in the population A originating

from the population B is specified by equation (3).

The mixture area and the WM module were each simulated by 128 discrete units with equally

spaced preferred directions from 0° to 360°. Within each area/module, the synaptic couplings

gij between neurons with preferred directions θi and θj follow the same profile specified by

equation (5) with σ = 43.2°. In the mixture area and the WM module, JMX→MX
− = −0.5,

JMX→MX
+ = 1.43, JWM→WM

− = −0.5, JWM→WM
+ = 2.2 nA. The stronger recurrent excitation

enables persistent firing within the WM module during the delay period. In addition, the

mixture area received inputs from both the sensory and association areas. The synaptic couplings

between neurons in the mixture area with preferred directions θi and neurons in both the sensory

and association areas with preferred directions θj follow the same profile specified by equation

(5) with σ = 10°, JS→MX
− = 0, JS→MX

+ = 2.4, JA→MX
− = 0, JA→MX

+ = 4.8 nA. The WM

module receives input from the mixture area with the Gaussian profile specified by equation (5)

with σ = 43.2°, JMX→WM
− = 0, JMX→WM

+ = 0.4 nA.

The ME and MS populations were each simulated by 128 discrete units with equally spaced

preferred directions from 0° to 360°. ME neurons receive excitation from the WM module with

the Gaussian profile specified by equation (5) with σ = 43.2°, JWM→ME
− = 0, JWM→ME

+ = 1.15

11

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted June 15, 2020. . https://doi.org/10.1101/2020.06.15.151506doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.151506
http://creativecommons.org/licenses/by-nc-nd/4.0/


nA. In contrast, MS neurons do not receive any top–down input: JWM→MS
− = 0, JWM→MS

+ = 0

nA. We assume that excitatory conductances of the ME cells are weakened by a factor α = 0.975

because of a homeostatic mechanism acting to compensate for the top-down excitation in these

cells. This homeostatic mechanism is operating on a very slow timescale, so that the value of

α = 0.975 is held constant in all simulations. Within the comparison module that consists of the

ME and MS populations, the synaptic couplings gij between neurons with preferred directions

θi and θj follow the same profile specified by equation (5) with σ = 43.2°, J− = −8.5 nA,

JME→MS
+ = JMS→MS

+ = 0.4 nA and JME→ME
+ = JMS→ME

+ = αJMS→MS
+ . Both the ME

and MS neurons receive excitation from the mixture area with the Gaussian profile specified

by equation (5) with σ = 43.2°, JMX→MS
− = 0 nA, JMX→MS

+ = 4 nA, JMX→ME
− = 0 nA,

JMX→ME
+ = αJMX→MS

+ .

We assume that sensory signals reach the WM module only when attention is directed to

store the sample in the WM. Signals from the test stimuli do not reach the WM circuit. In all

simulations, sensory stimuli were presented for 0.6 s using the same Gaussian current injection

as in the category task. Sample and test stimuli were separated by a 1-s delay.

Noisy background synaptic input obeys equation (4) with τn = 2 ms, σn = 0.009 nA,

IMX
0 = 0.3297 nA, IWM

0 = 0.3297 nA, IMS
0 = 3.1 nA, and IME

0 = αIMS
0 .

The ME and MS neurons have an additional current Ia mimicking the spike rate adaptation

as follows: I{ME,MS} = Ir + Is + In + Ia, whereby Ia = gasa and ga = 0.003 nA. The dynamics

of sa follows dsa/dt = −sa/τa + r, with τa = 10 s.

The activities of the ME and MS neurons are pooled by the decision circuit with two com-

peting neural populations selective for choice “match” and “non-match” (See Fig. 3B). When

stimulated, activities of the two populations diverge according to winner-take-all dynamics, and

the decision of the model is determined by the population with a higher activity. Across trials,

the stochastic choice behavior of the decision circuit is characterized by a sigmoidal dependence

of the probability P to choose non-match on the difference ∆I in synaptic input currents to the

non-match and match pool. More specifically, given synaptic input currents to the non-match
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and match pools from the ME and MS populations,

P(∆I) =
1

1 + exp[−β∆I]
, (8)

where P(∆I) is the fraction of choosing non-match and ∆I is the difference of synaptic input

currents to the non-match and match pools (Soltani and Wang, 2006). We used β = 200 nA−1.

The synapses connecting comparison neurons with the decision neurons are plastic. Each pair

of presynaptic and postsynaptic cells is connected by a set of binary synapses that are in either a

potentiated or a depressed state. The fraction cpostpre of synapses in the potentiated state quantifies

the strength of synaptic connection. Input currents to the match and non-match populations

are expressed through the synaptic strengths as I{M,NM} = 1/N{M,NM}g
"

i c
{M,NM}
i ri, where

the sum goes through all neurons in the comparison network, ri are their firing rates, and g = 2

nA/Hz. At the end of each trial, all synapses onto the chosen population (match or non-match)

are updated according to a reward-dependent Hebbian plasticity rule. If the choice of the model

is rewarded, the synapses are potentiated (i.e., the synapses in the depressed state make a

transition to the potentiated state with the rate q0 · q(r) referred to as the learning rate) as

follows:

c → c+ q0 · q(r)(1− c).

If the choice of the model is not rewarded, the synapses are depressed as follows:

c → c− q0 · q(r)c.

The maximal learning rate q0 determines the speed of learning. The learning rate depends on

the presynaptic firing rate:

q(r) =
1

1 + exp(−(r − r0/σq)
.

We used r0 = 8 Hz, σ = 4 Hz and q0 = 10−3.

Category-tuning index (CTI). The CTI of each neuron is defined as the difference be-

tween the between-category and within-category differences divided by their sum (Freedman
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and Assad, 2006), in which the between-category (within-category) difference is the difference

in firing rate between pairs of directions in different categories (the same category). Values of

CTI can vary from 1 (larger differences in neural activity between pairs of directions in different

categories) to −1 (larger differences in neural activity between pairs of directions in the same

category). A CTI value of 0 indicates the same difference in firing rate between and within

categories.
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Results

Behavioral evidence for CP in non-human primates

In our experiment, monkeys were trained to perform a discrimination task first, then a cat-

egorization task, and finally task switching where they switched between discrimination and

categorization depending on a task cue (fixation point color) (Fig. 1A). Both the discrimina-

tion and categorization tasks were of the delayed matching type, in which a sample stimulus,

consisting of moving random dots, was presented first and followed by a delay and then a test

stimulus, and monkeys were required to report if the test stimulus was a “match” to the pre-

vious sample stimulus by releasing a manual touch bar (Fig. 1B). During the discrimination

task, match meant that the motion directions of sample and test stimuli were exactly same,

while during the categorization task, match meant that sample and test stimuli belonged to the

same category whose boundary was arbitrarily defined by the experimenters (and not presented

explicitly to the subjects). The discrimination and categorization tasks here will be termed as

delayed match-to-sample (DMS) and delayed match-to-category (DMC) tasks, respectively.

Monkeys were extensively trained during DMS, DMC and task switching. During the DMS

task, behavioral performance was greater than chance (50%) when sample and test stimuli were

45° apart, and greater than 85% correct on all of the other non-match and match conditions

(Fig. 1C). During the DMC task, behavioral performance was > 85% correct for the four sample

directions that were 22.5° from the category boundary and > 90% correct for the four directions

that were 67.5° from the boundary (Fig. 1D). During task switching, monkeys performed well,

with the DMS performance greater than 85% correct when sample and test stimuli were 90°

apart (Fig. 1E), and the DMC performance > 75% correct for the four sample directions that

were 22.5° from the category boundary and > 90% correct for the four directions that were 67.5°

from the boundary (Fig. 1F).

Although monkeys generally performed well during task switching, DMS performance dur-

ing task switching was impaired relative to performance before DMC training. For example,
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DMS performance during task switching was about 40% when sample and test stimuli were 45°

apart (Fig. 1E), significantly worse than that (above 60%) during the DMS task before DMC

training (Fig. 1C), p < 10−68 (two-proportion z-test). Some impairment was expected due to

the higher cognitive demands associated with task switching. To address this possibility, we di-

vided sample-test pairs into two groups – one intra-category group with sample and test stimuli

in the same category and one inter-category group with sample and test stimuli belonging to

different categories. We found that DMS performance for the intra-category pairs during task

switching was much worse than that for the inter-category pairs (Fig. 2A). This difference cannot

be explained by the higher cognitive demands during task switching, as these demands should

be constant regardless of the category membership of stimulus pairs. Hence, the difference in

performance between intra-category and inter-category stimulus pairs indicated the existence of

complex interaction between categorization and discrimination.

One possibility of this interaction could be that during task switching there was a fraction

of DMS trials in which monkeys erroneously applied the DMC match rule. For each sample-test

pair, we defined a probability of rule-confusion as the proportion of DMS trials in which monkeys

erroneously applied the DMC match rule. Given the same sample-test difference value, following

the DMC match rule will lead to higher probability of choosing match for the intra-category pairs

than the inter-category pairs. This may explain the DMS performance discrepancy between the

intra- and inter-category groups during task switching (Fig. 2A). However, such rule confusion

would not qualify as genuine CP, conventionally defined. To assess this possibility, we compared

two intra-category sample-test pairs which have the following properties: (1) these two pairs

share the same sample stimulus, (2) sample and test stimuli were 45° apart for both pairs, (3)

before DMC training, there was no significant DMS performance difference between these two

pairs, p = 0.369 (two-proportion z-test), (4) during task switching, there was no significant DMC

performance difference between these two pairs, p = 0.507 (two-proportion z-test) (Fig. 2B). In

this experiment, as the rule cue was explicitly presented during the whole trial period, given

the same sample stimulus, the probability of rule-confusion, if present, should be independent

of the incoming test stimuli, therefore the same for these two pairs. Then, it was expected that
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during task switching, there also would be no significant DMS performance difference between

these two pairs. However, we found that during task switching, the DMS performance of the

pair closer to the category center (pair 1) actually was significantly worse than that of the pair

farther from the category center (pair 2), p = 0.014 (two-proportion z-test) (Fig. 2B). Following

this logic, the rule-confusion hypothesis was disconfirmed, lending support that pair 1 becomes

harder to discriminate than pair 2 as a result of categorization training.

Taken together, our data analysis suggests that in DMS trials during task switching motion

directions closer to the category center became more difficult to discriminate than those farther

away from the category center, demonstrating the CP effect in this experiment.

Architecture of neural circuit model

To gain insights into neural mechanisms underlying the CP effect in this experiment, we

developed a neural circuit model. The major issue we addressed in this neural circuit model is

where the influence of categorization experience on perceptual processing occurs and how this

influence is reflected both in single neurons and at the neural population level. To this end, an

“ABA” task scheme (Fig. 3A), in which “A” is the DMS task and “B” is a simplified categorization

task, was used in our model simulation. In this simplified “one-interval” categorization task,

instead of presentation of two stimuli to be compared with each other in each trial, as in the

DMC task in the experiment, there was only one stimulus to be categorized. Another noticeable

difference from the experiment is that the same DMS task A, instead of task switching, was used

after category learning (task B).

Our network model is built upon two previous models, one for DMS (task A) (Engel and

Wang, 2011), the other for categorization (task B) (Engel et al., 2015) (for details, see Mate-

rials and Methods). Similar to previous biophysical models (Engel et al., 2015; Compte et

al., 2000; Wang, 2002; Wong and Wang, 2006; Engel and Wang, 2011), both of the categoriza-

tion and DMS circuits comprise several functional areas/modules (Fig. 3B). The categorization

circuit consists of sensory, association and decision areas, each of which is associated with a

functional role in the categorization task and importantly is constrained by physiological find-
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ings. Similarly, in the DMS circuit, there are four modules for sensory representation (including

sensory, association and mixture areas), working memory (WM), comparison and decision. Each

module is associated with a functional role in the DMS task and importantly is also constrained

by physiological findings. Our circuit model can be regarded as a minimal biophysical model.

We did not intend to explain every aspect of experimental results but aimed at accounting for

salient experimental findings. The two circuits are linked by a connection from the association

area in the categorization circuit to the mixture area in the DMS circuit.

More specifically, in the categorization circuit, the sensory area – which corresponds to the

middle temporal (MT) area in cortex, for the case of a motion direction stimulus – encodes stim-

uli with a bell-shaped activation profile, arising from bottom-up sensory input and structured

recurrent excitation (Engel and Wang, 2011) (Fig. 4). Initially, the association area (lateral

intraparietal [LIP] area) inherits direction selectivity from upstream motion processing (Fig. 4),

which was achieved by setting stronger synaptic weights between sensory and association neu-

rons with more similar preferred directions. As was shown in previous work (Engel et al.,

2015), reward-modulated Hebbian plasticity for synaptic connections from sensory neurons to

association neurons caused the categorization circuit to develop stable category representation

in this association area over the course of categorization training in our simulations (Fig. 4).

Importantly, the emergence of this neuronal category representation in the association area

recapitulated the presence of category-tuned neurons in the LIP area during a visual motion

categorization experiment (Freedman and Assad, 2006). The decision area comprises two com-

peting decision pools, firing at higher rates for the two respective category decisions (Wong and

Wang, 2006).

In the DMS circuit, in the sensory representation module, there is an additional mixture area

that integrates bottom-up input from the sensory area and top-down input from the association

area. Although the mixture area is not strictly needed for the model to perform the DMS

task, its inclusion matches the organization of primate cortex, where medial superior temporal

(MST) area is positioned between MT and LIP and is strongly connected to both. Synaptic

weights were set to be stronger between sensory and mixture neurons with more similar initial
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preferred directions. The same connectivity pattern was also used for synaptic weights between

association and mixture neurons. As a result, during our simulations, the mixture area was

capable of encoding the motion direction of incoming stimuli before categorization training

(Fig. 4). As neuronal category representation emerged in the association area over the course

of categorization training, the top-down input from the association area enabled the mixture

area to encode category information. In particular, under this setting, we were able to control

the strength of neuronal category selectivity in the mixture area by tuning the ratio of the

association-to-mixture synaptic weight to the sensory-to-mixture synaptic weight.

In the downstream WM module, neurons receive input from the mixture area at the end

of the sample period. The major difference between this WM module and areas in the sen-

sory representation module is the strength of recurrent excitation. While sample information

decayed away over tens of milli-seconds after sample stimulus removal in areas in the sensory

representation module, the stronger recurrent excitation enabled this WM module to store sam-

ple information through synaptic reverberation during the delay period that lasted one second

in the DMS task here (Compte et al., 2000). The comparison module consisted of two functional

populations – one match-enhancement (ME) population and one match-suppression (MS) popu-

lation. Neurons in the ME population showed higher firing response for match sample-test pairs

than non-match ones, while neurons in the MS population showed higher firing response for non-

match pairs. In our model, this was achieved through inhibition-dominated recurrent dynamics

and heterogeneous top-down excitation from the WM module (Engel and Wang, 2011). In the

last neural processing stage of this DMS circuit, a decision module, comprising two competing

decision pools – one match pool and one non-match pool, was used (Wang, 2002; Wong and

Wang, 2006).

Neural representations of the sample stimulus during the DMS task in the model

To study functional roles of different areas/modules in the DMS circuit model (Fig. 5A), we

visualized the neuronal representations of sample stimuli with firing rate heat maps (Fig. 5B).

During the DMS task after categorization training, as the sample direction varies, the association
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area showed a nearly binary change in the neural firing pattern when the category boundary was

crossed, while the sensory area exhibited a gradual change across stimulus directions. Thus, cat-

egory representation emerged in the association area after categorization training. The mixture

area showed a firing pattern intermediate between a gradual change within each category and

an abrupt change across the category boundary. This is because the mixture area integrated

inputs from the association and sensory areas. As information in the WM module was inherited

from the mixture area, the WM module also showed a similar mixture of category and feature

signals.

To better quantify changes in the responses of single neurons after categorization training,

we examined individual neuron tuning curves. We found that neurons in the association area

showed two interesting trends, consistent with previous findings (Engel et al., 2015). One was

tuning curve broadening that occurred for neurons with initial preferred directions close to the

category center (Fig. 5C, left panel). The other was tuning curve shifting that occurred for

neurons with initial preferred directions close to the category boundary (Fig. 5C, right panel).

These two trends also existed in the mixture area but to a lesser degree (Fig. 5D). To quantify

how much category information was encoded in the mixture area and the WM module, we

computed the average category-tuning index (CTI) (Freedman and Assad, 2006). The average

CTI of each population measured how strong the population is tuned to different categories

(for details, see Materials and Methods). We also defined a feedback-feedforward ratio as

the ratio of the association-to-mixture feedback projection strength to the sensory-to-mixture

feedforward projection strength. We plotted the CTI of neurons in different areas/modules

as a function of the feedback-feedforward ratio. When the feedback-feedforward ratio is low,

categorical information sent to the mixture area is insignificant compared to the feedforward

motion direction information this area receives. Increasing this ratio would be predicted to

increase the CTI. As expected, the average CTI for both the mixture area and the WM module

increases as the feedback-feedforward ratio increases (Fig. 5E). Therefore, after categorization

training, the top-down input from the association area to the mixture area induced a cascade

of changes in the network’s representations of the sample stimulus, which was clearly shown at
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both the single neuron and population levels.

Sample-test similarity change in the comparison module

Having characterized changes in the network’s representations of the sample stimulus due to

category learning, we considered the sample-test comparison process in our model (Fig. 6A) that

is essential to the similarity judgement in CP studies (Goldstone, 1994). In principle, comparison

can be realized in different ways (Carpenter and Grossberg, 1987). For example, comparison can

be realized by a single neural population that performs a simple addition of the sample and test

inputs (Carpenter and Grossberg, 1987). Then, a match or non-match decision is determined by

whether the sum exceeds a threshold. Recent work pointed out that this model fails with varying

input magnitudes (Engel and Wang, 2011). Inspired by physiological observations (Miller et al.,

1996; Freedman et al., 2003), a network architecture with two (ME and MS) neural populations

(Fig. 6A) provides a robust and flexible way to make the sample-test comparison (Engel and

Wang, 2011).

Generally, in this two-population architecture, higher ME population activity than MS pop-

ulation activity favors the match decision, and the opposite holds for the non-match decision.

Therefore, it is important to quantify how neural firing rates of both ME and MS populations

parametrically vary with the similarity between the sample and test activation patterns, which

in our model is determined by a combination of inhibition-dominated recurrent dynamics in

the comparison module and heterogeneous top-down modulation from the WM module (Engel

and Wang, 2011). Specifically, the average neural firing rate of ME population should decrease

as the sample-test directional difference increases, while the average neural firing rate of MS

population should show the opposite trend (Fig. 6B). This scaling of comparison effects with

sample-test directional difference has been found in prefrontal neurons in a non-human pri-

mate experiment (Hussar and Pasternak, 2012), supporting this similarity-based pattern match

mechanism for the comparison process.

While this similarity-based comparison circuit worked well in the DMS task before category

learning (Engel and Wang, 2011), it is unclear if the same comparison circuit can effectively
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capture the similarity change induced by categorization training. To address this question, we

considered the similarity representation of intra-category pairs (Fig. 6B). As expected, before

categorization training, the average firing rate of the ME population decreased as the sample-test

directional difference increased, while the average firing rate of the MS population showed an

opposite trend. After categorization training, the average firing rate of the ME population still

decreased as the sample-test difference increased, but much less abruptly, while the average firing

rate of the MS population still increased as the sample-test difference increased, but also much

less abruptly. Therefore, given the same intra-category sample-test pair, compared to the case

before categorization training, the average firing rate difference between ME and MS populations

after categorization training became higher. This implies enhanced similarity for intra-category

pairs after categorization training. For inter-category pairs, we found that, compared with the

case before category learning, as the sample-test directional difference increased, the dependence

of the average firing rate on the sample-test difference became steeper for both the ME and MS

populations (Fig. 6C). Therefore, given the same inter-category sample-test pair, compared to

the case before categorization training, the average firing rate difference between ME and MS

populations after categorization training became smaller. This implied enhanced dissimilarity for

inter-category pairs after categorization training. Therefore, this similarity-based comparison

circuit in our model was capable of capturing both the intra- and inter-category similarity

changes induced by categorization training.

Match between model performance and monkey behavioral data

In our model, the analog sample-test similarity information was further transformed into a

binary choice (match or non-match) in the decision module. This was achieved by attractor

dynamics that amplified the difference between ME and MS inputs through slow recurrent

excitation and feedback inhibition within the decision module (Wang, 2002). It has been shown

that the stochastic choice behavior generated by attractor dynamics can be well-characterized

by a sigmoid function of the difference in input currents (Soltani and Wang, 2006). More

specifically, the fraction of choosing non-match over multiple trials can be approximated by a

sigmoid function of the difference in input currents to non-match and match selective neural
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pools in the decision module (Fig. 7A). In the model, projection patterns from the comparison

module to the decision module were learned through experience. Here, as in a previous work

(Engel and Wang, 2011), reward-modulated Hebbian plasticity (for details, see Materials and

Methods) was applied to the synaptic connections from the comparison module to the decision

module. This gave rise to a connectivity pattern in which ME and MS neurons preferentially

targeted match and non-match neuron pools, respectively (Fig. 7A).

With this connectivity pattern, as the average firing rate of the MS (ME) population in-

creased, the input currents to non-match (match) pools increased. As presented above, for

both intra- and inter-category pairs before and after categorization training, as the sample-test

directional difference increased, the average firing rate of the MS (ME) populations increased

(decreased) (Fig. 6B and C). As a result, the difference in current inputs to non-match and match

pools monotonically increased with respect to the sample-test directional difference. Since the

choice behavior is a sigmoid function of the difference in input currents, the fraction of choosing

non-match increased as sample-test directional difference increased in our simulations (Fig. 7B

and C).

To gain insights into the question of how categorization training affects discrimination per-

formance, we compared discrimination performance before and after categorization training. For

intra-category pairs, compared to the case before categorization training, the fraction of choos-

ing non-match after categorization training in our model was significantly lower, recapitulating

the compression effect in the experimental data (Fig. 7B). To explain this result in the model,

we considered an intra-category sample-test pair with sample and test stimuli 45° apart. For

this pair, compared to the case before categorization training, the average firing rate of the MS

(ME) populations became lower (higher) (Fig. 6B). Given the fixed synaptic weights from the

comparison module to the decision module, this meant a smaller difference in current inputs

to the non-match and match pools after categorization training, leading to a smaller fraction

of choosing non-match after categorization training. For inter-category pairs, compared to the

case before categorization training, the fraction of choosing non-match after categorization train-

ing in our model was significantly higher, recapitulating the expansion effect in the experiment
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(Fig. 7C). Similarly, let us consider an inter-category sample-test pair with sample and test

stimuli 45° apart. For this pair, compared to the case before categorization training, the average

firing rate of the MS (ME) populations became higher (lower) (Fig. 6C). This meant a bigger

difference in current inputs to the non-match and match pools after categorization training,

leading to a larger fraction of choosing non-match after categorization training. Furthermore,

our model can also recapitulate the discrimination performance difference for pairs with the

same sample-test directional difference but different distances from the category center found in

the experiment (Fig. 7D). In summary, our model was capable of accounting for the behavioral

data in the experiment above and provided a potential mechanistic explanation for it.

The cognitive benefit of having CP

Given the ubiquity of CP effects in different domains, different hypotheses regarding the

cognitive function of having CP have been proposed (Goldstone and Hendrickson, 2010). Here,

we tested the hypothesis that category knowledge acquired during category learning can help

improve perceptual stability in noisy environments. To this end, we varied the sensory input

amplitude to model the environmental change. The smaller the input amplitude is, the noisier

the environment is. Meanwhile, we used the average firing rate of neurons in the mixture area

to characterize perceptual stability. The higher the average firing rate is, the more stable the

perception is. Furthermore, the average CTI value of neurons in the mixture area was computed

to quantify how strong the mixture area is tuned to categories. The larger the CTI is, the

stronger the mixture area is tuned to categories.

From the middle panel of Fig. 8A, we can observe that the average firing rate of neurons in

the mixture area after category learning is higher than that before category learning, indicating

improved perceptual stability after category learning. Interestingly, the right panel of Fig. 8A

shows that the average CTI value of neurons in the mixture area increases as the input ampli-

tude decreases. This suggests that category knowledge plays an increasingly important role in

stabilizing sensory perception as the environment become noisier. Since the category informa-

tion is purely sent by the feedback projections from the association area to the mixture area,
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this result indicates the importance of feedback projections in improving perceptual stability

in noisy environments. To address the functional importance of feedforward projections from

the sensory area to the mixture area, we removed the feedforward projections and examined

the resulting firing patterns of neurons in the mixture area. We found that in this scenario

while category learning can still improve perceptual stability (the middle panel of Fig. 8B), the

CTI value becomes extremely high all over the tested input amplitude range (the right panel

of Fig. 8B), which could be detrimental to precise feature-based sensory perception. Therefore,

while feedback category input can improve perceptual stability in environments with high un-

certainty (i.e., small sensory input amplitude), the feedforward sensory input is also required

to enable precise featured-based perception in environments with low uncertainty (i.e., large

sensory input amplitude). In this sense, the existence of a mixture area can be regarded as a

natural way to implement the balance between keeping perceptual stability in environments with

high uncertainty and maintaining perceptual sensitivity in environments with low uncertainty.

Therefore, the CP effect can be understood as an emerging phenomenon resulting from this

intriguing balance.
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Discussion

CP is a key cognitive process revealing the intriguing interplay between analog feature-

based perception and discrete categorization. However, its neural mechanisms have been largely

unknown. Here, we showed behavioral evidence for the learned CP effect in a visual motion

delayed matching experiment in non-human primates. By leveraging existing key neurophysio-

logical findings in visual categorization, working memory and decision making, we developed a

computational framework that allowed us to make testable predictions for further experiments.

For example, our model predicted the existence of a mixture area that integrates feedforward

sensory input and feedback category input. Furthermore, by showing that category learning

enables improved perceptual stability in noisy environments, our work provided a functional

explanation for the existence of CP phenomenon. Taken together, our work suggests that visual

motion delayed matching paradigms in non-human primates combined with biologically-based

modeling can serve as a promising model system for elucidating the neural mechanisms of learned

CP phenomenon.

As an important step towards elucidating the neural mechanisms of CP effect, the neural basis

of categorization has drawn much attention recently. Studies of visual categorization in non-

human primates suggest that changes in neural representations due to category learning occur in

higher-order visual areas (Sigala and Logothetis, 2002; Sigala et al., 2002) and higher association

cortex (Freedman and Assad, 2006; Swaminathan et al., 2013; Sarma et al., 2016), but not earlier

sensory cortex (Freedman and Assad, 2006). This line of research provides important insights

into the question of how the category knowledge acquired during categorization is stored in

our brain. However, recent studies in humans and rodents indicate that category biases during

categorization tasks can occur in signals in earlier visual and auditory cortices (Ester et al.,

2020; Xin et al., 2019). Whether this reflects a species difference, signal measurement difference

(Mendoza-Halliday et al., 2014) (spiking activity, functional MRI or EEG) or the importance

of the training protocol (Ester et al., 2020) (for example, human subjects learned to categorize

stimuli after about 10 minutes of training, as opposed to over periods of several months in the

monkey studies) remains to be established.
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In the realm of learned CP, efforts have been made to quantify the degree to which category

learning influences perceptual discrimination in human psychophysical studies, with conflicting

results (Goldstone, 1994; Livingston et al., 1998; Jiang et al., 2007; Gureckis and Goldstone, 2008;

Folstein et al., 2012). Some studies showed that objects became more discriminable along dimen-

sions relevant to the learned categories (Goldstone, 1994; Gureckis and Goldstone, 2008), while

others did not find this effect (Jiang et al., 2007). In this work, we showed a distance-dependent

CP effect along the dimension relevant to the learned categories in a delayed-matching-type

discrimination task in non-human primates. It would be of interest to test the robustness of this

CP effect by using different perceptual discrimination tasks.

Given the ubiquity of behavioral evidence for CP, various computational models of CP have

been developed, including Bayesian models (Kronrod et al., 2016; Feldman et al., 2009) and

connectionist neural network models (Damper and Harnad, 2000). By contrast, our biophysical

model was grounded in key neurophysiological findings (Freedman and Assad, 2016; Leavitt et

al., 2017; Hussar and Pasternak, 2012; Gold and Shadlen, 2007) and biological learning rules

(Schultz et al., 1997; Schultz, 2007; Fremaux et al., 2010; Loewenstein and Seung, 2006; Fusi et

al., 2007; Soltani and Wang, 2010). This enabled us to make experimentally testable predictions

regarding neurophysiological evidence and anatomical substrate for CP. For example, in this

work, we hypothesized that learned category knowledge gets into the perceptual system as early

as during the sensory encoding stage through feedback projectionsfrom the association area to

the mixture area. To experimentally test this hypothesis, it would be important to identify the

anatomical correspondence of the mixture area. While it seems challenging, several clues allude

to the possibility that MST area could be one candidate for the mixture area. First, during a

visual categorization task, neuronal categorical representations emerged in the LIP area, but not

in the MT area, during the sample period (Freedman and Assad, 2006). This suggested that if

there is any area showing neuronal categorical representations during the sample period, the area

must be higher than MT in the cortical hierarchy. As an area immediately downstream to MT

that processes visual motion information, MST is well-positioned to be this area. Second, during

a visual motion working memory task, neurons in MST showed strong sustained spiking activity
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encoding memorized visual motion directions, in sharp contrast to neurons in MT showing no

sustained spiking activity (Mendoza-Halliday et al., 2014). This indicated that MST may be

markedly different from MT in serving high cognitive function, including working memory and

categorization. Therefore, it would be of interest to look for the physiological signatures of

neuronal categorical representations (Fig. 5D) in MST during the DMS task after category

learning.

In our model, the sensory encoding change eventually would manifest itself during all stages

in the downstream information processing. Among these stages, the comparison stage is of

particular interest because the anatomical correspondence of the comparison module has been

relatively well-studied in the literature. For example, in a memory-guided motion direction

discrimination task (Hussar and Pasternak, 2012), neural activity in prefrontal cortex exhibited

substantial comparison effects that were consistent with the proposed similarity-based pattern

match mechanism (Engel and Wang, 2011). In analyses of experimental data, the area under the

receiver operating characteristic curve (AROC) – a metric within signal detection theory – was

used to quantify the same-different comparison effect of both ME and MS neurons (Hussar and

Pasternak, 2012). The smaller the AROC is, the more similar the sample and test stimuli are.

For stimulus pairs with the same sample-test directional difference, our model predicted that

the intra-category pair will produce more similar ME and MS neuron activity than the inter-

category pair. ME and MS neurons are thought to exist in the prefrontal cortex. Hence, in PFC,

the measured AROC of the intra-category pair should be smaller than that of the inter-category

pair during the DMS task after category learning, which is experimentally testable.

In this work, we demonstrated the importance of feedback signals from a category circuit

(the association area) in improving perceptual stability in noisy environments. Interestingly, a

previous modeling work showed that the similar category circuit plays a key role in resolving

sensory-motor conflict in a rule-based switching task (Ardid and Wang, 2013). Taken together,

this line of modeling work provides concrete hypotheses about how category learning can facili-

tate our cognitive performance (Seger and Miller, 2010).
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It has been elusive to dissect physiological fingerprints and functional roles of feedback pro-

jections in the cortical hierarchy. To summarize, the present work combining experiments and

modeling opens the door for the elucidation of top-down signaling in the cortex of an especially

important kind, namely influence of sensory processing by abstract (category) knowledge.
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Figure 1: A visual motion delayed matching experiment in non-human primates.
(A-B) Monkeys were trained to perform a discrimination task, then a categorization task, finally
task switching between the two. Both discrimination and categorization tasks are of the delayed
matching type, in which sample stimulus, consisting of moving random dots, is followed by a
delay and then a test stimulus, and monkeys were required to report (by releasing a lever) if
the test stimulus was a match to the previous sample stimulus. In the discrimination task,
termed delayed match-to-category (DMS) task below, match means the motion directions of
sample and test stimuli are exactly same, while in the categorization task, termed as delayed
match-to-category (DMC) task below, match means sample and test stimuli belong to the same
predefined category. In task switching, monkeys were required to perform either the DMS or
DMC tasks depending on the fixation point color. (C, E) The DMS task performance before
(C) and after (E) DMC training. (D, F) The DMC task performance before (D) and during
(F) task switching. Error bars indicate s.e.m.
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ence. The intra-category pairs are those with sample and test stimuli in the same category, while
the inter-category pairs are those with sample and test stimuli belonging to different categories.
(B) Comparison between two intra-category sample-test pairs. These two pairs share the same
sample direction and have the same sample-test directional difference (45°) (left panel). Before
DMC training, there was no significant DMS performance difference between these two pairs,
p = 0.369 (two-proportion z-test). During task switching, there also was no significant DMC per-
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was a significant DMS performance difference between these two pairs during task switching,
p = 0.014 (two-proportion z-test). Error bars indicate s.e.m.
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Figure 3: The architecture of our neural circuit model. (A) Schematic of the task struc-
ture we used in the neural circuit simulation. Our neural circuit is trained to perform an ABA
task scheme in which A is a DMS task and B is a categorization task. The DMS task here is
the same as the one used in the experiment. In the categorization task, one randomly chosen
stimulus is presented, and the neural circuit is trained to learn its category membership through
trial and error. (B) Organization diagram of the circuit model. Solid black box: the DMS
circuit; dashed black box: the categorization circuit. The two are linked primarily through the
projection from the association area to the mixture area. The DMS circuit consists of four
functional modules, including sensory representation (sensory, association and mixture), persis-
tent working memory (WM), comparison (MS and ME) and decision (non-match and match)
modules. The synaptic strengths of connections from the comparison module to the decision
module undergo reward-modulated Hebbian plasticity at the end of each DMS trial. The catego-
rization circuit consists of sensory, association and decision areas. The synaptic strengths of all
inter-area (sensory-to-association, association-to-decision, association-to-decision) connections
undergo reward-modulated Hebbian plasticity at the end of each categorization trial.
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Figure 4: An example neural activity in the model during DMS task. The left and right
panels correspond to the cases before and after categorization training, respectively. A sample
stimulus (67.5°) was presented for 0.6 s. After 1 s delay, a test stimulus (112.5°) was presented
for another 0.6 s. Before category learning (with the category boundary at 0° and 180°), the
sensory, association and mixture areas showed direction-tuned responses in their spatiotemporal
activity patterns during both sample and test periods. After category learning, the association
area showed a category-tuned response in its spatiotemporal activity pattern during both sample
and test periods. x axis, time from sample onset; y axis, neurons arranged and labelled by their
preferred directions before category learning; firing rates normalized by the maximum firing rate
in each area/module are color-coded.
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Figure 5: Neural representations of sample stimulus in the model during DMS task
after category learning. (A) Schematics of the connections between different areas/modules.
(B) Tuning profiles of different areas/modules. x-axis, stimulus motion direction; y-axis, neurons
arranged and labelled by their preferred directions before category learning; firing rates that are
normalized by the maximum firing rate of each module are color-coded. (C-D) Tuning profiles
of two example neurons before (black dashed line) and after (blue solid line) category learning
in the association and mixture areas. (E) The average category-tuning index of neurons in
the mixture area and the WM module as a function of the feedback-feedforward ratio. Here,
feedback-feedforward ratio is defined as the ratio of the association-to-mixture synaptic weight
to the average sensory-to-mixture synaptic weight.
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Figure 6: A similarity-based pattern match mechanism that can detect the similarity
change induced by category learning.(A) Schematic of similarity-based pattern match
mechanism in the comparison module. This module consists of two mutually inhibited functional
populations – match enhancement (ME, red population) and match suppression (MS, black
population), in which the ME population receives both top-down input from the working memory
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Figure 7: The circuit model is capable of accounting for the CP effect observed in the
experiment. (A) Schematic of connections from the comparison module (with the ME and MS
populations) to the decision module (with the non-match and match populations) (left panel).
The stochastic choice behavior of the decision module can be characterized by a sigmoid function
of the difference in input currents (middle panel). Right panel shows the difference between the
ME-to-nonmatch synaptic weight and the ME-to-match synaptic weight (red curve) and the
difference between the MS-to-nonmatch synaptic weight and the MS-to-match synaptic weight
(black curve) as a function of neuron label. It can be observed that the ME population tends to
connect with the match population more strongly while the MS population tends to connect with
the non-match population more strongly. (B-C) The comparison of the DMS task performance
for intra-category (B) and inter-category (C) pairs between model and experiment. The left
panel depicts the configuration of sample and test directions. With the configuration in the left
panel, the corresponding right panel shows how the fraction of reported non-match changes as
a function of sample-test directional difference. (D) The comparison of two intra-category pairs
between model and experiment. Error bars indicate s.e.m.
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Figure 8: The cognitive benefit of having CP – improving perceptual stability in
noisy environments with salient category information. (A) Left panel: schematic of
connections within the sensory module of our original model. Middle panel: given the sample
direction at the category center, the average firing rate of neurons in the mixture area as a
function of input amplitude during the sample period before and after category learning. The
average firing rate after category learning is higher than that before category learning, indicating
improved perceptual stability after category learning. Right panel: the average category tuning
index (CTI) of neurons in the mixture area as a function of input amplitude during the sample
period before and after category learning. The average CTI value becomes non-zero after cate-
gory learning. In particular, the CTI value after category learning increases as input amplitude
decreases, suggesting that the feedback category input plays an increasingly important role in
stabilizing sensory perception for small input amplitudes. (B) Scenario in which feedforward
projections from the sensory area to the mixture area are removed from our model. In this sce-
nario, both the average firing rate and the CTI value after category learning become higher than
the corresponding ones before category learning. However, the CTI value becomes very high,
which could be detrimental to precise feature-based sensory perception. Therefore, feedforward
projections from the sensory area to the mixture area are also functionally important. Error
bars indicate s.e.m. for both (A) and (B).
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