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Download. Xppaut files used to simulate the linear rate model, and the C++ code used in the

full spiking network simulations are available for download from

www.wanglab.brandeis.edu/people/miller/discriminator.html .

On the website are instructions for downloading, compiling, running, and altering the C++

code.

Network simulations. This subsection is an expanded version of Network Simulations from

the main text and refers to Fig. 1c.

We simulate the model using a network of interconnected leaky integrate-and-fire neurons.

The network architecture is shown schematically in Fig. 1c. Subpopulations of 400 identical

excitatory neurons (Fig. 1c, squares) or 200 identical inhibitory neurons (Fig. 1c, circle) all

receiving independent background noise input but common network input form five components

of the network.

Comparison. The comparison (C) unit was modeled as a population of 400 excitatory neurons.

During the cue, each C neuron receives a separate Poisson spike train at a rate of 90 times the

vibrational frequency (f1 or f2), representing afferent excitation projected from the secondary

somatosensory cortex. Following the standard experimental scheme, the comparison stimulus

frequency f2 is given by f2 = f1 + 8 Hz or f2 = f1 − 8 Hz.

ON. The stimuli also excite a group of “ON” cells (see Fig. 1c), which have strong, saturating

recurrent excitation. The ON cells fire during the task but are not tuned to f1. Such untuned,

task-dependent cells are observed and, in our network, provide extra excitation to the C neurons

during the task. The excitation is necessary for delay firing rates of C neurons to be greater than

their spontaneous rate (see Fig. 2).

Memory. The memory network is based on a published model (1) with the simplification

of containing only positively monotonic excitatory neurons. The memory (M) neurons are con-

nected to form a discrete integrator (2). Twelve bistable subpopulations (each of 400 cells) have

a range of excitabilities and so become active consecutively in response to above-threshold input

from C neurons. Once active, strong recurrent excitation maintains the activity within a subpop-
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ulation. Cross-excitation to other subpopulations is the strongest to the populations with closest

excitability, facilitating the activation of the next subpopulation (as in ref. (1)). The number

of active subpopulations after the input represents a memory that is a discrete approximation

to the temporal integral of the input (2). We adjusted strengths of excitatory cross-connections

so that, with a given number n of active populations, the input required to activate the next

(n + 1th) population (the threshold in Fig. 3a) is approximately constant (for all n). This input

threshold for M neurons sets an activity threshold, Θ, for C neurons which provide the input.

M neurons only increase their activity while the firing rate of C neurons > Θ (dashed line in

Fig. 2b).

Readout. The 12 bistable subpopulations excite a subpopulation of 400 excitatory readout

cells (Fig. 1c), whose firing rates encode the memory.

Inhibition A single interneuron population (of 200 cells) receives input from the readout

population and inhibits the C neurons with a strength approximately proportional to the activity

of readout cells.

Our purpose here is to investigate how a discrete integrator affects the circuitry of integral

feedback control and not to address the mechanisms needed to create such an integrator, which

could arise from single cell properties (3,4) and from strong recurrent feedback between cells (2).

Single Neuron Properties for Spiking Network Code. We simulate the individual cells

as leaky integrate-and-fire neurons (5). The membrane potential Vi of cell i obeys the current

balance equation

CM

dVi

dt
= −gL [Vi − VL] − [gAMPA + gNMDA(Vi)] SE,i [Vi − VE] − gISI,i [Vi − VI]

− gextsext,i [Vi − VE] − gcuescue [Vi − VE] [1]

where gL is the leak conductance, VL the leak potential; gAMPA and gNMDA(t) are the conductances

of AMPA and NMDA channels, respectively, with excitatory reversal potential VE; and gI and

VI are the conductance and reversal potential for inhibitory channels. gext and gcue are the fixed

conductances for background noisy input and applied, stimulus-dependent input, respectively,

and sext and scue are the corresponding time-dependent gating variables (see below). When the

membrane potential reaches a threshold, Vthr, the neuron spikes, and the membrane potential is

reset at Vreset for an absolute refractory period, τref , before continuing to follow Eq. 1.

The total synaptic drive for excitation or inhibition (SE or SI) is the sum of synaptic inputs

from all presynaptic neurons j,

Si =
∑

j

Wj→isj(t), [2]

where Wj→i is the relative synaptic weight from cell j to cell i, and sj is the synaptic current

gating variable activated by the presynaptic neuron j firing spikes at times tspike,j. Specifically,
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for excitatory synapses, we have

dsj

dt
= αs · PR(t)[1 − sj]δ(t − tspike,j) −

sj

τs

[3]

and for inhibitory synapses
dsj

dt
= δ(t − tspike,j) −

sj

τs

[4]

with synaptic time constants τs. The probability of vesicular release, PR(t), is described in

Short-Term Plasticity of Excitatory Synapses..

Background noisy input to all neurons is simulated using uncorrelated Poisson spike trains at

a rate, rext, through nonsaturating synapses, of conductance gext, which are gated in accordance

to
dsext

dt
= δ(t − tspike,ext) −

sext

τext

[5]

with synaptic time constant τext following spikes at times tspike,ext.

Similarly, during the stimulus, Poisson spike trains of rate λ generate additional excitation

through AMPAR-mediated synapses of conductance gcue multiplied by a gating variable scue,

which follows
dscue

dt
= δ(t − tspike,cue) −

scue

τext

. [6]

In the network models presented here, background, feed-forward and stimulus inputs are

mediated by AMPA receptors, with gAMPA = 36nS, τext = 2ms, and VE = 0mV.

Recurrent excitation within a population (between the numbered memory subpopulations

and within the group of ON cells) is mediated by a combination of NMDA receptors (6,7) with

maximum conductance gmax
NMDA = 36 nS, τs = 100 ms and VE = 0 mV, as well as AMPA receptors

with gAMPA = 18 nS, τext = 2 ms, and VE = 0 mV.

Feedback inhibition is mediated through GABAA receptors with gI = 12 nS, τs = 10 ms and

VI = −70 mV.

Cellular parameters are for excitatory cells: CM = 0.5 nF, gL = 38.4 nS, VL = −70 mV,

Vreset = −60 mV, Vthr = −45 mV, τref = 2 ms, gext = 6 nS, rext = 1.2 kHz; and for inhibitory

cells: CM = 0.2 nF, gL = 17.6 nS, VL = −70 mV, Vreset = −60 mV, Vthr = −50 mV, τref = 1 ms,

gext = 1.6 nS, rext = 1.8 kHz.

Shadow Voltage for NMDA Current. The conductances of NMDA channels are voltage-

dependent and follow (8)

gNMDA(t) =
gmax
NMDA

1.0 + exp(−62 Vshadow)/3.57
[7]

where Vshadow is the shadow voltage (in mV). The shadow voltage is given by Eq. 1, like the

membrane potential, but is not reset after spikes. The shadow voltage is an approximation of
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the more continuous dendritic membrane potential and (unlike Vi) has the realistic property that

its mean value increases with firing rate.

Short-Term Plasticity of Excitatory Synapses. All excitatory synapses exhibit short-

term presynaptic facilitation and depression (9,10). We implement the scheme described by

Matveev and Wang (11), which assumes a docked pool of vesicles containing neurotransmitter,

where each released vesicle is replaced with a time constant τd. The finite pool of vesicles leads

to synaptic saturation, as when the presynaptic neuron fires more rapidly than vesicles are

replaced, and no extra excitatory transmission is possible. Such synaptic depression contributes

to stabilizing persistent activity at relatively low rates.

We make the simplification that there are many synapses between each pair of connected

neurons, such that the average release probability per synapse, PR(t), simply scales the amplitude

of synaptic transmission, as shown in Eq. 3. We assume that more than one vesicle can be released

per spike, hence the release amplitude at any individual synapse, PR(t), is

PR(t) = pv(t)· < n(t) > /n0, [8]

where pv(t) is the release probability for an individual vesicle and n(t) is the number of docked

vesicles (smaller than a maximum n0). Similarly, we do not keep track of a discrete n(t) for

every individual synapse but assume that, over several synapses between two neurons, we can

treat the average < n(T ) > as a continuous variable obeying

d < n >

dt
=

n0− < n >

τd

− PR(t)δ(t − tspike) [9]

decreasing by PR after a spike at time tspike. The value calculated for PR(t) is used in Eq. 3 as

the amplitude of excitatory synaptic transmission.

The vesicular-release probability is given by the product of three gating variables, pv(t) =

O1(t)O2(t)O3(t). A gating variable Oi(t) (i = 1, 2, 3) increases because of calcium influx triggered

by an action potential, followed by a decay with time constant τ i
f between spikes. Specifically,

the following simple update rule is used: A gating variable Oi(t) (i = 1, 2, 3) follows

Oi(n + 1) = 1 −
{

1 − Oi(n) exp
[

−(tn+1 − tn)/τ i
f

]}

Ci
f . [10]

Our simulations use the following values for the parameters in the memory network: n0 = 10,

τd = 250 ms C1
f = 0.1, τ 1

f = 50 ms, C2
f = 0.2, τ 2

f = 200 ms, C3
f = 0.4, and τ 3

f = 2 sec.

Connectivity Details in the Spiking Network. Five modules containing different types

of neurons are included in the full spiking network model. These are (see Fig. 1c) comparison (C)

neurons, ON neurons, memory (M) neurons, readout (R) neurons, and inhibitory (I) neurons.

Connections between modules are all to all. Neurons are identical within all modules, except

for the memory module, which contains 12 subpopulations (groups), each containing a set of
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identical neurons, but with neurons in different subpopulations having different thresholds. The

connections between groups, labeled i = 1 to 12 in the memory network, are described below.

Connection strengths between neurons in the memory network depend only on their group

numbers, and are all-to-all. All weights are normalized (i.e. divided) by the number of neurons in

the presynaptic group, so that average network properties should be independent of the system

size. The set of excitatory weights, WEE, follows:

WEE
i→j = WEE

0 exp

(

− |i − j|

Ngrpsσi

)

[11]

for i 6= j. The recurrent excitation within the same group is significantly stronger than between

groups, so we define a separate set of parameters, W EE
i→i = Wi.

The file connections in.dat contains the set of values for connection strengths given below,

and the file structure.cpp generates the weight matrix within the code. These files are available

for download at

www.wanglab.brandeis.edu/people/miller/discriminator.html .

The full set of parameters are as follows for the discrete network: W EE
0 = 0.75, W1 = 2.6,

W2 = 2.55, W3 = 2.55, W4 = 2.55, W5 = 2.6, W6 = 2.65, W7 = 2.7, W8 = 2.75, W9 = 2.8,

W10 = 2.85, W11 = 2.9, W12 = 3.0; σ1 = 0.45, σ2 = 0.45, σ3 = 0.45, σ4 = 0.55, σ5 = 0.65,

σ6 = 0.75, σ7 = 0.8, σ8 = 0.8, σ9 = 0.8, σ10 = 0.8, σ11 = 0.8, σ12 = 0.8. Connections to the

readout memory cell: W1R = 0.5, W2R = 0.6, W3R = 0.8, W4R = 1.0, W5R = 1.1, W6R = 1.15,

W7R = 1.2, W8R = 1.25, W9R = 1.3, W10R = 1.35, W11R = 1.4, W12R = 1.45; and from the

readout cell to inhibitory interneurons: W EI = 2. Feedforward excitation has W EE
CM = 0.33 and

feedback inhibition has W IE
MC = 1.7.

The memory network includes an extra group of excitatory neurons which show cue-independent,

but task-related activity. These ON neurons have self-excitation, W EE
ON = 1.4 and excite the com-

parison cells, W EE
ON,C = 2.5.
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