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Inhibitory control by an integral feedback signal
in prefrontal cortex: A model of discrimination

between sequential stimuli
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The prefrontal cortex (PFC) is known to be critical for inhibitory
control of behavior, but the underlying mechanisms are unclear.
Here, we propose that inhibitory control can be instantiated by an
integral signal derived from working memory, another key func-
tion of the PFC. Specifically, we assume that an integrator converts
excitatory input into a graded mnemonic activity that provides an
inhibitory signal (integral feedback control) to upstream afferent
neurons. We demonstrate this scenario in a neuronal-network
model for a temporal discrimination task. The task requires the
working memory of the vibrational frequency (f1) of an initial
stimulus (stimulus 1), followed by comparison of the frequency (f2)
of a second stimulus (stimulus 2) with the stored f1 and a binary
decision (f2 > f1 or f2 < f1). The integral feedback signal generated
by stimulus 1 gates the later inputs based on the amplitude
difference (f2 — f1). The feedback control signal enables a subset
of neurons to reverse their tuning to f1 between stimulus 1 and
stimulus 2, when they become tuned to the difference, f2 — f1.
These neurons maintain a lower firing rate during the delay
compared with their peak rate during stimulus 1. A second subset
of neurons, tuned to f1 during the delay, reaches a rate during
stimulus 2 that depends on the maximum of f1 and f2. Our work
suggests a circuit mechanism for discrimination across time and
predicts neuronal behavior that can be tested experimentally.

decision making | delayed comparison | integrator | persistent activity |
working memory

lexible behavior depends on the brain’s ability to integrate

information from ongoing sensory stimuli across time, in
which the prefrontal cortex (PFC) plays a critical role (1). If the
earlier information is recent, it can be held in working memory
and used later for processing ongoing input. Everyday examples
include understanding speech, where the beginning of a sentence
must be held in mind while the end of the sentence is being heard,
or selecting the best fruit in a store by observing sequentially an
array of fruits one item at a time. To investigate the neural
mechanisms underlying such behaviors, a commonly used lab-
oratory paradigm is delayed discrimination (2, 3), which is
amenable to rigorous behavioral analysis and neurophysiological
investigation.

In a series of experiments in which the monkey performs a
vibrotactile discrimination task (4-9), Romo and colleagues
have analyzed neuronal activity in sensory, memory, and motor
areas (somatosensory cortex, PFC, premotor cortex, and motor
cortex) of macaque monkeys. The task requires a discrimination
between the vibrational frequencies f1 and f2 of two stimuli
separated by a delay of 3-6 s. The stimuli are vibrations on a
fingertip, at a frequency in the range of 10-40 Hz. Neurons in
the primary somatosensory cortex are active during the stimuli,
with a firing rate that increases monotonically with vibrational
frequency (10). After stimulus 2, at a frequency {2, the monkey
must decide whether f2 is higher or lower than the vibrational
frequency f1 of stimulus 1 and press one of two levers accord-
ingly. An essential computation required to perform this task is
a subtraction between the two stimulus strengths. That is, a
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neuron whose activity correlates with the decision of whether
f2 > f1 should be tuned to the difference, f2 — f1 (in a set of trials
where f2 — {1 is fixed).

Vibrational frequency is an analog quantity encoded during
the delay by graded persistent neural activity. Neurons observed
to maintain stimulus-dependent activity across the delay have
firing rates that monotonically increase or decrease as a function
of stimulus frequency. Models describing such monotonically
tuned persistent activity are akin to models of a neural integra-
tor, such as the one in the oculomotor system used to maintain
fixation of gaze (11). An integrator can be continuous, in which
case it is subject to noise-driven drift and requires fine tuning, or
discrete and robust (12). In either case, the essence of an
integrator is summation of consecutive inputs from the same
afferent pathway, in contrast to the subtraction (or division) of
two consecutive inputs that is necessary for discrimination to
occur. Therefore, it is unclear how a single circuit can perform
both the temporal integration needed during stimulus 1 and the
delay and the computation needed during stimulus 2.

Machens et al. (13) have recently published an ingenious
model to perform the task. Their model has the advantage of
amplitude-dependent encoding of the stimulus rather than only
encoding the integral of amplitude over time. In their model, the
subtraction between consecutive stimuli is posited to be achieved
by a gating mechanism for the afferent stimuli, such that stimulus
2 reaches the mnemonic part of the circuitry with opposite sign
of tuning to stimulus 1. Whether such a switching of the input
line occurs during the task remains an open question.

In this article, we propose an alternative scenario, in which
integral feedback control (14-18) performs a subtraction across
time. Integral feedback control has been suggested to underlie
many important biological processes (19, 20), such as adaptation
(16), regulation (15, 17, 21), and fine-tuning of parameters to a
critical point (18). Integral feedback control is an inhibitory,
top-down process. The integrator, which stores the short-term
memory of an afferent signal, sends inhibition back to upstream
targets. The neurons that encode such a short-term memory are
found in the PFC (4, 22, 23), which is known to be important for
flexible behavior in general (24) and, in particular, for inhibitory
control (25, 26). Recently, excitatory projections from neurons
in the PFC have been found to target inhibitory neurons in
upstream cortical areas (27), suggesting an anatomical substrate
for inhibitory control. In this article, we propose a function of
integral feedback control within the PFC to solve the sequential
discrimination task.

Materials and Methods

Integral Feedback Control. Inspired by Romo’s data (4), we mod-
eled the working-memory circuitry as an integrator (11, 12,
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Fig. 1. Basic model of discrimination through integral feedback control. (a)
The C neurons are quiescent unless excited by external input. The M neurons
are integrators of the activity of the C neurons. The key component is the
inhibition of the C neurons by the M neurons, which produce the integral
feedback control. All connections are local, because all neurons in the circuit
are within the PFC. (b Top) Stimulus 1, at frequency f1, (blue, low; red, high)
is followed after a delay by stimulus 2, at frequency f2, (green, very low f2 or
black, moderate f2 after low f1; black, moderate f2 or magenta, very high f2
after high f1). (b Middle) C neurons respond during stimulus 1, at a rate that
increases with stimulus strength. During the delay, the C neurons are quies-
cent and inhibited by M neuron activity. The inhibition by M neurons means
that the C neurons can respond to stimulus 2 only when it is stronger than
stimulus 1 (f2 > f1). Importantly, the response to moderate f2 (black) is present
after low f1 (blue) but absent after high f1 (red). (b Bottom) M neurons
integrate the activity of C neurons and so exhibit constant, persistent activity
during the delay when the C neurons are quiescent. During stimulus 2, the
activity of M neurons further increases if the C neurons respond (solid line
when f2 > f1, dashed line when f2 < f1). (c) Twelve excitatory subpopulations
(connected squares) constitute an integrator (labeled M in a) that is capable
of persistent activity at a number of graded levels (see Fig. 3e). Tuned recur-
rent excitation is strongest within a subpopulation and decreases exponen-
tially to other subpopulations. A range of excitability is generated [from 1
(most excitable population) to 12 (least excitable)] by including a range of leak
conductances across the network. An extra excitatory population (ON square)
is bistable and feeds stimulus-independent input to C neurons after stimulus
1. The readout cell excites a group of interneurons (labeled 1) which provide
the necessary inhibitory feedback to the C neurons.

28-30). The key idea here is that memory (M) neurons inhibit
their inputs (31) (Fig. 1a) to provide integral feedback control
(14, 16). Specifically, comparison (C) neurons receive stimulus-
dependent input and excite M neurons in the integrator. M
neurons store the stimulus as working memory and send inhib-
itory feedback to the C neurons.

We first use a linear firing-rate model to analyze the behavior
of the two groups of neurons, coupled as shown in Fig. la. We
note here that the network behavior does not depend on the
linearities in either the feed-forward or feed-back connections,
but linearity simplifies the analysis. When the average firing rate
of the population of C neurons is r¢ and that of M neurons is ry,
then

drc

T4 - Te” Wacerm + Lapp(t), and [1]
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drM
TW :—rM-i-WCMrC-i- WMMrM’ [2]
where Iapp is the transient stimulus-dependent current from
somatosensory neurons to C neurons, Wy is the strength of
inhibitory connection from M to C neurons, and Wey and Wvm
are the strength of excitatory feed-forward and recurrent con-
nections to M neurons. The key for the M neurons to act as an
integrator is to set Wym = 1, so that Eq. 2 becomes: tdry/dt =
Wemre. Such a requirement on Wy is an example of the fine
tuning of parameters necessary to create a continuous integrator
(11). In the full model, we use a more robust, discrete integrator
(12, 32), but the analysis is made more tractable for the present
purpose with a continuous linear integrator (see Appendix).

Network Simulations. We simulate the model by using a network
of interconnected leaky integrate-and-fire neurons. The network
architecture is shown schematically in Fig. 1c. Subpopulations of
identical neurons, all receiving independent background-noise
input but common network input, form five components of the
network.

Comparison. C neurons each receive separate Poisson-spike trains
at a rate proportional to the vibrational frequency (f1 or f2),
representing input from the secondary somatosensory cortex.
Following the standard experimental scheme, f2 = f1 + 8 Hz or
f2 = f1 — 8 Hz.

ON. The stimuli also excite a group of “ON” cells (see Fig. 1c),
which have strong, saturating recurrent excitation. The ON cells
fire during the task but are not tuned to fl. Such untuned,
task-dependent cells are observed and, in our network, provide
extra excitation to the C neurons during the task.

Memory. The memory network is based on a published model
(30), with the simplification of containing only positively mono-
tonic excitatory neurons. The M neurons are connected as 12
bistable populations with a range of excitabilities to form a
discrete integrator (12). The number of active subpopulations
after the input represents a memory that is a discrete approxi-
mation of the temporal integral of the input. We adjusted
strengths of excitatory cross-connections so that, with n active
populations, the input required to activate the n + 1th popula-
tion (the threshold in Fig. 3e) is approximately constant for all
n. This input threshold for M neurons sets an activity threshold
0 for C neurons (dashed line in Fig. 2b) that must be surpassed
to produce integration.

Readout. The 12 bistable subpopulations excite a population of
readout cells whose firing rates encode the memory.

Inhibition. A single interneuron population receives input from
the readout cells and inhibits the C neurons with a strength
approximately proportional to memory-readout activity.

Our purpose here is to investigate how a discrete integrator
affects the integral feedback-control model and not to address
the mechanisms needed to create such an integrator, which could
arise from single cell properties (33, 32) and from strong
recurrent feedback between cells (12).

All spiking-network simulations were carried out by using
GNU-compiled C++ code, running on dual Athlon processors
(Microway, Plymouth, MA). We also used the program XPPAUT
to test the feasibility of the concept by using linear firing-rate
models. See Supporting Information, which is published on the
PNAS web site, for full details of the simulation and access to all
codes.

Results

Mechanism of Integral Feedback Control. We summarize here how
integral feedback control can lead to discrimination and leave
the full details to the Appendix. The rate rc of the input-receiving
C neurons and the rate ry of the M neurons follow Egs. 1 and 2.

Miller and Wang
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Fig. 2. Reversal of tuning response between stimulus 1 and the delay for C
neurons. (a) Rastergram of spikes produced in a group of 10 trials for each
stimulus pair, for f2 = f1 — 8 Hz (Upper) and f2 = f1 + 8 Hz (Lower). (b)
Histogram, indicating rate averaged over 10 trials for each stimulus pair as a
function of time. Purple color range indicates magnitude of stimulus 1 from
f1 = 10 Hz (blue) through f1 = 34 Hz (red). During stimulus 2, magenta, f2 >
f1; green, f2 < f1. Data are smoothed with 150-ms Gaussian kernel. (c) Average
firing rates for the first 300 ms of stimulus 1 (positively monotonic). Magenta,
f2 > f1; green, f2 < f1. Standard error is indicated. (d) Average firing rates
during the delay (negatively monotonic, same symbols as c). (e) Average firing
rate during the first 200 ms of stimulus 2 (same symbols as c).

Initially, we assume the neurons are quiescent, rc = 0, and
rm = 0. C neurons are excited by stimulus 1 and, in turn, activate
the M neurons: drc/dt > 0, because Iapp(t) > rc + Wncorm and
dry/dt > 0, because Wewmre > 0. The M neurons integrate their
inputs and store a memory of the amplitude of stimulus 1. That
memory is reflected in the amount of inhibition fed back to the
C neurons (Wmerm > 0). The M neurons fire at a gradually
increasing rate, integrating the activity of the C neurons over
time, until the C neurons are silenced. Therefore, the amount of
inhibition increases to reach the precise value needed to silence
the C neurons in the presence of stimulus 1. That is, when the
system reaches a steady state during stimulus 1: dry/dt = 0,
hence rc = 0; to reach rc = 0, then Wycrm = Iapp must be true.
During the delay, when the stimulus is absent, the C neurons
remain silent (Iapp = 0 < Wycrm). During stimulus 2, the
inhibition is still present, so the C neurons cannot fire unless the
stimulus /app(?2) is strong enough to overcome the inhibition.
That iS, drc/dt >0 only when IAPP(tZ) > Waom = IAPP(tl)-
Because the inhibition exactly matches the strength of stimulus
1, the C neurons fire only when stimulus 2 is stronger than
stimulus 1 (see Fig. 1b). Hence, the essence of discrimination is
achieved.

The system is robust, because changes in the weights affect the
stable rates of M neurons during the delay but do not affect the

Miller and Wang

steady-state condition that the persistent inhibitory feedback
exactly cancels the excitation from stimulus 1. However, two
conditions are necessary to ensure such a matching of inhibitory
feedback to the stimulus current. First, the steady state should
be reached before the stimulus is removed, so the time constant
of the system should be shorter than the stimulus duration 7.
Second, the system should not be susceptible to oscillations. The
two requirements can be fulfilled over a broad range of synaptic
weights when the neuronal time constant is significantly shorter
than the stimulus duration 7 << T. Because a typical stimulus
duration is 0.5 s, the network can be robust when feed-forward
connections are mediated primarily by a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptors rather than
NMDA receptors.

Simulation Results: Discrete Integrator. The network with a discrete
integrator can maintain a memory of stimulus 1 and perform the
discrimination (Figs. 2 and 3).

The C neuron we show in Fig. 2 is tuned positively monoton-
ically during stimulus 1: The greater the vibrational frequency f1,
the greater its initial firing rate. Similarly, because C neurons
provide input to M neurons, the greater fl, the greater the
activity of M neurons by the end of the stimulus. In the discrete
network, M neurons integrate only input that is above a thresh-
old, so C neurons must fire above a threshold rate 6 (=40 Hz in
our example) to activate the memory network. During a stimulus
that produces activity >0 in the C neurons, the M neurons
increase their rate and, so, inhibit the C neurons. Once the
activity of C neurons is inhibited <6, the M neurons no longer
receive enough input to increase their rate further. Hence, a
steady state is reached with C neuron activity decreased to 6,
whereas M neurons fire persistently at a rate that is tuned
positively monotonically to f1.

Once the excitatory stimulus to the C neurons ends, the rate
drops further, <6 (Fig. 2 b and d). So, during the delay, C
neurons fire at a rate lower than during stimulus 1. M neurons
remain tuned positively monotonically to f1 (Fig. 3b) and
continue to provide feedback inhibition to C neurons. Hence, a
Cneuron receives more inhibition if it fired more during stimulus
1, so the slope of its tuning curve switches sign between stimulus
1 and delay (Fig. 2 ¢ and d). When 6 is low and the feedback
inhibition from M neurons is high, then the C neurons may be
silenced and untuned in the delay (as with a continuous inte-
grator). However, in our network, we chose a relatively high
value of 0 (40 Hz), so the C neuron delay activity never reaches
0, but is tuned negatively monotonically to fl. So, a notable
feature of our network is a switch in sign of the tuning of C
neurons, as their activity first responds to fl but later is deter-
mined by feedback inhibition from M neurons.

During stimulus 2, the network generates a response based on
the difference (f2 — f1). Strong inhibition from M neurons limits
the range of activity of C neurons during stimulus 2 compared
with stimulus 1. When f2 < f1, the C neuron is not silent (as in
the linear-rate model with a continuous integrator), but its
activity remains <. Feedback inhibition reduced the rate of C
neurons to f when they were excited by f1, so excitation with f2 <
f1 is insufficient for the rate to reach 6, because the feedback
inhibition persists. In contrast, when f2 > f1, the C neurons
receive greater excitation during stimulus 2 than they did during
stimulus 1, leading to a rate >6. In this case, M neurons are
further excited by above-threshold firing of C cells, eventually
inhibiting the C neurons back down to 6 again. The activity of C
neurons is significantly greater when {2 > f1 than when {2 < f1
(Fig. 2e); hence, activity of C neurons can serve to produce a
motor output.

If we use alternate stimuli with half the magnitude of differ-
ence between f1 and f2 such that f2 = f1 + 4 Hz, the curves for
f2 > f1 and {2 < f1 are similar to Fig. 2e but only about half as
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Fig. 3. Activity of memory cell in the model. (a) Average firing rates during
stimulus 1. Magenta, f2 > f1; green, f2 < f1. Standard error is indicated. (b)
Average firing rates during the delay (same symbols as a). (c) Average firing
rate during the first 200 ms of stimulus 2 (same symbols as a). (d) Average firing
rate during the last 100 ms (final steady state) of stimulus 2 plotted against the
greater of f1 or f2 (same symbols as a). (e) Schematic input-output relation-
ship for the discrete memory network, showing a set of discrete stable states
along the line where the recurrent feedback input = Wyumx output (filled
circles). Any external input must exceed a threshold (distance from the stable
state to the next step jump) to affect the memory cells. () When the duration
of stimulus 1 is varied, memory activity shifts slightly.

far apart (data not shown). This proportionate change in dif-
ference is because the peak response during stimulus 2 increases
approximately linearly with f2 — f1. In contrast to C neurons,
which are tuned to the constant difference f2 — f1, rates of M
neurons do vary across stimulus pairs (Fig. 3¢), because their
steady-state firing rate is tuned to the maximum of f1 and f2 (see
Fig. 3d and Appendix).

We used a discrete integrator in the spiking-network model for
two reasons. First, a continuous integrator does require fine
tuning of parameters, whereas a discrete integrator is more
robust to parameter changes (11, 12). Second, a continuous
integrator integrates noise (34), so, in our network, the inhibitory
feedback from a continuous integrator silences any spontaneous
activity in the C neurons. However, cells observed in the PFC
typically do fire at significant rates in the absence of stimulus
presentation.

A discrete integrator has a set of stable activities (see Fig. 3e)
that must be sufficient in number to encode all stimulus values.
The activity changes from one stable state to the next only when
the input exceeds a threshold (distance to the next step in Fig.
3e). So, the network does not integrate, and then silence, all input
activity. In our model, thresholds for further integration are
approximately equal for all stable states of the memory network.
For optimal performance, inhibitory feedback from the integra-
tor should increase linearly with the excitatory input to the
integrator. So, significant variation of thresholds is detrimental,
because the integrator would increase activity more rapidly in
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Fig. 4. Schematic figure, showing tuning as a function of two stimuli. We
assume the firing rate of a neuron is given by r(t) = a(t)f1 + b(t)f2 + c(t), where
the coefficients a and b represent the tuning to f1 and f2, respectively (5).
Crosses represent the tuning during stimulus 1, [they must lie on the x axis,
because neurons cannot have any tuning to f2 (so b = 0) before stimulus 2].
Circles represent the tuning during stimulus 2. The diagonal dashed line is the
line for discriminatory response, where firing rate is proportional to the
difference between f2 and f1. Neurons that are both tuned to f1 during
stimulus 1 and are discriminatory during stimulus 2 behave according to one
of the four a-d. (a and b) Representation of the behavior of C neurons in our
network. (cand d) Representation of the behavior of neuronsin an alternative
network (13) with a switch at the input stage.

some ranges than others. However, the precise value of a
constant integration threshold does not affect the circuit’s ability
to perform discrimination. Indeed, we have run simulations with
0 = 20 Hz instead of 40 Hz, and the network behavior remains
the same (data not shown).

Reducing stimulus duration from 500 ms to 250 ms reduces the
activity of M neurons, whereas increasing duration to 750 ms
increases their activity slightly (Fig. 3f). The increase in activity
after 500 ms is driven by noise-induced, upward transitions in the
discrete integrator with near-threshold input. By 1 s of stimulus
duration, input is reduced far enough below threshold to prevent
further change.

Experimental Comparison. Cells involved in the discrimination are
tuned to the difference in frequencies, f2 — f1, during stimulus
2. The firing rate r(t) can be written as r(¢) = a(¢)fl + b()f2 +
c(t), where a(t), b(t), and c(t) are coefficients that vary with time
t (6, 5). Cells tuned to the difference f2 — f1 during stimulus 2
have a = —b and fall on the diagonal dashed lines of Fig. 4. When
such cells are also tuned during stimulus 1, then initially they
have a(t) # 0 and will lie on the x axis in Fig. 4. So, neurons that
are input-dependent during stimulus 1 (crosses in Fig. 4) then
discriminatory during stimulus 2 (circles in Fig. 4) can fall into
the four categories depicted in Fig. 4 a—d. Our model is consis-
tent with cells that flip their tuning to f1 and produce the tuning
behavior seen in Fig. 4 a and b. The reversal of tuning of C
neurons to fl is apparent early in the delay when a discrete
integrator with a sufficiently high threshold is used (Fig. 3e).
Experimental observation of a sign-flip in tuning after stimulus-
offset would be a strong indication of feedback control from a
discrete integrator. When a continuous integrator is used, C
neurons are silent during the delay, so the sign switch to fl
appears only during stimulus 2.

The behavior of our model is to be contrasted to the proposal
of Machens ef al. (13) that the necessary sign-flip in tuning
occurs in the afferent connections, so that stimulus 2 has an
opposite effect on the network to the first (a sign-flip for f2

Miller and Wang
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apparent only during stimulus 2). Such circuitry would lead to
the behavior of Fig. 4 ¢ and d. To understand the mechanism of
sequential discrimination, it will be important to assess whether
neurons observed in the experiment more often show a sign-flip
in f1 (Fig. 4 a and b) or f2 (Fig. 4 ¢ and d).

Discussion

The method of integral feedback control leads to a discrimina-
tion in the amplitude of two inputs that are separated in time.
Whereas this mechanism uses an integrator to store the memory
of stimulus 1, the inhibitory feedback affects the encoding of that
stimulus. Importantly, instead of encoding the product of am-
plitude and time, as occurs with a straightforward integration of
the stimulus, integral feedback control leads to delay activity that
depends only on the amplitude of the stimulus, so long as a
minimal duration is reached (35). Increasing the duration of f1
in our simulations leads to just a small increase in memory
activity (see Fig. 3f), in agreement with the small increase in
perceived value of f1 seen in psychophysical data (9). In both our
model and in the psychophysics, reducing the stimulus duration
to <500 ms has a stronger (opposite) effect than increasing
duration. This result is understandable, because the input to the
integrator decays exponentially at longer times (Eq. 3), so
increasing duration has a diminishing effect.

A continuous integrator would integrate noise and perform a
random walk during the delay (34). Because the variance of a
random walk increases (linearly) with time, errors in perfor-
mance would increase with length of delay. Psychophysical data
suggest length of delay does matter but, perhaps, for behavioral
reasons (35).

In contrast, a discrete integrator integrates only when the
neurons providing it input reach a finite level of activity (their
activation threshold 6; Fig. 2b). We use such a discrete integrator
because it does not integrate spontaneous activity. A constant
excitatory input can “switch on” the integrator, allowing it to
respond sensitively to other inputs (reducing 6), whereas a
constant inhibition can make the integrator insensitive to other
excitatory input (increasing 6). So, in addition to providing
robustness to noise, an integration threshold permits gating of
inputs to the graded memory store.

In our model, 0 (=40 Hz) separates the values of the firing rate
of C neurons across different epochs of the task (Fig. 2b). During
stimulus 1, the C neurons must fire at a rate >6 to activate the
memory network. By the end of stimulus 1, the rate is reduced
to ~6. During the delay, the C neurons are inhibited <6 and so
must fire at a lower rate than during stimulus 1 (Fig. 2 ¢ and d).
During stimulus 2, the C neurons fire more than during the delay
but exceed 6 only when 2 > f1 (Fig. 2e). This type of behavior
can be tested for experimentally. The continuous network leads
to equivalent results, except it has 6 = 0 Hz, so any effects of
inhibition are not observable as a firing rate <6.

The basic connection strengths that carry out the discrimina-
tion (Wem and Wyc in the model), and even the shape of the
input—output curves corresponding to those synapses, are very
robust to variations. Our model explains some observations in
the experimental data, such as cells that switch the sign of their
tuning to f1 after stimulus 1 and cells whose firing rates rise and
drop rapidly before the end of the stimulus. On the other hand,
our model does not capture ramping activities observed during
the mnemonic delay period (4), which require additional mech-
anisms to be elucidated in the future.

Integral feedback control requires inhibition of excitatory
afferent neurons and so is functionally similar to top-down
inhibitory control (26). Although the neurons we model are all
located in the PFC, recent work demonstrates projections from
neurons in the PFC to inhibitory neurons in upstream circuits
(27). This finding supports the role of the PFC in top-down
inhibitory control (26). Our model circuitry resembles inhibitory
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Fig. 5. Combined network for full response. Oppositely tuned inputs from
secondary somatosensory cortex feed forward to two separate, parallel cir-
cuits that function by integral feedback control. The circuit that receives input
from the positively monotonic neurons (Left) signals when f2 > f1 (Fig. 4a),
whereas the circuit that receives input from negatively monotonic neurons
(Right) signals when f2 < f1 (Fig. 4b). Cross-inhibition between the two sets of
M neurons (M* and M~) can stabilize memory activity (30) and account for the
negative noise correlation between cell types (13).

control, because any response to stimulus 2 is inhibited by the
memory of stimulus 1. Stimulus 2 is able to cause activity in
downstream neurons only when stimulus 2 produces a greater
input current than did stimulus 1. The integral feedback-control
circuit combines working memory with a computation based on
inhibitory control, thus unifying two cognitive roles of the PFC
to solve one task.

C neurons in our circuit are most active when f2 > f1. In order
for a monkey to respond when f2 < f1, the neuronal circuitry
would use neurons that are oppositely tuned to the vibrational
stimulus. In the experimental data, neurons are observed in the
secondary (but not primary) somatosensory cortex that fire at
higher rates for lower stimulus frequencies. These neurons
provide such oppositely tuned input to a second subset of
neurons in the PFC. The consecutive inputs I; and I, (see
Appendix) to negatively monotonically tuned neurons in the PFC
are negatively tuned to the stimulus frequencies (i.e., dI,/dfl =
dl,/df2 <0).In our model, C neurons with such oppositely tuned
input would respond only to f2 < f1 (see Fig. 5).

Our model of integral feedback control can use the two sets
of oppositely tuned neurons in parallel, with one set providing
a response for the decision f2 > f1 and the other set responding
in the opposite case (Fig. 5). Instead of comparing the activity
of C neurons with a fixed level (Fig. 2 b and e), discrimination
is based on which of the two sets of C neurons has greater
activity. Whereas the working memory network may be stabi-
lized by cross-connections between the two sets, the process of
discrimination does not require any such interaction. Rather,
cross-inhibition is necessary at the response stage, when the
decision is made (36). Our network requires inhibition to reset
the integrator during the decision/response stage. In the model
of Machens et al. (13), the oppositely tuned neurons are essential
to the subtraction process involved in discrimination. In that
model, the push—pull response to stimulus 1 is switched at the
input stage to a pull-push response to stimulus 2. Thus, a reversal
of tuning in the inputs causes a subtraction (rather than addition)
of successive stimuli. In that model, the M neurons are also those
most essentially correlated with the decision. In our model, the
strongest correlation with the decision occurs in the neurons that
project to the M neurons. The model of Machens ez al. (13) has
the advantage that strong cross-inhibition between memory cells
allows firing rates to covary slowly in time during the delay
(strong temporal variation is seen in real data) (4) without loss
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of memory. Our model has the advantage that no extra switch in
sign is needed at the input stage.

Because the subtraction occurs at different points in the
network of the two models, their neuronal tuning curves differ
as a function of time. Considering neurons that are tuned
positively monotonically to stimulus 1, integral feedback control
would suggest the sequence +fl, —fl (or 0), f2 — f1 for the
sequence of tuning during stimulus 1, delay, stimulus 2 (Fig. 4a).
The model of Machens et al. (13) leads to +f1, +£1, f1 — £2 for
the same three epochs (Fig. 4c). Hence, comparison of neuronal-
tuning curves across all epochs can help distinguish between
different candidate mechanisms underlying this delayed-
discrimination task. Experimental evidence does not unambig-
uously favor either model.

To conclude, although we focused on a specific circuit for the
sequential discrimination task, the principle of integral feedback
control, demonstrated here, is more general. Our work suggests
a specific scenario through which the prefrontal cortex uses
working memory to inhibit and gate upstream neural circuits.

Appendix

Analysis of Firing-Rate Model. We solve the coupled Egs. 1 and 2,
assuming no activity in the neurons before stimulus 1 (v = 0,
rc = 0 for ¢t < 0), and Iapp(¢) = I; during stimulus 1. We find

1, —t at —at
re(t) = o exp(;) [exp(a> - exp( ?) ]
_ h (“) 3
rM(t)—WMC{lfexp 2 [3]

h(at N 1 . h(at)

cosh{ 5 o Sinh{ - ,

where a = V1 — 4WemWwme. The system approaches a steady
state, with rc = 0 and ry = I;/Wuc for ¢ > 7/(1 — Re[a]).
Hence, when the stimulus duration is long enough, the system
will maintain persistent activity that perfectly suppresses the
stimulus. The requirement of a sufficiently long stimulus dura-
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tion can be expressed as a criterion on the product of the
connection strengths, « = V1 — 4WeyWme << 1 — 7/T, where
T, the stimulus duration, should be significantly greater than the
neuronal time constant 7. In this case, we have the criterion for
the synaptic weights: WemWame >> 7/(27). Note that, when the
synaptic weights are strong, such that 4WepmWae > 1, then « is
imaginary, and the solution is oscillating. In this case, r¢ will
reach 0 more quickly, and the integration will end prematurely,
because negative values of rate will be cut off. The rate of the M
neuron will actually be higher than the equilibrium value above,
essentially because it does not integrate a negative rate. So, in
short, for the system to behave correctly in the discrimination
task, we have a second criterion, WepWamce < 0.25. The criteria
on the product of connection strengths give a large range of
values where strengths can be varied without loss of function.
Given a feed-forward time constant 7 = 10 ms and a stimulus
duration of 0.5 s, we have an operational range of 0.02 <<
WemWae < 0.25, indicating that the network is robust.
Assuming stimulus 1 is robustly encoded such that ry =~
I;/Wyc during the delay, the response to stimulus 2 when
Iapp(t) = L2 is 0 when I < [;. In contrast, the response follows

L1 *t) (at —at
re(t) = T exp(z [exp E) - exp(i)]

12 12 - Il ( _t>
= - — 4
rult) Wwc Wwc P T 4

h( ozt) 1 . h(at)
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when I, > I;. Hence, the firing rate of the C neurons is
proportional to the difference between the consecutive input
currents, I, — I, and discrimination is achieved. The M neurons
reach a rate proportional to the greater of I or I,.
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