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Working memory (WM) refers to our ability to tempo-
rarily maintain and manipulate information, and is a 
cornerstone of higher intelligence1. To understand the 

mechanisms underlying WM, we must resolve the substrate(s) in 
which information in WM is maintained. It has been assumed that 
information in WM is maintained in persistent neuronal activity2–6, 
probably resulting from local recurrent connections7,8 and/or corti-
cal to subcortical loops9. However, recent experiments reveal that 
the strength of persistent activity varies markedly between tasks10–16. 
This raises two related questions: (1) why does persistent activity 
vary between tasks and (2) for those tasks with weak or non-existent 
persistent activity, where and how is information maintained?

A possible answer to the second question is that information is 
not necessarily maintained in persistent activity but can be main-
tained through short-term synaptic plasticity (STSP). STSP, which is 
distinct from long-term depression and potentiation, is the process 
in which presynaptic activity alters synaptic efficacies for hundreds 
or thousands of milliseconds17. Importantly, modeling studies sug-
gest that STSP can allow networks to maintain an “activity-silent” 
memory trace of a stimulus, in which short-term information is 
maintained without persistent activity18. Recent work in human 
subjects suggests that information can be mnemonically encoded in 
a silent or latent state and that information can be reactivated into 
neuronal activity by probing the circuit19,20.

Although STSP might provide another mechanism for infor-
mation maintenance, it does not in itself fully account for why 
the strength of persistent activity varies between tasks. To answer 
this, we highlight that WM involves not just the maintenance of 
information, but also its manipulation. Importantly, manipulating 
information in WM engages the frontoparietal network differently 
compared with simply maintaining information21,22. Although STSP 
can support activity-silent information maintenance, it is unknown 
whether STSP can support activity-silent manipulation of infor-
mation without persistent activity. If not, then it suggests that the 

strength of persistent activity reflects the degree of manipulation 
required by the task.

In this study, we examine whether STSP can support the silent 
manipulation of information in WM, and whether it could explain the 
variability in persistent activity between tasks. It is currently extremely 
challenging to directly measure synaptic efficacies in awake, behaving 
animals such as mice and non-human primates. However, recurrent 
neural network (RNN) models have opened a new avenue to study the 
putative neural mechanisms underlying various cognitive functions. 
Crucially, RNNs have successfully reproduced the patterns of neural 
activity and behavioral output that are observed in vivo, generating 
insights into circuit function that would otherwise be unattainable 
through direct experimental measurement23–29.

Here, we train biologically inspired RNNs, consisting of excit-
atory and inhibitory like neurons30 and dynamic synapses governed 
by STSP18, to solve a variety of widely studied WM-based tasks. 
We show that STSP can support the activity-silent maintenance 
of information, but that it cannot support the silent manipulation 
of information. Furthermore, we show that the strength of persis-
tent activity covaries with the degree of manipulation, potentially 
explaining the observation that persistent activity varies markedly 
between tasks.

Results
The goal of this study was to determine: (1) whether STSP can 
support activity-silent manipulation of information in WM and 
(2) whether STSP can explain the variability in persistent activity 
observed in different tasks10–16. We trained RNNs to solve several 
widely studied WM tasks, which varied in their specific cognitive 
demands. Furthermore, given that cortical firing rates are relatively 
low31,32, either because of metabolic pressure33 or to facilitate infor-
mation encoding and readout31,32, we added a penalty on high neu-
ronal activity (see Network training) to encourage networks to solve 
tasks using low levels of activity.
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Network model. We defined neurons in our network as either 
excitatory or inhibitory30. The input layer consisted of 24 excitatory, 
direction tuned neurons projecting onto a recurrently connected 
network of 80 excitatory and 20 inhibitory neurons (Fig. 1a; see 
Network models). The connection weights between all recurrently 
connected neurons were dynamically modulated by STSP (see 
Short-term synaptic plasticity) using a previously proposed model18. 
Connection weights from half of the neurons were depressing, such 
that presynaptic activity decreases synaptic efficacy (Fig. 1b, left 
panels), and the other half was facilitating, such that presynaptic 
activity increases synaptic efficacy (right panels).

Given this setup, the synaptic efficacy connecting neuron j to all 
other neurons at time t is the product between the available neu-
rotransmitter and the neurotransmitter utilization: Sj(t) = xj(t)uj(t). 
Furthermore, the total input into neuron i is ∑ W S R ,j j i j j,  where Wj,i 
is the connection weight from neuron j to neuron i and Rj is the 
neural activity of neuron j.

Maintaining information in short-term memory. We first exam-
ined how networks endowed with STSP maintain information in 

WM using either persistent neuronal activity or STSP. We trained 20 
networks to solve a delayed match-to-sample (DMS) task (Fig. 2a),  
in which the networks had to indicate whether sequentially pre-
sented (500-ms presentation; 1,000-ms delay) sample and test stim-
uli were an exact match.

To measure how information was maintained, we decoded the 
sample direction using: (1) the population activity of the 100 recur-
rent neurons and (2) the 100 unique synaptic efficacies modulated 
by STSP (see Short-term synaptic plasticity). If, during the delay, 
we could decode sample direction from synaptic efficacies, but not 
neuronal activity, it would indicate that STSP allows for activity-
silent maintenance of information.

Sample decoding using synaptic efficacies (one for each network) 
was equal to 1.0 (perfect decoding) for the entire delay across all 
networks (Fig. 2b). In contrast, decoding accuracy using neuronal 
activity (Fig. 2b) decreased to <0.7 for all networks by the end of the 
delay, and decoding accuracies were near chance levels (0.125) for 
six networks (P > 0.05, bootstrap, measured during the last 100 ms 
of delay; see Population decoding). Thus, the sample was perfectly 
encoded by synaptic efficacies in all 20 networks, and either weakly 
or not encoded at all in neuronal activity.

Although the decoding accuracies measure how much infor-
mation is stored in either substrate, it does not address how the 
network uses either substrate to solve the task. We wanted to:  
(1) measure how networks used information in neuronal activity 
and synaptic efficacies to solve the task and (2) how these contribu-
tions relate to the neuronal decoding accuracy.

We answered these questions by disrupting network activity or 
synaptic efficacies during task performance. We simulated each trial 
starting at test onset using the exact same input activity in three dif-
ferent ways: (1) using the actual neuronal activity and synaptic effica-
cies taken at test onset as starting points; (2) synaptic efficacies were  
kept as is, but neuronal activity was shuffled between trials; and  
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Fig. 1 | RNN design. a, The core rate-based model consisted of 24 motion-
direction-tuned neurons projecting onto 80 excitatory and 20 inhibitory 
recurrently connected neurons. The 80 excitatory neurons projected 
onto 3 decisions neurons. b, For synapses that exhibited short-term 
synaptic depression (left), presynaptic activity (top) weakly increases 
neurotransmitter utilization (red trace, middle) and strongly decreases 
the available neurotransmitter (blue trace), decreasing synaptic efficacy 
(bottom). For synapses that exhibited short-term synaptic facilitation (right), 
presynaptic activity strongly increases neurotransmitter utilization and 
weakly decreases available neurotransmitter, increasing synaptic efficacy.
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Fig. 2 | DMS task. a, A 500-ms fixation period was followed by a 500-ms 
sample motion direction stimulus, followed by a 1,000-ms delay period and 
finally a 500-ms test stimulus. b, Sample decoding accuracy, calculated 
using neuronal activity (green curves) and synaptic efficacy (magenta 
curves) for n = 20 networks. The dashed vertical lines, from left to right, 
indicate the sample onset, sample offset and end of the delay period.  
c, Scatterplot showing the neuronal decoding accuracy measured at 
the end of the delay (x axis) versus the task accuracy (y axis) for all 20 
networks (blue circles), the task accuracy for the same 20 networks  
after neuronal activity was shuffled right before test onset (red circles) or 
after synaptic efficacies were shuffled right before test onset (cyan circles). 
The dashed vertical line indicates chance level decoding.
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(3) neuronal activity was kept as is, but synaptic efficacies were shuf-
fled (but not connection weights) between trials. In other words, 
given that the total input into the neuron is weight × synaptic effi-
cacy × neuronal activity as defined earlier, then in (2), we shuffle 
only neuronal activity, and in (3), we shuffle only synaptic efficacy. 
We shuffled across all trials to destroy any correlation between the 
sample motion direction and neuronal activity or synaptic efficacy. 
In all three cases, we calculated whether the network output indicated 
the correct choice.

These results are shown in Fig. 2c, comparing neuronal decoding 
accuracy measured at the end of the delay (x axis) and task accuracy 
(y axis). This allows us to relate sample decoding accuracy (which 
one could measure in neurophysiological experiments) with the 
causal contribution of neuronal and synaptic WM toward solving 
the task (which is easy to measure in RNNs, but not in neurophysi-
ological experiments).

Neuronal decoding at the end of the delay was distributed 
between chance and <0.7, with task accuracy (calculated without 
shuffling data) consistently >0.98 (Fig. 2c). Networks with the 
strongest persistent activity suffered the greatest performance loss 
when neuronal activity was shuffled (Pearson correlation R = −0.80, 
P < 10−4, n = 20), and suffered the least performance loss when syn-
aptic efficacies were shuffled (R = 0.60, P = 0.005).

For five of the six networks that solved the task using activity-
silent WM, shuffling neuronal activity did not affect task accuracy 
(P > 0.05, permutation test; see Shuffle analysis). Furthermore, set-
ting activity for all recurrently connected neurons to zero for the last 
50 ms of the delay had little effect on performance (Supplementary 
Fig. 1), confirming that information maintained in synaptic efficacies 
during the delay, and not neuronal activity, was used to solve the DMS 
task. Interestingly, analysis of how networks computed the match/
non-match suggests that synaptic efficacies prospectively encode the 
stimulus34, allowing the network to transform the test stimulus into 
the appropriate match/non-match decision (Supplementary Fig. 2). 
In the Supplementary Note and Supplementary Figs. 2–4, we dis-
cuss the effect of different delay times and different regularizations 
of neuronal activity and the connectivity weights.

Manipulating information. Given that STSP can allow networks 
to silently maintain information in WM, we examined whether it 
could also allow networks to silently manipulate information. Thus, 
we repeated the analysis from Fig. 2 on 20 networks trained to solve 

a delayed match-to-rotated (DMRS) sample task, in which the target 
test direction was rotated 90° clockwise from the sample (Fig. 3a). 
Neuronal decoding accuracy for this task (Fig. 3b) was greater than 
the DMS task (DMS = 0.27, DMRS = 0.72, t(38) = 9.89, P < 10−11, 
two-sided unpaired t-test, n = 20, measured during last 100 ms of 
the delay period), suggesting that more information was maintained 
in neuronal activity compared with the DMS task. Unlike the DMS 
task, all 20 networks maintained information in a hybrid manner, 
with elevated neuronal decoding accuracy at the end of the delay 
(P < 0.05, bootstrap), and shuffling either neuronal activity or synap-
tic efficacies significantly decreased task accuracy (P < 0.05; Fig. 3c).

We again found that networks with the strongest delay-period 
neuronal selectivity suffered the greatest performance loss when 
neuronal activity was shuffled (Pearson R = −0.72, P < 0.001, n = 20; 
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Fig. 3 | DMRS sample task. a, The DMRS task is similar to the DMS task 
(Fig. 2a), except that the target test motion direction was rotated 90° 
clockwise from the sample direction. b, Similar to Fig. 2b. c, Similar to Fig. 2c.  
d, Neuronal sample tuning curves of the four neuronal groups (EXC FAC, 
blue; EXC DEP, red; INH FAC, green; INH DEP, orange). Neuronal activity 
was averaged across the entire sample period, and the tuning curves 
were centered around the sample direction that generated the maximum 
response (that is, the preferred direction). The sample tuning curves in  
e, f and i are also centered around the same preferred directions. e, Same 
as d, except that synaptic efficacies were used to calculate the tuning 
curves. f, Same as d, except that synaptic efficacies calculated at the end of 
the delay period were used to calculate the tuning curves. g, Task accuracy 
after shuffling synaptic efficacies at the end of the sample period for each 
of the four neuronal groups. Each dot represents the accuracy from one 
network. h, Scatterplot showing the neuronal decoding accuracy measured 
at the end of the delay (x axis) against the task accuracy after shuffling the 
synaptic efficacies of inhibitory neurons with depressing synapses at the 
end of the sample (y axis). i, Tuning curves showing the mean amount of 
input (input activity × input to recurrent connection weights) each group 
of neurons receives from the input layer for each direction. d–f,i, Tuning 
curves are mean values across n = 20 networks. Shaded error bars  
(which are small and difficult to see) indicate 1 s.e.m.
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Fig. 3c), and suffered the least performance loss when synaptic effi-
cacies were shuffled (R = 0.81, P < 10−4).

Although all 20 networks solved the task using persistent activity, 
we wondered whether STSP could still manipulate sample informa-
tion, and thus sought to understand the networks’ strategies to solve 
this task. We examined neuronal responses averaged across the sam-
ple for all 20 networks from four groups of neurons: excitatory with 
facilitating synapses (EXC FAC), excitatory with depressing synapses 
(EXC DEP), inhibitory with facilitating synapses (INH FAC) and 
inhibitory with depressing synapses (INH DEP; Fig. 3d). We found 
a striking asymmetry for INH DEP neurons: neuronal responses 
90° clockwise from the preferred sample direction were significantly 
greater than responses 90° counterclockwise from the preferred sam-
ple direction (difference between 90° clockwise and counterclock-
wise, EXC FAC = 0.001, t(19) = 0.44, P = 0.67; EXC DEP = 0.002, 
t(19) = 1.02, P = 0.32; INH FAC = 0.024, t(19) = 2.05, P = 0.054; INH 
DEP = 0.18, t(19) = 10.90, P < 10−8, two-sided paired t-tests).

Although this asymmetry in the neuronal response disap-
peared by the end of the delay (EXC FAC = 0.004, t(19) = 0.71, 
P = 0.48; EXC DEP = 0.004, t(19) = 0.52, P = 0.61; INH FAC = 0.043, 
t(19) = 1.55, P = 0.14; INH DEP = −0.001, t(19) = −0.13, P = 0.90, 
two-sided paired t-tests), it translated into asymmetric synaptic effi-
cacies for INH DEP neurons, both during the sample (Fig. 3e) and 
throughout the delay (Fig. 3f) (EXC FAC (sample, delay) = −0.0001, 
0.0008, t(19) = −0.46, 0.81, P = 0.65, 0.43; EXC DEP = −0.0005, 
−0.001, t(19) = −1.31, −0.94, P = 0.21, 0.36; INH FAC = 0.004, 
0.007, t(19) = 2.12, 1.42, P = 0.047, 0.17; INH DEP = −0.060, −0.045, 
t(19) = −9.81, −9.70, P < 10−8, 10−8). Thus, synaptic efficacies for 
INH DEP neurons were greatest at the start of the test period on 
trials in which the sample was 90° counterclockwise from their pre-
ferred direction. If such a sample is followed by a target test stimulus 
(90° clockwise from the sample), the total synaptic current (neu-
ronal response × synaptic efficacy) these neurons project to their 
targets will be at a maximum. In Supplementary Fig. 5, we further 
analyze how networks computed the match/non-match decision.

The results so far suggest that the asymmetric synaptic efficacies 
generated during the sample allowed the network to generate correct 
match/non-match decisions. To confirm this, we shuffled synaptic 
efficacies for all four neuron groups at the sample end and found that 
the decrease in accuracy after shuffling efficacies for INH DEP neu-
rons (mean accuracy = 0.85) was greater compared with the other 
three neuron groups (EXC FAC = 0.99, t(19) = −8.41, P < 10−7; EXC 
DEP = 0.99, t(19) = −8.74, P < 10−7; INH FAC = 0.99, t(19) = −8.36, 
P < 10−7, paired two-sided t-tests; Fig. 3g). Furthermore, networks 
that maintained less information in neuronal activity during the 
delay were more adversely affected by shuffling synaptic efficacies 
(Pearson R = 0.91, P < 10−7, n = 20; Fig. 3h).

We hypothesized that the asymmetric tuning of INH DEP neu-
rons emerged via connection weights from the input layer. Thus, 
we examined tuning curves for the current (neuronal activity × con-
nection weight) neurons receive from the input layer, and found 
that it was significantly asymmetric for inhibitory and excitatory 
neurons with depressing synapses (EXC FAC = 0.12, t(19) = 0.90, 
P = 0.38; EXC DEP = 0.29, t(19) = 4.15, P < 0.001; INH FAC = 0.28, 
t(19) = 2.06, P = 0.053; INH DEP = 2.62, t(19) = 14.51, P < 10−11, 
two-sided t-tests; Fig. 3i). Consistent with earlier in this article, 
the asymmetry was greater for INH DEP neurons (P < 10−10 for all 
comparisons between INH DEP neurons and other neuron groups, 
two-sided t-tests).

As expected, we found that our results are the mirror image of 
those in Fig. 3 when networks are trained using a 90° counterclock-
wise rule (Supplementary Fig. 6). We also repeated our analysis on 
a delayed match-to-category task16 and found that the networks 
performed the manipulation (that is, stimulus categorization) by 
adjusting connection weights from the input layer (Supplementary 
Fig. 7). Given the penalty on neuronal activity, our results suggest 

that networks will manipulate sample stimuli (at least partly) by 
learning specific connection weights from the input layer if possible.

Manipulating information during the WM delay period. To bet-
ter understand whether STSP can support silent manipulation, 
we need to examine tasks in which the network cannot perform 
the required manipulation through modification of input weights. 
This could be accomplished by forcing the manipulation to occur 
after sample offset. We trained networks to solve a delayed cue task 
(Fig. 4a), in which a cue was presented between 500 and 750 ms 
into the delay, instructing the network whether to use the DMS or 
DMRS task rule.

We found neuronal decoding accuracy was always greater  
than chance (P < 0.05, bootstrap) during the delay for either DMS 
(Fig. 4b) or DMRS trials (Fig. 4d). Thus, these networks manipu-
late information in WM (at least partly) using persistent activity. 
This was also true for different delay and rule cue onset/offset times 
(Supplementary Fig. 8).

Consistent with Figs. 2 and 3, networks with the strongest delay-
period neuronal selectivity suffered the greatest performance loss 
when neuronal activity was shuffled (DMS: Pearson R = −0.73, 
P < 0.001, n = 20, Fig. 4c; DMRS: R = −0.60, P = 0.005, Fig. 4e) and 
suffered the least performance loss when synaptic efficacies were 
shuffled (DMS: R = 0.75, P < 0.001; DMRS: R = 0.64, P = 0.001). 
Furthermore, shuffling neuronal activity or synaptic efficacies 
decreased task accuracy (P < 0.05, bootstrap) in all networks for 
both tasks. Lastly, shuffling synaptic efficacies before rule-cue onset 
was more deleterious to task accuracy, whereas shuffling neuronal 
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activity after rule-cue offset was more deleterious (Supplementary 
Fig. 8). Thus, networks required neuronal activity to manipulate 
information in WM.

Controlling the representation of information. Although STSP 
did not silently manipulate information during the tasks considered 
so far, we wondered whether it could allow for subtler manipula-
tions in a silent manner. For example, neural circuits in  vivo are 
occasionally required to represent relevant information differently 
from irrelevant information35. Thus, we trained networks on a task 
that required controlling how information is represented: the A-B-
B-A task36 (Fig. 5a). Networks were shown a sample followed by 
three sequentially presented test stimuli, and they had to indicate 
whether each test matched the sample. Importantly, if a test was 
a non-match, there was a 50% probability that the test would be 
repeated immediately. This forces the network to encode sample 
and test stimuli in different ways: if the sample and test were repre-
sented in similar manners, then the network could not distinguish 
between a test that matched the sample compared with a repeated 
non-match.

As a control, we also trained networks on an A-B-C-A version 
of the task, in which non-matching test stimuli were never repeated 
during a single trial, so that the network was not forced to repre-
sent sample and test stimuli in different formats. For the A-B-C-A 
task, few networks encoded sample information in neural activity 
throughout the entire trial, because decoding decreased to chance 
(P > 0.05, bootstrap) for 1 of the 20 networks during the last 100 ms 
of the first delay, 7 of 20 networks during the second delay, and 8 of 
20 networks for the third delay (Fig. 5b). In contrast, sample decod-
ing using synaptic efficacies (Fig. 5b) remained significantly above 
chance (P < 0.05) throughout the entire trial for all networks (values 
ranging from ~0.6 to 1.0). Note that decoding accuracy appeared 
relatively lower for this task because of how we performed the cal-
culation (see Supplementary Note).

We next asked whether networks maintained test information 
in WM, which is behaviorally relevant only during test presenta-
tion. Neuronal decoding accuracy for the first test (Fig. 5c) was 
perfect (1.0) for all networks during test presentation, before 
dropping to chance (P > 0.05) for all networks by the third delay 
(Fig. 5c). Test decoding using synaptic efficacies (Fig. 5c) was 
near perfect (~1.0) for all networks during the later stage of the 
first test and into the second test presentation. Thus, networks 
encoded both the sample and first test stimuli during presentation 
of the second test. This could be problematic if the network had 
to distinguish between cases where the second test matched the 
sample versus the first test. However, this was not a problem for 
the A-B-C-A task, because non-matching test stimuli were never 
repeated. We confirmed that the networks were under no pres-
sure to represent sample and test stimuli differently using a tuning 

similarity index (TSI)10 (Fig. 5d; see Tuning similarity index). As 
expected, the TSI was >0.7 for the first and second test periods, 
indicating a similar representation of sample and test information 
by synaptic efficacies.

We repeated these analyses for the A-B-B-A task, in which 
subsequent non-matching test stimuli were repeated 50% of 
the time. In contrast with the A-B-C-A task, sample decoding  
(Fig. 5e) using neuronal activity in the A-B-B-A task remained 

Fixation 1st testSample Delay 

500 ms 400 ms 400 ms 400 ms

a A-B-C-A and A-B-B-A 

2nd delay 3rd test 2nd test 3rd delay

400 ms 400 ms 400 ms 400 ms

b e

c f

d g

h i

Sample Test 1 Test 2 Test 3 Sample Test 1 Test 2 Test 3

Time relative to sample onset (ms)

0

0.2

0.4

0.6

0.8

1

D
ec

od
in

g 
ac

cu
ra

cy

Time relative to sample onset (ms)

0

0.2

0.4

0.6

0.8

1

D
ec

od
in

g 
ac

cu
ra

cy

Time relative to sample onset (ms)

0

0.5

1

T
un

in
g 

si
m

ila
rit

y

0

0.2

0.4

0.6

0.8

1

0
80

0
1,

20
0

40
0

1,
60

0
2,

40
0

2,
00

0

0
80

0
1,

20
0

40
0

1,
60

0
2,

40
0

2,
00

0

0
80

0
1,

20
0

40
0

1,
60

0
2,

40
0

2,
00

0

0
80

0
1,

20
0

40
0

1,
60

0
2,

40
0

2,
00

00
80

0
1,

20
0

40
0

1,
60

0
2,

40
0

2,
00

0

0
80

0
1,

20
0

40
0

1,
60

0
2,

40
0

2,
00

0

0
80

0
1,

20
0

40
0

1,
60

0
2,

40
0

2,
00

0

0

0.2

0.4

0.6

0.8

1

0

0.5

1

Time relative to sample
onset (ms)

Neuron group

0

0.5

1

T
un

in
g 

si
m

ila
rit

y

0.7

0.8

0.9

1

T
as

k 
ac

cu
ra

cy

No suppression
EXC FAC
EXC DEP
INH FAC
INH DEP

Neuronal decoding
Synaptic decoding

Fig. 5 | a-B-B-a and a-B-C-a tasks. a, The network was presented with 
a 400-ms sample stimulus, followed by three 400-ms test stimuli, all 
separated by 400-ms delays. b, Similar to Fig. 2b and calculated for the 
A-B-B-C task. The dashed lines indicate, from left to right, the sample 
onset, the sample offset, and the test onset and offset for the three 
sequential test stimuli. c, Similar to b, but showing the decoding accuracy 
of the first test stimulus. d, The time course of the TSI, mean value across 
n = 20 networks. e–g, Similar to b–d, but for the A-B-B-A task. h, The TSI for 
the A-B-B-A task after suppressing neuronal activity for 200 ms before the 
first test onset, from four different neuronal groups (EXC FAC, blue curves; 
EXC DEP, red curves; INH FAC, green curves; INH DEP, orange curves) 
and with no suppression (black curves). i, Task accuracy after suppressing 
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above chance (P < 0.05, bootstrap) during all three delay periods 
for all networks. Furthermore, sample decoding using synaptic 
efficacies (magenta curves) remained close to 1.0 throughout  
the trial.

Consistent with the A-B-C-A task, decoding the first test using 
neuronal activity (Fig. 5f) was perfect during test presentation 
before falling to chance (P > 0.05) levels after test offset. In addition, 
decoding the first test stimulus using synaptic efficacies was also 
near perfect for all networks during the later stages of the first test 
presentation and into the second test.

We hypothesized that networks must encode the sample and 
test stimuli in different formats to accurately solve the task. In 
contrast with the A-B-C-A task (Fig. 5d), in which the TSI was 
0.78 ± 0.15 (s.d.) during the second test, the TSI for the A-B-B-A 
task decreased to 0.11 ± 0.20 (t(38) = 11.72, P < 10−13, unpaired 
two-sided t-test; Fig. 5g). Thus, the sample and first test stimuli 
were encoded in synapses using different formats, potentially 
allowing networks to distinguish between cases in which subse-
quent test stimuli match the sample (match) versus earlier test 
stimuli (non-match).

We hypothesized that persistent activity helped encode the sam-
ple and first test stimuli in different formats. Thus, we suppressed 
neuronal activity from the four neuronal groups for the 200-ms  
period before the first test and recalculated the TSI (Fig. 5h).  
Suppressing activity from INH FAC neurons increased the TSI, 
measured during the second test (0.74 ± 0.17, t(19) = 10.28, P < 10−8, 
paired two-sided t-test). Furthermore, suppressing INH FAC activ-
ity (task accuracy = 0.91) decreased task accuracy more than sup-
pressing any of the other three neuronal groups (task accuracy 
after suppressing EXC FAC neurons = 0.97, t(19) = −4.97, P < 10−4; 
after suppressing EXC DEP neurons = 0.99, t(19) = −6.65, P < 10−5; 
after suppressing INH DEP neurons = 0.99, t(19) = −6.58, P < 10−5, 
paired two-sided t-tests; Fig. 5i). Thus, neuronal activity from these 
neurons probably facilitated the manipulation of information in 
WM, increasing task performance.

Attending to specific memoranda. Silently maintained informa-
tion may be reactivated either by focusing attention toward the 
memorandum19 or by probing the neural circuits involved20. We 
examined how STSP supports maintenance of either attended or 
unattended information. We trained networks on a dual-sample 
delayed matching task (Fig. 6a) similar to Rose et  al.19 Networks 
were trained to maintain two sample directions (presented simul-
taneously in two locations) in WM, followed by two successive cues 
and test stimuli. The cue indicated which of the samples was rele-
vant for the upcoming test. In this setup, stimuli that were not cued 
as relevant for the first test stimulus could still be cued as relevant 
for the second test.

Sample decoding using neuronal activity was greater when 
the sample was attended than unattended during the last 100 ms 
of the first and second delays (first delay: Fig. 6b, left panel, 
attended = 0.314 ± 0.174 (s.d.), unattended = 0.261 ± 0.134, 
t(39) = 4.46, P < 10−4; second delay: right panel, 
attended = 0.237 ± 0.131, unattended = 0.185 ± 0.085, t(39) = 5.19, 
P < 10−5; paired two-sided t-tests). Sample decoding using synaptic 
efficacies was near perfect (~1.0) for both attended and unattended 
conditions. Thus, the attended memoranda were more strongly rep-
resented in neural activity than unattended memoranda.

The study by Rose et al.19 found that silently maintained unat-
tended information could be reinstated into neuronal activity 
after it was attended (although see ref. 37). Similarly, we found that 
neuronal decoding for stimuli that were unattended after the first 
cue were near chance (P > 0.05, bootstrap, measured in the 100 ms 
before second cue onset) in 19 out of 40 cases (20 networks × 2 stim-
uli). However, decoding accuracy increased if the stimulus 
became the focus of attention (Fig. 6c; decoding precue = 0.212,  

postcue = 0.233, t(39) = 3.11, P = 0.003, paired two-sided t-tests), 
whereas decoding accuracy decreased if the stimulus remained 
unattended (decoding postcue = 0.175, t(39) = −4.16, P < 0.001).
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Although neuronal sample decoding was near chance for many 
networks, the rule cue indicating the relevant stimulus was main-
tained in neuronal activity across all networks (P < 0.05, bootstrap, 
decoding accuracy for rule cues 1 and 2 are indicated in Fig. 6d). 
Thus, although sample information can be silently maintained,  
allocating attention to either memoranda requires neuronal activity.

Manipulating information and persistent neuronal activity.  
In this study, persistent activity during the delay was observed in  
all tasks involving manipulating information. We wondered whether 
the level of manipulation required by the task was correlated  
with the level of persistent activity. This could be of special inter-
est because varying levels of persistent activity have been observed 
between different tasks10–16.

We measured task manipulations based on the similarity between 
the neuronal response during the early sample period and the syn-
aptic efficacies during the late delay period (see Task manipulation). 
To boost statistical power, we included three additional tasks: two 
were DMRS sample tasks in which the target test direction was  
45° (DMRS45) or 180° (DMRS180) clockwise from the sample.  
The third task was a cross-location DMS task, in which the sample 
was presented in one location and the test was randomly presented 
in one of two different locations38. Analysis of this task is shown in 
Supplementary Fig. 9.

We found that the level of manipulation correlated with the 
level of persistent activity at the end of the delay (Spearman cor-
relation R = 0.93, P < 0.001, n = 9; Fig. 7a). This suggests that tasks 

that require greater manipulation require greater persistent activ-
ity. However, because the penalty on high neuronal activity could 
impact how information was encoded, we retrained 20 networks for 
all tasks with no penalty term, and found the correlation remained 
(R = 0.92, P < 0.001; Fig. 7b). We next wondered whether different 
task contingencies (for example, the presence of rule cues, stimu-
lus timing, etc.) affected the correlation. Thus, we ran simulations 
of all of our trained networks performing a standard DMS task, 
with a 500-ms sample stimulus and 1,000-ms delay. The correla-
tion between persistent activity and manipulation remained for 
networks trained with the penalty on neuronal activity (R = 0.88, 
P = 0.002; Fig. 7c) and for networks trained without (R = 0.82, 
P = 0.007; Fig. 7d). In the Supplementary Note and Supplementary 
Figs. 10–13, we discuss the results when networks are trained using 
different configurations of STSP. In summary, these results suggest 
that network models exhibit more persistent neuronal activity when 
trained on tasks that require more manipulation.

Discussion
We examined whether STSP can support the activity-silent manipu-
lation of information, and whether it could help explain previous 
observations that different tasks evoke different levels of persistent 
activity. We found that although STSP can silently support the short-
term maintenance of information, it cannot support manipulation 
of information without persistent neuronal activity. Furthermore, 
we found that tasks that required more manipulation also required 
more persistent activity, giving insight into why the strength of per-
sistent neuronal activity varies markedly between different tasks.

Variation in persistent neuronal activity in vivo. Over the last sev-
eral decades, electrophysiology experiments2–6 and human imag-
ing studies39 have supported the idea that information in WM is 
maintained in stimulus-selective persistent neuronal activity during 
memory delay periods of behavioral tasks. However, this viewpoint 
has evolved, because various studies now suggest that persistent 
neuronal activity might not always reflect information mainte-
nance, but can reflect control processes required to manipulate 
remembered information into appropriate behavioral responses14.

It is often unclear whether persistent neural activity reflects the 
maintenance or the manipulation of the stimulus. For example, 
neural activity in the frontal and parietal cortices mnemonically 
encodes stimulus location in a memory delayed saccade task2,4. 
However, recent studies that have dissociated the stimulus loca-
tion from the upcoming saccade location have shown that activity 
in the frontal cortex initially encodes the location of the recent 
stimulus (retrospective code), before its representation shifts 
toward encoding the planned saccade target (prospective code) 
later in the delay40.

A recent study showed robust persistent activity in the medial 
superior temporal (MST) area during a motion DMS task38. This 
initially appears at odds with the results of our current study and 
our past work showing little or no persistent activity in the lateral 
intraparietal area, an area considered to be downstream of MST, 
also during a motion DMS task10,16. However, in this study38, the 
sample and test stimuli were shown at different retinotopic loca-
tions. This forces MST to represent the sample and test stimuli using 
two different pools of neurons, eliminating the possibility that syn-
aptic efficacy changes through STSP driven by the sample could be 
directly compared with the test stimulus activity. This also forces 
the monkey to translate information from the sample location to 
the location of the test stimulus. Moreover, although we observed 
only weak delay-period direction encoding in the lateral intrapa-
rietal area during the DMS task10,16, we found that after the mon-
keys underwent extensive categorization training using the same 
stimuli, delay-period categorical encoding become highly robust16. 
Similarly, we also observed robust persistent neuronal activity 
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in network models trained on a similar task to the one found in 
Mendoza-Halliday et al.38 (Supplementary Fig. 9).

In another example, the prefrontal cortex (PFC) was shown 
to mnemonically encode color in a change-detection task when 
six distinguishable colors are used41, but color-selective persistent 
activity was not evident in PFC when the subject had to detect a 
change among a continuum of 20 colors12. This suggests that PFC 
can encode a categorical representation of the stimulus, but not a 
precise representation of stimulus features.

These studies suggest that tasks that require greater manipula-
tion of the memoranda evoke greater levels of persistent neuronal 
activity, consistent with the correlation we observe between the level 
of manipulation and the level of persistent neuronal activity in our 
network models (Fig. 7). These studies are also consistent with a 
recent human magnetoencephalography study that also suggests 
that manipulating information in WM requires the reinstatement 
of persistent activity42.

However, other factors surely play a role in determining the 
level of persistent activity. For example, task-related factors such as 
whether the delay-period duration was fixed or random, or whether 
the network was trained on previous tasks can affect the nature of 
persistent activity43. Furthermore, circuit-level properties, such as 
the connection strength within local circuits43,44 or whether nearby 
neurons are similarly tuned (that is, are functionally clustered)10 can 
also affect persistent activity.

Going forward, there are several other mechanisms in the brain 
that potentially support WM, such as oscillatory activity45,46, or 
loops between cortical and subcortical structures47. Future studies 
will focus on developing RNNs with even greater biological real-
ism, such as networks with spiking neuron models, that can better 
explore how diverse mechanisms work together in support of main-
taining and manipulating information in WM.

Comparison with other artificial neural network architectures. 
Long short-term memory (LSTM)48-based architectures are typi-
cally used to solve tasks that involve very long temporal delays. 
These architectures work by giving networks control over how to 
maintain and update information. We noticed that RNNs without 
STSP either failed to solve the task or required longer training, even 
with no penalty on neuronal activity (Supplementary Fig. 14). This 
difficulty was partly because neurons in our networks never con-
nected onto themselves, which can facilitate information mainte-
nance. STSP facilitated training on our set of WM-based tasks with 
its relatively long time constants. Thus, adding network substrates 
with long time constants, without necessarily making these time 
constants flexible, can potentially facilitate learning on tasks with 
long-term time dependencies. More generally, it highlights how 
incorporating neurobiologically inspired features into RNNs is a 
promising strategy for advancing their capabilities.

Understanding strategies employed by artificial neural networks. 
A key differentiating feature of RNNs compared with biological net-
works is that all connection weights and activity are known, facili-
tating attempts to understand how the network solves various tasks. 
This has allowed researchers to describe how delayed association 
in RNNs can be performed by transient dynamics25, how simple 
dynamical systems consisting of line attractors and a selection vec-
tor can underlie flexible decision making23, how RNNs can encode 
temporally invariant signals26,27, and how clustering develops when 
RNNs learn 20 cognitive tasks, in which groups of neurons become 
functionally specialized for different cognitive processes49. Whereas 
our analyses focused on understanding how RNNs solve single 
tasks, it will be of interest to examine whether the network strategies 
persist when the same RNNs are trained on multiple tasks.

In this study, we have taken advantage of this full network 
knowledge to determine the substrates in which information is 

maintained in WM (Figs. 2–7), how synaptic efficacies can pro-
spectively encode stimuli (Fig. 3), how neuronal activity can control 
how information is represented (Fig. 5), and how match/non-match 
decisions are formed (Supplementary Figs. 2 and 5). To provide 
greater insight into how networks solved each of the tasks, we also 
show a range of network properties for each task (Supplementary 
Figs. 15–24). Each figure shows an example network that solved 
one specific task, and provides details of the population activity, the 
sample, test and match selectivity of all four neuron groups, and the 
sample encoding stability across time for the entire population and 
each neuronal subgroup. We observed that information maintained 
in WM is mostly stable across time (Supplementary Figs. 15–24, 
panels i and j). This mostly stable mnemonic encoding might be the 
result of our network architecture or hyperparameters, and future 
studies will be required to understand which network factors affect 
encoding stability.

Although modeling studies cannot replace experimental work, 
they can be advantageous when obtaining the necessary experimen-
tal data is not feasible. Thus, modeling can serve as a complement 
to experimental work, allowing researchers to rapidly generate a 
hypothesis regarding neural function that can later be tested when 
technology better allows for experimental verification. Lastly, the 
discovery of mechanisms found in silico can be fed back into the 
design of network models, potentially accelerating the develop-
ment of machine learning algorithms and architectures. We believe 
that this synergy between experimental neuroscience and neural  
network modeling will only strengthen in the future.
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Methods
Network models. Neural networks were trained and simulated using the Python 
machine learning framework TensorFlow50. Parameters used to define the network 
architecture and training are given in Table 1. In all tasks, the stimuli were 
represented as coherent motion patterns moving in one of eight possible directions. 
However, the results of this study are not meant to be specific to motion, or even 
visual, inputs, and the use of motion patterns as stimuli was simply to make our 
example tasks more concrete.

All networks consisted of motion direction selective input neurons (whose 
firing rates are represented as u(t)) that projected onto 100 recurrently connected 
neurons (whose firing rates are represented as r(t)), which in turn projected 
onto three output neurons (whose firing rates are represented as z t( )) (Fig. 2a). 
Recurrently connected neurons never sent projections back onto themselves.

The activity of the recurrent neurons was modeled to follow the dynamical 
system30,49:

τ τ σ ζ= − + + + +r r u b
t

r f W Wd
d

( 2 )rec in rec
rec

where τ is the neuron’s time constant, f(⋅) is the activation function, Wrec and Win are 
the synaptic weights between recurrent neurons, and between input and recurrent 
neurons, respectively, brec is a bias term, ζ is independent Gaussian white noise 
with zero mean and unit variance applied to all recurrent neurons and σrec is the 
strength of the noise. To ensure that neuron firing rates were non-negative and 
non-saturating, we chose the rectified linear function as our activation function: 
f(x) = max(0,x).

The recurrent neurons project linearly to the output neurons. The activity of 
the output neurons, z, was normalized by a softmax function such that their total 
activity at any given time point was one:

= +z r bg W( )out out

where Wout are the synaptic weights between the recurrent and output neurons and 
g is the softmax function:

∑
=g x

x
x

( )
exp( )

exp( )i
i

j j

To simulate the network, we used a first-order Euler approximation with time 
step Δt:
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where α =
τ

Δt  and N(0,1) indicates the standard normal distribution.
To maintain separate populations of 80 excitatory and 20 inhibitory neurons, 

we decomposed the recurrent weight matrix, Wrec, as the product between a matrix 
for which all entries are non-negative, Wrec,+, whose values were trained, and a fixed 
diagonal matrix, D, composed of 1 s and −1 s, corresponding to excitatory and 
inhibitory neurons, respectively30:

= +W W Drec rec,
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Initial connection weights from the input layer, projecting to the output 
layer, and between excitatory neurons were randomly sampled from a gamma 
distribution with shape parameter of 0.1 and scale parameter of 1.0. Initial 
connections weights projecting to or from inhibitory neurons were sampled from 
a gamma distribution with shape parameter of 0.2 and scale parameter of 1.0. We 
note that training networks to accurately solve the tasks appeared somewhat faster 
when initializing connection weights from a gamma distribution compared with a 
uniform distribution (data not shown). Initial bias values were set to 0.

Networks consisted of 24 motion direction tuned input neurons per receptive 
field. All tasks had one receptive field except for the dual DMS task (two receptive 
fields) and the cross-location DMS task (three receptive fields). For the rule 
switching tasks (that is, delayed rule and dual DMS tasks), an additional six  
rule tuned neurons were included. The tuning of the motion direction selective 
neurons followed a von Mises distribution, such that the activity of the input 
neuron i at time t was

κ θ θ
α

σ= − +u A Nexp( cos( )) 2 (0, 1)t
i i

pref in

where θ is the direction of the stimulus, θ i
pref  is the preferred direction of input 

neuron i, κ was set to 2, and A was set to 
κ

4
exp( )

 when a stimulus was present  

(that is, during the sample and test periods) and was set to zero when no stimulus 
was present (that is, during the fixation and delay periods).

The six rule tuned neurons for the delayed rule and dual DMS tasks had binary 
tuning, in which their activity was set to 4 (plus the Gaussian noise term) for their 
preferred rule cue and zero (plus the Gaussian noise term) for all other times.  
The number of rule tuned neurons was arbitrarily chosen and had little impact  
on network training.

Network training. RNNs were trained based on techniques previously 
described30,49. Specifically, the goal of training was to minimize: (1) the cross-
entropy between the output activity and the target output and (2) the mean L2-
norm of the recurrent neurons’ activity level. The target output was a length 3 one-
hot vector, in which the first element was equal to one for all times except the test 
period, the second element was one when the test stimulus matched the sample, 
and the third element was one when the test stimulus did not match the sample. 
Specifically, the loss function at time t during trial i is

L ∑ ∑β= − +
= =

m t z t z t
N

r t( ) ( ) log ( ) ( )i t
n

N
i

n
i

n
i

n

N

n,
1

target,

rec 1

2
out rec

where β controls how much to penalize neuronal activity of the recurrent neurons 
and mi(t) is a mask function. In Supplementary Fig. 3b, we penalized connection 
weights instead of neuronal activity. The penalty term in this case involved 
squaring all connections weights between the 100 recurrently connected neurons, 
taking the mean and multiplying by β = 2.

Networks had a 50-ms grace period starting at test onset, in which we set the 
mask function to zero, to give the network adequate time to form a match or non-
match decision. The mask value was set to 1.0 during the fixation, sample and 
delay periods and to 2.0 during the test period(s), to encourage networks to learn 
the correct match/non-match decision. The total loss function is then

L L∑ ∑=
N N

1

i

N

t

N

i t
trials time

,

trials time

During training, we adjusted all parameters (Win, Wrec, +, Wout, brec, bout, hinit), 
where hinit refers to the initial neuronal activity at time step 0, using the Adam51 
version of stochastic gradient descent. The decay rates of the first and second 
moments were set to their default values (0.9 and 0.999, respectively).

We measured task accuracy as the percentage of time points during the test 
period(s) (excluding the 50-ms grace period described earlier) in which the activity 
of the match output neuron was greater than the activity of the other two output 
neurons during match trials, and in which the activity of the non-match output 
neuron was greater than the activity of the other two output neurons during non-
match trials. Before test onset, all networks correctly maintained fixation with an 
accuracy ~100%, and thus fixation, sample and delay periods were not used in our 
measure of task accuracy. Task accuracy rate for all networks in this study was >90%.

Table 1 | Hyperparameters used for network architecture and 
training

Hyperparameter Symbol Value

Learning rate n/a 0.02
Neuron time constant τ 100 ms
Time step (training and 
testing)

Δt 10 ms

s.d. of input noise σin 0.1
 s.d. of recurrent noise σrec 0.5
L2 penalty term on firing 
rates

β 0.02

STSP neurotransmitter time 
constant

τx 200 ms/1,500 ms  
(facilitating/depressing)

STSP neurotransmitter 
utilization

τu 1,500 ms/200 ms  
(facilitating/depressing)

STSP neurotransmitter 
increment

U 0.15/0.45 (facilitating/
depressing)

Number of neurons (input 
layer, recurrent layer, output 
layer)

Nin, Nrec, Nout 24, 100, 3

Gradient batch size Ntrials 1,024

Number of batches used to 
train network

n/a 2,000

n/a, not applicable
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Short-term synaptic plasticity. The synaptic efficacy between all recurrently 
connected neurons was dynamically modulated through short-term synaptic 
plasticity (STSP). For half of the recurrent neurons (40 excitatory and 
10 inhibitory), all projecting synapses were facilitating, and for the other half of 
the recurrent neurons, all projecting synapses were depressing. Following the 
conventions of Mongillo et al.18, we modeled STSP as the interaction between 
two values: x, representing the fraction of available neurotransmitter, and u, 
representing the neurotransmitter utilization. Presynaptic activity acts to increase 
the calcium concentration inside the presynaptic terminal, increasing the 
utilization and the synaptic efficacy. However, presynaptic activity decreases the 
fraction of neurotransmitters available, leading to decreasing efficacy. These two 
values evolve according to:

τ
= − − Δx t

t
x t u t x t r t td ( )

d
1 ( ) ( ) ( ) ( )

x

τ
= − + − Δu t

t
U u t U u t r t td ( )

d
( ) (1 ( )) ( )

u

where r(t) is the presynaptic activity at time t, τx is the neurotransmitter recovery 
time constant, τu is the utilization time constant and Δt is the time step (0.01 
second for our networks). The amount of input the postsynaptic neuron receives 
through this one synapse at time t is then

=I t Wx t u t r t( ) ( ) ( ) ( )

where W is the synaptic efficacy before STSP is applied. For depressing synapses, 
the neurotransmitter recovery time constant was much longer compared with the 
utilization time constant, whereas the opposite was true for facilitating synapses.

For computational efficiency, these values will be identical for all synapses 
sharing the same presynaptic neuron. Connections weights from the input layer, 
and onto the output layer, were not governed by STSP.

Population decoding. Similar to our previous studies10,16, we quantified the 
strength of stimulus encoding by measuring how accurately we could decode the 
motion direction using linear multiclass support vector machines. We chose to 
measure stimulus encoding through linear classifiers because the output neurons 
of our network are essentially performing linear classification of the population 
activity in the recurrent layer. In this approach, we trained linear, multiclass 
support vector machines to classify the motion direction using the neuronal 
activity of the 100 recurrent neurons, or the synaptic efficacies from the same 100 
recurrent neurons, at each time point (separated by 10 ms). Training and test data 
for the classifiers always came from the same time points. The synaptic efficacy 
values were the product x(t)u(t), where x(t) and u(t) are the time varying values 
representing the amount of neurotransmitter available and the neurotransmitter 
utilization, respectively, as described earlier.

We measured the classification accuracy using cross-validation, in which we 
randomly selected 75% of trials for training the decoder and the remaining 25% for 
testing the decoder. For each of the eight motion directions, we randomly sampled, 
with replacement, 25 trials to train the decoder (from the 75% of trials set aside 
for training) and 25 trials to test the decoder (from the 25% of trials set aside for 
testing). From the 200 trials in the test set (25 times, 8 directions), the accuracy was 
the fraction of trials in which the predicted motion direction matched the actual 
motion direction.

We used a bootstrap approach to determine statistical significance. We did 
so by repeating this sampling procedure 100 times to create a decoder accuracy 
distribution for each time point. The difference was deemed significantly greater 
than chance if 98 values were greater than chance (equivalent to P < 0.05 for a  
two-sided test).

For each network, we calculated decoding accuracies using a batch of 1,024 
trials in which the test motion directions were randomly sampled independently of 
the sample motion direction. This was in contrast with how we trained the network 
and measured task accuracy, in which there was always a 50% chance that a test 
stimulus would match the sample. We note that the pattern of neural and synaptic 
activity generated by a sample stimulus will be similar to the pattern generated by 
a matching test stimulus. Thus, if matching test stimuli occur more frequently than 
chance, our sample decoding accuracy during and after the test stimuli would be 
artificially elevated.

Shuffle analysis. To measure how network models used information maintained 
in neuronal activity and in dynamic synaptic efficacies to solve the task, we 
used a shuffling procedure as follows: at the time point right before test onset 
(or right before the third test onset for the A-B-C-A/A-B-B-A tasks), we either 
(1) did not shuffle any activity, (2) shuffled the neuronal activity between trials, 
or (3) shuffled the synaptic efficacies between trials. We shuffled between trials 
as opposed to between neurons because neurons can have different baseline 
activity levels, and shuffling this activity can substantially perturb the network 
and degrade performance, even if no information is maintained in their activity. 

We then simulated the network activity for the remainder of the trial using the 
saved input activity, and measured the performance accuracy by comparing the 
activity of the three output neurons with the target output activity during the test 
period. We performed this random shuffling 100 times and measured the mean 
performance accuracy for all three conditions. The rationale behind this analysis 
is that if the network was exclusively using information maintained in neuronal 
activity to solve the task, then shuffling neuronal activity between trials should 
devastate performance, whereas shuffling synaptic efficacies should have little 
effect. Similarly, if the network was exclusively using information maintained in 
synaptic efficacies to solve the task, then shuffling synaptic efficacies between trials 
should devastate performance, whereas shuffling neuronal activity should have 
little effect. If the network was using information maintained in both neuronal 
activity and synaptic efficacies, then shuffling should lead to substantial decreases 
in performance.

We determined whether shuffling either substrate significantly decreased 
task accuracy for a single network using a permutation test. Specifically,  
if the task accuracy without shuffling was greater than 98 of the 100 shuffled 
values, the decrease was deemed significant (equivalent to P < 0.05 for  
a two-sided test).

We note that a priori there should be no qualitative difference between 
shuffling neuronal activity and synaptic efficacies. Both substrates are capable of 
maintaining information, because they both operate as leaky integrators (although 
the time constant of neuronal activity, 100 ms, is much smaller than the effective 
time constant of synaptic efficacy, which is 1,500 ms). Thus, shuffling either 
substrate can potentially affect network performance if information needed to 
solved the task was maintained within that substrate.

Tuning similarity index. We measured the similarity between sample and test 
stimuli encoding in the A-B-C-A and A-B-B-A tasks (Fig. 5), between neuronal 
and synaptic sample encoding (Fig. 7, Supplementary Figs. 11–13), and between 
neuronal sample encoding at different time points (Supplementary Figs. 15–24), 
using a TSI we previously employed to study the relation between functional 
clustering and mnemonic encoding10. To calculate this index, we first modeled the 
neuronal activity or synaptic efficacy for each neuron, zi(t), as a linear function of 
the sample or test motion direction, represented by the unit vector d̂:

ϵ= ̂ +z t H t t( ) d ( ) ( )i i i

where ϵ t( )i  is a Gaussian noise term and the vector Hi(t) relates the stimulus 
direction to the neuronal activity or synaptic efficacy at time t.

The angle of Hi(t) is the preferred direction of the neuron at time t, and its 
magnitude indicates the change in neuronal activity or synaptic efficacy from 
baseline when the stimulus matches the preferred direction of the synapse. Thus, 
the preferred direction (PD) of a neuron, represented as a unit vector, is

=
∣ ∣

t
H t
H t

PD ( )
( )
( )i
i

i

We can calculate how well this linear model fit the data for each neuron i and 
time point t, indicated by wi(t), by comparing the variance in the residuals with the 
variance in the synaptic efficacy:

= −
̂ −

w t
z t z t

z t
( ) 1

var( ( ) ( ))
var( ( ))i

i i

i

where the fitted neuronal activity or synaptic efficacy is determined by the  
linear model:

̂ = + ̂z t H td( ) baseline ( )i i

For the analysis in Fig. 5, we calculated the preferred directions and linear 
model fits for both the sample and the first test motion direction, and then 
calculated the tuning similarity of each individual neuron as the dot product 
between their preferred sample and test motion directions of each neuron, 
weighted by the geometric mean of their normalized linear model fits:

=s t w t w t t t( ) ( ) ( ) PD ( )PD ( )i i i i i
T

,sample ,test ,sample ,test

Finally, we calculated the TSI as the sum of the similarity scores for all neurons, 
divided by the sum of the geometric means of their respective linear model fits:

=
∑

∑
t

s t

w t w t
TSI( )

( )

( ) ( )
i i

i i i,sample ,test

A value of +1 indicates that neuronal activities or synaptic efficacies are 
identically tuned to sample and test stimuli, and 0 indicates no correlation  
between the two.
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Task manipulation. We were interested if the level of manipulation required by 
a task was correlated with the level of persistent activity. To measure the level 
of manipulation required by a task, we reasoned that when tasks do not require 
manipulation, the network should encode the sample stimulus in fundamentally 
the same manner during all trial epochs (for example, early sample versus late 
delay). In other words, the neural code used to represent the sample stimulus 
should remain constant across time. One caveat is that for most networks, the 
sample stimulus was not fully encoded in neuronal activity at the end of the delay 
(shown by neuronal decoding neuronal accuracies significantly less than 1.0 at the 
end of the delay in Figs. 2–6). However, the sample stimulus was fully encoded in 
the synaptic efficacies (shown by the synaptic decoding accuracies approximately 
equal to 1.0 at the end of the delay in Figs. 2–6).

Thus, if no manipulation occurs, then the neuronal tuning curve measured 
during the early sample should look similar to the synaptic tuning curve measured 
late in the delay (assuming the synapse was facilitating, the synaptic tuning curve 
would be reflected horizontally for a depressing synapse). We computed the 
similarity between the neuronal tuning curves measured during the early sample 
and the synaptic tuning curves measured late in the delay using the same method 
as described earlier (see Tuning similarity index). Specifically, we calculated model 
fits and preferred directions for neuronal activity measured during the early sample 
period (50–150 ms after sample onset) and for synaptic efficacies measured from 
1,400 to 1,500 ms after sample onset (corresponding to the second delay period for 
the A-B-C-A and A-B-B-A tasks and the end of the delay period for all other tasks), 
and calculated the similarity between these values for each neuron:

=s Z w w PD PDi i i i i
T

,early sample , late delay ,early sample ,late delay

where Z = 1 for facilitating synapses and Z = −1 for depressing synapses. This extra 
term was necessary because increases in neuronal activity will depress the efficacies 
of depressing synapses. We then calculated the TSI by averaging across all neurons, 
divided by the sum of the geometric means of their respective linear model fits:

=
∑

∑
s

w w
TSI i i

i i i,early sample ,late delay

We then calculated task manipulation as 1 − TSI.

Encoding stability. For the analysis in panel j of Supplementary Figs. 15–24, 
we calculated the stability in neuronal encoding as the similarity (TSI) between 
neuronal sample tuning between different time points:

=s t t w t w t t t( , ) ( ) ( ) PD ( )PD ( )i i i i i
T

1 2 ,sample 1 ,sample 2 ,sample 1 ,sample 2

We then calculated the mean similarity score for each of the four neuronal 
subgroups by averaging across all neurons within that subgroup, divided by the 
sum of the geometric means of their respective linear model fits:

∑
∑

=t t
s t t

w t w t
TSI( , )

( , )

( ) ( )
i i

i i i
1 2

1 2

,sample 1 ,sample 2

Category tuning index. The category tuning index (CTI), used in Supplementary 
Fig. 7, measured the difference in synaptic efficacy (averaged across all trials for 
each direction) for each neuron between pairs of directions in different categories 
(a between-category difference) and the difference in activity between pairs of 
directions in the same category (a within-category difference)52. The CTI was 
defined as the difference between between-category difference and within-
category difference divided by their sum. Values of the index could vary from +1 
(which indicates strong binary-like differences in activity to directions in the two 
categories) to −1 (which indicates large activity differences between directions in 
the same category, no difference between categories). A CTI value of 0 indicates the 
same difference in firing rate between and within categories.

Statistics. We trained 20 networks for each task to assess the variability between 
different network solutions. All networks were initialized with different sets of 
random weights. No statistical methods were used to predetermine sample sizes, 
but our sample sizes are similar to those reported in a previous publication49. We 
report mean ± s.d. throughout the article unless otherwise noted. Error bars in the 
figures indicate s.e.m. of measurement. We measured correlation using the Pearson 
correlation coefficient, except for Fig. 7 and Supplementary Figs. 11–13, where we 
used the Spearman correlation coefficient because of the small sample size (n = 9). 
We used a bootstrap procedure (described in Population decoding) to determine 
whether decoding accuracy for a single network was considerably greater than 
chance. We used two-sided t-tests to determine whether groups of values across 
our population of 20 networks were substantially different. The data distribution 
was assumed to be normal, but this was not formally tested. No data points were 
excluded from the analyses, because all networks were able to solve the task with 
satisfactory (>90%) accuracy. Data collection and analysis were not performed 
blind to the conditions of the experiments, because this did not apply to our 
simulations. Data collection and assignment to experimental groups also did not 
apply, because all networks were equivalent before training.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data from all trained networks that were analyzed for this study are available from 
the corresponding author upon reasonable request.

Code availability
The code used to train, simulate and analyze network activity is available at  
https://github.com/nmasse/Short-term-plasticity-RNN
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