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Flexible behavior depends on the brain’s ability to suppress a habitual response or to cancel a planned movement whenever needed. Such
inhibitory control has been studied using the countermanding paradigm in which subjects are required to withhold an imminent
movement when a stop signal appears infrequently in a fraction of trials. To elucidate the circuit mechanism of inhibitory control of
action, we developed a recurrent network model consisting of spiking movement (GO) neurons and fixation (STOP) neurons, based on
neurophysiological observations in the frontal eye field and superior colliculus of behaving monkeys. The model places a premium on the
network dynamics before the onset of a stop signal, especially the experimentally observed high baseline activity of fixation neurons,
which is assumed to be modulated by a persistent top-down control signal, and their synaptic interaction with movement neurons. The
model simulated observed neural activity and fit behavioral performance quantitatively. In contrast to a race model in which the STOP
process is initiated at the onset of a stop signal, in our model whether a movement will eventually be canceled is determined largely by the
proactive top-down control and the stochastic network dynamics, even before the appearance of the stop signal. A prediction about the
correlation between the fixation neural activity and the behavioral outcome was verified in the neurophysiological data recorded from
behaving monkeys. The proposed mechanism for adjusting control through tonically active neurons that inhibit movement-producing
neurons has significant implications for exploring the basis of impulsivity associated with psychiatric disorders.

Introduction
Cognitively controlled behavior relies on our ability to suppress
prepotent responses to external stimuli whenever demanded
(Logan and Cowan, 1984; Verbruggen and Logan, 2009a). With
insufficient inhibitory control, a condition often associated with
psychiatric disorders such as attention-deficit hyperactivity dis-
order (ADHD) (Schachar and Logan, 1990; Armstrong and Mu-
noz, 2003; Hanisch et al., 2006) and schizophrenia (Boudet et al.,
2005; Donohoe et al., 2006), prepotent responses tend to domi-
nate at the expense of cognitively controlled deliberate actions
(Aron et al., 2003). Inhibitory control can be triggered by a re-
sponse to a stimulus signaling stop, but can also be performed by
an endogenous top-down signal (Brass and Haggard, 2007),
which presumably originates from frontal cortex (Naito and
Matsumura, 1994; Konishi et al., 1998; Tinsley and Everling,

2002; Ridderinkhof et al., 2004; Johnston and Everling, 2006;
Stuphorn and Schall, 2006). In contrast to passively responding
to an external stop signal, a top-down control signal is likely to be
constantly present, especially when the need for withholding
movements is anticipated. Imagine that you are in a city known
for its drivers’ tendency to run a red light. To be safe while cross-
ing a street, a sound strategy is to hold your steps for a short while
after the pedestrian light turns green. Indeed, various behavioral
tasks of inhibitory control showed that response times to a go
signal are longer when a stop signal is expected compared with
when it is not (Hanisch et al., 2006; Stuphorn and Schall, 2006;
Verbruggen et al., 2006; Verbruggen and Logan, 2009b). This
observation poses fundamental questions regarding the neural
circuit mechanisms of inhibitory control: How does this proac-
tive top-down inhibitory control interact with the bottom-up
drive for movement at the neuronal levels before a stop signal
appears, and how does this interaction affect a subject’s response
to the stop signal?

The countermanding (or stop-signal) task has been used for
decades to investigate normal and disordered control of thought
and action (Logan and Cowan, 1984; Verbruggen and Logan,
2009a). In the task, a subject has to withhold the response to a go
signal when an infrequent and delayed stop signal appears (see
Materials and Methods). The success of the countermanding task
is derived from the effectiveness of a formal mathematical model
(independent race model) that accounts for behavioral perfor-
mance as the outcome of a race between independent GO and
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STOP processes (Logan and Cowan,
1984). Although the model provides a
measure of the duration of the covert
STOP process, it did not specify just how
the STOP process prevented the GO pro-
cess from finishing. Neurophysiological
recordings from the frontal eye field and
the superior colliculus of rhesus monkeys
suggested that the GO and STOP pro-
cesses may be instantiated by movement
and fixation neurons, respectively, and
that the antagonistic interplay between
them may be responsible for the interrup-
tion of the GO process (Hanes et al., 1998;
Paré and Hanes, 2003). To address this
question explicitly, an interactive race
model (Boucher et al., 2007) with mutu-
ally inhibitory GO and STOP units was
developed. The model showed how de-
layed and potent inhibition of the GO unit
by the STOP unit could account for the
behavioral performance as well as the pro-
file of neural modulation of movement
neurons (GO unit) and fixation neurons
(STOP unit) after the onset of the stop
signal.

However, neurophysiological observa-
tions have revealed a strong tonic activity
of fixation neurons as well as reciprocality
between activity of movement and fixa-
tion neurons before the stop signal ap-
pears, which was not accounted for in the
interactive race model (where the STOP
unit or process is completely inactive before the appearance of an
external stop cue). Since the movement neurons are influenced
by the fixation neurons even in the absence of an external stop
stimulus, the dynamic interplay between the two cell types before
the stop signal may be critical for our mechanistic understanding
of inhibitory control in countermanding saccades. This study
aims at testing this hypothesis using a biophysically realistic
model endowed with a top-down signal, which is persistent in-
ternally and may originate from the prefrontal cortex (Funahashi
et al., 1989, 1993; Wang, 2001). Part of the result of this work was
published in an abstract form (Lo and Wang, 2007).

Materials and Methods
Behavioral task. The proposed model of inhibitory control was designed
for explaining neuronal and behavioral observations in the saccade coun-
termanding task. In every trial, the task started with a fixation signal
located on the center of the screen. The fixation signal was then turned off
while a peripheral target (go signal) was turned on at the same time. In a
small fraction (typically 1/4 to 1/3) of randomly interleaved trials, after a
variable delay [stop signal delay (SSD)] after the onset of the target, the
center fixation signal was turned on again serving as the stop signal. A
subject’s task was to make a saccadic eye movement into the target as
quickly as possible but withhold the movement when a stop signal
appeared. In the present study, trials with or without the stop signal
presented are referred to as stop-signal trials or no-stop-signal trials,
respectively. To be consistent with previous saccade countermanding
experiments with nonhuman primates (Hanes et al., 1998; Paré and
Hanes, 2003), we used four SSD values: 69, 117, 169, and 217 ms when we
compared the simulated behavior to the experiment. In the model, ini-
tiation of a saccadic eye movement was defined as the crossing of a fixed
threshold (70 spike per second, sp/s) in the population firing rate of

movement neurons plus a 10 ms ballistic period of movement produc-
tion. A stop-signal trial was counted as failed (noncanceled trial) if a
saccade was initiated within 700 ms after the onset of the go signal.
Otherwise, the trial was successful (canceled trial). The fixation/stop sig-
nal was modeled by an input to the fixation neurons while the target
signal was modeled by an input to the movement neurons.

Subjects and experimental data. In the presented study we fit the model
to behavioral data from one rhesus monkey (Macaca mulatta) and com-
pared the model simulations to neural data from four rhesus monkeys
(two for frontal eye field and two for superior colliculus). All experimen-
tal data were previously reported: the neural data of superior colliculus
were derived from data reported in the study by Paré and Hanes (2003),
and the neural data of frontal eye field and behavioral data were reported
in the study by Hanes et al. (1998).

Neural network model. The neural network model consists of a pre-
movement module that directly controls initiation of movements and a
control module that provides a top-down inhibitory control over the
premovement module (Fig. 1 A). For the sake of simplicity, we assumed
that the premovement module encodes two target stimuli (left or right go
signals) and the fixation/stop signal stimulus. To capture observations in
various experiments, we further assume that each stimulus activates a
small subpopulation of neurons in the premovement module and the
remaining neurons do not respond to any of the three stimuli. Based on
these assumptions, the premovement module consists of five neural pop-
ulations: excitatory gaze-shifting movement neurons (MOV R, MOV L),
inhibitory interneurons (INH), excitatory gaze-holding fixation neurons
(FIX), and non-selective excitatory neurons (NSE). NSE is included to
mimic the large number of neurons that do not respond to the target
stimuli and fixation/stop signal stimulus but may selective to other stim-
uli that are irrelevant to the present study. For example, in situations
where there are multiple response options (e.g., three or four possible
target positions), NSE neurons would become activated. In the current
model, NSE neurons only receive the background spike input and main-

Figure 1. A spiking neural network model of inhibitory control for the countermanding task. A, The schematic model architec-
ture. The premovement module consists of two populations of MOV L and MOV R, a population of INH, and a population of FIX. The
control module consists of only one population of excitatory neurons. B, The saccade countermanding task. In both no-stop-signal
and stop-signal trials a central fixation signal is presented for a period of time, then the fixation signal is turned off when a
peripheral target for a saccade (go signal) is turned on. In stop-signal trials, after a variable delay after the go signal, the central
fixation spot is turned back on, serving as the stop signal. The two types of trials are randomly interleaved. C, Time courses of the
input in stop-signal trials. The left and right dashed lines mark the go and stop signal onsets respectively. After the fixation signal
offset, the top-down control remains for a variable interval (holding period). The duration of the holding period follows a Gaussian
distribution illustrated above the panel. The holding period mimics a subject’s endogenous tendency to delay the saccade
response.
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tain a baseline activity (several sp/s) in the task. The control module
contains only one population of excitatory neurons. MOV R and MOV L

neurons receive inputs driven by the right and left saccade targets, respec-
tively (Fig. 1 B, C) and form mutual inhibition through INH neurons.
The recurrent excitation of MOV R and MOV L neurons and slow synap-
tic dynamics mediated by NMDA receptors produce a ramping activity
and, together with inhibition, give rise to winner-take-all dynamics
(Wang, 2002; Lo and Wang, 2006), an activity pattern consists with
neural responses observed in various brain areas during saccade-related
behavioral tasks (Hanes and Schall, 1996; Dorris et al., 1997; Hanes et al.,
1998; Paré and Hanes, 2003).

Specifically, the premovement module models neural activity ob-
served in primate frontal eye field and superior colliculus (Hanes et al.,
1998; Paré and Hanes, 2003). In response to a target input, the activity of
the MOV population ramps up over time and triggers a saccade when a
fixed threshold is crossed. The FIX neurons receive two inputs: a visual
input driven by the fixation/stop signal (Fig. 1 B, C) and an excitatory
projection from neurons in the control module. The time course of each
input is shown in Figure 1C. Note that because the control module
projects to the FIX neurons, the excitatory connection produces an in-
hibitory effect on MOV neurons. We further assume that in each trial
after the offset of the fixation signal, the activity of the control module
persists for a variable interval (a holding period) (Fig. 1C, bottom panel),
corresponding to the subject’s endogenous tendency to hold fixation.

Each population consists of spiking neurons simulated using the leaky
integrate-and-fire model. The number of neurons in populations
MOV R, MOV L, INH, FIX, NSE, and control are 240, 240, 400, 240, 1120,
and 120, respectively. Each neuron receives external spike inputs with
Poisson statistics serving as the background noise. For all excitatory neu-
rons in the premovement module, the background noise is a mixture of
AMPA receptor mediated excitatory and GABAA receptor mediated in-
hibitory inputs, but the net effect is excitatory. For the AMPA inputs, the
maximum synaptic conductance was 2.1 nS for excitatory neurons, 1.62
nS for inhibitory interneurons. The overall AMPA input spike rate (in
sp/s) was 2900 for each neuron in MOV R, MOV L, and NSE, 2400 for
each neuron in INH, 2304 for each neuron in FIX, and 1840 for each
neuron in control. For the GABA inputs, the overall spike rate (in sp/s)
was 675 for each neuron in MOV R, MOV L and NSE.

Stimuli and the top-down control signal were modeled as spike inputs
with Poisson statistics via AMPA receptors, with the maximum synaptic
conductance of 2.1 nS. The spike rate (in sp/s) was 560 for the go signal
(input to each MOV neuron), 256 for the fixation and stop signals (input
to each FIX neuron), 296 for the inhibitory control during the fixation
and holding periods, and 360 for the inhibitory control in the stop period
(input to each control neuron).

All synaptic connections between neural populations and within a
neural population (recurrent connections) are all-to-all, i.e., every neu-
rons in the source population make synaptic connections to every neu-
rons in the target population. The values of synaptic efficacy g (in nS) are
as follows (for excitatory connections, values are given as AMPA/NMDA):
gMOVR�MOVR

� gMOVL�MOVL
� 0.165/0.1823, gMOVR�INH � gMOVL�INH �

0.08/0.08705, gMOVR�NSE � gMOVL�NSE � 0.1/0.11048, gMOVR�MOVL
�

gMOVL�MOVR
� 0.08765/0.096838, gNSE�MOVR

� gNSE�MOVL
� 0.08765/

0.096838, gNSE�INH � 0.08/0.08705, gNSE�NSE � 0.1/0.11048, gFIX�FIX �
0.066/0.072919, gFIX�INH � 0.04/0.043524, gINH�INH � 0.9625,
gINH�FIX � 0.3,gINH�MOVR

� gINH�MOVL
� gINH�NSE � 1.25125,

gCNT�FIX � 0.18/0.198864.
We note that we used a higher AMPA/NMDA ratio here than in the

cortical decision network model (Wang, 2002; Lo and Wang, 2006).
This is because we need a much higher activity (�100 sp/s) in move-
ment neurons than in the previous model (Wang, 2002; Lo and Wang,
2006), and the recurrent excitatory drive saturates at higher neural
firing rates when it is dominated by the fast AMPA receptors than by the
slow NMDA receptors. We note that with a lower AMPA/NMDA ratio as in
the previous model (Wang, 2002; Lo and Wang, 2006), the proposed model
can still reproduce behaviors and neural activity patterns observed in the
countermanding task, except that the overall firing rate of movement
neurons is lower than that observed (Hanes et al., 1998; Paré and Hanes,
2003).

The time interval between the onset of the go signal and the actual
sensory input to the model network was set to be 8 ms. This resulted in a
neural latency of �35 ms, which is consistent with observation (Hanes et
al., 1998; Boucher et al., 2007). The time interval between the onset of the
stop signal and the actual input to the model network was determined to
be 62 ms (see below, Parameter tuning). For the sake of simplicity, in the
present study we did not explicitly model the neural circuit that generates
the persistent activity in the control module. Instead, we used a tonic
Poisson spike input to drive the control neurons. In each trial a value for
the duration of the tonic Poisson input to control neurons (holding
period) was randomly drawn from a Gaussian distribution (mean � 113
ms and SD � 95 ms; see below, Parameter tuning), but only with values
larger than zero for the obvious reason that the offset of the top-down
control should only happen after the offset of the fixation signal.

Single neuron model. Each neuron in the model is simulated by the
leaky integrate-and-fire model. The membrane potential V(t) for each
neuron obeys the following equation:

Cm

dV�t�

dt
� �gL�V�t� � VL� � Isyn�t�, (1)

where Cm is the capacitance, gL is the leak conductance, VL is the resting
potential, and Isyn is the total synaptic current in the cell.

When the membrane potential V(t) of each neuron reaches a thresh-
old Vthreshold � �50 mV, a spike is emitted and V(t) is set to the reset
potential Vreset� �55 mV for a refractory period Tr � 2 ms. For inhibi-
tory neurons, we used the following parameters: Cm � 0.2 nF, gL � 20 nS
and VL� �70 mV. For excitatory neurons, we used Cm � 0.5 nF, gL � 25
nS, and VL� �70 mV.

The synaptic current Isyn(t) is described by the following:

Isyn(t) � gAMPAsAMPA�t��V�t� � VE� �
gNMDAsNMDA�t��V�t� � VE�

1 � �Mg2�]e�0.062V�t�/3.57

� gGABAsGABA�t��V�t� � VI�, (2)

where VE (�0 mV) and VI (��70 mV) are the reversal potentials,
[Mg 2�] (�1.0 mM) is the extracellular magnesium concentration, g is the
synaptic efficacy, and s is the gating variable. Subscripts in g and s denote
the receptor type. The gating variable obeys the following:

ds�t�

dt
� �

k

��t � tk� �
s

�
(3)

for AMPA and GABAA receptors and the following:

ds�t�

dt
� ��1 � s�t���

k

��t � tk� �
s

�
(4)

for NMDA receptors with � � 0.63. The decay constant � is 2 ms for
AMPA, 5 ms for GABAA and 100 ms for NMDA. � (t � tk) is the �
function and tk is the time of the kth presynaptic spike.

Parameter tuning. We adopted a procedure to reduce the parameters
that are needed for fitting to the data. As a result, we only used three
parameters to fit the model to the behavioral data. For cellular parame-
ters such as membrane time constants, membrane conductances etc., we
simply used the typical values used in the cortical decision network
model (Wang, 2002; Lo and Wang, 2006). Synaptic strengths within and
between MOV, INH, and NSE also follow the values used in Wang (2002)
and Lo and Wang (2006) except that we used a higher AMPA/NMDA
ratio in excitatory connections. Synaptic connections in the rest of the
network and the external inputs to MOV, FIX, and control neurons were
tuned for the model to reproduce neuronal activity observed in the coun-
termanding task (Hanes et al., 1998).

We aimed to reproduce the following neural behaviors: (1) The activ-
ity of movement neurons should reach 100 sp/s when they are fully
activated by the visual target input (making a saccade). (2) The baseline
activity of fixation neurons during the fixation period is �80 sp/s. (3)
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After the offset of the fixation signal, the activity of fixation neurons
drops to �40 –50 sp/s at the presence of the top-down control. (4) When
the fixation neurons are fully activated by the stop signal and a saccade is
canceled, the activity of fixation neurons should reach at least 80 sp/s.
The behavior (1) can be reproduced by tuning the strength of the target
input (go signal) to MOV neurons. The behavior (2) can be reproduced
by tuning the total input to FIX neurons during the fixation period. Note
that the input to FIX neurons comes from two sources: an input driven by
the fixation/stop signal and a top-down signal from control neurons.
How much input each of the sources contributes can be determined by
considering behaviors (3) and (4). After the offset of the fixation signal,
there is no visual input to FIX, so the only input that supports the activity
of FIX neurons is the input from control neurons. We set the strength of
the input to the control neurons so that they fire at a typical value �15
sp/s and then set the synaptic strength accordingly to generate a desired
input to FIX neurons, which should fire at the observed 40 –50 sp/s. The
obtained input strength is for the fixation and holding periods, and sub-
jects may apply stronger top-down control in response to the stop signal
onset, because the subjects need to suppress the activity of MOV neurons
that may have already been activated. Assuming that the fixation and stop
visual inputs to FIX neurons are the same because of the identical stimuli,
we could use behavior (4) to determine the necessary input to control
neurons which drives FIX neurons to fire at the observed level (�80 sp/s)
after the onset of the stop signal in canceled trials.

Next, we considered the connection strengths between FIX and INH.
During the countermanding task, after the onset of the target and offset
of the fixation signal, the top-down control alone should still be able to
maintain the fixation until the subjects decide to commit a saccade re-
sponse and turn off the top-down control. This requires a strong inhibi-
tion from FIX to MOV neurons in the model, thus sets a minimum value
for the FIX-to-INH synaptic strength and a maximum value for the
INH-to-FIX synaptic strength. In some noncanceled trials, subjects make
eye movements toward the target even at the presence of the stop signal.
This requires a strong inhibition from MOV to FIX in the model, thus
sets a minimum value for the INH-to-FIX synaptic strength and a max-
imum value for the FIX-to-INH synaptic strength. These two consider-
ations confine the INH-to-FIX and FIX-to-INH synaptic strengths to
narrow ranges. We chose a smaller value for the FIX-to-INH synaptic
connection from the range because a stronger FIX-to-INH synaptic con-
nection will completely silence MOV neurons during the holding period,
whereas a slow ramping activity is observed for movement neurons right
after the onset of the target in frontal eye field (Hanes et al., 1998).

Now we have only a handful parameters left to be determined: the
mean and SD of the holding period, the latency of the target signal input
[Dgo as in the study by Boucher et al. (2007)] and the latency of the stop
signal input [Dstop as in the study by Boucher et al. (2007)]. These pa-
rameters cannot be inconsistent with neural activity but were determined
by behavioral data. We decided to further constrain the latency of the
target signal input. By setting the latency to 8 ms, the activity of MOV
neurons increases significantly �30 – 40 ms after the onset of the target
stimulus, a value observed previously for the same animal we used in the
presented study (Boucher et al., 2007). The duration of the holding pe-
riod affects the saccade reaction times. Therefore we can determine the
mean and the SD of the duration of the holding period by finding the
values that produce a simulated reaction time distribution that best fits to
experimental observations. Finally, we have the stop signal input latency
left to be determined. This parameter describes the time interval from the
stop signal onset until the actual input into FIX neurons and affects the
probability of response cancelling in stop-signal trials. To determine this
latency, we find the value of the latency that produces simulated inhibi-
tion function and reaction time distributions for noncanceled trials that
best fit to the experimental observation.

Phase plan plot. We used phase plan plots to analyze the time evolution
of neural activity in stop-signal trials by plotting the population firing
rate of MOV neurons rMOV(t) against that of FIX neurons rFIX(t). This
two-dimensional phase plan is sufficient to describe the dynamics of the
proposed six-population network for the following reasons: (1) NSE and
INH neurons do not receive external inputs, but are only driven by
background noise and by MOV and FIX populations. As a result, the

activities of NSE and INH neurons are completely determined by the
activities of MOV and FIX neurons. (2) MOV and FIX neurons receive
task-related inputs and their interactions determine whether a saccade is
triggered. (3) The control module only serves as a relay of the top-down
control input with a stereotyped activity and does not participate in the
neural interactions in the premovement module. To help analyze the
dynamics of the network, we need to find out the stable states where
rMOV(t) and rFIX(t) will converge to. To this end, we plotted nullclines
(Wilson, 1999) for MOV neurons and FIX neurons. Because the activity
of MOV depends on its three main inputs: external stimulus (IMOV),
recurrent excitation from itself and input from FIX, we can express the
time derivative of rMOV(t) as the following:

drMOV(t)

dt
� fMOV (IMOV, r̃MOV, r̃FIX). (5)

The MOV nullcline is defined as the steady state r̃MOV (given by drMOV/
dt � 0) as a function of the FIX activity (rFIX), for a given external input
IMOV. That is,

drMOV

dt
� 0 � fMOV (IMOV, r̃MOV, rFIX). (6)

Therefore, the nullcline represents a curve on the phase plan that depicts
the relation between r̃MOV and rFIX. In addition, the nullcline varies with
the external input IMOV. The nullcline of the FIX neurons is defined
similarly as the following:

fFIX �IFIX, r̃FIX, rMOV) � 0. (7)

Now, an intersection of the MOV and FIX nullclines satisfies both drFIX/
dt � 0 and drMOV/dt � 0, hence represents a steady state (equilibrium
point) for both populations under the given inputs (IMOV and IFIX).
Depending on how the two nullclines intersect each other, an equilib-
rium point can be stable or unstable. A stable equilibrium point forms an
attractor to which the system state may eventually converge. For a com-
plex system such as the proposed spiking neural network model, there is
no simple equations describing rMOV and rFIX. Therefore one cannot find
analytical solutions for the nullclines without simplifying the system. To
circumvent this problem, we solve for nullclines numerically using the
following procedure: to compute the MOV nullcline, we removed all
synaptic inputs to FIX neurons but kept their synaptic projections to
other populations unchanged. For a given external input to MOV neu-
rons, we used a Poisson input to drive FIX neurons at a fixed firing rate
level, and then recorded the steady state firing rate of MOV neurons. We
obtained the MOV nullcline by repeating this procedure with various
fixed activity of FIX neurons and plotting the steady state activity of
MOV neurons as a function of FIX activity. Similarly, FIX nullclines for
different external inputs were obtained by removing all synaptic input to
MOV neurons and recording the steady state firing rates of FIX neurons
as functions of MOV activity.

Results
As schematically shown in Figure 1, the core of our model circuit
consists of MOV neurons and FIX neurons, instantiating GO and
STOP processes respectively. Each population contains spiking
neurons that are interconnected by recurrent excitatory synapses.
The MOV and FIX neural populations compete against with each
other through a shared pool of INH neurons. Furthermore, the
model assumes that fixation neurons exhibit an elevated baseline
activity, as observed in fixation neurons of the frontal eye field
and superior colliculus of behaving monkeys. MOV neural activ-
ity cannot accumulate to trigger a behavioral response, unless it is
disinhibited from FIX neurons. In our model, tonic firing of FIX
neurons is sustained in part by a top-down signal from a control
module. At the offset of an external fixation input, this internal
control signal lingers for a variable period while MOV neurons
remain suppressed by FIX neurons. Such an endogenous holding
process is evident in a gap saccade task, in which subjects must
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withhold a planned saccade during a temporal delay between the
fixation point offset and the target onset (Dorris et al., 1997;
Hanes et al., 1998). In our model, persistent top-down modula-
tion is able to support FIX neurons to fire at a medium rate
without the sensory stimulation during the temporal gap (Fig. 2),
similar to the observed activity pattern of fixation neurons in the
frontal eye field of a behaving monkey in the gap saccade task
(Fig. 2, inset).

Behavioral performance
The proposed model can quantitatively fit to the observed inhi-
bition function and the saccade reaction times of no-stop-signal
trials and noncanceled stop-signal trials. The inhibition function
is defined as the probability of noncanceled response in stop-
signal trials as a function of SSD. With most of the model parameters
constrained by neurophysiological observations, the fitting to the
behavioral data was performed using only three parameters (see
Materials and Methods). We fit the model to the cumulative
distribution of saccade reaction times of the no-stop-signal trials
from a rhesus monkey [same data as in the study by Boucher et al.
(2007)] by tuning the mean and SD of the holding period. We
then fit the model to the inhibition function and saccade reaction
times of noncanceled stop-signal trials by tuning the neural la-
tency of the stop signal input (the time interval between the onset
of the stop signal and its actual input to the network). The pro-
posed spiking neural circuit model quantitatively accounts for
the behavioral data obtained in this task (Fig. 3A, B) as well as the
interactive and independent race models [� 2 � 64.92, compared
with � 2 � 50.64 for the interactive race model and � 2 � 57.24 for
the independent race model (Boucher et al. (2007)].

In our model, we can use the behavioral data to estimate the
stop-signal reaction time (SSRT), a hidden variable that measures
how long it takes for a STOP process to inhibit a go response after
the presentation of a stop signal. There are several ways to mea-
sure SSRT and here we used the integration method formulated
by Logan and Cowan (1984). The method is based on the as-
sumption that after the presentation of the stop signal, the STOP

process takes time to finish and does not affect the GO process
before the finish time. As a result, movements are only canceled if
their reaction times are longer than the STOP process finish time,
which is SSD � SSRT, on that trial. Furthermore, because of the
independence between the two processes, the reaction times in
the noncanceled stop-signal trials match those in no-stop-signal
trials that are shorter than the STOP process finish time. Hence,
one can estimate SSRT using the reaction time distribution of
no-stop-signal trials and the probability of noncanceled response
in stop-signal trials (Fig. 4). Although in our model MOV neu-
rons (GO process) interact with the FIX neurons (STOP process)
during an entire trial, the dynamics is the same in no-stop-signal
trials and in stop-signal trials before the stop signal onset. More-
over, we assumed that the response of fixation neurons to a
stop signal is powerful and immediately suppresses the activity
of movement neurons. Under these conditions, we found that
SSRT calculated using the described method remains valid
(Fig. 4) (see Discussion).

How important are our model assumptions about the top-
down modulation and its variable holding period? To address
this question, we tested our model by immediately turning off the
top-down control module after the onset of the target, instead of
maintaining the activity of the top-down control module for a
variable period of time (the holding period). Without the holding
period, the activity of MOV neurons increased too fast, resulting
in very short mean reaction times. This can be counteracted with
a reduction of the strength of the go signal input to the MOV
neurons, so that the mean reaction time is the same as in the
control case and in the monkey experiment. In this case, without
the top-down modulation after the target onset, the model exhib-
its a much narrower distribution of reaction times and a much
steeper inhibition function compared with the original model

Figure 2. Simulated top-down modulation in the absence of sensory input. Spike raster-
gram (black dots) on top of the average firing rate (black curve) (200 trials) from a FIX neuron in
a gap saccade task. Each row in the rastergram represents the spike train from one trial. In
the task a subject has to hold saccade after the offset of the fixation signal until the onset of the
target signal which appears after a delay (gap period). In the proposed model, although the
visual stimulus (fixation signal) is off, the top-down control remains during the gap period until
the onset of the target, resulting in a lower but persistent activity in fixation neurons during the
gap period. The simulated activity resembles the observed activity of fixation neurons in the
frontal eye field of a behaving monkey as shown in the inset (Hanes et al., 1998).

Figure 3. The model quantitatively fits to the behavioral data from a rhesus monkey
(Boucher et al., 2007). A, Cumulative reaction time distributions of no-stop-signal trials (right
most) and noncanceled stop-signal trials for different stop signal delays (from left to right:
SSD � 117, 169, and 217 ms). B, Inhibition function shows the probability of noncanceled
(signal response) in stop-signal trials as a function of SSD.
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(Fig. 5A, B). The result shows that without stochastic variability
of the internal top-down control, the intrinsic dynamics of the
premovement module cannot produce the observed magnitude
of behavioral variability.

One may argue that even without the top-down module, the
model could produce enough reaction time variability if other
model parameters are properly tuned. In the proposed model, the
reaction time variability results from the stochastic ramping ac-
tivity of MOV neurons, which is affected by their recurrent exci-
tation. Furthermore, without the top-down control, the main
source of the MOV stochasticity is contributed by the intrinsic
noise in the Poisson spike input representing the go signal. There-
fore, we tested the model by decreasing the connectivity (proba-
bility of random connection) of the recurrent excitation of MOV
populations as well as by decreasing the spike rate of the target
input to MOV neurons in the absence of the top-down control
(Fig. 5C). The result shows that changing the spike rate of the go
signal input can slightly affect the reaction time variability (fifth
and sixth bars from the left), but is still far less than that of the
model with the top-down modulation (first bar from the left).
Although we can use an extremely low go signal input rate to
achieve desired reaction time variability, this low input rate is not
biologically realistic. Note that to compare the SD of reaction
times between different model settings, the mean reaction times
must correspond. To this end, we need to keep the total synaptic
input to MOV neurons the same when changing the parameters.
In the case of decreasing recurrent connectivity, we increase the
recurrent synaptic efficacy accordingly, whereas in the case of
decreasing go signal input rate, we increase the input synaptic
efficacy accordingly.

Neuronal activity
The model goes beyond reproducing behavioral observations by
exhibiting patterns of neural activation that resemble the activity
of movement and fixation neurons in frontal eye field (Hanes et
al., 1998) and superior colliculus (Paré and Hanes, 2003). We
compared the firing activity in canceled and noncanceled stop-
signal trials with latency-matched no-stop-signal trials (Fig. 6A–
D). No-stop-signal trials with latencies matched to noncanceled
stop-signal trials are a subset of no-stop-signal trials with laten-
cies (saccade reaction times) shorter than SSRT � SSD (see Ma-
terials and Methods) (Fig. 4), whereas the rest of no-stop-signal
trials have latencies longer than SSRT � SSD and are matched to

Figure 4. Reaction time distributions from a monkey experiment and neural circuit model.
A, B, To demonstrate how saccade reaction times are matched between no-stop-signal trials
and noncanceled stop-signal trials, we plotted the cumulative reaction time distributions for
no-stop-signal trials (black curves) and for noncanceled stop-signal trials (SSD � 169 ms, green
curves) for data (A) and model (B). We also plotted corresponding probability density functions
in C and D, respectively. For easy comparison between the two types of trials, the curves of
noncanceled stop-signal trials are rescaled vertically by the probability of noncanceled (blue
dashed lines, 56% for the data and 58% for the model). The result shows that for both the model
and the data, the reaction times of noncanceled stop-signal trials approximately correspond to
those of no-stop-signal trials until the time point that defines SSRT, estimated by the intersec-
tions between the blue dashed lines and the back curves (SSRT � 90 ms for the data and 95 ms
for the model). Blue arrows indicate the ranges of STOP process variability.

Figure 5. Model behavior in the absence of the top-down modulation. To test the contribu-
tion of the top-down modulation in the behavioral performance of the model, we turned off the
top-down signal immediately after the target onset. A, B, The model exhibits a much narrower
distribution of reaction times (A) and a much steeper inhibition function (B). C, We further test,
by adjusting model parameters, whether the model without the top-down signal (second bar
from the left) can produce enough reaction time variability exhibited by the one with the
top-down signal (first bar from the left). To this end, we changed the connectivity of the recur-
rent excitation of MOV populations from 100% to 80% and 50% (third and fourth bars from the
left, respectively). We also changed the spike rate of the go signal input to 1/2 and 1/3 of the
original values (fifth and sixth bars from the left, respectively).
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latencies in canceled stop-signal trials. The neural activity of
MOV and FIX neurons in the model resembles the observed
neural activity of movement and fixation neurons, respectively,
in frontal eye field of a rhesus monkey (Fig. 6E–H). The model

shows that FIX neurons maintain a tonic
activity during the fixation period and
gradually ramp down after the offset of
the fixation signal. After the onset of the
stop signal, activity of FIX neurons ramps
up drastically and shuts down movement
neurons in canceled trials. The mean ac-
tivity of stop-signal trials and latency
matched no-stop-signal trials are identi-
cal for both FIX and MOV neurons in the
early part of the trial because the stimuli
are identical until the onset of stop signal
in stop-signal trials. The time point when
the activity in stop-signal trials and la-
tency matched no-stop-signal trials be-
comes different marks the moment when
the neural circuit starts to respond to the
stop signal; this is referred to as the cancel
time and is measured relative to SSRT
(mean SSRT � 93.3 ms for data and 95.7
for the model). To replicate the sampling
size in the physiology experiments (Hanes
et al., 1998; Paré and Hanes, 2003), we
randomly selected 50 MOV neurons and
50 FIX neurons and calculated the mean
cancel time across 15–35 trials for each
selected neuron. This resulted in distribu-
tions of cancel times with a mean of �9.2
ms for MOV neurons and a mean of
�17.0 ms for FIX neurons (Fig. 6 I, J). The
results are comparable to observations in
the frontal eye field and superior collicu-
lus (Hanes et al., 1998; Paré and Hanes,
2003). It appears that the model produces
cancel times that most closely approxi-
mate those measured in superior collicu-
lus, especially the fixation neurons. We
believe the model is describing events
transpiring within the entire premotor
network including superior colliculus and
frontal eye field as well as certain basal
ganglia, thalamus, and brainstem neu-
rons. Also, we believe the quantitative dif-
ferences in the distributions of cancel
times between the frontal eye field data
and the superior colliculus data are inci-
dental effects of sampling and the proper-
ties of frontal eye field and superior col-
liculus neurons. Superior colliculus
movement-related neurons tend to have
lower baseline activity and higher peak
discharge rates than counterparts in fron-
tal eye field. This makes measurements of
modulation times more reliable. Also, in
the frontal eye field data, not all neurons
provided enough data in all of the trial
types needed to measure cancel time. Fi-
nally, a recent reexamination of the mod-
ulation of neural activity recorded in the

frontal eye field during the saccade countermanding task in-
dicates that the movement-related neurons with stronger visual
responses do not exhibit the systematic modulation of magnitude
of activity that is characteristic of the GO units (Ray et al., 2008).

Figure 6. Comparison of mean firing rates between stop-signal trials (SSD � 169 ms) and latency-matched no-stop-signal
trials averaged over 200 trials. A, B, Mean firing rates of stop-signal (canceled: thick solid curve; noncanceled: thick dashed curve)
and latency-matched no-stop-signal trials (thin curves) from representative MOV neurons in the model for canceled and noncan-
celed trials, respectively. C, D, Same as A, B, respectively, for FIX neurons. Solid vertical lines indicate the onset of the stop signal and
dashed vertical lines indicate the estimated stop signal response time (SSRT). Arrows indicate the cancel times. E–H, same as A–D,
respectively, for movement and fixation neurons observed in frontal eye field of a rhesus monkey [modified from the study by
Boucher et al. (2007), their Fig. 4]. Note that we did not model how the fixation neurons are reset after they cancel a movement
because this is not part of the countermanding action. Hence simulated FIX activity does not go down in C as data shown in G after
the movement is canceled. I, Distributions of cancel times of movement neurons for the model, frontal eye field (FEF) and superior
colliculus (SC). J, Same as I for fixation neurons.
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We further investigated how the neu-
ral activity correlates with the behavioral
outcome. In the model, an early offset of
the top-down control (shorter holding
period) results in a faster ramping down
activity of FIX neurons, allowing a faster
ramping up in the activity of MOV neu-
rons and increasing the probability of
triggering a saccade in stop-signal trials
(Fig. 7A). This observation is further ver-
ified by examining the relationship be-
tween the behavioral outcome and the
holding period (Fig. 7B): We found that
noncanceled trials are associated with
short holding periods, whereas canceled
trials are associated with long holding pe-
riods. Interestingly, if the top-down con-
trol is turned off between 100 ms and 160
ms after the target onset, the behavioral
outcome is probabilistic; i.e., with a fixed
value of holding period, the motor re-
sponse is stochastically canceled on some
trials, but not on the other trials. Although
the holding period is not directly mea-
surable in experiments, it affects the
ramping-down activity of FIX neurons.
Therefore, if we measure the neural activ-
ity between target onset and stop signal
onset, the model predicts that the firing
rate of FIX neurons will be higher in can-
celed trials than in noncanceled trials,
whereas the firing rate of MOV neurons
will be lower in canceled trials than in
noncanceled trials. The prediction of dif-
ferential neural activity of fixation neu-
rons has never been tested before and we
tested it by comparing the model simula-
tions with observations in the frontal eye
field and superior colliculus from primate
countermanding tasks (Hanes et al., 1998;
Pare and Hanes, 2003). Specifically, we
calculated the difference between mean
firing rates in canceled and noncanceled trials in 50 ms time
windows around the target onset and the stop signal onset for
each neuron. To maximize the number of canceled and noncan-
celed trials, we analyzed stop-signal trials with an intermediate
stop signal delay for both frontal eye field data (mean SSD � 161
ms from 16 movement neurons and 164 ms from 5 fixation neu-
rons) and superior colliculus (mean SSD � 157 ms from 26
movement neurons and 158 ms from 10 fixation neurons). To be
consistent with the experimental setting, we performed model
simulation for stop-signal trials with SSD � 160 ms and analyzed
data from 15 MOV and 15 FIX neurons. The group mean differ-
ence between the canceled and noncanceled trials during the 50
ms epoch around the target onset is not significant for the model
(paired Student’s t test MOV: t(14) � 0.0, p � 0.5; FIX: t(14) �
�0.10, p � 0.46) as well as for the frontal eye field (movement:
t(15) � �0.23, p � 0.41; fixation: t(4) � �1.66, p � 0.086) and
superior colliculus (movement: t(25) � 1.37, p � 0.09; fixation:
t(9) � 0.61, p � 0.28), whereas the difference is significant during
the 50 ms epoch starting at the stop signal onset for all data
(MOV: t(14) � 14.9, p 	 0.00001; FIX: t(14) � �24.1, p 	 0.00001
for model; movement: t(15) � 3.31, p � 0.002; fixation:

t(4)��2.12, p � 0.05 for frontal eye field and movement: t(25) �
7.3, p � 0, fixation: t(9) � �2.53, p � 0.016 for superior collicu-
lus) (Fig. 7C). We note that because of the 62 ms stop signal
latency, the assessed activity in the 50 ms window starting at the
onset of stop signal corresponds to that immediately before the
arrival of the stop signal to the measured neurons.

Attractor dynamics
The proposed model suggests that the probability of canceling a
saccade is affected by the interaction between MOV and FIX
neurons before the onset of the stop signal. To analyze the time
evolution of action selection in stop-signal trials, we plotted the
population firing rate of MOV neurons (rMOV) against the pop-
ulation firing rate of FIX neurons (rFIX) on a phase plane (Fig. 8).
We show the network activity in four epochs of the task: during
the fixation period (Fig. 8Ai), after the start of the go signal input
and before the offset of the top-down control input (Aii), after the
top-down control input offset and before the start of the stop
signal input (Aiii), and after the start of the stop signal input
(Aiv). To help analyze the dynamics of the network, we plotted
nullclines for MOV neurons and FIX neurons (see Materials and

Figure 7. Difference in the neural activity affecting behavioral outcome. A, Simulated population firing rates of MOV (black
lines) and FIX (gray lines) neurons on top of corresponding spike rasters (color matched dots) from two trials of model simulation
(top, a canceled trial; bottom, a noncanceled trial). Each row in the rastergrams represents the spike train from one neuron. The
vertical dashed line indicates the onset of the stop signal (SSD � 160 ms). Arrows indicate the offset of the top-down control. The
model suggests that a quicker offset of the top-down control results in a faster ramping-down activity of fixation neurons and a
faster ramping-up activity of movement neurons, thus increases the probability of making a saccade to the target. B, Probability
distributions of holding time periods in cancel and noncancel trials for SSD�160 ms. In�16% trials the top-down control was not
turned off before the stop signal onset (arrow). These trials are displayed in the shaded region. C, Mean firing rate difference
(noncanceled trials � canceled trials) for movement and fixation neurons in a 50 ms epochs around the target onset and a 50 ms
epochs starting at the stop signal onset. The model simulations, data from frontal eye field (FEF) and superior colliculus (SC) all
show similar trends: at the time around the target onset there is no activity difference between canceled and noncanceled trials. At
the time of the stop signal onset, fixation neurons have higher activity in canceled trials than in noncanceled trials, whereas
movement neurons show the opposite.
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Methods) (Wilson, 1999). During the fixation period, a strong
input to FIX neurons and no input to MOV neurons result in a
stable equilibrium point at a large rFIX and a small rMOV (Fig.
8Bi). After the start of the go signal input, because of the strong
input to MOV neurons and the reduced input to FIX neurons, the
MOV neuron nullcline shifts up and the FIX neuron nullcline
shifts down slightly, resulting in two stable (black circles) and one
unstable (gray circles) equilibrium point (Fig. 8Bii). The stable
equilibrium point at the upper left corner of the phase plane with
a large rMOV and small rFIX is defined as the GO attractor and the
stable equilibrium point at the lower right corner with a small
rMOV and large rFIX is defined as the STOP attractor. Since the
STOP attractor is the one closest to the original stable equilib-
rium point during the fixation period, the system simply moves
into the STOP attractor after the start of the go signal input and
maintains fixation. After the top-down control from the controlFigure 8. Phase plane plots demonstrate the attractor dynamics of the model network dur-

ing different epochs of the task. A, Four epochs (i–iv) in a stop-signal trial defined by time
windows separated by three events: start of the go signal input, offset of the control module
input and start of the stop signal input (SSD � 169 ms). B, Phase plane plots (the population
firing rate of MOV neurons, rMOV, vs the population firing rate of FIX neurons, rFIX) for the four
epochs of task. Black and red curves represent the nullclines for the MOV and FIX neurons,
respectively. A nullcline is defined by the steady states of rMOV (or rFIX) as a function of rFIX (or
rMOV) (see Materials and Methods). The interceptions between the nullclines determine the
equilibrium points (black circles: stable; gray circles: unstable) of the network. The brown curves
(canceled trials) and green curves (noncanceled trials) depict the trajectories of eight trials in

4

the corresponding epochs. Depending on the state of the system at the moment when the stop
signal input starts (indicated by the color matched circles), the network may continue converg-
ing into the GO attractor and trigger a response, or may turn back into the STOP attractor and
cancels the response. Dashed lines mark the threshold for the saccade response. Insets, Sche-
matic plots illustrating how the one-dimensional “action landscape” changes with stimulus
inputs.

Figure 9. Movement and fixation neurons develop negative correlation between their firing
activity with a faster time course in noncanceled trials than in canceled trials. A, Snapshots of
population firing rate of MOV (rMOV) versus that of FIX (rFIX) neurons at the onset of the stop
signal (SSD � 169 ms) from �400 trials show marked difference between canceled trials
(black circles) and noncanceled trials (gray squares). Each mark represents one trial. The activity
of the network can be well differentiated between the canceled and noncanceled trials at this
time point already. B, The coefficient of spike count correlations between 10 pairs of randomly
chosen MOV and FIX neurons as a function of time. Black and gray curves represent the average
across the 10 pairs of neurons for canceled and noncanceled trials, respectively. Error bars
indicate the SD. The noncanceled trials are associated with earlier onset of interaction between
the MOV and FIX neurons, whereas the interaction in canceled trials starts later. The vertical
dashed line marks the onset of the stop signal.
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module switches off, the STOP attractor disappears and the sys-
tem starts to converge toward the GO attractor, resulting in de-
creasing rFIX and increasing rMOV (Fig. 8Biii). When the stop
signal input is turned on, the STOP attractor and the unstable
equilibrium points reemerge (Fig. 8Biv). The unstable manifold
(dotted line) that passes through the unstable equilibrium point
divides the phase plane into two basins of attraction. Depending
on the basin the system state is in (to the right or left of the
unstable manifold) at the moment when the stop signal input
starts, the system may continue moving toward the GO attractor
and initiate a saccade, or may turn back toward the STOP attrac-
tor and maintain the fixation.

The state of the system at the moment of the start of the stop
signal input is determined by the history of the neural interaction
of the system before that moment as well as by the proactive
top-down control. If the top-down control is switched off early in
a trial, the system has more chance to move into the region to the
left of the unstable manifold when the stop signal is turned on
(Fig. 8Biii, iv, green trajectories). In contrast, if the top-down
control remains for a longer time, the system is likely to be still in
the region to the right of the unstable manifold when the stop
signal is turned on (Fig. 8Biii, iv, brown trajectories).

Neural correlate of top-down bias
The mutual inhibition between the FIX and MOV neurons im-
plies a strong negative correlation between the two populations
even before the stop signal appears. Figure 9A shows snapshots of
the state of the system (rMOV versus rFIX) at the onset of the stop
signal (SSD � 169 ms) from �400 trials. Trials in which the
activity of MOV neurons and FIX neurons start to develop neg-
ative correlation (rMOV increasing versus rFIX decreasing) early
tend to become noncanceled trials (gray: noncanceled trials,
black: canceled trials). We further investigated the time evolution
of the correlation between the activity of MOV and FIX neurons.
We calculated the coefficient of spike-count correlation, follow-
ing the procedure stated in the study by Zohary et al. (1994), from
500 trials for 10 randomly chosen pairs of individual MOV and
FIX neurons in a sliding window of 20 ms. We then averaged the
coefficients across the 10 pairs of neurons and plotted the average
coefficient as a function of time (Fig. 9B). The result shows that
the spike activity of MOV and FIX neurons become negatively
correlated earlier in noncanceled trials than in canceled trials.
Note that an observed negative correlation could either reflect
negatively correlated external inputs to the two populations, or
mutually inhibitory interactions between them, or a combina-
tion of both. In the countermanding task, the stimuli in the
canceled and noncanceled trials are identical, so the difference in the
spike count correlation reflects the mutually inhibitory interac-
tions between MOV and FIX neurons which are modulated by
the endogenous top-down control. The top-down control holds
longer in canceled trials, causing very little MOV neuron activity
that remains uncorrelated with FIX neurons, hence results in a
smaller spike-count correlation in canceled versus noncanceled
trials in the early part of a trial.

Effect of weakened top-down control
The persistent top-down inhibitory control is a unique feature in
our model. It is interesting to test how a weakened top-down
control at the neuronal level affects the behavioral outcome of the
countermanding task. To this end, we tested our model by reduc-
ing the input to neurons in the control module, which resulted in
a reduced input to the FIX neurons. This change produced �16%
and 8% decreases in the firing rates of control and FIX neurons,

respectively. Our simulation results show that the mean reaction
time for no-stop-signal trials became shorter and the probability
of noncanceled responses increased for stop-signal trials (Fig.
10). The result demonstrated that the baseline activity of fixation
neurons plays a critical role in inhibitory control. A slight de-
crease in the neural activity of fixation neurons results in a sub-
stantial impact to the behavioral performance in the counter-
manding task. Interestingly, the deficit of the inhibitory control is
not significantly reflected in the average SSRT, which is 95.7 ms
for the normal condition and 95.2 ms for the weakened inhibi-
tory control.

Discussion
We demonstrate a recurrent spiking neural network model of
inhibitory control for the saccade countermanding task. The
original race model was framed only by the finish times of GO
and STOP processes (Logan and Cowan, 1984). The recent inter-
active race model showed formally how a STOP unit can inter-
rupt a GO unit (Boucher et al., 2007). Neither model accounted
for the ongoing balance of activity of movement and fixation
neurons, which reveals new insights into how performance is
affected by the state of the network before the stop signal appears.
The model emphasizes the interaction between fixation and
movement neurons recorded in the frontal eye field and superior
colliculus, but it may also describe the inhibitory control that
substantia nigra pers reticulata in basal ganglia exercises on supe-
rior colliculus (Wickens, 1997; Hikosaka et al., 2000; Frank et al.,
2004; Aron and Poldrack, 2006; Frank and Claus, 2006; Aron et
al., 2007; Eagle et al., 2008; Isoda and Hikosaka, 2008).

Crucially, the model emphasizes the proactive, top-down
control driving the activity of fixation neurons and their interac-

Figure 10. Difference in the behavior between weakened top-down control and normal
control in the model. A, B, By reducing the activity of neurons in the control module, we show
that the simulated weak top-down control causes faster responses as indicated by cumulative
reaction time distributions of no-stop-signal trials (A) and a reduced performance as indicated
by the inhibition functions (B).
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tion with movement neurons before the stop signal onset. This
top-down signal probably originates in dorsolateral prefrontal
cortex, supplementary eye field, and anterior cingulate cortex
where neurons signal error, reward, and conflict (Stuphorn et al.,
2000; Ito et al., 2003; Stuphorn and Schall, 2006; Isoda and
Hikosaka, 2007; Johnston et al., 2007). In fact, intracortical mi-
crostimulation of the supplementary eye field modulates perfor-
mance of the saccade countermanding task (Stuphorn and Schall,
2006). One may argue that, instead of applying the top-down
control on fixation neurons, the same effect can be achieved by
applying a “reversed” top-down control on movement neurons:
the top-down control sends an excitatory input to movement
neurons after the target onset and then removes the input after
the stop-signal onset. However, according to this scenario, the
fixation neurons would be turned off immediately after the fixa-
tion signal offset and there would be no persistent activity in
fixation neurons in the gap saccade task, which is inconsistent
with the experimental observations.

The current model resembles the neural network model for
two-alternative choices (Wang, 2002; Wong and Wang, 2006).
However, the difference in the input time course results in fun-
damentally different dynamics in the two models. The decision-
making model network starts from a neutral state and the relative
strength of the two simultaneous inputs determines which attrac-
tor the network will converge into. The motor control model
network starts from one of the two attractors (STOP), and then is
driven by the target input into the other attractor (GO), whereas
the time course of the top-down signal stochastically determines
whether this transition will be canceled when the stop signal
appears.

The model replicates the probability of responding and reac-
tion times on correct and error trials and also the patterns of
neuronal activity observed in frontal eye field and superior col-
liculus (Hanes et al., 1998; Paré and Hanes, 2003). We found that,
before the stop signal, the firing rate of fixation and movement
neurons, respectively, decreases and increases faster in noncan-
celed compared with canceled stop-signal trials. The model made
a new prediction: the activity of movement and fixation neurons
becomes negatively correlated earlier in noncanceled trials than
in canceled trials. We demonstrated that adjusting the strength of
the top-down drive provides an effective mechanism for modu-
lating the amount of inhibitory control. The model offers a novel
view of inhibitory control based on nonlinear attractor dynamics.
Whether a response is triggered or canceled is mainly determined
by bistable dynamics and is relatively insensitive to the precise
value of the saccade threshold. However, saccade initiation time
is given by the time taken for the stochastic rise of activity to reach
that threshold. In other words, the choice (go or stop) can be
specified within the circuit before the behavioral response is
overtly triggered. This model may be applicable to inhibitory
control of motor movements in other neural systems and tasks
(Johnston and Everling, 2006; Narayanan and Laubach, 2006;
Isoda and Hikosaka, 2007).

The attractor network reproduces two key observations that
have been interpreted as evidence for the independence of the
GO and STOP process finish times. First, the reaction times of
noncanceled stop-signal trials do not exceed SSD � SSRT (Fig.
4). Second, the neural activity leading to noncanceled move-
ments in stop-signal trials corresponds to that leading to move-
ments in trials with no stop signal (Fig. 6B, D). The model repro-
duces these observations although the fixation and movement
units interact synaptically throughout a trial because the fixation
units potently inhibit movement units only �80 ms after the stop

signal. Before this instant, the activity of movement and fixation
neurons is identical between no-stop-signal and stop-signal tri-
als, giving the appearance of independence.

The model assumes that top-down control is exerted a vari-
able duration after fixation signal offset, consistent with the ac-
tivity patterns of candidate neurons possibly carrying this signal
in dorsolateral prefrontal cortex (Suzuki and Azuma, 1977;
Mikami et al., 1982; Tinsley and Everling, 2002) and dorsomedial
prefrontal cortex (Schlag et al., 1992; Bon and Lucchetti, 1992) as
well as of fixation neurons in superior colliculus and frontal eye
field (Munoz and Wurtz, 1993; Dorris et al., 1997; Hanes et al.,
1998). The duration of this control of the activity of fixation
neurons can explain why reaction times in the stop-signal task are
longer than typical visually guided saccades (Hanisch et al., 2006;
Stuphorn and Schall, 2006; Verbruggen et al., 2006) and may be a
means of adapting to trial history (Emeric et al., 2007). Critically,
the delay and variability of reaction time observed in saccade
countermanding could not be produced by the model network
without the top-down modulation of the fixation neurons, even
with random connectivity of the network or with lower Poisson
spike rate for the go signal input to the movement neurons. How-
ever, it remains to be seen, in future research, whether the re-
quired amount of variability can be realized with modifications of
network architecture and other circuit and neuronal properties.
The consequence of the top-down modulation is that the activity
of fixation neurons before the stop signal occurs will predict the
behavioral outcome; this was confirmed in the neurophysiologi-
cal data (Fig. 7).

Furthermore, weaker simulated top-down control resulted in
shorter mean reaction times, more erroneous saccades in stop-
signal trials but unchanged SSRT. This result is consistent with
performance of the saccade countermanding task by subjects di-
agnosed with ADHD (Armstrong and Munoz, 2003; Hanisch et
al., 2006), but manual countermanding may be different (Scha-
char and Logan, 1990). The lack of sensitivity of SSRT to the
precise level of the top-down input signal occurs because the
synaptic interactions between fixation and movement neurons
are highly asymmetrical, predominated by inhibition of move-
ment neurons by fixation neurons. A slightly reduced top-down
control is still strong enough so that when the stop signal is
turned on, the fixation neurons can immediately suppress move-
ment neurons, resulting in an unchanged SSRT. It is conceivable
that if the dynamic interaction between movement and fixation
neurons is more symmetrical, then a change in the strength of the
top-down signal would lead to a modification of behavioral
SSRT.

The attractor network model can be tested and extended in
several ways. First, it would be interesting to assess whether opti-
mization of performance can be achieved by varying the initial
activation level of movement and/or fixation neurons by adjust-
ing the top-down control signal or by changing the duration of
the holding period (Wilimzig et al., 2006; Wong et al., 2007).
Second, it will be informative to separately manipulate the
stimulus-driven input and the internal top-down input to fixa-
tion neurons and assess their effects on inhibitory control, for
instance by using a peripheral visual stop signal, in which its
sensory input goes into movement neurons rather than the fixa-
tion neurons (Asrress and Carpenter, 2001; Armstrong and Mu-
noz, 2003). One can also investigate the effect of truly endoge-
nous inhibitory control by removing the sensory stop signal and
using a self-controlled stopping paradigm (Brass and Haggard,
2007). Third, the neural circuit of the control module endowed
with persistent activity must be modeled. Finally, the model can
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be extended to include the effect of trial history on the saccade
reaction times (Dorris et al., 2000; Emeric et al., 2007) by imple-
menting plastic synapses in the circuit of the control module that
are updated in a manner that depends on the outcome of the
current trial (Soltani and Wang, 2006; Fusi et al., 2007).

In conclusion, this framework for understanding inhibitory
control in terms of attractor dynamics of a recurrent spiking
neural network driven by a proactive top-down signal is notable
in several respects. First, the nature of the spiking neural model-
ing enables us to address issues such as neural firing activity and
synaptic mechanisms underlying inhibitory control. Second, the
model indicates that inhibitory control of action includes not
only a reactive inhibitory signal driven by the presentation of the
stop signal but also a pro-active persistent inhibitory signal pre-
ceding the stop signal. Third, the recurrent network model is
endowed with attractor dynamics. The attractor mechanism un-
derlying competition between choice alternatives is similar to a
model for perceptual decision making (Wang, 2002; Wong and
Wang, 2006), except that here the decision is about whether to act
or not. Fourth, the original formal race model and the proposed
spiking network model describe inhibitory control at very differ-
ent levels. Reproducing behavioral performance and firing
properties of individual neurons at the same time, this model
represents an important step in translating between the cognitive
theory and the neurophysiology of countermanding action.
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