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Abstract. Although spike-frequency adaptation is a commonly observed property of neurons, its functional im-
plications are still poorly understood. In this work, using a leaky integrate-and-fire neural model that includes a
Cat-activated K- current (anp), we develop a quantitative theory of adaptation temporal dynamics and compare
our results with recent in vivo intracellular recordings from pyramidal cells in the cat visual cortex. Experimentally
testable relations between the degree and the time constant of spike-frequency adaptation are predicted. We also
contrast thd oup model with an alternative adaptation model based on a dynamical firing threshold. Possible roles
of adaptation in temporal computation are exploredaa time-delayed neuronal self-inhibition mechanism. Our
results include the following: (1) given the same firing rate, the variability of interspike intervals (ISIs) is either
reduced or enhanced by adaptation, depending on whethexthelynamics is fast or slow compared with the

mean ISl in the output spike train; (2) when the inputs are Poisson-distributed (uncorrelated), adaptation generates
temporal anticorrelation between ISls, we suggest that measurement of this negative correlation provides a probe
to assess the strength bfp in vivo; (3) the forward masking effect produced by the slow dynamick.g# is
nonlinear and effective at selecting the strongest input among competing sources of input signals.

Keywords: spike-frequency adaptation, calcium-activated potassium current, integrate-and-fire neuron, variabil-
ity, correlation, forward masking

1. Introduction to measuring and quantifying spike-frequency adapta-
tion of visual cortical neurons of the anesthetized cat.
The evoked spike discharges of a neuron depend crit- These authors found that the adaptation time course
ically on the recent history of its electrical activ- to a constant input is well described by a single ex-
ity. A well-known example is the phenomenon of ponential decay to steady-state, characterized by an
spike-frequency adaptation that is observed in a ma- adaptation time constam{yap and the degree of adap-
jority of pyramidal cells in cortical slice prepara- tation Fagap= (initial rate—steady-state rate)/initial
tions (Connors et al., 1982; McCormick et al., 1985; rate. Ahmed et al. observed that the valuesrfy
Mason and Larkman, 1990; Foehring et al., 1991; andFagapcorrelate significantly with cortical depth and
Lorenzon and Foehring, 1992). However, it remains that superficial-layer neurons adapt more rapidly and
unclear is how strong the neuronal adaptation is of to a higher degree than deep-layer neurons. Adaptation
those cellsin the intact brain and what is its role in neu- is fairly strong in superficial-layer neurons, with the
ral computation at the single cell and network levels. steady-state firing rate being about only one-third of
A recent study by Ahmed et al. (1998) is devoted the initial firing rate. The cellular origin of these
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differences between different cortical layers is not well modulation of neuronal response time-varying in-
understood. puts in contrast to previous modeling work (Douglas
The spike-frequency adaptation process is presum- et al., 1995; Barkai and Hasselmo, 1994), whiyig
ably due to the activation of several differention chan- was incorporated as static gain control. Our basic
nels, each with its own characteristic time constants, observation is that the Ea-mediatedl ap Subserves
activation thresholds, and so on. The observations by a time-delayed inhibition to the neuron itself, which
Ahmed (1998) were made over the first 300 ms of the gives rise to a number of interesting computational ef-
adaptation process, where the major changes in firing fects. When the input is Poisson, even in the steady
rate occur. During this period adaptation in both hip- state after the adaptation onset the adaptation mecha-
pocampal and neocortical neurons is dominated by a nism is still operative dynamically; it affects the vari-
slow C&*+-dependent K current (anp) and to alesser  ability of the spike train and creates negative tempo-
extent an M-type K current (Madison and Nicoll,  ral correlations in the output. The interplay between
1984). Calcium influx is triggered by action poten- the time constant ofayp and the mean ISl is crucial
tials, and the rise in intracellular &a activates the in determining howl anp affects the variability of the
lanp that slows the discharge rate. We have previ- output spike train. Moreover, as a mechanism of tem-
ously studied a conductance-based pyramidal neuronporal interaction between responses to different input
model endowed with ahaqp, and we showed how  signals, thelanp enables the cell to differentiate the
the observations by Ahmed et al. could be accounted signals and selectively respond to the strongest input
for in term of the membrane and calcium dynamics amongst competing input signals (Pollack, 1988; Sobel
(Wang, 1998). The conductance-based model, how- and Tank, 1994).
ever, cannot be solved analytically. Inthe presentwork,
we use an integrate-and-fire (I&F) model (Lapicque,
1907, 1927; Tuckwell, 1988), which is widely uti-
lized for large-scale network studies (Knight, 1972;
Amit and Tsodyks, 1991; Somers et al., 1995; Abbott
and van Vreeswijk, 1993; Hansel et al., 1998; Brunel,
2000). We generalize the I&F model to include #Ga
activated K currentand carry out athorough analytical dVi,
treatment of the model. In particular, we deriggap me = —0L(Vm — Viest) + CnAV ZS(I —t).
andFaqapin terms of the biophysical parameters of the !
model and predict experimentally testable relations be- 1)
tweentagapandFagap. Our results suggest possible ex- o .
planations for the differences among neurons of differ- If Vm> Vin, then a spike is discharged alid is reset
ent cortical layers as observed by Ahmed et al. (1998). 10 Vreser Cnm i the capacitancey is the leak conduc-
We also consider an alternative model where adap- tance, and; 5(t — t) represents a Poisson train of
tation is generated by an activity-dependent dynamical Synaptic inputs with a ratein Hz (Stein, 1965). Each
firing threshold (Holden, 1976). In pyramidal neu- ~ Synaptic input produces a quantal excitatory postsy-
rons, an increase in voltage threshold has been occa-Na@ptic potential of size\V = 1 mV. Note that the
sionally observed experimentally in association with delta-function description of synaptic inputs does not
firing-frequency adaptation (cf., for instance, Fig. 4(B) take into account realistic time courses of synaptic cur-
of Mason and Larkman, 1990). It is not clear which rents. However, the results presented in this article do
of the two factors contribute the most to the observed Not depend on this simplification. The average current
physiological data of spike-frequency adaptation and resulting from the Poisson synaptic input is given by
how these two scenarios may be differentiated experi- I =CnAVA.
mentally. We report that although these two adaptation
models show some similarities, there are important dif- 2.2. Spike-Frequency Adaptation
ferencesthat can be usedto distinguish these alternative
mechanisms. Spike-frequency adaptation is modeled based on the
We have explored possible computational implica- assumptions that it is produced mainly by a?Ga
tions of spike-frequency adaptation. We focused on its gated K" currentlayp (Madison and Nicoll, 1984).

2. Methods
2.1. The Leaky Integrate-and-Fire Model

For a leaky integrate-and-fire model,
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Experiments using photolytic manipulation of €a We also investigated an alternative, voltage threshold
suggest that the intrinsic gating bfye is fast, thusits ~ model, based on the assumption that adaptation is due
slow activation is due to the kinetics of the cytoplasmic to a gradual increase of the voltage firing threshold
Ca* concentration (Lancaster and Zucker, 1994). Let (Holden, 1976; Koch, 1999). The model obeys the

Iavp = danp[C&T](V — Vk). Each action potential
generates a small amouiat)(of calcium influx; hence

| anpis incremented accordingly. Note thigip[Ca?']

is the effective K conductance and that the product
aganp is the amount oAHP-conductance increase by
the increase of cytoplasmic &aconcentration through

a single spike. The modified integrate-and-fire model
with adaptation is given by

dv,
Cr—2

dt = —0L(Vm — Viest) + CnAV iZ(S(t —t)

—0arP[C& ] (Vim — Vk) (2
d[Ca+ cat
el feed ®
TCa
Vin = Vieset
If Vin(t) = Vin, then (4)

[Ca®'] — [Ca®"] + a,

where the Ca?*] dynamics is modeled as a leaky in-
tegrator with a decay time constamnt, (Traub, 1982).
[Ca?*] is initially set to be OuM (its resting baseline

is neglected). Similar models have been used previ-
ously (Treves, 1993; Stemmler et al., 1995; Troyer and
Miller, 1997).

For a given neuron type, Each of the model pa-
rameters can be estimated by experimental data. In
the case of cortical regular spiking pyramidal neu-
rons: (a) Cn=0.5 nF, g. =0.025 uS (the input
resistanceR, =40 MQ) so that the time constant
m=Cm/gL =20 ms, and the resting membrane po-
tential Viest= — 70 mV (McCormick et al., 1985).
(b) The firing thresholdV;p = —54 mV (Mason and
Larkman, 1990). (c) The slope of thé-1 curve
(at largel and with gayp=0) is given by ¥(Cn9),
whered = Vin — Vieset We ch00S&V,gset= —60 mV
(¢ =6 mV) so that the slope is about 330 Hz/nA, com-
parable with the primaryf-1 data (measured before
the adaptation onset) (McCormick et al., 1985; Mason
and Larkamn, 1990). (d) th&Cfg?t] influx per spike
a = 0.2 uM, and tca = 50 — 600 ms (Helmchen
etal., 1996; Svoboda et al., 1997). (R)p is a param-
eter that is varied in simulations. Typically we used
ganp = 0.015 mS/cr (with Vx = —80 mV) so that
the degree of adaptation is comparable with the data of
Ahmed et al. (1998).

following equations:

dVvi

Cm—ge” = ~9(Vm — Viest) + CmAV Z 5t —1t)
(5)

de 0 — 6o
= = . 6
dt To ( )

\Y Vi

If Vin(t) = Vi, then ] ™ reset )

6 — 0 +ao,

where, again,f = Vi, — Viesey 6 IS increased by
a’=0.1 mV with each spike, and it decays back to
the original valuefy =10 mV with a time constant
79 = 80 ms between spikes.

2.3. Spike-Train Analysis

A spike train is converted into a sequence of ISIs
{Aty, Aty, ..., Aty). Ifitsmeanis denoted as At >,
then the average firing rate fs= 1/ < At >. The vari-
ance of ISIs is defined as

1 N
VAR= Y (At — < At >)?, (8)
i=1

and coefficient
Tuckwell, 1988;
1996)

of varianceCV as (Stein, 1967;
Softky and Koch, 1993; Holt et al.,

~/ VAR

CV = .
< At >

9)

For spike trains that undergo frequency adaptation,
both < At > andCV evolve in time. We calculated
their time-dependent values as follows: time is divided
into bins ofdt = 1 ms. For each trial of Poisson input,
we assigned each ISl into the bin (séyt +dt)) where
the first of the spike pair occurs (the results are similar
if the choice is based on the second of the spike pair).
The simulation was run over many trials (typicaly=
300), from which a collection of ISIs is accumulated for
each time bin. Then the averageAt > (t) andCV(t)
are computed at that time. The mean instantaneous
firing rate isf (t) = 1/ <At >(1).

We analyzed the temporal correlations between ISIs
only in the stationary state after the average firing rate
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reaches its adapted steady-state value<Lat > and A
CVbethe stationary values. The correlation covariance ol
CORRbetween consecutive ISIs is defined as
1 N1 SE\ 20
CORR= —— (At — < At >) N
N-—-14 >
X (Ati1 — < At >), (10) ‘6"
g0
and coefficient of correlatioBC = CORR/VAR Note B
thatCCis between-1 and 1. For a Poisson process— :
in fact, for any renewal process—there is no correlation 0 3001 _‘i"}zzi;’"’""
between consecutive ISls; therefo@C = 0. by
Anotherway to visualize correlations between ISIsis &
to use an ISl return map, in which easf , ; is plotted ;§ .
versus the precedingt;. We also found it useful to *
plot the conditional average aft; , ; for eachAt;. This 100
function of At; can be superimposed on the ISl return
map. In fact, there is a direct connection between this 151 s .
function and th&C: if the conditional average aft; 1
is a linear function ofAt;, then the slope of the linear S 101
curve is equal tecC (Wang, 1998). = _ i’l’é‘;"’”""
The model was numerically integrated using a  '§ .| K
fourth-order Runge-Kutta method (Press et al., 1989), h
with time stepdt = 0.01 — 0.02 ms. wodd
3. Results 1P .
> 06 . :D;: :“?";& .:e
3.1. Dynamical Properties of Adaptation § i" «
Time Course §” ’
In response to the stochastic synaptic input with a rate E
A = 2500 Hz, the instantaneous firing rate of the adap- 031 : : : : ‘
tation model decreases exponentially in time from an * rime (msfo . 0
initial firing rate to a steady-state firing rate withachar- ) ) -
acterstic tme constantas shown in Fig. IA-8a ] F0U% . Siuon este o aapiaon e couse e
increases upto aplateau level withthe same time COUrS€ate s, = 2500 Hz. B: The trial-averaged instantaneous firing rate
(Fig. 1(C)). decreases in time exponentially with a characteristic time constant

Theoretically, we can derive the adaptation time con- tadap C: The intracellular Ca2*] level builds up with the same time
stant Tadap by a fast-slow variable analysis (Rinzel, course.D: The adaptation process is also associated with an increase
1985, 1987; Wang and Rinzel, 1995; Guckenheimer °' 'Stvariability intime. {rca = 50 ms.)
et al.,, 1997; Wang, 1998; Ermentrout, 1998). The

method is based on the observation that the change ) . . .
in [Ca2"] is slow compared with that iV, so that solved like Eqg. (1), and the firing ratk is a function

the slower Ca?*] dynamics (hence frequency adapta- ,Of both i_nput drive and([,a2+].. For suff_iciently Igrge
tion) can be solved by averaging over the faster volt- input drive |, the f-1 curve is approximately linear.
age subsystem. This is done in three steps. First, the/S & consequence, we found that the dependen_(fe of
slow variable Ca2'] is treated as a parameter, and then ©" [Qa2+] could also be well approximated by a linear
Eq. (2) for the membrane potential is just a standard relation,

integrate-and-fire model, with an additional “leak cur-

rent” |app = ganp[CaT](V — Vk). This equation is f([C&)) = fint — G[CaT], (11)
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whereG; is a derived constant (Appendix A). In the
second step, after averaging over the fast varighle
the equation for the slow variabl€§*] becomes

dica) _ . [Cé]
dt ol TCa
= afinit — (Gadap+ 1/7ca)[CET],

(12)

where Gadap=aGr.
yields

Solving this linear equation

[Ca?'] (1) = [CaT]ss (1 — €XP(—t/Tadap),  (13)

With 1/ Tadap= Gadap+ 1/7ca. Finally, in the third step,
by inserting Ca?*](t) into Eq. (11), we obtain the time
course for the spike-frequency adaptation:

finit — G+ ([Ca2+]ss(l — eXP(—t/Tadap)))
fss+ (finit — fs9) €XP(—t/Tagap)- (14)

f)

A detailed mathematical derivation using this proce-
dure is given in Appendix A.

This way, we were able to obtain an analytical ex-
pression for the adaptation time constant

1 -1
Tadap = [‘[_ + Gadap , where
Ca

V -V 1
O‘gAHP< reset K i _). (15)

Cm

G =
adap 0 2

Therefore tagapis a simple function ofc, (the [C&t]
decay time constant) andgaqp (the increment of
K* conductance per spike). This result shows that
Tadap IS @lways smaller than the calcium decay time
constantrc,. When calcium dynamics is very slow
(zca very large), the adaptation process may still be
fast (with small tagap) because the dominant term
in the equation is controlled bygayp. For exam-
ple, with our reference parameter $&qap=0.023.
From Eq. (15) we haveagap = 23, 35.7, 41.7 ms, if
Tca = 50, 200, 1000 ms, respectively.

Thus, the €a?*] and spike-frequency adaptation
time course are given by Egs. (13) and (14) with
Tadap= 23 Ms, the steady stat€ §27] = 1.43 1M, the
initial firing rate fj,; =308 Hz, and the final steady-
state ratefss= 143 Hz. The theoretically derived time

courses are superimposed on the simulation data in

29

Fig. 1B—C for the instantaneous firing rate and intra-
cellular [Ca&?*]. The agreement between the analyt-
ical and numerical results is remarkable, given that
with ¢4 = 50 ms andr,, = 20 ms in the parameter
set the assumed separation of fast-slow time scales is
quite crude. The input amplitude and other parameters
were adjusted so that the range of frequency adapta-
tion was comparable with in vivo recording data from
cat visual cortex by Ahmed et al. (1998, Figs. 4-5).
The good fit by a single exponential to the adaptation
time course in the experimental data is similar to the
model.

We also calculated the coefficient of variation for
the ISIs as a function of tim&€WV(t). The output ISI
variability increases at the onset of adaptation as shown
in Fig. 1D, with a time course similar to that of the
decrease in firing rate. This monotonic increase in the
variability at the onset of adaptation is a characteristic
of the lapp mechanism and will be further discussed
later in this article.

3.2. Degree of Adaptation

The degree of adaptatiofr{y,p) is defined as the ratio
of the change in the firing rate during adaptatidgi; —
fso) to the initial firing rate before adaptatiofi;;:

finie — f
Fadap = init SS' (16)

finit
With our parameter seEagap ~ 54%.
Fadap depends on two factors: the strength of adap-
tation (determined by the produetganp, and a is
fixed in the following discussion) and the €akinet-
ics (determined byc,). We investigated the effects of
these two factors offraqap SEparately. First, we vary
the adaptation conductanggyp, while fixing the cal-
cium kinetics ¢ca). With a largeganp, We expect a
strong adaptation (largEadap) and the steady state to
be reached quickly (smathqap). Conversely, ifgaqp
is small, we expect the adaptation effect to be negli-
gible (Fagap — 0), and since the firing rate is almost
constant in timezagap — tca according to Eq. (12).
In other words Fagap andzagap are predicted to vary in
the opposite manner. Indeed, it can be proved that with
a fixed C&* kinetics, a simple negative linear relation
exists betweeffFagap andradap (Appendix A):

Tadap
Fadap=1— —
Ca

17)
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Figure 2 Linear relations betweeRygap andzca. A: A negative
linear relationFagap = 1 — (tadap/Tca) Whengapp is varied. B: A

positive linear relatioffFagap = GadaptadapWhentca s varied. Solid
lines: theoretical predictions; filled circles: simulation datga(=

100 ms.)

This theoretical prediction was checked by simula-
tions. We found that the simulation results fit well
with the theory. Asganp is varied from zero to a
large value,tagap and Fagap change fromragap= 7ca
andFagap = O (slow and weak adaptation) tgyap = 0
and Fagap = 1 (fast and strong adaptation), along a
linear curve (Fig. 2A).

Second, we study the effect of differentCinet-
ics with a fixed strength of the adaptation conductance.
With a slow C&" kinetics (largercs), we expect a
slow (largetadap) but strong adaptation (larg€.dap),
since the steady stat€§*] is high with slow C&*
decay, thus inducing a largaqp. Conversely, a fast
Ca decay (smalkc,) induces fastfagap — 0) and
ineffective (Fagap — 0) adaptation since there is lit-
tle C&" accumulation. Therefore, in this cabggap
and ta4ap are predicted to vary in the same manner.

By substituting ¥tca = 1/Tadap— Gadap(EQ. (15)) into
Eqg. (17), we have an positive linear relation between
Fadap and Tadap-

I:adap = Gadapfadap (18)

The slope of the linear function is controlled by the
factor Gadap Which is proportional teegapp. The sys-
tem ranges from a fast and weak adaptatiQg.p = O
andFagap = 0) to a slow and strong adaptatiofdap =
1/Gadap = 50 ms andFagap=1). Note that asca
is varied from zero t0o, tadap is varied from zero
t0 1/ Gadap (hereGagap= 0.023). Again, the theoret-
ically predicted relation fits well with simulation data
(Fig. 2B).

3.3. Dependence afgap0n Input Drive

The analytical expression fagqap (EQ. (15)) does not
depend on the input curreht On the other hand, ex-
perimental data (Ahmed et al., 1998, Fig. 5) and sim-
ulations of a conductance-based model (Wang, 1998)
showed thatagapis a weakly increasing function of
This discrepancy can be reconciled if Eq. (11) is under-
stood as valid for the range of larjevalues where the
f-1 curve is approximately linear. At smdllvalues
and low firing rates, we have to use the nonlinedrre-
lation (EqQ. (32)). As shown in Appendix A, in this case
we can still deriveragapbased on the fact thaCp®*]is
small in this regime. We found the same expression as
Eq. (15), except theBagap(l ) now depends oh and is
proportional to the slope of the unadaptéd curve.

For injected current inputs, this-1 curve’s slope de-
creases with (Eq. 32); so doeSadap Consequently,
Tadap iNCreases with , and at largd it converges to

a plateau level given by Eg. (15) (Fig. 3A). However,
for the 1&F model the range of values over which
TadapVaries considerably is quite small (Fig. 3A), unlike
conductance-based models (Wang, 1998). Siagg
depends on the slope of thie | function (Appendix
A), the steepetagap curve for the I&F model is proba-
bly related to a steeper slope of thel function for the
I&F model than for the conductance-based model, at
low firing rates. For example, if the input is a constant
injected current with a firing threshold, the slope of
the f-1 curve behaves like1/((I — o) (In(1—1¢/1))?)

for the I&F model and like~1/./(I — I¢) for the
conductance-based model considered in Wang (1998)
(see also Ermentrout, 1998).
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A other hand, if the adaptation is weak (Fig. 4A), the to-
tal increase i is small compared withy. Thenf (9)
can be linearized, the adaptation time course can be
20! approximated with a mono-exponential, and an adap-
tation time constant can be explicitly derived. In partic-
ular, with the synaptic inputs converted into an equiv-
alent currentef, Tadapis given by

25

Tagap (MS)
-
@

1 ol ]
or Tadap= | — 19
adap |:7:9 Cm93:| ( )
5,3 o5 o7 Y] 25 73 With lef = | — g(Vreset— Vrest). Note that, in contrast
Injected Current (nA) to thel app model, the adaptation time constant strongly
depends on the input amplitude addcreaseswith
B larger input drive over a broad range (Fig. 3B).
80 The adaptation time coursesténd f are given by
0(t) = 6o + Abss(1 — &/70) (20)
70 ¢ f(t) = fss+ (finit - fss)eit/radap» (21)

Tagap (MS)

with  finy =350 Hz, fss=265 Hz, and ragap=

60 60.6 ms. The theoretically derived time courses for
f (t) andé(t) are superimposed on the simulation data
in Fig. 4A. The degree of adaptation has a similar re-
lationship withtagap as in thel aup model

50 L . . . .
0.5 1.0 1.5 2.0 25 3.0

Injected Current (nA) fo— f Tad
. . . . . Fadap = o se =1- z ap' (22)
Figure 3 tagap is dependent on the amplitude of the input drive. finit Ty

A: For thel anp model, zadap is an increasing function of the ampli-
tude of the input drive (Eq. (41)); itapproaches the input-independent  For the threshold model, as the firing rate decreases
value determined by Eq. (15_) asymptotically with large input d_rive. in time, the ISICV(t) may either decrease (Fig. 4A,
B: Forthe threshold adaptation modeysp decreases strongly with 1,161 anel), increase (not shown), or first decrease
the input drive over a wide range (Eq. (19)). . .

rapidly and then increase slowly to a steady-state value
(Fig. 4B, bottom panel). This is in contrast with the
| anp Model, for whichCV always increases monoton-
ically in time (cf. Fig. 1D). This difference between
these two adaptation models will be further examined
in the next section.

3.4. Adaptation Time Course for the Threshold
Model

We also simulated and analytically studied the scenario

where spike-frequency adaptation is produced by a dy-

namical voltage threshold. Inthis case, thefiringfate 3.5. Time Course of the ISI Variability: Comparison
depends on the threshaldn a nonlinear manner, and Between the Two Models

the nonlinear averaged equation for the slow variable

0 (t) does not yield a mono-exponential time evolution. For either thd ayp model or threshold model, the spike-
In addition, we found that the threshold model usually frequency adaptation time course may be viewed in
does not display sufficiently strong adaptation compa- terms of sstandardntegrate-and-fire neuron with a pa-
rable with the data from cortical pyramidal neurons, rameter (Ca"] or 6, respectively) increasing slowly
unless the change in voltage threshold is large. For from aninitial value to a steady-state value. Therefore,
instance, in Fig. 4B the instantaneous firing rate is de- in order to understand the time evolution of t6&
creased fromfi,y ~ 200 Hz to fss >~ 50Hz, as the during the adaptation process, we considered how the
threshold is increased from 3 mV to 15 mV. On the CV of a standard integrate-and-fire model depends on
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Figure 4  Simulation results of adaptation process for threshold motieMhen A6 « 6o, there exists an adaptation time constant that is
dependent on the amplitude of the input drive. Threshold appro#ghesth the same adaptation time constant. TBevariability always
decreases during the adaptation process when the input drive is strong enaughl@ mV,« = 0.1 mV.) B: When# goes through a very
broad range, the adaptation time course can no longer be fitted with a single time col®itaatiability shows complicated changes; it first
decreases rapidly and then increases slowly to steady-state vglue 3(mV, « = 2 mV.)

the value of the slowly varying parameteC@2*] or neuron functions like an integrator with smaller out-
6). TheCV of a Poisson input spike train is 1. For the put variability. With a low firing rateVm decays back

integrate-and-fire model driven by Poisson inputs, due to aboutV;es; between synaptic inputs, and spikes are
to the integration effect, th€V of the output ISIs is  triggered more likely by temporally coincident inputs

always less than 1. With a given threshéldhe vari- than by integration of inputs over time. Thus the neu-
ability of ISIs decreases smoothly from 1 {6AV /8 ron functions as a coincidence detector with a larger

as the firing rate increases from zero to infinity (Softky output variability.

and Koch, 1993) as shown in Fig. 5A. This is because ~ For the Ianp model, we observed that during the
the higher the firing rate, the less passive decay for the adaptation proces8V increased in time with a time
membrane voltage. Thus, with a high firing rate the course similar to that of the decrease in the firing rate
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Figure 5 Variability of thelSls of the I&F model.A: For different thresholds;V decreases smoothly from 1 {6AV/6 as the mean firing
rate increases from zero to infinitB: WhenCV s plotted versus input rate the curves for different thresholds intersect with each other. Thus
an increase in the threshold may lead to different time cours€¥/ofype (1), when the input drive is weakSI variability increases. Type
(I1), 1Sl variability first decreases and then increases. Type, with a large enough driviS| variability always decreases monotonically.

(Fig. 1D). This can be explained by considering Fig. 5A
for the integrate-and-fire modeCVis a monotonically
decreasing function of the firing rate.

By contrast, for the threshold modélV may de-
crease or evolve nonmonotonically in time as the firing
rate f is reduced by adaptation (Fig. 4). This finding
can be explained as the following. Tv@\V-versus<
curves with different values do not cross with each
other (Fig. 5A). Thatis, with a fixed firing rate, the neu-
ron with a smaller threshold displays a larger ISI vari-

the inputrate. rather thanf , theCV curves with differ-
enté values intersect with each other (Fig. 5B). Con-
sider, for instance, two curves with =10 mV and

6, =3 mV (filled square and circle in Fig. 5B). Tlte
curve starts at a larger value than the, curve be-
cause with a larger threshold a stronger input drive is
required to trigger repetitive discharges. Atthe onset of
the 6, curve, the firing is Poisson-like with@V ~ 1,
larger than theCV for 6, at the same.. On the other
hand, at sufficiently large values, we know that the

ability (because less integration of inputs is needed to neuron must fire more regularly with a larg&rthus

reach the firing threshold). However, if plotted against

CV is smaller with6; than with6, (CV— /AV/6).
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Therefore, the two curves fey andd, must intersect

at least once. A$# increases during adaptation, the
time course ofCV(t) is equivalent to moving along
the vertical line labeling the same input rate, from a
curve (corresponding to the initia}) to another curve
(corresponding to the increaséd) (Fig. 5B). As a
consequencé&;V may either increase or decrease dur-
ing the adaptation process, depending onédhand

0ss values and the input rate. If A is smaller than
the intersection point of the two curveSY increases
monotonically during the adaptation process. But with
a sufficiently large input rates.(= 3500 Hz as in
Fig. 4A),CVmonotonicallydecreasesThe nonmono-
tonic time course shown in Fig. 4B can be interpreted
by considering Fig. 5B withh. = 1500 Hz (used in
Fig. 4B). Along this vertical line, a8 increases from

3 mV toward 20 mV,CV first decreases and then in-
creases in time, thus exhibiting a honmonotonic be-
havior.

B

T, =0 ms

T,=10ms

3.6. Temporal Statistics of Spike Trains in
Stationary State

The trial-averaged firing rate eventually reaches a
steady-state level after the transient adaptation process.
However, even in this stationary state, in each trial the
Poisson input varies randomly in time; therefore, the
neural firing pattern is still modulated by the dynamics
of lanp. We shall now discuss the effects of thgp on

the temporal structure of spike trains in the stationary-
state situation. For comparison, let us first consider the
case when there is no adaptatige{p = 0). Asample
spike train is shown in Fig. 6A (upper panel); its statis-
tical properties are characterized by an ISI histogram
and an ISI return map. The ISI histogram is simple
(can be approximated by a Gamma function) as shown
in Fig. 6A (middle panel), with an average ISI16 ms
andCV = 0.61. The ISIreturn map, where ed&i; . ;

is plotted versus its preceding vall®;, describes the

c
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Figure 6 Adaptation can alter the temporal structure of the output spike train. All spike trains have the sami&imealt ms. Upper
panel: a typical spike train; middle panel: 8 histogram; lower panel: thiSI return map and the conditional meani8f; ., for ISI; (solid
curve). A: When there is no adaptation, there is no correlation between consel&itivas indicated by the flat conditional average curve.
B: With gapp = 0.02 andrca = 10 ms, thdSl histogram is narrower with a small€V. There is negative correlation between consecuSie

C: With gapp = 0.02 andrca = 200 ms, thdSlI histogram is broader with a larg@V. The negative correlation between consecut$s is

even more pronounced.
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temporal relations between consecutive I1SIs (Fig. 6A,

lower panel). The solid curve is the conditional aver-

age oflSl;, 4, calculated for eaclSl; value. The fact

that it is a flat function ofSI; (CC =~ 0) means that the

expected value dfSl;,; is independent ofSl;—that

is, there is little correlation between consecutive ISls

when the input is Poisson and temporally uncorrelated.
By contrast, with firing-rate adaptatiogsyp # 0),

the spike firing patterns are modulated by the dynam-

ics of thelaqp in an interesting manner (Fig. 6). In
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increased) ifc, is small (respectively, large) compared
with the mean ISI (Fig. 7A, left panel). (The con-
trol case without adaptation correspondsd¢g = 0.)
These observations can be understood as follows. With
alargerc,, in the steady state the med®d®*] reaches

a steady-state levelCla?*]ss, and the mean plateau
ganp[Ca?t]ss acts as a “leak” conductance. The in-
crease in theCV can then be explained by a signifi-
cant reduction of the effective membrane time constant
1/t = 1/Tm + anp[Ce*]ss/ Crm (cf. Eq. (30), Ap-

all three cases of Fig. 6, the steady-state mean ISI pendix A). For example, in Fig. 10a+]ss= 1.43 M,

(~16 ms) was maintained to be the same by adjust-
ing input ratel values. We found thatV can be either
reduced or increased by the €amediatedl app, de-
pending on the ¢a?*] decay-time constantc,. If

Tca IS short compared with the mean ISI of the spike
train, the spike train is modulated to kessvariable
during steady state. An example with;=10 ms is
shown in Fig. 6B, with a much more regular spike train
(upper panel) and a narrower ISI histogram (smaller
CV=0.41, middle panel) than in Fig. 6A. On the other
hand, if zc, is much larger than the mean ISI of the

7y, = 11 ms whilery, = 20 ms; thus the time constant is
reduced almost by 100%. Thus the cell functions more
like a coincidence detector, and the output spike train
has a large€V. On the other hand, with a smatit,,
[Ca?*] decays greatly between spikes ajgp cannot
accumulate intime, and there is negligible net decrease
in the input resistance. Instead, the rapid adaptation
dynamics suppresses clustering of spikes (which is as-
sociated with the ISI variability whegayp = 0), so
that the spikes become more evenly distributed in time
(Fig. 6B) andCV is smaller than without adaptation.

spike train, the neuronal discharges in steady state are Therefore, there is a critical value af, above

more random and Poisson-like, as illustrated by the ex-

ample in Fig. 6C withrcy =200 ms, where the spike
train is quite irregular and the ISIH becomes almost
exponential (Poisson-like) with large&rV = 0.74.
Furthermore, significant temporal correlations in the
spike train are created by the £amediated app. As
shown by the ISI return maps (Fig. 6B—C, lower pan-

which the steady-stat€V is larger with the adapt-
ing Ianp than without it. This criticakc, was found

to be insensitive to the adaptation strengtaue),
though a largemaqp yields a greater change in the
CV (data not shown). On the other hand, this crit-
ical tc4 depends strongly on the mean ISt At >)

of the spike train. For instance, it is about 75 ms

els), the curves of conditional IS average show a nega- with < At > =16 ms, and greater than 400 ms for

tive slopeCC= —0.18in (B) and—0.24 in (C). These
imply that the smaller is at8l;, the larger is the next
ISl 1 expected to be, and vice versa. This anticorre-
lation can be understood as follows: if by chance the
firing rate is high (smallSl;) at some time, the outward
I anp current is accumulated significantly, reducing the
cell's excitability; therefore, a low firing rate (large
ISl ;1) is expected subsequently.

Thus the adapting currehtyp not only changes the

< At > =45 ms (Fig. 7A). In Fig. 1, where the steady
state< At > is small (~7 ms), the criticakc, is small,
and as a resultc, =50 ms in the simulation yields
a spike train with largeCV than in the case without
adaptation, at the same firing rate.

The dependence @C on t¢, is also complicated.
With the same mean firing rat€C is negative for all
7ca Values (Fig. 7B). However, theC curve exhibits a
negative peak at &, value comparable with the mean

mean rate of the spike train but also alters the temporal ISI < At >. This is because, ifc, is too short com-

structure in the spike train even in steady state.

3.7. The Dependence of CV and CCwg

We found that bothCV and CC of the steady-state
spike train are nonmonotonic functions of t@ef*]

decay-time constant, (Fig. 7). Consistent with the
findings of Fig. 6, theCV is reduced (respectively,

paredwith< At >, [Ca?t] cannotaccumulate, and the
anticorrelation effect is small. lfc, is very long, the
temporal £a%*] fluctuations are small compared with
its steady-state average—that is, the chang€aff]

over two consecutive ISIs is small, and hence the
anticorrelation is again weak. The same phenomenon
is illustrated in a different way in Fig. 8A. Hereg, is
fixed, butthe mean ISk At > is varied by changing.

CC as function of the output rate displays a strong
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CV without adaptation is indicated by the horizontal dashed IBeCC first decreases and then increases with increasiag CC without

adaptation is indicated by the horizontal dashed liggné = 0.02.).

negative peak at about 20 Hz. Aga®C is negligible
at very low rates wher: At > is large compared with
Tca, @NdCCis also small at high rates when temporal
fluctuations of Ca*] are negligible compared with its
average.

As expected, for a fixedc,, a largergapp yields

temporal (inhibitory) interaction between responses to
input signals from different sources. In the cricket
auditory system, when stimulated by sound inputs
from both ears, the omega cells were shown to
selectively respond to the stronger input, whereas
its normal response to the weaker input (observed

stronger negative correlations between consecutive when the latter was presented alone) was suppressed

ISIs in the steady state (Fig. 8B). Thus the correla-
tion coefficientCC can be used as a measure of the

(Pollack, 1988)In vivo calcium imaging and intracel-
lular recording data suggest that this effect is produced

strength of neuronal adaptation mechanism provided by a C&*-activated hyperpolarizing current (Sobel and

that the input is uncorrelated in time.
3.8. Forward Masking
As we argued earlier, spike-frequency adaptation is

a cellular form of delayed inhibition of the neuron
on itself. As such, it may subserve a mechanism for

Tank, 1994). We found that our model displayed a sim-
ilar phenomenon, suggesting that this forward masking
effect is expected in general for all strongly adapting
neurons.

For an integrate-and-fire neuron, there is little in-
terference between the cell’s responses to two differ-
ent inputs, and the neuronal discharges are additive.
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A before the weaker ones (Fig. 9C), the firing response
0.0 1 H to the stronger input triggers a significant’Canflux
(Fig. 9C, upper panel), the increaskg,r reduces the
-0.1 cell's excitability, and hence the response to the weaker
input is suppressed (Fig. 9C, middle panel). Here, the
-0.2 condition is that the time interval between the stronger

and weaker inputs should be short compared wéth
Onthe other hand, there isaniceffect: if theperiodof

IS1 Correlation Coefficient

03 the repetitive input trains is not too long compared with
Tca, there is a significantGa®*] plateau in time, and

0.4 the resultingnean hyp reduces the cell’s responses to
both weaker and stronger inputs. However, we found

055 20 o 150 that the response to the weaker signal is much more

Firing Rate (Hz) strongly suppressed than that to the stronger signal.
The effect is not sensitive to the relative temporal re-
lations of the two signals, and there is still a selective
suppression even when input pulses from the weaker
signal occur just before those from the stronger signal
(Fig. 9D). This second effect is different from the sim-
ple forward masking effect and is predominant when
1ca IS sufficiently large compared with the period of the
input pulses.

Can the forward masking mechanism take place
quickly after the competing signals are introduced? In
Fig. 10A, we plotted the response rati®,/R;) (R be-
ing the number of spikes per pulse, invoked by signal
i = 1, 2)asafunction of the number of input pulse pairs
0.00 0.01 0.02 0.03 in time. We found that the onset is rapid, aiRb/ Ry)

Strength of Adaptation g,,,,, reaches the plateau after 4 to 5 input pulse pairs. This

Fiaure8 CCis affected b firind rate and adantation strendth is true independent of whether the very firstinput pulse
gure = - s atiected by mean inngrae and adapiation SWengi g grom the weaker or stronger stimulus. The key for
ganp- A: With fixed tca andganp, CCis a function of mean firing

. ) 5 )
rate (by changing the input rate, with a minimum at mean rate  the rapid onset is thaCa ] (hencelanp) builds up

ISI Correlation Coefficient

around 20 Hz € 1/7ca, Tca = 50 ms). B: With fixed input ratex quickly during stimulations with a small time constant
andzca, larger adaptation strengtiaqp induces stronger negative 7,445 and yet decays slowly between stimulations with
correlation (negative€C) between consecutiuls. a large time constant,, so that a significant level of

Ianp is reached quickly to effectively suppresses the
response to the weak input signal. As expected, the
This is no longer the case in the presence of the adapt-forward masking effect is stronger with larggknp
ing currentl ap. FOr example, inresponse to aperiodic  andzc, values (Fig. 10B).
train (at 2.5 Hz) of square input pulses (width 100 ms)  Why isthe suppression selective to the weaker input?
with Poisson rate.,; = 2000 Hz, the model neuron  Thelanpreduces the cell’'s responseitathweaker and
fires at 20 to 40 Hz (2 to 4 spikes per input pulse of stronger inputs: the response to each input is smaller
100 ms) (Fig. 9A). However, if there is a second train than it would be in the absence of the other input.
of square pulses with a larger amplitude (Poisson rate Again there are two factors, one due to phasic tran-
12 =4000 Hz), phase-shifted from the first input train, sients and the other due to the ton@gf*] plateau.
the neuron’s response to the weaker input is quickly As illustrated by the example in Fig. 9, because the
suppressed after a few cycles (Fig. 9B). We distin- stronger response generates a much largét @a
guish here two related but different effects. On the one flux, lanp is high at the onset of the following weaker
hand, there is @hasicforward masking effect (Sobel pulse. Therefore, the weaker response is small, which
and Tank, 1994): if stronger input pulses occur just in turns allows Ca?*] (hencelanp) to decay further
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Figure 9. Forward masking is induced by adaptation when there are two competing input sources. The response to the stronger input suppresses
that to the weaker oned: The [Ca?"] dynamics, the membrane voltage and the input rate are shown. The input consists of weak input source
only. B: The input consists alternatively of weak and strong inputs. The response to the weak input is strongly suppressed due to the presence
of the strong inputC—D: The suppression is not sensitive to the relative temporal phase of inputs from the two saxiges= 0.05,« = 0.1,

7ca = 600 ms.).
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Figure 10 Quantitative examination of the forward masking effét.For each pair of the strong and weak input pulses in a train, the response

ratio is plotted as a function of the pulse pair sequence number since the onset. The induction of suppression is fast, reaching the saturation in a

few pairs(1—2 seg. The order of weak and strong input pulses within a pair is not important for the induction of suppr&sitre response
ratio also depends on the calcium decay time constgnand strength of adaptatiaqp. Largerzca or ganp enhances the forward masking

effect. C: Without adaptation, the responses ratio for the strong and weak inputs are linear with the input rate ratio. With adaptation-induced
forward masking, the responses ratio for the strong and weak inputs becomes a highly nonlinear function of the input rate ratio. The thereotically

predicted nonlinear curve for response ratio fits well with simulation results.

until the next stronger input arrives. Consequently,
Ianp is significantly smaller at the arrival time of a
stronger input pulse than that of a weaker one, this
temporal patterrof [Ca?*] and | yp contribute to the

wherelz/l1 < p, i = A4 AVGy — g(Mreset— Viest) —
Cnmf/(2tm),i =1, 2. p is aconstantindependentiaf
andl,. Inour simulationp ~ 4.3. The analytical pre-
diction (dott-dashed curve) agrees well with numerical

suppression selectivity. One the other hand, we show simulations (solid curve).

in Appendix B that for largerc,, even when Ca?t]
does not fluctuate significantly in time, there is still a

selectivity simply because the response ratio is a non-

linear function of the input ratio. In Fig. 10C, this
selectivity is quantified by plotted the time-averaged
output ratio(R,/R;) versus the input ratigr,/A;).

As a control, the response ratio is first computed in the
absence of pp. If there is no adaptation{R,/Ry) is
almost linear with(A,/A1). This is easy to understand
if we consider the linearity between the input strength
and firing rate. By contrast, with adaptation, the re-
sponse ratio is a highly nonlinear function of the input
ratio (Fig. 10C), which can be theoretically derived
(Appendix B):

R o pllz/1) -1

2Pl 2 23
Rt fi p—(l2/1) 23)

If 1,/11 > p, the response to the weak pulse is to-
tally masked. In our simulation, this corresponds to
the input ratio(Ao/A1) > 2.6. This means that when
the synaptic input drive of the stronger signal is more
than 26 times of that of the weaker signal, the neu-
ron does not have any response to the weaker signal.
The nonlinear forward-masking effect induced by the
slow I ap current can be understood as the following:
when the fluctuation of ap is small compared with
its steady-state level, it gives rise to a tonic hyperpo-
larizing current that is a function of both and I».

As the response ratio is roughly/1; without adapta-
tion, with the inhibitory current the response ratio is
(I2 — lapp) /(11 — lapp), Which is a nonlinear function
of the input ratiol,/11. Moreover,|anp itsef is also

a function of the input ratior,/1;. These two fac-
tors lead to the nonlinear forward masking effect, even
though the system is approximately linear.
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4. Discussion

4.1. Spike-Frequency Adaptation of a Generalized

1&F Model

In this work, we studied a generalized integrate-

and-fire neuron model that takes into account spike-
frequency adaptation (see also Treves, 1993; Stemmler

etal., 1995; Troyer and Miller, 1997). The inclusion of
a C&*-activated K currentl ayp involves three addi-
tional parameters: the €ainflux per action potential
«, the [Ca?*] decay time constantc,, and the ionic
conductanceganp. Foragiven celltype such as cortical
pyramidal neuronsy andrc, can be measured by &a
imaging techniques (Schiller et al., 1995; Helmchen

et al., 1996; Svoboda et al., 1997). On the other hand,

ganp Can be derived from voltage-clamp experiments
on thelayp. Hence, in principle all these parameters
can be fitted by experimental data.

We were particularly motivated by the recent exper-
imental finding of Ahmed et al. (1998) that, in the

subtraction rather than a voltage threshold mechanism
for adaptation in cortical pyramidal neurons. Further
experiments are worthwhile to test the two alternative
models.

4.2. Comparison Between the Model and Cortical
Pyramidal Neurons

In our |app model, Tagap and Fagap are controlled by
Tca andaganqp and obey two simple relation$agap =
1—adap/Tca (EQ. (17)), andFagap = GadapTadap Where
Gadap is proportional taxganp but independent ofc,
(Eg. (18)). These tworelations are quite useful. Forex-
ample, simply by measurirfggapandragapWe can esti-
mate theC a?*] decay time constant, using Eq. (17).
It is likely that for real cortical pyramidal neurons, the
two relations hold only approximately because many
factors not included in our model may quantitatively
affect the spike-adaptation properties.

Nevertheless, the success of Ahmed et al. (1998) in

cat visual cortical neurons, the spike-frequency adap- fitting the data by single exponentials indicate that our
tation to a current pulse stimulation can be well fitted model may have captured the predominant features of
by a single exponential time course, characterized by a spike-frequency adaptation in cortical pyramidal cells,

time constantagap and the degree of adaptati®hgap
With our model, we could predict this time course of
adaptation analytically at sufficiently high firing rates
and expressadap and Fagap in terms of the membrane
and calcium parameters. At low firing rates, sim-

at least at the time-scale of a few hundreds of mil-
liseconds. In order to test our model further, the two
relations between,qap and Fagap should be assessed
experimentally by plotting data points fd¢fagap and
Tadap @0ainst each other. For example, the first rela-

ple analytical predictions are not feasible because the tion should hold for differentFagap and tagap values

f-1 curve is nonlinear, and it is not given by a com-
pact expression for noisy Poisson inputs (Ricciardi,
1977).

obtained by pharmacologically enhancing or blocking
the gaqp to various degrees. On the other hand, if the
[Ca?*] decay kinetics are changed, the second relation

We also considered an alternative model, where the betweenFagap andragap is predicted.

adaptation is due to an incremental increase in the volt-

age firing threshold. Although both models behave
similarly in some ways, they differ in at least three as-

Ahmed et al. (1998) showed th&gap and tagap
correlate significantly with cortical depth. Neurons
from superficial layers (layers Il to IV) adapt more

pects. First, in order to obtain strong adaptation (such quickly and to a greater degre@dsp~3 — 24 ms

asFadap> 50%), inthe threshold modewould have to

(mean= 11 ms), andFagap~ 55— 80% (mean= 67%))

change by as much as 10 mV (Fig. 4B), which is notthe than neurons in deep layers (layers V to Wlgap ~

case for thd anp model. Secondragap increases with
input amplitude in thd ayp Mmodel, whereas the oppo-
site is predicted by the threshold model (Fig. 3). Third,

24 — 75 ms (mear= 50 ms) andFagap ~ 35— 65%
(mean= 51%)). These observations can be accounted
for as follows. By applyingFadap = 1 — Tadap/Tca:

with a stochastic Poisson input, the instantaneous ISI we predict that in layers Il to IV neurong, >~ 40 ms,

variability always increases during the adaptation on-

set for thel aup model (Fig. 1) but can either decrease
or be nonmonotonic in time for the threshold model
(Fig. 4). Measurements from cortical pyramidal cells
show an increasefiqgapas function of the input current

intensity (Ahmed et al., 1998), in support of a current

while in deeper layers V to VI neurong, >~ 100 ms,
thus pyramidal neurons in superficial layers have faster
calcium dynamics. On the other hand, by applying
Fadap = GadapTadap We conclude thakganp is likely

to be much larger (almost 6 times) for neurons in su-
perficial layers than for those in deep layers.
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4.3. Neuronal Adaptation and Temporal Structure of
Spike Trains

With stochastic synaptic inputs to drive the model neu-
ron, we found that théayp affects the temporal struc-
ture of the output spike train in several interesting ways,

even in the stationary state after the adaptation onset.

First, when the input is Poisson (without temporal cor-
relation), the C&"-activatedl pyp dramatically affects
the output ISI variability CV). Much work has been de-
voted to the question of temporal structure and variabil-
ity in the neuronal output (Calvin and Stevens, 1968;
Softky and Koch, 1993; Shadlen and Newsome, 1994;
Softky, 1995; Gabbiani and Koch, 1996; Holt et al.,
1996; van Vreeswijk and Sompolinsky, 1996; Troyer
and Miller, 1997; Rieke et al., 1997). Here, we found
that theCV can be reduced or enhanced by adaptation,
if the time constant of the Ca-dependent feedback
is small or large compared with the mean ISI, respec-
tively. We speculate that this should hold true for other
forms of self-inhibition mechanisms, such as autapses
of interneurons (Shi and Rayport, 1994; Tasret al.,
1997).
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from a wakeful state of the brain. It is well known
that arousal is associated with activation of the brain-
stem system. Moreover, tHgyp (andly) underlying
spike-frequency adaptation are potently inhibited by
neuromodulators released from the brainstem, such as
acetylcholine, serotonin, and norepinephrine (Madison
and Nicoll, 1984; McCormick and Williamson, 1989;
Nicoll, 1988). On the other hand, adaptation was ob-
served in intracellular recordings of neocortical pyra-
midal cells in awake cats (Baranyietal., 1993a, 1993b),
indicating that adaptation currents are likely to be
present in awake states, with their amplitudes con-
trolled and tuned by neuromodulators. Therefore, it
would be of great interest to estimate quantitatively the
strength ofl pyp in pyramidal neurons under various be-
havioral conditions. This would be feasible in practice,
if the degree of cellular adaptation could be assessed
from extracellularlyrecorded spike trains. Since the
CC can be readily computed from spike trains, and
its value is a monotonic function afayp (Figs. 8B),

it may provide a probe for assessing the strength of
adapting ion currents (especially thgp) under dif-
ferentin vivo conditions of the intact brain. Of course,

Second, because adaptation reflects the recent hisnegative temporal correlations in a spike train could

tory of the neuron, it can serve as a means of temporal also be caused by other mechanisms of delayed nega-
interaction between responses to different input sig- tive feedback, such as short-term synaptic depression
nals that converge to a single neuron. Similar to the or recurrent synaptic inhibition. These synaptic pro-
experimental observations on auditory neurons of the cesses remain to be investigated. Since alternative pro-
cricket (Pollack, 1988; Sobeland Tank, 1994), we show cesses have distinct time scales, their effects on the
that when there is more than one signal present, the output’s temporal structure should display characteris-
spike-frequency adaptation mechanism can help dif- tic frequency-dependence (such as in Fig. 8A), which
ferentiate signals from two or several sources and pro- may be used to distinguish one candidate mechanism
duce selective responses only to the strongest input.from another.

It would be interesting to experimentally test whether
such a forward masking effect, produced by intracellu-
lar calcium dynamics, takes place in cortical pyramidal

To conclude, we would like to suggest that the serial
coefficient of temporal correlationCC) is as useful
and important a characterization as the coefficient of

neurons. variation CV) for the ISls of the neuronal output. Its
experimental measurements and our understanding of
its cellular and synaptic mechanisms could shed new
insights into the dynamical operation of neurons in the

cortex.

4.4. |s Spike-Frequency Adaptation Present in

Awake States?

A major obstacle that has hindered our efforts to
understand possible functional implications of spike-
frequency adaptation, both in neuronal input-output
computation and in emergent network dynamics, is our The model is
inability to assess its presence in cortical cells during

Appendix A: | aqp Adaptation Model

awake behaving states of the brain. Most data on spike-
frequency adaptation were obtained wiithvitro slice
preparations anth vivo intracellular recordings un-
der anesthesia. These conditions are quite different

dv,
Cr—2

dt = —0L(Vm — Vrest) + CnAV Zé(t —t)

— Ganp [CET] (Vi — Vk) (24)
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dica]  [C&']
a '

(25)

Tca

Vi = Vieset

[Ca?t] — [Ca®"] + .
(26)

If Vin = Vin, then

The analysis will be carried out in the regime of
sufficiently large input drive and high firing rates, when
the noise effect is small. Therefore, in the following

we replace the stochastic synaptic input by its mean

currentl = CnAV A, wherea is the Poisson rate.
Because the dynamics of calcium is much slower

than that of the membrane voltage, this model can be

solved using the fast-slow variable analysis (Rinzel,
1985, 1987; Wang and Rinzel, 1995; Wang, 1998).
The procedure consists of three steps.

In the first step, for the fast membrane dynamics
[Ca?!] is first treated as if it was a constant param-
eter in EQ. (24). WithV =V — Viesetand lggg =1 —

L Vreset— Viest), the model can be rewritten as

dv
Cm~g = (9L + Qanp [CETDV + les
— Oanp [CET] (Vieset— V). (27)
If V=6, thenV — 0, (28)
Wlth 9 = V[h - Vreset. Or
dv \% |*
— =4 — 29
dt {58 + Cm’ (29)
with
1 1 cat
=y Gane [CET] (30)
T Tm Cm
I* = left — Garp [CAT] (Vieser— V). (31)

If 1* andzy, are fixed, the solution for the firing rate
of this integrate-and-fire model is
)

f = —|:tr’;1 In (1—

Note thatl * and hence are functions of and [C&?*].
In the second step, the slow calcium dynamics is
considered, where th€g?t] influx is averaged over a

Cm@

* ok
[Ty

(32)

firing cycle and becomesf (the influx per spike times
the instantaneous firing rate):

+ +
dCe] _ Lt e - G (a3
dt TCa
Depending on whether the input is strong,

f(1,[Ca*]) can be expanded linearly either by
(large | with strong input) or by Ca2+] (low [Ca?t]
level with weak input).

Strong Input Drive

With the assumption thafz- « 1 (for example, it

is 0.075 « 1 in our simulation), the firing rate can be
expanded to the second order, yielding a linear relation
between the firing rate and as

|* 1
f ~ — = = fiqt — Gf[C&T], 34
Cm9 21_% init f[ ] ( )

with
Ieff 1
fint = —— — — 35
init Cm9 ZTm ( )
AP [ Vieset— Vk 1

Gt = = ). 36
= ( Ve D) e

Substitutingf in Eq. (33) by Eq. (34), we obtain

d[ca®*] of
da

[Ca?']
B Tca
= afinit — (@G + 1/1cq) [CaY]
= o finit — [Caz+]/fadap

(37)
with

1 -1
Tadap = [; + Gadap:| 5 Gadap =aGy, (38)
a

both are independent of the input amplitude.

Weak Input Drive, Low [C&]

When the input is not very strong, the linear relation
between firing rate antt is no longer valid. Since the
[C&a?*] level is low due to the low firing rate, we can
analyze the system in the lo\€§+] limit. The same
Eq. (33) is expanded on smalCg?+]:

f ~ fine — Gt [C&T], (39)



Spike-Frequency Adaptation with Stochastic Inputs

with
-1
finit = _[zm In (1— Cmf >] (40)
leff Tm
_ b0(|eﬁ)29L __ Oanp ’ (41)
aO(leff) Cm aO(leﬁ)Cm
and
0
ao(ler) = —In (1 - Q:L) 42)
eff
letr + Vieset— Vi
bo(let) = ganpd eff + Ot (Veeset K). (43)

left(leff — OLO)

Therefore, we obtain the same equations as in case one

Egs. (37) and (38), except thdt,; and Gs are now
given by Egs. (40) to (43). In the lowCE?"] regime,
the tagapis an increasing function of the inpldy and

approaches the input-independent value determined by

Eq. (38) asymptotically with increasing input ampli-
tude.

Finally, in the third step, by inserting the solution
of the calcium equation intd (I, [Ca?*]), the time
evolution of the firing rate during adaptation process is
solved.

The initial firing rate f,; = f(I,[Ca®"] = 0), or

-1
finit = —[fmm (1— Crmb )] ) (44)
leff Tm
The steady-statedJa?*] level is given by
d[Cat cat
[ ] Zaf—[caz+]/TCa=0lfinit—[ | =0,
dt Tadap
(45)
which yield
[Ca2+]ss =atcafss= ® Tadap finit. (46)
Thus,
fiit — T
Fadap = %ﬁs — 1 fadep (47)
init TCa

Substituting ¥tca = 1/Tadap — Gadap in the above
equation, we also obtain

Fadap = Gadapfadap (48)

43

In summary, the dynamics of the system are

[Ca*] (1) = [CaPH]ss (1 — e /matm)
f(t) == sz+ (finit —_ fss)eft/fadap.

(49)
(50)

Appendix B: Forward Masking

For clarity, we analyze the case when the strong and
weak signals are evenly alternating as shownin Fig. 9B.
The duration of each signal pul§e=100 ms is the
same as the time interval between pulses. The strength
of the two inputs are.; andx,. We define

li = A AVCy,

Cnf .
=01 (Vieset— Vrest) — Zl, i=12 (51)
Tm

From Appendix A we know the steady-sta@ef*];
level is

*Tadap,
Cnd "

The dynamics ofCa?*] approaches@a?*]; ss dur-
ing the signal pulse with time constanjjap and de-
cays back to zero with time constamt, between input
pulses. We denote the calcium level at the start and end
point of signali as [Ca®*]; start and [C&*]; end:

[C&*]iss = (52)

[C&*]1.end = (@Tadap/ Cm6)(1 — €7 /7im) |4
+ e /[ Cal ™y start
[Caz+]2.start = eiT/Tca[CaZJr]l,end
[Ca*"]zend = (¢ Tadap/ Cmf) (1 — e T/adm) |
+ e /o[ Calt o start
[Cazﬂistart = eiT/Tca[C a-2Jr]2,enda

(53)

where Ca?'] ¢, is the [Ca®"] level at the begin-
ning of thenextcycle of the signak;. In the steady
state Cat*] giart = [Ca']1start. Using this relation
[C&*]1start and [C&T]2start Can be solved from the
above equation. In particular, the average starting cal-
cium level is

[Ca2+]start = ([CaZJr]l,start + [Ca2+]2,start)/2
=K(|l+|2)v (54)

where

. — aradapef-r/fca(l _ efT/Tadap)
T 2Cn0(1 — e T Wreat 1/t |

(55)
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