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Abstract. Although spike-frequency adaptation is a commonly observed property of neurons, its functional im-
plications are still poorly understood. In this work, using a leaky integrate-and-fire neural model that includes a
Ca2+-activated K+ current (IAHP), we develop a quantitative theory of adaptation temporal dynamics and compare
our results with recent in vivo intracellular recordings from pyramidal cells in the cat visual cortex. Experimentally
testable relations between the degree and the time constant of spike-frequency adaptation are predicted. We also
contrast theIAHP model with an alternative adaptation model based on a dynamical firing threshold. Possible roles
of adaptation in temporal computation are explored, as a a time-delayed neuronal self-inhibition mechanism. Our
results include the following: (1) given the same firing rate, the variability of interspike intervals (ISIs) is either
reduced or enhanced by adaptation, depending on whether theIAHP dynamics is fast or slow compared with the
mean ISI in the output spike train; (2) when the inputs are Poisson-distributed (uncorrelated), adaptation generates
temporal anticorrelation between ISIs, we suggest that measurement of this negative correlation provides a probe
to assess the strength ofIAHP in vivo; (3) the forward masking effect produced by the slow dynamics ofIAHP is
nonlinear and effective at selecting the strongest input among competing sources of input signals.

Keywords: spike-frequency adaptation, calcium-activated potassium current, integrate-and-fire neuron, variabil-
ity, correlation, forward masking

1. Introduction

The evoked spike discharges of a neuron depend crit-
ically on the recent history of its electrical activ-
ity. A well-known example is the phenomenon of
spike-frequency adaptation that is observed in a ma-
jority of pyramidal cells in cortical slice prepara-
tions (Connors et al., 1982; McCormick et al., 1985;
Mason and Larkman, 1990; Foehring et al., 1991;
Lorenzon and Foehring, 1992). However, it remains
unclear is how strong the neuronal adaptation is of
those cells in the intact brain and what is its role in neu-
ral computation at the single cell and network levels.
A recent study by Ahmed et al. (1998) is devoted

to measuring and quantifying spike-frequency adapta-
tion of visual cortical neurons of the anesthetized cat.
These authors found that the adaptation time course
to a constant input is well described by a single ex-
ponential decay to steady-state, characterized by an
adaptation time constantτadap and the degree of adap-
tation Fadap= (initial rate—steady-state rate)/initial
rate. Ahmed et al. observed that the values ofτadap

andFadapcorrelate significantly with cortical depth and
that superficial-layer neurons adapt more rapidly and
to a higher degree than deep-layer neurons. Adaptation
is fairly strong in superficial-layer neurons, with the
steady-state firing rate being about only one-third of
the initial firing rate. The cellular origin of these
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differences between different cortical layers is not well
understood.

The spike-frequency adaptation process is presum-
ably due to the activation of several different ion chan-
nels, each with its own characteristic time constants,
activation thresholds, and so on. The observations by
Ahmed (1998) were made over the first 300 ms of the
adaptation process, where the major changes in firing
rate occur. During this period adaptation in both hip-
pocampal and neocortical neurons is dominated by a
slow Ca2+-dependent K+ current (IAHP) and to a lesser
extent an M-type K+ current (Madison and Nicoll,
1984). Calcium influx is triggered by action poten-
tials, and the rise in intracellular Ca2+ activates the
IAHP that slows the discharge rate. We have previ-
ously studied a conductance-based pyramidal neuron
model endowed with anIAHP, and we showed how
the observations by Ahmed et al. could be accounted
for in term of the membrane and calcium dynamics
(Wang, 1998). The conductance-based model, how-
ever, cannot be solved analytically. In the present work,
we use an integrate-and-fire (I&F) model (Lapicque,
1907, 1927; Tuckwell, 1988), which is widely uti-
lized for large-scale network studies (Knight, 1972;
Amit and Tsodyks, 1991; Somers et al., 1995; Abbott
and van Vreeswijk, 1993; Hansel et al., 1998; Brunel,
2000). We generalize the I&F model to include a Ca2+-
activated K+ current and carry out a thorough analytical
treatment of the model. In particular, we deriveτadap

andFadap in terms of the biophysical parameters of the
model and predict experimentally testable relations be-
tweenτadapandFadap. Our results suggest possible ex-
planations for the differences among neurons of differ-
ent cortical layers as observed by Ahmed et al. (1998).

We also consider an alternative model where adap-
tation is generated by an activity-dependent dynamical
firing threshold(Holden, 1976). In pyramidal neu-
rons, an increase in voltage threshold has been occa-
sionally observed experimentally in association with
firing-frequency adaptation (cf., for instance, Fig. 4(B)
of Mason and Larkman, 1990). It is not clear which
of the two factors contribute the most to the observed
physiological data of spike-frequency adaptation and
how these two scenarios may be differentiated experi-
mentally. We report that although these two adaptation
models show some similarities, there are important dif-
ferences that can be used to distinguish these alternative
mechanisms.

We have explored possible computational implica-
tions of spike-frequency adaptation. We focused on its

modulation of neuronal response totime-varying in-
puts, in contrast to previous modeling work (Douglas
et al., 1995; Barkai and Hasselmo, 1994), whereIAHP

was incorporated as astatic gain control. Our basic
observation is that the Ca2+-mediatedIAHP subserves
a time-delayed inhibition to the neuron itself, which
gives rise to a number of interesting computational ef-
fects. When the input is Poisson, even in the steady
state after the adaptation onset the adaptation mecha-
nism is still operative dynamically; it affects the vari-
ability of the spike train and creates negative tempo-
ral correlations in the output. The interplay between
the time constant ofIAHP and the mean ISI is crucial
in determining howIAHP affects the variability of the
output spike train. Moreover, as a mechanism of tem-
poral interaction between responses to different input
signals, theIAHP enables the cell to differentiate the
signals and selectively respond to the strongest input
amongst competing input signals (Pollack, 1988; Sobel
and Tank, 1994).

2. Methods

2.1. The Leaky Integrate-and-Fire Model

For a leaky integrate-and-fire model,

Cm
dVm

dt
= −gL(Vm − Vrest)+ Cm1V

∑
i

δ(t − ti ).

(1)

If Vm>Vth, then a spike is discharged andVm is reset
to Vreset, Cm is the capacitance,gL is the leak conduc-
tance, and

∑
i δ(t − ti ) represents a Poisson train of

synaptic inputs with a rateλ in Hz (Stein, 1965). Each
synaptic input produces a quantal excitatory postsy-
naptic potential of size1V = 1 mV. Note that the
delta-function description of synaptic inputs does not
take into account realistic time courses of synaptic cur-
rents. However, the results presented in this article do
not depend on this simplification. The average current
resulting from the Poisson synaptic input is given by
I = Cm1Vλ.

2.2. Spike-Frequency Adaptation

Spike-frequency adaptation is modeled based on the
assumptions that it is produced mainly by a Ca2+-
gated K+ current IAHP (Madison and Nicoll, 1984).
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Experiments using photolytic manipulation of Ca2+

suggest that the intrinsic gating ofIAHP is fast, thus its
slow activation is due to the kinetics of the cytoplasmic
Ca2+ concentration (Lancaster and Zucker, 1994). Let
IAHP = gAHP[Ca2+](V − VK ). Each action potential
generates a small amount (α) of calcium influx; hence
IAHP is incremented accordingly. Note thatgAHP[Ca2+]
is the effective K+ conductance and that the product
αgAHP is the amount ofAHP-conductance increase by
the increase of cytoplasmic Ca2+ concentration through
a single spike. The modified integrate-and-fire model
with adaptation is given by

Cm
dVm

dt
= −gL(Vm − Vrest)+ Cm1V

∑
i

δ(t − ti )

−gAHP[Ca2+](Vm − VK ) (2)

d[Ca2+]

dt
= − [Ca2+]

τCa
. (3)

If Vm(t) = Vth, then

{
Vm→ Vreset

[Ca2+] → [Ca2+] + α, (4)

where the [Ca2+] dynamics is modeled as a leaky in-
tegrator with a decay time constantτCa (Traub, 1982).
[Ca2+] is initially set to be 0µM (its resting baseline
is neglected). Similar models have been used previ-
ously (Treves, 1993; Stemmler et al., 1995; Troyer and
Miller, 1997).

For a given neuron type, Each of the model pa-
rameters can be estimated by experimental data. In
the case of cortical regular spiking pyramidal neu-
rons: (a) Cm= 0.5 nF, gL = 0.025 µS (the input
resistanceRin = 40 MÄ) so that the time constant
τm=Cm/gL = 20 ms, and the resting membrane po-
tential Vrest= − 70 mV (McCormick et al., 1985).
(b) The firing thresholdVth=−54 mV (Mason and
Larkman, 1990). (c) The slope of thef -I curve
(at large I and with gAHP= 0) is given by 1/(Cmθ),
whereθ = Vth − Vreset. We chooseVreset=−60 mV
(θ = 6 mV) so that the slope is about 330 Hz/nA, com-
parable with the primaryf -I data (measured before
the adaptation onset) (McCormick et al., 1985; Mason
and Larkamn, 1990). (d) the [Ca2+] influx per spike
α = 0.2 µM, and τCa = 50− 600 ms (Helmchen
et al., 1996; Svoboda et al., 1997). (e)gAHP is a param-
eter that is varied in simulations. Typically we used
gAHP = 0.015 mS/cm2 (with VK = −80 mV) so that
the degree of adaptation is comparable with the data of
Ahmed et al. (1998).

We also investigated an alternative, voltage threshold
model, based on the assumption that adaptation is due
to a gradual increase of the voltage firing threshold
(Holden, 1976; Koch, 1999). The model obeys the
following equations:

Cm
dVm

dt
= −gL(Vm − Vrest)+ Cm1V

∑
i

δ(t − ti )

(5)
dθ

dt
= −θ − θ0

τθ
. (6)

If Vm(t) = Vth, then

{
Vm→ Vreset

θ → θ + α′, (7)

where, again,θ =Vth−Vreset, θ is increased by
α′ = 0.1 mV with each spike, and it decays back to
the original valueθ0= 10 mV with a time constant
τθ = 80 ms between spikes.

2.3. Spike-Train Analysis

A spike train is converted into a sequence of ISIs
{1t1,1t2, . . . , 1tN}. If its mean is denoted as<1t >,
then the average firing rate isf = 1/<1t >. The vari-
ance of ISIs is defined as

VAR= 1

N

N∑
i=1

(1ti − < 1t >)2, (8)

and coefficient of varianceCV as (Stein, 1967;
Tuckwell, 1988; Softky and Koch, 1993; Holt et al.,
1996)

CV =
√

VAR

<1t >
. (9)

For spike trains that undergo frequency adaptation,
both<1t > and CV evolve in time. We calculated
their time-dependent values as follows: time is divided
into bins ofdt = 1 ms. For each trial of Poisson input,
we assigned each ISI into the bin (say,(t, t+dt)) where
the first of the spike pair occurs (the results are similar
if the choice is based on the second of the spike pair).
The simulation was run over many trials (typicallyN =
300), from which a collection of ISIs is accumulated for
each time bin. Then the average<1t >(t) andCV(t)
are computed at that time. The mean instantaneous
firing rate is f (t) = 1/<1t >(t).

We analyzed the temporal correlations between ISIs
only in the stationary state after the average firing rate
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reaches its adapted steady-state value. Let< 1t > and
CVbe the stationary values. The correlation covariance
CORRbetween consecutive ISIs is defined as

CORR= 1

N − 1

N−1∑
i=1

(1ti −<1t >)

× (1ti+1−<1t >), (10)

and coefficient of correlationCC= CORR/VAR. Note
thatCC is between−1 and 1. For a Poisson process—
in fact, for any renewal process—there is no correlation
between consecutive ISIs; therefore,CC= 0.

Another way to visualize correlations between ISIs is
to use an ISI return map, in which each1ti+1 is plotted
versus the preceding1ti . We also found it useful to
plot the conditional average of1ti+1 for each1ti . This
function of1ti can be superimposed on the ISI return
map. In fact, there is a direct connection between this
function and theCC: if the conditional average of1ti+1

is a linear function of1ti , then the slope of the linear
curve is equal toCC (Wang, 1998).

The model was numerically integrated using a
fourth-order Runge-Kutta method (Press et al., 1989),
with time stepdt = 0.01− 0.02 ms.

3. Results

3.1. Dynamical Properties of Adaptation
Time Course

In response to the stochastic synaptic input with a rate
λ = 2500 Hz, the instantaneous firing rate of the adap-
tation model decreases exponentially in time from an
initial firing rate to a steady-state firing rate with a char-
acteristic time constant as shown in Fig. 1A–B. [Ca2+]
increases up to a plateau level with the same time course
(Fig. 1(C)).

Theoretically, we can derive the adaptation time con-
stant τadap by a fast-slow variable analysis (Rinzel,
1985, 1987; Wang and Rinzel, 1995; Guckenheimer
et al., 1997; Wang, 1998; Ermentrout, 1998). The
method is based on the observation that the change
in [Ca2+] is slow compared with that inVm, so that
the slower [Ca2+] dynamics (hence frequency adapta-
tion) can be solved by averaging over the faster volt-
age subsystem. This is done in three steps. First, the
slow variable [Ca2+] is treated as a parameter, and then
Eq. (2) for the membrane potential is just a standard
integrate-and-fire model, with an additional “leak cur-
rent” IAHP= gAHP[Ca2+](V − VK ). This equation is

Figure 1. Simulation results of adaptation time course forIAHP

model. A: Adaptation in response to Poisson synaptic inputs with
rateλ = 2500 Hz. B: The trial-averaged instantaneous firing rate
decreases in time exponentially with a characteristic time constant
τadap. C: The intracellular [Ca2+] level builds up with the same time
course.D: The adaptation process is also associated with an increase
of ISI variability in time. (τCa = 50 ms.)

solved like Eq. (1), and the firing ratef is a function
of both input drive and [Ca2+]. For sufficiently large
input drive I , the f -I curve is approximately linear.
As a consequence, we found that the dependence off
on [Ca2+] could also be well approximated by a linear
relation,

f ([Ca2+]) = finit − G f [Ca2+], (11)
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whereG f is a derived constant (Appendix A). In the
second step, after averaging over the fast variableVm,
the equation for the slow variable [Ca2+] becomes

d[Ca2+]

dt
= α f − [Ca2+]

τCa

= α finit − (Gadap+ 1/τCa)[Ca2+],

(12)

where Gadap=αG f . Solving this linear equation
yields

[Ca2+] (t) = [Ca2+]ss (1− exp(−t/τadap)), (13)

with 1/τadap=Gadap+1/τCa. Finally, in the third step,
by inserting [Ca2+](t) into Eq. (11), we obtain the time
course for the spike-frequency adaptation:

f (t) = finit − G f ([Ca2+]ss(1− exp(−t/τadap)))

= fss+ ( finit − fss) exp(−t/τadap). (14)

A detailed mathematical derivation using this proce-
dure is given in Appendix A.

This way, we were able to obtain an analytical ex-
pression for the adaptation time constant

τadap=
[

1

τCa
+ Gadap

]−1

, where

Gadap= αgAHP

Cm

(
Vreset− VK

θ
+ 1

2

)
. (15)

Therefore,τadap is a simple function ofτCa (the [Ca2+]
decay time constant) andαgAHP (the increment of
K+ conductance per spike). This result shows that
τadap is always smaller than the calcium decay time
constantτCa. When calcium dynamics is very slow
(τCa very large), the adaptation process may still be
fast (with small τadap) because the dominant term
in the equation is controlled byαgAHP. For exam-
ple, with our reference parameter setGadap= 0.023.
From Eq. (15) we haveτadap = 23, 35.7, 41.7 ms, if
τCa = 50, 200, 1000 ms, respectively.

Thus, the [Ca2+] and spike-frequency adaptation
time course are given by Eqs. (13) and (14) with
τadap= 23 ms, the steady state [Ca2+]= 1.43µM, the
initial firing rate finit = 308 Hz, and the final steady-
state ratefss= 143 Hz. The theoretically derived time
courses are superimposed on the simulation data in

Fig. 1B–C for the instantaneous firing rate and intra-
cellular [Ca2+]. The agreement between the analyt-
ical and numerical results is remarkable, given that
with τCa = 50 ms andτm = 20 ms in the parameter
set the assumed separation of fast-slow time scales is
quite crude. The input amplitude and other parameters
were adjusted so that the range of frequency adapta-
tion was comparable with in vivo recording data from
cat visual cortex by Ahmed et al. (1998, Figs. 4–5).
The good fit by a single exponential to the adaptation
time course in the experimental data is similar to the
model.

We also calculated the coefficient of variation for
the ISIs as a function of timeCV(t). The output ISI
variability increases at the onset of adaptation as shown
in Fig. 1D, with a time course similar to that of the
decrease in firing rate. This monotonic increase in the
variability at the onset of adaptation is a characteristic
of the IAHP mechanism and will be further discussed
later in this article.

3.2. Degree of Adaptation

The degree of adaptation (Fadap) is defined as the ratio
of the change in the firing rate during adaptation( finit−
fss) to the initial firing rate before adaptationfinit :

Fadap≡ finit − fss

finit
. (16)

With our parameter set,Fadap∼ 54%.
Fadap depends on two factors: the strength of adap-

tation (determined by the productαgAHP, and α is
fixed in the following discussion) and the Ca2+ kinet-
ics (determined byτCa). We investigated the effects of
these two factors onFadap separately. First, we vary
the adaptation conductancegAHP, while fixing the cal-
cium kinetics (τCa). With a largegAHP, we expect a
strong adaptation (largeFadap) and the steady state to
be reached quickly (smallτadap). Conversely, ifgAHP

is small, we expect the adaptation effect to be negli-
gible (Fadap→ 0), and since the firing rate is almost
constant in time,τadap→ τCa according to Eq. (12).
In other words,Fadap andτadap are predicted to vary in
the opposite manner. Indeed, it can be proved that with
a fixed Ca2+ kinetics, a simple negative linear relation
exists betweenFadap andτadap (Appendix A):

Fadap= 1− τadap

τCa
. (17)
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Figure 2. Linear relations betweenFadap andτCa. A: A negative
linear relationFadap= 1− (τadap/τCa) whengAHP is varied.B: A
positive linear relationFadap= GadapτadapwhenτCa is varied. Solid
lines: theoretical predictions; filled circles: simulation data. (τCa =
100 ms.)

This theoretical prediction was checked by simula-
tions. We found that the simulation results fit well
with the theory. AsgAHP is varied from zero to a
large value,τadap and Fadap change fromτadap= τCa

andFadap= 0 (slow and weak adaptation) toτadap= 0
and Fadap = 1 (fast and strong adaptation), along a
linear curve (Fig. 2A).

Second, we study the effect of different Ca2+ kinet-
ics with a fixed strength of the adaptation conductance.
With a slow Ca2+ kinetics (largeτCa), we expect a
slow (largeτadap) but strong adaptation (largeFadap),
since the steady state [Ca2+] is high with slow Ca2+

decay, thus inducing a largeIAHP. Conversely, a fast
Ca2+ decay (smallτCa) induces fast (τadap→ 0) and
ineffective (Fadap → 0) adaptation since there is lit-
tle Ca2+ accumulation. Therefore, in this caseFadap

and τadap are predicted to vary in the same manner.

By substituting 1/τCa= 1/τadap−Gadap(Eq. (15)) into
Eq. (17), we have an positive linear relation between
Fadap andτadap:

Fadap= Gadapτadap. (18)

The slope of the linear function is controlled by the
factorGadap, which is proportional toαgAHP. The sys-
tem ranges from a fast and weak adaptation (τadap= 0
andFadap= 0) to a slow and strong adaptation (τadap=
1/Gadap ' 50 ms andFadap= 1). Note that asτCa

is varied from zero to∞, τadap is varied from zero
to 1/Gadap (hereGadap= 0.023). Again, the theoret-
ically predicted relation fits well with simulation data
(Fig. 2B).

3.3. Dependence ofτadap on Input Drive

The analytical expression forτadap (Eq. (15)) does not
depend on the input currentI . On the other hand, ex-
perimental data (Ahmed et al., 1998, Fig. 5) and sim-
ulations of a conductance-based model (Wang, 1998)
showed thatτadap is a weakly increasing function ofI .
This discrepancy can be reconciled if Eq. (11) is under-
stood as valid for the range of largeI values where the
f -I curve is approximately linear. At smallI values
and low firing rates, we have to use the nonlinearf -I re-
lation (Eq. (32)). As shown in Appendix A, in this case
we can still deriveτadapbased on the fact that [Ca2+] is
small in this regime. We found the same expression as
Eq. (15), except thatGadap(I ) now depends onI and is
proportional to the slope of the unadaptedf -I curve.
For injected current inputs, thisf -I curve’s slope de-
creases withI (Eq. 32); so doesGadap. Consequently,
τadap increases withI , and at largeI it converges to
a plateau level given by Eq. (15) (Fig. 3A). However,
for the I&F model the range ofI values over which
τadapvaries considerably is quite small (Fig. 3A), unlike
conductance-based models (Wang, 1998). Sinceτadap

depends on the slope of thef -I function (Appendix
A), the steeperτadap curve for the I&F model is proba-
bly related to a steeper slope of thef -I function for the
I&F model than for the conductance-based model, at
low firing rates. For example, if the input is a constant
injected current with a firing thresholdIc, the slope of
the f -I curve behaves like∼1/((I− Ic)(ln(1− Ic/I ))2)
for the I&F model and like∼1/

√
(I − Ic) for the

conductance-based model considered in Wang (1998)
(see also Ermentrout, 1998).
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Figure 3. τadap is dependent on the amplitude of the input drive.
A: For theIAHP model,τadap is an increasing function of the ampli-
tude of the input drive (Eq. (41)); it approaches the input-independent
value determined by Eq. (15) asymptotically with large input drive.
B: For the threshold adaptation model,τadapdecreases strongly with
the input drive over a wide range (Eq. (19)).

3.4. Adaptation Time Course for the Threshold
Model

We also simulated and analytically studied the scenario
where spike-frequency adaptation is produced by a dy-
namical voltage threshold. In this case, the firing ratef
depends on the thresholdθ in a nonlinear manner, and
the nonlinear averaged equation for the slow variable
θ(t) does not yield a mono-exponential time evolution.
In addition, we found that the threshold model usually
does not display sufficiently strong adaptation compa-
rable with the data from cortical pyramidal neurons,
unless the change in voltage threshold is large. For
instance, in Fig. 4B the instantaneous firing rate is de-
creased fromfinit ' 200 Hz to fss ' 50Hz, as the
thresholdθ is increased from 3 mV to 15 mV. On the

other hand, if the adaptation is weak (Fig. 4A), the to-
tal increase inθ is small compared withθ0. Then f (θ)
can be linearized, the adaptation time course can be
approximated with a mono-exponential, and an adap-
tation time constant can be explicitly derived. In partic-
ular, with the synaptic inputs converted into an equiv-
alent currentIeff, τadap is given by

τadap=
[

1

τθ
+ α′ Ieff

Cmθ
2
0

]−1

(19)

with Ieff = I − g(Vreset−Vrest). Note that, in contrast
to theIAHP model, the adaptation time constant strongly
depends on the input amplitude anddecreaseswith
larger input drive over a broad range (Fig. 3B).

The adaptation time courses ofθ and f are given by

θ(t) = θ0+1θss(1− e−t/τadap) (20)

f (t) = fss+ ( finit − fss)e
−t/τadap, (21)

with finit = 350 Hz, fss= 265 Hz, and τadap=
60.6 ms. The theoretically derived time courses for
f (t) andθ(t) are superimposed on the simulation data
in Fig. 4A. The degree of adaptation has a similar re-
lationship withτadap as in theIAHP model

Fadap≡ finit − fss

finit
= 1− τadap

τθ
. (22)

For the threshold model, as the firing rate decreases
in time, the ISICV(t) may either decrease (Fig. 4A,
bottom panel), increase (not shown), or first decrease
rapidly and then increase slowly to a steady-state value
(Fig. 4B, bottom panel). This is in contrast with the
IAHP model, for whichCV always increases monoton-
ically in time (cf. Fig. 1D). This difference between
these two adaptation models will be further examined
in the next section.

3.5. Time Course of the ISI Variability: Comparison
Between the Two Models

For either theIAHP model or threshold model, the spike-
frequency adaptation time course may be viewed in
terms of astandardintegrate-and-fire neuron with a pa-
rameter ([Ca2+] or θ , respectively) increasing slowly
from an initial value to a steady-state value. Therefore,
in order to understand the time evolution of theCV
during the adaptation process, we considered how the
CV of a standard integrate-and-fire model depends on



32 Liu and Wang

Figure 4. Simulation results of adaptation process for threshold model.A: When1θ ¿ θ0, there exists an adaptation time constant that is
dependent on the amplitude of the input drive. Threshold approachesθss with the same adaptation time constant. TheISI variability always
decreases during the adaptation process when the input drive is strong enough. (θ0 = 10 mV,α = 0.1 mV.) B: Whenθ goes through a very
broad range, the adaptation time course can no longer be fitted with a single time constant.ISI variability shows complicated changes; it first
decreases rapidly and then increases slowly to steady-state value. (θ0 = 3 mV,α = 2 mV.)

the value of the slowly varying parameter ([Ca2+] or
θ ). TheCV of a Poisson input spike train is 1. For the
integrate-and-fire model driven by Poisson inputs, due
to the integration effect, theCV of the output ISIs is
always less than 1. With a given thresholdθ , the vari-
ability of ISIs decreases smoothly from 1 to

√
1V/θ

as the firing rate increases from zero to infinity (Softky
and Koch, 1993) as shown in Fig. 5A. This is because
the higher the firing rate, the less passive decay for the
membrane voltage. Thus, with a high firing rate the

neuron functions like an integrator with smaller out-
put variability. With a low firing rate,Vm decays back
to aboutVrest between synaptic inputs, and spikes are
triggered more likely by temporally coincident inputs
than by integration of inputs over time. Thus the neu-
ron functions as a coincidence detector with a larger
output variability.

For the IAHP model, we observed that during the
adaptation processCV increased in time with a time
course similar to that of the decrease in the firing rate
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Figure 5. Variability of theISIs of the I&F model.A: For different thresholds,CV decreases smoothly from 1 to
√
1V/θ as the mean firing

rate increases from zero to infinity.B: WhenCV is plotted versus input rateλ, the curves for different thresholds intersect with each other. Thus
an increase in the threshold may lead to different time courses ofCV. Type(I ), when the input drive is weak,ISI variability increases. Type
(II ), ISI variability first decreases and then increases. Type(III ), with a large enough driveISI variability always decreases monotonically.

(Fig. 1D). This can be explained by considering Fig. 5A
for the integrate-and-fire model:CVis a monotonically
decreasing function of the firing rate.

By contrast, for the threshold model,CV may de-
crease or evolve nonmonotonically in time as the firing
rate f is reduced by adaptation (Fig. 4). This finding
can be explained as the following. TwoCV-versus-f
curves with differentθ values do not cross with each
other (Fig. 5A). That is, with a fixed firing rate, the neu-
ron with a smaller threshold displays a larger ISI vari-
ability (because less integration of inputs is needed to
reach the firing threshold). However, if plotted against

the input rateλ rather thanf , theCVcurves with differ-
entθ values intersect with each other (Fig. 5B). Con-
sider, for instance, two curves withθ1= 10 mV and
θ2= 3 mV (filled square and circle in Fig. 5B). Theθ1

curve starts at a largerλ value than theθ2 curve be-
cause with a larger threshold a stronger input drive is
required to trigger repetitive discharges. At the onset of
theθ1 curve, the firing is Poisson-like with aCV ' 1,
larger than theCV for θ2 at the sameλ. On the other
hand, at sufficiently largeλ values, we know that the
neuron must fire more regularly with a largerθ ; thus
CV is smaller withθ1 than withθ2 (CV→√1V/θ ).
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Therefore, the two curves forθ1 andθ2 must intersect
at least once. Asθ increases during adaptation, the
time course ofCV(t) is equivalent to moving along
the vertical line labeling the same input rate, from a
curve (corresponding to the initialθ0) to another curve
(corresponding to the increasedθss) (Fig. 5B). As a
consequence,CV may either increase or decrease dur-
ing the adaptation process, depending on theθ0 and
θss values and the input rateλ. If λ is smaller than
the intersection point of the two curves,CV increases
monotonically during the adaptation process. But with
a sufficiently large input rates (λ = 3500 Hz as in
Fig. 4A),CVmonotonicallydecreases. The nonmono-
tonic time course shown in Fig. 4B can be interpreted
by considering Fig. 5B withλ = 1500 Hz (used in
Fig. 4B). Along this vertical line, asθ increases from
3 mV toward 20 mV,CV first decreases and then in-
creases in time, thus exhibiting a nonmonotonic be-
havior.

Figure 6. Adaptation can alter the temporal structure of the output spike train. All spike trains have the same meanISI ∼ 16 ms. Upper
panel: a typical spike train; middle panel: theISI histogram; lower panel: theISI return map and the conditional mean ofISIi+1 for ISIi (solid
curve). A: When there is no adaptation, there is no correlation between consecutiveISIs as indicated by the flat conditional average curve.
B: With gAHP = 0.02 andτCa = 10 ms, theISI histogram is narrower with a smallerCV. There is negative correlation between consecutiveISIs.
C: With gAHP = 0.02 andτCa = 200 ms, theISI histogram is broader with a largerCV. The negative correlation between consecutiveISIs is
even more pronounced.

3.6. Temporal Statistics of Spike Trains in
Stationary State

The trial-averaged firing rate eventually reaches a
steady-state level after the transient adaptation process.
However, even in this stationary state, in each trial the
Poisson input varies randomly in time; therefore, the
neural firing pattern is still modulated by the dynamics
of IAHP. We shall now discuss the effects of theIAHP on
the temporal structure of spike trains in the stationary-
state situation. For comparison, let us first consider the
case when there is no adaptation (gAHP = 0). A sample
spike train is shown in Fig. 6A (upper panel); its statis-
tical properties are characterized by an ISI histogram
and an ISI return map. The ISI histogram is simple
(can be approximated by a Gamma function) as shown
in Fig. 6A (middle panel), with an average ISI= 16 ms
andCV = 0.61. The ISI return map, where eachISIi+1

is plotted versus its preceding valueISIi , describes the
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temporal relations between consecutive ISIs (Fig. 6A,
lower panel). The solid curve is the conditional aver-
age ofISIi+1, calculated for eachISIi value. The fact
that it is a flat function ofISIi (CC' 0) means that the
expected value ofISIi+1 is independent ofISIi —that
is, there is little correlation between consecutive ISIs
when the input is Poisson and temporally uncorrelated.

By contrast, with firing-rate adaptation (gAHP 6= 0),
the spike firing patterns are modulated by the dynam-
ics of the IAHP in an interesting manner (Fig. 6). In
all three cases of Fig. 6, the steady-state mean ISI
(∼16 ms) was maintained to be the same by adjust-
ing input rateλ values. We found thatCVcan be either
reduced or increased by the Ca2+-mediatedIAHP, de-
pending on the [Ca2+] decay-time constantτCa. If
τCa is short compared with the mean ISI of the spike
train, the spike train is modulated to belessvariable
during steady state. An example withτCa= 10 ms is
shown in Fig. 6B, with a much more regular spike train
(upper panel) and a narrower ISI histogram (smaller
CV= 0.41, middle panel) than in Fig. 6A. On the other
hand, if τCa is much larger than the mean ISI of the
spike train, the neuronal discharges in steady state are
more random and Poisson-like, as illustrated by the ex-
ample in Fig. 6C withτCa= 200 ms, where the spike
train is quite irregular and the ISIH becomes almost
exponential (Poisson-like) with largerCV = 0.74.

Furthermore, significant temporal correlations in the
spike train are created by the Ca2+-mediatedIAHP. As
shown by the ISI return maps (Fig. 6B–C, lower pan-
els), the curves of conditional ISI average show a nega-
tive slope,CC= −0.18 in (B) and−0.24 in (C). These
imply that the smaller is anISIi , the larger is the next
ISIi+1 expected to be, and vice versa. This anticorre-
lation can be understood as follows: if by chance the
firing rate is high (smallISIi ) at some time, the outward
IAHP current is accumulated significantly, reducing the
cell’s excitability; therefore, a low firing rate (large
ISIi+1) is expected subsequently.

Thus the adapting currentIAHP not only changes the
mean rate of the spike train but also alters the temporal
structure in the spike train even in steady state.

3.7. The Dependence of CV and CC onτCa

We found that bothCV and CC of the steady-state
spike train are nonmonotonic functions of the [Ca2+]
decay-time constantτCa (Fig. 7). Consistent with the
findings of Fig. 6, theCV is reduced (respectively,

increased) ifτCa is small (respectively, large) compared
with the mean ISI (Fig. 7A, left panel). (The con-
trol case without adaptation corresponds toτCa = 0.)
These observations can be understood as follows. With
a largeτCa, in the steady state the mean [Ca2+] reaches
a steady-state level [Ca2+]ss, and the mean plateau
gAHP[Ca2+]ss acts as a “leak” conductance. The in-
crease in theCV can then be explained by a signifi-
cant reduction of the effective membrane time constant
1/τ ?m = 1/τm + gAHP[Ca2+]ss/Cm (cf. Eq. (30), Ap-
pendix A). For example, in Fig. 1, [Ca2+]ss= 1.43µM,
τ ?m = 11 ms whileτm= 20 ms; thus the time constant is
reduced almost by 100%. Thus the cell functions more
like a coincidence detector, and the output spike train
has a largerCV. On the other hand, with a smallτCa,
[Ca2+] decays greatly between spikes andgAHP cannot
accumulate in time, and there is negligible net decrease
in the input resistance. Instead, the rapid adaptation
dynamics suppresses clustering of spikes (which is as-
sociated with the ISI variability whengAHP = 0), so
that the spikes become more evenly distributed in time
(Fig. 6B) andCV is smaller than without adaptation.

Therefore, there is a critical value ofτCa, above
which the steady-stateCV is larger with the adapt-
ing IAHP than without it. This criticalτCa was found
to be insensitive to the adaptation strength (gAHP),
though a largergAHP yields a greater change in the
CV (data not shown). On the other hand, this crit-
ical τCa depends strongly on the mean ISI (<1t >)
of the spike train. For instance, it is about 75 ms
with <1t >= 16 ms, and greater than 400 ms for
<1t >= 45 ms (Fig. 7A). In Fig. 1, where the steady
state<1t > is small (∼7 ms), the criticalτCa is small,
and as a resultτCa= 50 ms in the simulation yields
a spike train with largerCV than in the case without
adaptation, at the same firing rate.

The dependence ofCC on τCa is also complicated.
With the same mean firing rate,CC is negative for all
τCa values (Fig. 7B). However, theCCcurve exhibits a
negative peak at aτCa value comparable with the mean
ISI <1t >. This is because, ifτCa is too short com-
pared with<1t >, [Ca2+] cannot accumulate, and the
anticorrelation effect is small. IfτCa is very long, the
temporal [Ca2+] fluctuations are small compared with
its steady-state average—that is, the change of [Ca2+]
over two consecutive ISIs is small, and hence the
anticorrelation is again weak. The same phenomenon
is illustrated in a different way in Fig. 8A. Here,τCa is
fixed, but the mean ISI<1t > is varied by changingλ.
CC as function of the output rate displays a strong
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Figure 7. CV andCC strongly depend onτCa The input rateλ is adjusted to maintain the same output firing rate (the meanISI is denoted by
the vertical dotted lines, 16 ms for left graphs and 45 ms for the right graphs).A: CV first decreases and then increases with increasingτCa.
CV without adaptation is indicated by the horizontal dashed line.B: CC first decreases and then increases with increasingτCa. CC without
adaptation is indicated by the horizontal dashed line. (gAHP = 0.02.).

negative peak at about 20 Hz. Again,CC is negligible
at very low rates when<1t > is large compared with
τCa, andCC is also small at high rates when temporal
fluctuations of [Ca2+] are negligible compared with its
average.

As expected, for a fixedτCa, a largergAHP yields
stronger negative correlations between consecutive
ISIs in the steady state (Fig. 8B). Thus the correla-
tion coefficientCC can be used as a measure of the
strength of neuronal adaptation mechanism provided
that the input is uncorrelated in time.

3.8. Forward Masking

As we argued earlier, spike-frequency adaptation is
a cellular form of delayed inhibition of the neuron
on itself. As such, it may subserve a mechanism for

temporal (inhibitory) interaction between responses to
input signals from different sources. In the cricket
auditory system, when stimulated by sound inputs
from both ears, the omega cells were shown to
selectively respond to the stronger input, whereas
its normal response to the weaker input (observed
when the latter was presented alone) was suppressed
(Pollack, 1988).In vivocalcium imaging and intracel-
lular recording data suggest that this effect is produced
by a Ca2+-activated hyperpolarizing current (Sobel and
Tank, 1994). We found that our model displayed a sim-
ilar phenomenon, suggesting that this forward masking
effect is expected in general for all strongly adapting
neurons.

For an integrate-and-fire neuron, there is little in-
terference between the cell’s responses to two differ-
ent inputs, and the neuronal discharges are additive.



Spike-Frequency Adaptation with Stochastic Inputs 37

Figure 8. CCis affected by mean firing rate and adaptation strength
gAHP. A: With fixed τCa andgAHP, CC is a function of mean firing
rate (by changing the input rateλ), with a minimum at mean rate
around 20 Hz (∼ 1/τCa, τCa = 50 ms). B: With fixed input rateλ
andτCa, larger adaptation strengthgAHP induces stronger negative
correlation (negativeCC) between consecutiveISIs.

This is no longer the case in the presence of the adapt-
ing currentIAHP. For example, in response to a periodic
train (at 2.5 Hz) of square input pulses (width 100 ms)
with Poisson rateλ1 = 2000 Hz, the model neuron
fires at 20 to 40 Hz (2 to 4 spikes per input pulse of
100 ms) (Fig. 9A). However, if there is a second train
of square pulses with a larger amplitude (Poisson rate
λ2= 4000 Hz), phase-shifted from the first input train,
the neuron’s response to the weaker input is quickly
suppressed after a few cycles (Fig. 9B). We distin-
guish here two related but different effects. On the one
hand, there is aphasicforward masking effect (Sobel
and Tank, 1994): if stronger input pulses occur just

before the weaker ones (Fig. 9C), the firing response
to the stronger input triggers a significant Ca2+ influx
(Fig. 9C, upper panel), the increasedIAHP reduces the
cell’s excitability, and hence the response to the weaker
input is suppressed (Fig. 9C, middle panel). Here, the
condition is that the time interval between the stronger
and weaker inputs should be short compared withτCa.
On the other hand, there is atoniceffect: if theperiodof
the repetitive input trains is not too long compared with
τCa, there is a significant [Ca2+] plateau in time, and
the resultingmean IAHP reduces the cell’s responses to
both weaker and stronger inputs. However, we found
that the response to the weaker signal is much more
strongly suppressed than that to the stronger signal.
The effect is not sensitive to the relative temporal re-
lations of the two signals, and there is still a selective
suppression even when input pulses from the weaker
signal occur just before those from the stronger signal
(Fig. 9D). This second effect is different from the sim-
ple forward masking effect and is predominant when
τCa is sufficiently large compared with the period of the
input pulses.

Can the forward masking mechanism take place
quickly after the competing signals are introduced? In
Fig. 10A, we plotted the response ratio(R2/R1) (Ri be-
ing the number of spikes per pulse, invoked by signali ,
i = 1, 2) as a function of the number of input pulse pairs
in time. We found that the onset is rapid, and(R2/R1)

reaches the plateau after 4 to 5 input pulse pairs. This
is true independent of whether the very first input pulse
is from the weaker or stronger stimulus. The key for
the rapid onset is that [Ca2+] (henceIAHP) builds up
quickly during stimulations with a small time constant
τadap and yet decays slowly between stimulations with
a large time constantτCa, so that a significant level of
IAHP is reached quickly to effectively suppresses the
response to the weak input signal. As expected, the
forward masking effect is stronger with largergAHP

andτCa values (Fig. 10B).
Why is the suppression selective to the weaker input?

TheIAHP reduces the cell’s response tobothweaker and
stronger inputs: the response to each input is smaller
than it would be in the absence of the other input.
Again there are two factors, one due to phasic tran-
sients and the other due to the tonic [Ca2+] plateau.
As illustrated by the example in Fig. 9, because the
stronger response generates a much larger Ca2+ in-
flux, IAHP is high at the onset of the following weaker
pulse. Therefore, the weaker response is small, which
in turns allows [Ca2+] (henceIAHP) to decay further
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Figure 9. Forward masking is induced by adaptation when there are two competing input sources. The response to the stronger input suppresses
that to the weaker one.A: The [Ca2+] dynamics, the membrane voltage and the input rate are shown. The input consists of weak input source
only. B: The input consists alternatively of weak and strong inputs. The response to the weak input is strongly suppressed due to the presence
of the strong input.C–D: The suppression is not sensitive to the relative temporal phase of inputs from the two sources. (gAHP = 0.05,α = 0.1,
τCa = 600 ms.).
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Figure 10. Quantitative examination of the forward masking effect.A: For each pair of the strong and weak input pulses in a train, the response
ratio is plotted as a function of the pulse pair sequence number since the onset. The induction of suppression is fast, reaching the saturation in a
few pairs(1−2 sec). The order of weak and strong input pulses within a pair is not important for the induction of suppression.B: The response
ratio also depends on the calcium decay time constantτCa and strength of adaptationgAHP. LargerτCa or gAHP enhances the forward masking
effect. C: Without adaptation, the responses ratio for the strong and weak inputs are linear with the input rate ratio. With adaptation-induced
forward masking, the responses ratio for the strong and weak inputs becomes a highly nonlinear function of the input rate ratio. The thereotically
predicted nonlinear curve for response ratio fits well with simulation results.

until the next stronger input arrives. Consequently,
IAHP is significantly smaller at the arrival time of a
stronger input pulse than that of a weaker one, this
temporal patternof [Ca2+] and IAHP contribute to the
suppression selectivity. One the other hand, we show
in Appendix B that for largeτCa, even when [Ca2+]
does not fluctuate significantly in time, there is still a
selectivity simply because the response ratio is a non-
linear function of the input ratio. In Fig. 10C, this
selectivity is quantified by plotted the time-averaged
output ratio(R2/R1) versus the input ratio(λ2/λ1).
As a control, the response ratio is first computed in the
absence ofIAHP. If there is no adaptation,(R2/R1) is
almost linear with(λ2/λ1). This is easy to understand
if we consider the linearity between the input strength
and firing rate. By contrast, with adaptation, the re-
sponse ratio is a highly nonlinear function of the input
ratio (Fig. 10C), which can be theoretically derived
(Appendix B):

R2

R1
= f2

f1
= ρ(I2/I1)− 1

ρ − (I2/I1)
, (23)

whereI2/I1 < ρ, Ii = λi1VCm − g(Vreset− Vrest) −
Cmθ/(2τm), i = 1, 2. ρ is a constant independent ofI1

andI2. In our simulation,ρ ∼ 4.3. The analytical pre-
diction (dott-dashed curve) agrees well with numerical
simulations (solid curve).

If I2/I1 ≥ ρ, the response to the weak pulse is to-
tally masked. In our simulation, this corresponds to
the input ratio(λ2/λ1) ≥ 2.6. This means that when
the synaptic input drive of the stronger signal is more
than 2.6 times of that of the weaker signal, the neu-
ron does not have any response to the weaker signal.
The nonlinear forward-masking effect induced by the
slow IAHP current can be understood as the following:
when the fluctuation ofIAHP is small compared with
its steady-state level, it gives rise to a tonic hyperpo-
larizing current that is a function of bothI1 and I2.
As the response ratio is roughlyI2/I1 without adapta-
tion, with the inhibitory current the response ratio is
(I2− IAHP)/(I1− IAHP), which is a nonlinear function
of the input ratioI2/I1. Moreover, IAHP itsef is also
a function of the input rationI2/I1. These two fac-
tors lead to the nonlinear forward masking effect, even
though the system is approximately linear.
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4. Discussion

4.1. Spike-Frequency Adaptation of a Generalized
I&F Model

In this work, we studied a generalized integrate-
and-fire neuron model that takes into account spike-
frequency adaptation (see also Treves, 1993; Stemmler
et al., 1995; Troyer and Miller, 1997). The inclusion of
a Ca2+-activated K+ currentIAHP involves three addi-
tional parameters: the Ca2+ influx per action potential
α, the [Ca2+] decay time constantτCa, and the ionic
conductancegAHP. For a given cell type such as cortical
pyramidal neurons,α andτCa can be measured by Ca2+

imaging techniques (Schiller et al., 1995; Helmchen
et al., 1996; Svoboda et al., 1997). On the other hand,
gAHP can be derived from voltage-clamp experiments
on the IAHP. Hence, in principle all these parameters
can be fitted by experimental data.

We were particularly motivated by the recent exper-
imental finding of Ahmed et al. (1998) that, in the
cat visual cortical neurons, the spike-frequency adap-
tation to a current pulse stimulation can be well fitted
by a single exponential time course, characterized by a
time constantτadap and the degree of adaptationFadap.
With our model, we could predict this time course of
adaptation analytically at sufficiently high firing rates
and expressτadap andFadap in terms of the membrane
and calcium parameters. At low firing rates, sim-
ple analytical predictions are not feasible because the
f -I curve is nonlinear, and it is not given by a com-
pact expression for noisy Poisson inputs (Ricciardi,
1977).

We also considered an alternative model, where the
adaptation is due to an incremental increase in the volt-
age firing thresholdθ . Although both models behave
similarly in some ways, they differ in at least three as-
pects. First, in order to obtain strong adaptation (such
asFadap> 50%), in the threshold modelθ would have to
change by as much as 10 mV (Fig. 4B), which is not the
case for theIAHP model. Second,τadap increases with
input amplitude in theIAHP model, whereas the oppo-
site is predicted by the threshold model (Fig. 3). Third,
with a stochastic Poisson input, the instantaneous ISI
variability always increases during the adaptation on-
set for theIAHP model (Fig. 1) but can either decrease
or be nonmonotonic in time for the threshold model
(Fig. 4). Measurements from cortical pyramidal cells
show an increasedτadapas function of the input current
intensity (Ahmed et al., 1998), in support of a current

subtraction rather than a voltage threshold mechanism
for adaptation in cortical pyramidal neurons. Further
experiments are worthwhile to test the two alternative
models.

4.2. Comparison Between the Model and Cortical
Pyramidal Neurons

In our IAHP model,τadap and Fadap are controlled by
τCa andαgAHP and obey two simple relations:Fadap=
1−τadap/τCa (Eq. (17)), andFadap= Gadapτadap, where
Gadap is proportional toαgAHP but independent ofτCa

(Eq. (18)). These two relations are quite useful. For ex-
ample, simply by measuringFadapandτadapwe can esti-
mate the [Ca2+] decay time constantτCa using Eq. (17).
It is likely that for real cortical pyramidal neurons, the
two relations hold only approximately because many
factors not included in our model may quantitatively
affect the spike-adaptation properties.

Nevertheless, the success of Ahmed et al. (1998) in
fitting the data by single exponentials indicate that our
model may have captured the predominant features of
spike-frequency adaptation in cortical pyramidal cells,
at least at the time-scale of a few hundreds of mil-
liseconds. In order to test our model further, the two
relations betweenτadap and Fadap should be assessed
experimentally by plotting data points forFadap and
τadap against each other. For example, the first rela-
tion should hold for differentFadap and τadap values
obtained by pharmacologically enhancing or blocking
thegAHP to various degrees. On the other hand, if the
[Ca2+] decay kinetics are changed, the second relation
betweenFadap andτadap is predicted.

Ahmed et al. (1998) showed thatFadap and τadap

correlate significantly with cortical depth. Neurons
from superficial layers (layers II to IV) adapt more
quickly and to a greater degree (τadap∼ 3 − 24 ms
(mean= 11 ms), andFadap∼ 55−80% (mean= 67%))
than neurons in deep layers (layers V to VI,τadap ∼
24− 75 ms (mean= 50 ms) andFadap ∼ 35− 65%
(mean= 51%)). These observations can be accounted
for as follows. By applyingFadap = 1 − τadap/τCa,
we predict that in layers II to IV neuronsτCa' 40 ms,
while in deeper layers V to VI neuronsτCa ' 100 ms,
thus pyramidal neurons in superficial layers have faster
calcium dynamics. On the other hand, by applying
Fadap = Gadapτadap, we conclude thatαgAHP is likely
to be much larger (almost 6 times) for neurons in su-
perficial layers than for those in deep layers.



Spike-Frequency Adaptation with Stochastic Inputs 41

4.3. Neuronal Adaptation and Temporal Structure of
Spike Trains

With stochastic synaptic inputs to drive the model neu-
ron, we found that theIAHP affects the temporal struc-
ture of the output spike train in several interesting ways,
even in the stationary state after the adaptation onset.
First, when the input is Poisson (without temporal cor-
relation), the Ca2+-activatedIAHP dramatically affects
the output ISI variability (CV). Much work has been de-
voted to the question of temporal structure and variabil-
ity in the neuronal output (Calvin and Stevens, 1968;
Softky and Koch, 1993; Shadlen and Newsome, 1994;
Softky, 1995; Gabbiani and Koch, 1996; Holt et al.,
1996; van Vreeswijk and Sompolinsky, 1996; Troyer
and Miller, 1997; Rieke et al., 1997). Here, we found
that theCVcan be reduced or enhanced by adaptation,
if the time constant of the Ca2+-dependent feedback
is small or large compared with the mean ISI, respec-
tively. We speculate that this should hold true for other
forms of self-inhibition mechanisms, such as autapses
of interneurons (Shi and Rayport, 1994; Tam´as et al.,
1997).

Second, because adaptation reflects the recent his-
tory of the neuron, it can serve as a means of temporal
interaction between responses to different input sig-
nals that converge to a single neuron. Similar to the
experimental observations on auditory neurons of the
cricket (Pollack, 1988; Sobel and Tank, 1994), we show
that when there is more than one signal present, the
spike-frequency adaptation mechanism can help dif-
ferentiate signals from two or several sources and pro-
duce selective responses only to the strongest input.
It would be interesting to experimentally test whether
such a forward masking effect, produced by intracellu-
lar calcium dynamics, takes place in cortical pyramidal
neurons.

4.4. Is Spike-Frequency Adaptation Present in
Awake States?

A major obstacle that has hindered our efforts to
understand possible functional implications of spike-
frequency adaptation, both in neuronal input-output
computation and in emergent network dynamics, is our
inability to assess its presence in cortical cells during
awake behaving states of the brain. Most data on spike-
frequency adaptation were obtained within vitro slice
preparations andin vivo intracellular recordings un-
der anesthesia. These conditions are quite different

from a wakeful state of the brain. It is well known
that arousal is associated with activation of the brain-
stem system. Moreover, theIAHP (and IM ) underlying
spike-frequency adaptation are potently inhibited by
neuromodulators released from the brainstem, such as
acetylcholine, serotonin, and norepinephrine (Madison
and Nicoll, 1984; McCormick and Williamson, 1989;
Nicoll, 1988). On the other hand, adaptation was ob-
served in intracellular recordings of neocortical pyra-
midal cells in awake cats (Baranyi et al., 1993a, 1993b),
indicating that adaptation currents are likely to be
present in awake states, with their amplitudes con-
trolled and tuned by neuromodulators. Therefore, it
would be of great interest to estimate quantitatively the
strength ofIAHP in pyramidal neurons under various be-
havioral conditions. This would be feasible in practice,
if the degree of cellular adaptation could be assessed
from extracellularly recorded spike trains. Since the
CC can be readily computed from spike trains, and
its value is a monotonic function ofgAHP (Figs. 8B),
it may provide a probe for assessing the strength of
adapting ion currents (especially theIAHP) under dif-
ferentin vivoconditions of the intact brain. Of course,
negative temporal correlations in a spike train could
also be caused by other mechanisms of delayed nega-
tive feedback, such as short-term synaptic depression
or recurrent synaptic inhibition. These synaptic pro-
cesses remain to be investigated. Since alternative pro-
cesses have distinct time scales, their effects on the
output’s temporal structure should display characteris-
tic frequency-dependence (such as in Fig. 8A), which
may be used to distinguish one candidate mechanism
from another.

To conclude, we would like to suggest that the serial
coefficient of temporal correlation (CC) is as useful
and important a characterization as the coefficient of
variation (CV) for the ISIs of the neuronal output. Its
experimental measurements and our understanding of
its cellular and synaptic mechanisms could shed new
insights into the dynamical operation of neurons in the
cortex.

Appendix A: I AHP Adaptation Model

The model is

Cm
dVm

dt
= −gL(Vm − Vrest)+ Cm1V

∑
i

δ(t − ti )

− gAHP [Ca2+] (Vm − VK ) (24)
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d[Ca2+]

dt
= − [Ca2+]

τCa
. (25)

If Vm = Vth, then

{
Vm→ Vreset

[Ca2+] → [Ca2+] + α.
(26)

The analysis will be carried out in the regime of
sufficiently large input drive and high firing rates, when
the noise effect is small. Therefore, in the following
we replace the stochastic synaptic input by its mean
currentI = Cm1Vλ, whereλ is the Poisson rate.

Because the dynamics of calcium is much slower
than that of the membrane voltage, this model can be
solved using the fast-slow variable analysis (Rinzel,
1985, 1987; Wang and Rinzel, 1995; Wang, 1998).
The procedure consists of three steps.

In the first step, for the fast membrane dynamics
[Ca2+] is first treated as if it was a constant param-
eter in Eq. (24). WithV =Vm−Vreset and Ieff = I −
gL(Vreset−Vrest), the model can be rewritten as

Cm
dV

dt
= −(gL + gAHP [Ca2+])V + Ieff

− gAHP [Ca2+] (Vreset− VK ). (27)

If V = θ, then V → 0, (28)

with θ = Vth − Vreset. Or

dV

dt
= − V

τ ?m
+ I ?

Cm
, (29)

with

1

τ ?m
= 1

τm
+ gAHP [Ca2+]

Cm
(30)

I ? = Ieff − gAHP [Ca2+] (Vreset− VK ). (31)

If I ? andτ ?m are fixed, the solution for the firing rate
of this integrate-and-fire model is

f = −
[
τ ?m ln

(
1− Cmθ

I ?τ ?m

)]−1

. (32)

Note thatI ? and hencef are functions ofI and [Ca2+].
In the second step, the slow calcium dynamics is

considered, where the [Ca2+] influx is averaged over a

firing cycle and becomesα f (the influx per spike times
the instantaneous firing rate):

d[Ca2+]

dt
= α f (I , [Ca2+])− [Ca2+]

τCa
. (33)

Depending on whether the input is strong,
f (I , [Ca2+]) can be expanded linearly either byI
(large I with strong input) or by [Ca2+] (low [Ca2+]
level with weak input).

Strong Input Drive

With the assumption thatCmθ

I ?τ ?m
¿ 1 (for example, it

is 0.075¿ 1 in our simulation), the firing rate can be
expanded to the second order, yielding a linear relation
between the firing rate andI ? as

f ' I ?

Cmθ
− 1

2τ ?m
= finit − G f [Ca2+], (34)

with

finit = Ieff

Cmθ
− 1

2τm
(35)

G f = gAHP

Cm

(
Vreset− VK

θ
+ 1

2

)
. (36)

Substitutingf in Eq. (33) by Eq. (34), we obtain

d[Ca2+]

dt
= α f − [Ca2+]

τCa

= α finit − (αG f + 1/τCa) [Ca2+]

= α finit − [Ca2+]/τadap, (37)

with

τadap=
[

1

τCa
+ Gadap

]−1

; Gadap= αG f , (38)

both are independent of the input amplitude.

Weak Input Drive, Low [Ca2+]

When the input is not very strong, the linear relation
between firing rate andI ? is no longer valid. Since the
[Ca2+] level is low due to the low firing rate, we can
analyze the system in the low [Ca2+] limit. The same
Eq.(33) is expanded on small [Ca2+]:

f ' finit − G f [Ca2+], (39)
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with

finit = −
[
τm ln

(
1− Cmθ

Ieffτm

)]−1

(40)

G f = b0(Ieff)gL

a0(Ieff)
2Cm
− gAHP

a0(Ieff)Cm
, (41)

and

a0(Ieff) = − ln

(
1− gLθ

Ieff

)
(42)

b0(Ieff) = gAHPθ
Ieff + gL(Vreset− VK )

Ieff(Ieff − gLθ)
. (43)

Therefore, we obtain the same equations as in case one
Eqs. (37) and (38), except thatfinit and Gf are now
given by Eqs. (40) to (43). In the low [Ca2+] regime,
theτadap is an increasing function of the inputIeff and
approaches the input-independent value determined by
Eq. (38) asymptotically with increasing input ampli-
tude.

Finally, in the third step, by inserting the solution
of the calcium equation intof (I , [Ca2+]), the time
evolution of the firing rate during adaptation process is
solved.

The initial firing rate finit = f (I , [Ca2+] = 0), or

finit = −
[
τm ln

(
1− Cmθ

Ieffτm

)]−1

. (44)

The steady-state [Ca2+] level is given by

d[Ca2+]

dt
= α f − [Ca2+]/τCa = α finit − [Ca2+]

τadap
= 0,

(45)
which yield

[Ca2+]ss= ατCa fss= ατadap finit . (46)

Thus,

Fadap≡ finit − fss

finit
= 1− τadap

τCa
. (47)

Substituting 1/τCa = 1/τadap− Gadap in the above
equation, we also obtain

Fadap= Gadapτadap. (48)

In summary, the dynamics of the system are

[Ca2+] (t) = [Ca2+]ss (1− e−t/τadap) (49)

f (t) = fss+ ( finit − fss)e
−t/τadap. (50)

Appendix B: Forward Masking

For clarity, we analyze the case when the strong and
weak signals are evenly alternating as shown in Fig. 9B.
The duration of each signal pulseT = 100 ms is the
same as the time interval between pulses. The strength
of the two inputs areλ1 andλ2. We define

Ii = λi1V Cm

−gL(Vreset− Vrest)− Cmθ

2τm
, i = 1, 2. (51)

From Appendix A we know the steady-state [Ca2+] i

level is

[Ca2+] i,ss= ατadap

Cmθ
Ii . (52)

The dynamics of [Ca2+] approaches [Ca2+] i,ss dur-
ing the signal pulse with time constantτadap and de-
cays back to zero with time constantτCa between input
pulses. We denote the calcium level at the start and end
point of signali as [Ca2+] i,start and [Ca2+] i,end:

[Ca2+]1,end = (ατadap/Cmθ)(1− e−T/τadap)I1

+ e−T/τadap[Ca2+]1,start

[Ca2+]2,start = e−T/τCa[Ca2+]1,end

[Ca2+]2,end = (ατadap/Cmθ)(1− e−T/τadap)I2

+ e−T/τadap[Ca2+]2,start

[Ca2+]′1,start = e−T/τCa[Ca2+]2,end,

(53)

where [Ca2+]′1,start is the [Ca2+] level at the begin-
ning of thenextcycle of the signalλ1. In the steady
state [Ca2+]′1,start = [Ca2+]1,start. Using this relation
[Ca2+]1,start and [Ca2+]2,start can be solved from the
above equation. In particular, the average starting cal-
cium level is

[Ca2+]start = ([Ca2+]1,start + [Ca2+]2,start)/2

= κ(I1+ I2), (54)

where

κ = ατadape−T/τCa(1− e−T/τadap)

2Cmθ
(
1− e−T(1/τCa+1/τadap)

) . (55)
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Since the fluctuation of [Ca2+] after the system
reaches the steady state is small compared with
[Ca2+]start, it is reasonable to treat the calcium level as
a constant. We then obtain

fi = 1

Cmθ
[ Ii − gAHP[Ca2+]start (Vreset− VK )]. (56)

Finally, we obtain the response ratio

f2

f1
= ρ(I2/I1)− 1

ρ − (I2/I1)
, (57)

whereρ = 1/(gAHP(Vreset−VK )κ)− 1 is independent
of I1 and I2. For the parameter values used in Figs. 9
and 10,ρ ' 4.3. In Eq. (57) it is assumed thatI2 > I1.
The ratio f2/ f1 diverges whenI2/I1 > ρ, and the
response to the smaller input is completely masked.
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électrique des nerfs trait´ee comme une polarisation.J. Physiol.
Pathol. Gen. 9:620–635.

Lapicque L (1927)L’excitabilité en fonction du temps. Presses
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