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Abstract

Perception involves two types of decisions about the sensory world: identification of stimulus features as analog quantities,
or discrimination of the same stimulus features among a set of discrete alternatives. Veridical judgment and categorical
discrimination have traditionally been conceptualized as two distinct computational problems. Here, we found that these
two types of decision making can be subserved by a shared cortical circuit mechanism. We used a continuous recurrent
network model to simulate two monkey experiments in which subjects were required to make either a two-alternative
forced choice or a veridical judgment about the direction of random-dot motion. The model network is endowed with a
continuum of bell-shaped population activity patterns, each representing a possible motion direction. Slow recurrent
excitation underlies accumulation of sensory evidence, and its interplay with strong recurrent inhibition leads to decision
behaviors. The model reproduced the monkey’s performance as well as single-neuron activity in the categorical
discrimination task. Furthermore, we examined how direction identification is determined by a combination of sensory
stimulation and microstimulation. Using a population-vector measure, we found that direction judgments instantiate
winner-take-all (with the population vector coinciding with either the coherent motion direction or the electrically elicited
motion direction) when two stimuli are far apart, or vector averaging (with the population vector falling between the two
directions) when two stimuli are close to each other. Interestingly, for a broad range of intermediate angular distances
between the two stimuli, the network displays a mixed strategy in the sense that direction estimates are stochastically
produced by winner-take-all on some trials and by vector averaging on the other trials, a model prediction that is
experimentally testable. This work thus lends support to a common neurodynamic framework for both veridical judgment
and categorical discrimination in perceptual decision making.
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Introduction

Perceptual judgments involve detection, identification and

discrimination of objects in a sensory scene [1,2]. Given an

ambiguous visual motion pattern, for instance, a subject may be

asked to detect whether a net motion direction is present or absent

[3], to identify the motion direction as an analog quantity [4], or to

discriminate the motion direction between two options (e.g., left or

right) [5]. Using the strategy of single-unit recording from

behaving monkeys, neurophysiologists have begun to uncover

neuronal activity that is linked to such perceptual judgments (for

reviews, see [6–11]). In monkey experiments using perceptual

discrimination tasks, neural correlates of decision making have

been observed in the parietal [12,13], premotor [14–16] and

prefrontal [17,18] cortical areas. Experimental observations have

inspired the advance of neural circuit models which suggest that

recurrent (attractor) network dynamics can underlie temporal

integration of sensory information (accumulation of evidence) and

decision formation [18–25].

Focusing on categorical discrimination, those neural circuit

models as well as abstract ramp-to-threshold models [26–30] are

typically endowed with a simple architecture consisting of discrete

neural pools, selective for categorical alternatives. Therefore, they

are inadequate for exploring perceptual identification that requires

neural representation of analog quantities, such as motion

direction that can be an arbitrary angle between 0u and 360u.
On the other hand, probabilistic estimation of an analog stimulus

feature has been studied from the perspective of optimal

population coding [2,31,32]. These studies centered on optimal

algorithms for reading out a stimulus feature from sensory neural

populations, such as inferring the orientation of a visual stimulus

from neural activity in the primary visual cortex [33] and the

direction of a motion stimulus from activity profiles across the

middle temporal visual area (MT) [2]. However, such probabilistic

inference is believed to occur in higher-order cortical areas

downstream from primary sensory areas, and the underlying

circuit mechanism remains unclear. In particular, it is unknown

whether probabilistic estimation and categorical discrimination

engage distinct decision processes or can be realized by a shared

neural circuit mechanism.

In the present work, we investigated this outstanding question

using a continuous recurrent network model of spiking neurons,

which was initially proposed for spatial working memory [34]. We

applied this model to the simulation of two monkey experiments
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using random-dot visual motion stimuli. In a two-alternative

forced-choice direction discrimination task (Figure 1A), the

monkey was trained to discriminate the motion direction by

making a saccadic eye movement to one of two peripheral choice

targets [12,13,35]. It was found that ramp-like spiking activity of

neurons in the lateral intraparietal cortex (LIP) is correlated with

the monkey’s choice. By contrast, in a direction identification task

(Figure 1B), the monkey was required to report veridically its

perceived direction of motion in the visual stimulus [4]. On some

trials, electrical stimulation was applied simultaneously to MT

neurons when the monkey viewed the random-dot display.

Microstimulation could bias the monkey’s judgments toward the

preferred direction of MT neurons at the microstimulation site

[4,36]. It was argued that both vector-averaging and winner-take-

all algorithms might contribute to the interpretation of activity

profiles of MT neurons. But [4] collected only behavioral data and

did not record neural activity in MT or downstream cortical areas.

Thus, the neural mechanism for veridical judgments about the

motion direction remains unknown.

Here we show that the continuous recurrent network model is

capable of reproducing salient observations from both experi-

ments. Our results suggest that both categorical discrimination and

veridical judgment can be subserved by a common cortical circuit

endowed with reverberatory dynamics.

Materials and Methods

Network Architecture
Our model is designed to simulate two perceptual decision tasks

in which the decision is about the net direction of a random-dot

motion stimulus. Since the directional angle is a one-dimensional

quantity, we used a continuous network model in which each

neuron is selective for a motion direction, from 0u to 360u. Our

model network does not directly map onto LIP, in which neurons

have response fields in a two-dimensional visual space. However,

our model is adequate for simulating the two tasks, and we do not

anticipate that a two-dimensional version of our model would

behave in qualitatively different ways.

The model network is composed of NE pyramidal cells and NI

interneurons. The network architecture is consistent with a

columnar organization [34,37]. Cells are spatially distributed on

a ring according to the motion direction to which they are most

sensitive (Figure 2A). Each neuron is labeled by its preferred

direction hi, which is uniformly distributed between 0u and 360u.
Simulations were done with NE = 2048 and NI = 512.

Neurons and Synapses
Both pyramidal cells and interneurons are described by leaky

integrate-and-fire neurons and are characterized by six parameters

[34]: the membrane capacitance Cm, the leak conductance gL, the

resting potential EL, the threshold potential Vth, the reset potential

Vreset, and the refractory time tref. The values used were:

Author Summary

In daily life, we constantly face two types of perceptual
decisions: to identify an object feature (what is the speed
of that car?) or to discriminate the same feature among
two or more possible categories (is that car going faster
than the speed limit?). These decision processes appear to
involve very different computations: while identification
relies on an analog judgment, categorical discrimination is
based on a comparison of the object feature with discrete
options. Do they engage entirely separate brain mecha-
nisms? In this work, we showed that these two types of
decision making can be instantiated by a single cortical
circuit. We used a continuous recurrent network model to
simulate two monkey experiments in which subjects were
required to make either a two-alternative choice or a
veridical judgment about the direction of random-dot
motion. The model reproduced salient experimental
observations and makes testable predictions. The results
demonstrate that a common cortical circuit can perform
both categorical discrimination and veridical judgment.
Conceptually, this work supports the notion that a cortical
circuit endowed with reverberatory dynamics can fulfill
multiple cognitive functions such as working memory and
decision making.

Figure 1. Schematic depiction of two monkey experiments that were simulated by the continuous recurrent network model. (A)
Reaction-time version of a two-alternative forced-choice direction discrimination task. A trial began when the monkey fixated a point on the display
monitor. Two choice targets then appeared in the periphery. One was within the response field (RF) of the recorded neuron, and the other was in the
opposite hemisphere. After a delay, a dynamic random-dot display appeared, where a fraction of dots moved coherently toward one of the two
targets while the others moved randomly in all other directions. The monkey was allowed to make a saccadic eye movement toward a target at any
time when it was ready. (B) Direction identification task. After fixation, a random-dot motion stimulus appeared inside a target ring and lasted 1 s.
When the fixation point was extinguished, the monkey made a saccadic eye movement to the location on the target ring toward which the dots had
moved. On some trials, electrical stimulation was simultaneously applied to MT neurons.
doi:10.1371/journal.pcbi.1000253.g001

A Local Circuit Model for Two Decision Processes
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Figure 2. Network architecture and input signals. (A) Schematic illustration of network structure. The network is composed of 2,048 pyramidal
cells and 512 interneurons. Excitatory cells are labeled and arranged by their preferred motion directions (from 0u to 360u). The connectivity between
pyramidal cells is structured, and the synaptic strength is a Gaussian function of the difference between their preferred directions (solid curve).
Connections to or from inhibitory interneurons are broad. (B) Spatial profile and time course of input rates in the direction discrimination task.
External inputs to the network from two targets and the motion stimulus are separately modeled as excitatory synaptic currents mediated by AMPA
receptors, with presynaptic spikes emitted based on Poisson processes. Poisson rates are depicted in the figure as a function of preferred directions
of neurons and time: the maximum input rate from two targets, the input rate from the motion stimulus for four different motion strength, and their
corresponding time courses, respectively (from top to bottom). For the target input, the effects of spike-rate adaptation and divided attention upon
stimulus onset are included. (C) Spatial profile of input rate in the direction identification task. The inputs from both the motion stimulus and
microstimulation are modeled as excitatory synaptic currents. The profiles of Poisson rate are shown for four different stimulus directions with the
microstimulated direction fixed at 90u.
doi:10.1371/journal.pcbi.1000253.g002

A Local Circuit Model for Two Decision Processes
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Cm = 0.5 nF, gL = 25 nS, EL = 270 mV, Vth = 250 mV, Vre-

set = 259 mV, and tref = 2 ms for pyramidal cells; Cm = 0.2 nF,

gL = 20 nS, EL = 270 mV, Vth = 250 mV, Vreset = 259 mV, and

tref = 1 ms for interneurons. Below Vth, the membrane potential

Vi(t) of cell i obeys the following equation:

Cm
dVi

dt
~{gL Vi tð Þ{ELð Þ{Ii,syn tð Þ,

where Ii,syn represents the total synaptic current flowing into the

cell.

The network is endowed with pyramidal-to-pyramidal, pyra-

midal-to-interneuron, interneuron-to-pyramidal, and interneuron-

to-interneuron connections (Figure 2A). For the sake of simplicity,

only the connectivity between pyramidal cells is structured.

Recurrent excitatory currents are mediated by AMPA receptors

(AMPARs) and NMDA receptors (NMDARs), while inhibitory

currents are mediated by GABAA receptors (GABAA Rs). External

excitatory inputs include those from MT neurons, which represent

visual motion stimuli and electrically elicited directional signals.

When simulating the categorical discrimination task, additional

inputs represent the presentation of choice targets. All neurons also

receive background synaptic input mimicking spontaneous activity

outside the local network. In simulations, all these external

currents are mediated exclusively by AMPARs.

The total synaptic current in pyramidal cell i is given by

Ii,syn tð Þ~Ii,extzIi,backzIi,AMPAzIi,NMDAzIi,GABA,

where

Ii,back~gE
back Vi tð Þ{VEð Þsback

i tð Þ

Ii,AMPA~gEE
AMAP Vi tð Þ{VEð Þ

XNE

j~1

wijs
AMPA
j tð Þ

Ii,NMDA~
gEE

NMDA Vi tð Þ{VEð Þ
1z Mg2z½ �exp {0:062Vi tð Þð Þ=3:57

XNE

j~1

wijs
NMDA
j tð Þ

Ii,GABA~gEI
GABA Vi tð Þ{VIð Þ

XNI

j~1

sGABA
j tð Þ

with VE = 0 mV and VI = 270 mV. Ii,back represents background

synaptic input. Ii,AMPA and Ii,NMDA denote recurrent excitatory

inputs, while Ii,GABA represents recurrent inhibitory input. The

maximum synaptic conductances are denoted by gE
back, gEE

AMAP,

gEE
NMDA (pyramidal-to-pyramidal), and gEI

GABA (interneuron-to-

pyramidal), respectively. We shall describe Ii,ext in the following

sections.

For interneuron i, the total synaptic current is described

similarly except for Ii,ext = 0 as well as different synaptic

conductances gI
back, gIE

AMAP, gIE
NMDA (pyramidal-to-interneuron),

and gII
GABA (interneuron-to-interneuron).

The synaptic strength between two pyramidal cells i and j

depends on the difference between their preferred directions and is

described as gEE
AMPAwij or gEE

NMDAwij with wij:W hi{hj

� �
:W hð Þ

~J{z Jz{J{ð Þexp {h2
�

2s2
w

� �
. If h.180u, it is set to h2360,

and if h,2180u, it is set to h+360. This is done to satisfy the

periodic boundary condition, which is also imposed on the

following Equations 2–5. Note that W(h) is normalized as

1

360

ð180

{180

W hð Þdh~1:

W(h) with Jz~1:64 and sw = 18u is shown in Figure 2A (solid

curve).

The gating variables, i.e., the fractions of open channels, are

described as follows. The AMPA (external and recurrent) synaptic

variable obeys the following equation:

dsAMPA
j tð Þ

dt
~{

sAMPA
j tð Þ
tAMPA

z
X

k

d t{tk
j

� �
, ð1Þ

where the decay time constant was set to tAMPA = 2 ms, and the

sum over k represents a sum over spikes emitted by presynaptic

neuron j [19]. In the case of background noise, sback
i also obeys

Equation 1, where spikes are emitted based on a Poisson process

with a rate of 1.5 KHz independently from cell to cell. The

maximum conductances were set to gE
back~2:8 nS and

gI
back~2:13 nS. NMDA currents have a voltage dependence that

is controlled by the extracellular magnesium concentration,

[Mg2+] = 1 mM. Thus, the NMDA channel kinetics are modeled

as

dsNMDA
j tð Þ

dt
~{

sNMDA
j tð Þ

tNMDA,decay
zaxj tð Þ 1{sNMDA

j tð Þ
� �

dxj tð Þ
dt

~{
xj tð Þ

tNMDA,rise

z
X

k

d t{tk
j

� �

with tNMDA,decay = 100 ms, a = 0.5 ms21, and tNMDA,rise = 2 ms

[19]. The GABA synaptic variable obeys the following equation:

dsGABA
j tð Þ

dt
~{

sGABA
j tð Þ
tGABA

z
X

k

d t{tk
j

� �

with tGABA = 10 ms. All synapses have a latency of 0.6 ms.

In simulations of the discrimination task, the maximum

recurrent synaptic conductances (in mS) were taken as

gEE
AMPA~0:269=NE , gEE

NMDA~0:833=NE, gIE
AMPA~0:218=NE,

gIE
NMDA~0:677=NE, gEI

GABA~0:932=NI, and gII
GABA~0:67=NI.

These conductances are scaled inversely proportionally to the

number of pyramidal cells and of interneurons, respectively.

This is to keep the total synaptic conductances unchanged when

network size is varied. With these parameter values, NMDAR

channels contribute 85% to recurrent excitatory charge entry at

a holding potential of 265 mV. To simulate the identification

task, we decreased the conductance values except gII
GABA.

Meanwhile, we increased the ratio of gEE
NMDA to gIE

NMDA and

of gII
GABA to gEI

GABA so that the overall recurrent inhibition is

decreased. The following values were used: gEE
AMPA~0:258=NE,

gEE
NMDA~0:712=NE, gIE

AMPA~0:204=NE, gIE
NMDA~0:562=NE,

gEI
GABA~0:9=NI, gII

GABA~0:695=NI as well as Jz~1:73 and

sw = 14u. In this case, NMDAR channels contribute 83.5% to

recurrent excitatory charge entry at a holding potential of

265 mV. Three features are worth noting. First, recurrent

excitation is taken to be primarily mediated by NMDARs [38].

Second, the network is dominated by recurrent inhibition [34].

Third, neurons receive a large amount of background noise.

A Local Circuit Model for Two Decision Processes
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Two-Alternative Direction Discrimination Task
To simulate a two-alternative direction discrimination task

[13,35], the presentation of two choice targets at h1 and h2 is

modeled through selective synaptic input to the pyramidal cells

whose preferred directions are close to either h1 or h2. The

random-dot motion stimulus is represented by MT neurons, which

project to LIP. Therefore, the external input to pyramidal cell i is

assumed to be Ii,ext(t) = Ii,tar(t)+Ii,stim(t) with

Ii,tar tð Þ~gtar Vi tð Þ{VEð Þstar
i tð Þ

Ii,stim tð Þ~gstim Vi tð Þ{VEð Þsstim
i tð Þ:

star
i and sstim

i obey Equation 1, with spikes discharged according to

Poisson processes with rates ntar
i and nstim

i , respectively.

ntar
i depends on the preferred direction hi of each cell and varies

with time; it is described as

ntar
i tð Þ~R hið Þh tð Þ

with

R hið Þ~390 e
{

hi{h1ð Þ2
s2

tar ze
{

hi{h2ð Þ2
s2

tar

 !
ð2Þ

h tð Þ~

0 if 0vtvt0,

0:36z0:64e
{

t{t0
tad if t0ƒtvt1z80,

0:10z0:26e
{

t{t1{80

tad if t1z80ƒt,

2
664

where t0 and t1 represent the onset times for the targets and the

stimulus, respectively. The function h(t) models the spike-rate

adaptation of upstream neurons encoding the targets and the

presumed divided attention upon stimulus onset. The adaptation

time constant tad was set to 80 ms. Upon the stimulus onset, the

strength of target input is assumed to be reduced, presumably

resulting from a cross inhibition between upstream neurons

separately signaling the motion stimulus and the targets, or

because the subject’s covert attention is shifted from the targets to

the stimulus. Consequently, the neural activity decreases momen-

tarily, resembling a brief ‘dip-and-rise’ in firing rate of LIP

neurons. We used the following values: h1 = 90u, h2 = 270u,
star = 13u, t0 = 500 ms, t1 = 1300 ms, and gtar = 12 nS (Figure 2B).

The specific parameter values in R(hi) and h(t) are not so

important, provided that the input from the targets is sufficiently

strong to trigger high neural activity before stimulus presentation.

Based on the tuning curves of MT neurons during the

presentation of a random-dot display [39], nstim
i is modeled as

nstim
i hið Þ~r0zc’ {r1zr2e

{
hi{h1ð Þ2

s2
stim

0
@

1
A ð3Þ

with c9 (0#c9#1) denoting motion strength and h1 the direction of

coherent motion. We used the following values: r0 = 100 Hz,

r1 = 30 Hz, r2 = 90 Hz, sstim = 40u, and gstim = 5.9 nS (Figure 2B).

Note that there is a latency for visual signals to arrive in LIP,

which was assumed to be 200 ms [29,35].

Direction Identification Task
The simulations used the same protocol as in [4]. Pyramidal

cells in the model circuit receive excitatory synaptic input from

MT neurons representing both the motion stimulus and the

electrically evoked directional signal. MT activity is broadly tuned

to visual motion stimuli, characterized by tuning curves with a

typical width at half-height of ,90u [39–42]. On the other hand,

we assume that microstimulation activates a much narrower range

of MT neurons and also evokes lateral inhibition from interneu-

rons. As a result, the external input is described as

Ii,ext tð Þ~gstim Vi tð Þ{VEð Þsext
i tð Þ,

where sext
i obeys Equation 1, with spikes emitted based on a

Poisson process with a rate mi. In the presence of only the visual

stimulus,

mi~ms hið Þ~A0zA1e
{

hi{h1ð Þ2
s2

stim : ð4Þ

In the presence of microstimulation alone,

mi~mm hið Þ~A2 e
{

hi{h2ð Þ2
s2

1 {ae
{

hi{h2ð Þ2
s2

2 zb

0
@

1
A: ð5Þ

As a first-order approximation, mi = ms(hi)+mm(hi) in the presence

of both the visual stimulus and microstimulation, which are

delivered simultaneously and last a fixed duration of 1 s. Equation

4 is similar to Equation 3. The second term on the right-hand side

of Equation 5 is to mimic lateral inhibition from interneurons; the

third term is to ensure mm positive.

The directional angles h1 and h2 denote the coherent motion

direction in the random-dot display and the preferred direction of

MT neurons at the microstimulation site, respectively. We assume

A0 = 723.5c9 and A1 = 49c9 (in units of Hz) with c9 being the

stimulus coherence level. As in the experiment, c9 was always set to

80% representing a vivid suprathreshold stimulus unless specified

otherwise. This is so because the experimental study aimed to

investigate the interaction between this suprathreshold motion

stimulus and microstimulation at varying angular distances. Other

parameter values were chosen so that the maximum firing rate of

cells at stimulus offset is comparable when microstimulation or the

visual stimulus is presented alone. The values used were:

A2 = 86.8 Hz, a = 0.25, b = 0.05, s1 = 21u, s2 = 33u, sstim = 40u,
h2 = 90u, and gstim = 6.1 nS. h1 varied with trials.

The angular difference Dh = |h22h1| can be used to classify

neural activity. For a small Dh, there is a significant overlap

between the two inputs, ms and mm, and there is a relatively large

value in between two peaks (Figure 2C). For a large Dh, the two

inputs are nearly independent of each other.

Readout of the Direction Judgment
For both the direction discrimination and identification tasks,

we used the same measure to read out direction judgment. It is

determined by a population vector scheme as follows [43]:

hPV tð Þ~arctan

PNE

i

ri sin hið Þ

PNE

i

ri cos hið Þ

0
BBB@

1
CCCA,

where ri is the instantaneous firing rate of cell i, of which the

preferred direction is hi. Especially, the value of hPV at stimulus

A Local Circuit Model for Two Decision Processes
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offset is denoted by hE, which represents a direction estimate on

individual trials. ri is calculated as follows. For each time window

of 40 ms (with a sliding window being 5 ms), the total spike

number is counted and divided by the time window.

For the reaction-time version of the discrimination task, we also

read out decision time based on threshold crossing of neural

population firing rates. Specifically, we calculated the instanta-

neous population firing rates, r1 and r2, of two neural pools

separately centered at h1 and h2, each consisting of 140 cells and

spanning 360u6(140/2048),24u. That is, each pool consists of

cells with their preferred directions within ,612u around h1 or h2.

The time bin was 40 ms, and a sliding window of 5 ms was used to

smooth data. Decision time is calculated by assuming that a

decision is made whenever r1 or r2 first reaches a prescribed

threshold, which was set to 57 Hz to fit behavioral data. Decision

times can be compared with experimentally recorded reaction

times by adding a non-decision response time ,70 ms (i.e., the

additional time it takes for a monkey to generate a saccadic eye

movement after a choice is made).

Numerical Method
The trial-averaged population firing rates were obtained by

averaging over 1000 correct trials (Figure 3C). Moreover, to

visualize network activity, spatiotemporal maps of firing rate are

shown in Figure 3B. A spike time rastergram for all pyramidal cells

was smoothed with a sliding window both in time (50 ms) and along

the neural population (10 neurons). The resulting firing rate was

color coded. The integration method used is a modified second-

order Runge-Kutta algorithm [44], with a time step of 0.02 ms.

Results

We will first report model simulations of the categorical

discrimination task [13] and assess how well the model reproduces

the monkey’s performance as well as LIP activity that appears to

reflect the decision computation. We will then use the same model

to simulate the direction identification task involving the

microstimulation of MT [4]. We will examine how a continuous

recurrent circuit, endowed with strong reverberatory dynamics,

can integrate sensory information and make categorical choices in

the discrimination task or instantiate both the winner-take-all and

vector-averaging mechanisms for direction judgments in the

identification task.

Two-Alternative Forced-Choice Direction Discrimination
Task
Graded Ramping Neural Activity and Categorical
Competition

Model simulations used the same protocol as in the reaction-

time version of a two-alternative direction discrimination task [13].

Figure 3A displays typical network activity in response to both two

targets and a random-dot motion stimulus at zero coherence. The

network activity is monitored by plotting its spatiotemporal firing

pattern (upper panel). A trial begins with the network in a resting

state in which cells exhibit low spontaneous firing. Two targets are

then separately presented at h1 (90u) and h2 (270u), instructing the

network two choice options. In response, two neural pools

Figure 3. Network activity during the direction discrimination
task. (A) (Top) Spatiotemporal firing pattern of pyramidal cells with the
stimulus at zero coherence. x-Axis, time; y-axis, cells labeled by their
preferred directions. Two targets are separately presented at 90u and
270u (indicated by arrows). The targets and the motion stimulus are
presented at 500 ms and 1,300 ms, respectively. But there is a latency
(about 200 ms) for the visual signal to reach LIP. (Bottom) Time course
of the population firing rates for the two neural pools, each consisting
of 140 neurons and separately centered at 90u (r1, black) and 270u (r2,
red), and for the neurons whose preferred directions are at least 26u
away from 90u and 270u (blue), respectively. (B) Network activity

patterns shown with a color-coded firing rate map for three coherence
levels. The coherent motion direction is 90u (indicated by triangles). (C)
Time course of population firing rates r1 (solid curves) and r2 (dashed
curves), averaged over 1,000 correct trials, for various coherence levels.
See Results for detailed description.
doi:10.1371/journal.pcbi.1000253.g003

A Local Circuit Model for Two Decision Processes
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separately centered around h1 and h2 show persistent elevated

activity, with neural discharges quite asynchronous. Thus, the

profile of network activity exhibits two symmetric ‘bumps’

separately centered at h1 and h2. That is, there is no winner-

take-all competition in the symmetric state. This has also been

observed in [23] and can be understood as follows. In our model,

recurrent excitation is dominated by the NMDARs-mediated

current, which saturates at high firing rates [38]. The winner-take-

all mechanism requires not only global inhibition but also

recruitment of synaptic excitation. This recurrent excitation

saturates at (symmetric) high firing rates, and thus no winner-

take-all occurs.

Upon the onset of motion stimulus, neural activity decreases

transiently owing to a reduced efficacy of target input (see

Methods). The biological origin of this reduction is currently

unknown; possible scenarios include a cross inhibition between

upstream neurons separately signaling the targets and the motion

stimulus and that the subject’s covert attention may be shifted

from the targets to the stimulus. After the visual signal reaches the

decision circuit (with a latency of 200 ms), the two neural pools

integrate the signal and compete against each other through

shared inhibitory feedback from interneurons. Eventually, one

neural pool wins the competition and increases its activity, while

the other’s activity is greatly suppressed, leading to a categorical

choice. Note that winner-take-all competition occurs even when

the stimulus input is uniform across the network. This is

interpreted as follows. The symmetric state with high firing rates

is stable only for sufficiently strong inputs. It disappears and is

replaced by asymmetric states (with one of the two bumps growing

while the other shrinking) when the target input is reduced to

lower levels after stimulus onset, similar to the behavior of a model

network composed of discrete neural pools [23].

The decision process can be revealed by showing the time

course of population firing rates, r1 and r2, of the two neural pools

separately centered around h1 and h2 (see Methods). In response to

target presentation, r1 and r2 initially display a drastic increase

followed by an adaptation to ,40 Hz (Figure 3A, lower panel),

resembling the LIP response to target presentation [12,13,35].

After the motion stimulus is delivered, both r1 and r2 first decrease

and then rise together to nearly the same level as before stimulus

onset. Such a dip-and-rise has been widely observed in

experiments [13,35,45,46]. Afterwards, r1 and r2 begin to diverge

over time, with r2 climbing up while r1 decaying down in this

example. This subserves the formation of a binary decision. A

choice is made when r2 reaches a prescribed threshold.

Throughout the decision process, there is a dynamic balance

between recurrent excitation and inhibition, as the activity of

interneurons builds up in parallel with that of winning pyramidal

cells (data not shown). This excitation-inhibition balance is

important for ensuring network stability and, together with

background synaptic noise, contributes to stochastic network

dynamics. Given the stimulus at zero coherence, this stochasticity

determines the choice outcome on any given trial, and thus the

decision is at chance level across trials.

Figure 3A also displays the time course of the mean firing rate of

the pyramidal cells which are not activated directly by the two

target inputs (blue curve). After the presentation of two targets,

since the two activated neural pools (in the ‘‘bumps’’) excite

interneurons, which in turn send feedback inhibition globally to

the entire network, those pyramidal cells show a suppressed

activity compared to the spontaneous state. After the visual

stimulus reaches the decision network, those cells also receive an

extra external activation (e.g., the motion stimulus is uniform at

zero coherence). Meanwhile, the feedback inhibition decreases

because of the drop of neural activity in one of the two bumps.

These two factors combined lead to the increase of firing activity of

those cells.

In the monkey experiment, coherence level or motion strength

c9 refers to the fraction of dots that move coherently in one

particular direction (e.g., 90u) while the others move randomly in

all other directions with a uniform distribution in the random-dot

display. This is implemented in the model as bell-shaped input

profiles (see Figure 2B), which mimic the activity profiles of MT

neurons at different coherence levels [39]. In Figure 3B is shown

the network activity on single trials with stimuli at nonzero

coherence levels. After two targets are presented, two bumps

separately develop around h1 and h2. Since the targets exist

throughout the trial, they ‘instruct’ the network two choice options

and always exert an influence on the decision process. After

stimulus onset, neural activity first decreases briefly and then rises.

Furthermore, there is a transition from the symmetric state to the

asymmetric state, where one bump eventually becomes predom-

inant over the other. This transition occurs faster with increasing

coherence level.

Figure 3C displays the time course of population firing rates r1
and r2, averaged over correct trials, for different c9 values.

Immediately after stimulus onset, there is a dip-and-rise in

population activity, which is independent of motion strength,

similar to the observation from LIP neurons [13,35]. About

200 ms after stimulus onset, r1 and r2 begin to diverge and vary in

a ramp-like pattern, which underlies the network’s temporal

integration of sensory inputs. The ramping activity is faster with a

larger slope at higher c9. Moreover, at lower c9, immediately after

the dip-and-rise, the firing rate of the winning pool shows a

momentary plateau for ,100 ms before it ramps up (see red, green

and blue solid curves). This biphasic behavior (i.e., plateau-and-ramp)

has been observed in LIP activity [30,35] and in our previous

model [21]. Therefore, the graded ramping activity reflects the

quality of sensory evidence, and the ultimate divergence in spiking

rate of competing neural pools gives rise to a choice. Figure 3C is

remarkably similar to the LIP activity observed experimentally (see

Figure 7A in [13] and Figure 5A in [35]). Note that only one

neuron was recorded at a time in the experiment. Nevertheless,

the simulation results can be compared with the physiological

data, if the activity of the winning (respectively losing) pool is

mapped onto that of an LIP neuron on trials when the monkey’s

choice is toward (respectively away from) its preferred direction.

Therefore, the model reproduces the salient characteristics of LIP

activity correlated with perceptual decision making.

Psychometric Function and Decision Time
The model network’s performance is measured as follows. For

each c9 value, simulations are run thousands of times, and the

choice on each trial is read out according to which of the two

neural pools wins the competition or based on the population

vector hPV. Figure 4A shows 20 traces of hPV with the stimulus at

zero coherence. Clearly, when either population firing rate first

reaches a threshold (57 Hz), hPV is exactly or almost equal to h1 or

h2. As we shall see later, direction judgment in the identification

task is also based on the population-vector analysis. Thus, the

network uses the same readout scheme in both tasks.

The probability of a correct choice on any trial is determined by

the percentage of trials on which the winning pool matches the one

with a greater stimulus input. Figure 4B shows the psychometric

function describing the probability of correct choices versus

motion strength. The performance varies from chance to perfect

discrimination when c9 is increased from 0% to 51.2%. The data

are fitted by a Weibull function [47]:
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where a is the coherence level at which the performance is 82%

correct and b describes the slope of the psychometric function.

Our data are fitted by a = 6.85% and b = 1.45, consistent with the

experimental values of 6.82% and 1.45 [13].

Figure 4C depicts the time course of population firing rates r1
and r2 averaged over correct and error trials, respectively. Given

the coherent motion direction of h1, the stimulus input to the pool

selective for h1 is larger than that to the other pool selective for h2.

On both correct and error trials, after the visual signal reaches the

decision circuit, one pool ramps up it activity and thus ultimately

wins the competition, whereas the other ramps down its activity.

The population activity for the winner is lower on error trials than

on correct trials, while that for the loser is less depressed on error

trials. Furthermore, the ramping activity is more gradual on error

trials. These differences become increasingly significant at higher

coherence levels. This is because the winning neural pool receives

less input on error trials than on correct trials, whereas the losing

neural pool receives greater input on error trials than on correct

trials. These trends have been observed experimentally in LIP

activity (cf. Figure 11 in [13]).

In the reaction-time version of the direction discrimination task,

the decision time is measured as the time it takes for either of the

two population firing rates to first reach a prescribed firing

threshold (see Methods). This is in line with the observation that

when a saccadic response is triggered, the up-ramping activity of

LIP neurons reaches a stereotypical level that is independent of

coherence level [13,35]. The generation of saccadic motor

responses is not explicitly modeled here. At each coherence level,

the sum of the mean decision time and a fixed non-decision time

(about 70 ms) is comparable with the experimentally measured

reaction time (Figure 5A). In addition, the mean decision time

decreases nearly linearly with c9 on a logarithmic scale, in

agreement with the behavioral data [13]. Consistent with the

population activity shown in Figure 4C, the mean decision time is

longer on error trials than on correct trials. Note that the shape of

the histogram for decision time depends remarkably on coherence

level (Figure 5B and 5C). At high coherence levels, decision times

are narrowly distributed around a short time (Figure 5B). At lower

coherence levels, the up-ramping neural activity is slower

(Figure 3C), resulting in longer decision times and broader

distributions (Figure 5C). Decision times are more variable on

error trials (right panels) than on correct trials (left panels). Thus,

our model reproduces salient features of reaction times observed

experimentally [30].

Veridical Identification of Motion Direction
We have shown that a continuous recurrent network model

reproduces salient experimental observations in the direction

discrimination task [13,35]. Now we turn to explore whether this

circuit model also subserves analog computations underlying

veridical judgments about motion direction. The simulations used

the task protocol as in [4]. A random-dot motion stimulus was

Figure 4. The network’s performance and population activity
during the direction discrimination task. (A) Time course of
population vector. Twenty traces are shown with the stimulus at zero
coherence. (B) The probability of correct choices versus motion
strength. Data (circle) are fitted by a Weibull function with a = 6.85%
and b = 1.45 (solid curve). (C) Time course of population firing rates r1

(black) and r2 (blue), averaged over correct (solid curves) and error
(dashed curves) trials, respectively, for three coherence levels.
doi:10.1371/journal.pcbi.1000253.g004

Figure 5. Decision time in the direction discrimination task. (A)
Mean decision time as a function of motion strength. The mean
decision time on error trials (square) is longer than that on correct trials
(circle). The solid line is a linear fit to the data (circle). Error bars indicate
SD. (B) The decision time histogram for c9 = 51.2% with the binwidth of
50 ms. (C) The histograms of decision time (with the binwidth of
100 ms) on correct (left) and error (right) trials for c9 = 3.2% (top) and
12.8% (bottom), respectively. Decision times are more variable at lower
coherence levels. The number of trials used for plotting the histograms
are indicated in the panels.
doi:10.1371/journal.pcbi.1000253.g005
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presented for a fixed duration of 1 s, followed by a saccadic eye

movement indicating the monkey’s judgment. On some trials,

electrical stimulation was simultaneously applied to MT neurons

for 1 s, and its impact on the monkey’s direction estimates was

measured. In this task, the monkey had the complete freedom to

report veridically its perceived direction of motion in the visual

stimulus. This judgment can be drastically different from the

stimulus direction (h1) since microstimulation may bias it toward

the preferred direction (h2) of MT cells at the microstimulation

site. The generation of saccadic eye movements is not explicitly

modeled.

Neural Integration of the Visual Stimulus and the
Electrically Elicited Directional Signal

Figure 6A depicts typical network activity in response to only a

motion stimulus with c9 = 80% and h1 = 200u. Before stimulus

presentation, pyramidal cells exhibit low spontaneous activity,

which is homogeneous across the population. After stimulus onset,

a bell-shaped activity pattern develops around h1 since the cells

with preferred directions around h1 are most activated. The

network dynamics are reflected in the time course of the

population vector hPV, which converges to h1 after initial transients

(magenta trace). That is, the stimulus direction can be read out based

on the population vector. If only microstimulation is applied to

MT cells around h2 (90u), a bump pattern develops and is centered

at h2 (Figure 6B). At the stimulus offset, active neurons show high

firing rates comparable to those in Figure 6A, but the network

activity profile is narrower. This results from the assumption that

microstimulation activates a smaller number of MT neurons while

MT neurons are widely tuned to visual stimuli. These results

indicate that the network can represent directional signals by a

bump state and that the population vector is a good measure for

the network’s direction judgments.

When both the visual stimulus and microstimulation are applied

simultaneously, the input profile is bimodal with two peaks around

h1 (200u) and h2 (90u) (cf. Figure 2C). Figure 6C displays the

network activity on three trials. Owing to noisy input and

stochastic neural dynamics, the network activity varies from trial to

trial. On the first trial, one bump develops, and hE, the value of

hPV at stimulus offset, approximately equals h2; that is, the

direction estimate corresponds to the microstimulated direction.

On the second trial, a single bump develops with hE.h1, and

hence the estimate corresponds to the stimulus direction. On the

third trial, the network activity profile remains bimodal, and the

value of hE is a weighted sum of two coexisting bumps. In this

particular example, hE equals 174u, closer to the stimulus direction

than to the microstimulated direction.

The model network integrates external inputs in the form of

slow ramping activity, as if the motion stimulus and microstimula-

tion provide conflicting evidence for direction judgments. This can

be seen in the time course of population firing rates, r1 and r2, of

the two neural pools separately centered at h1 and h2 (Figure 6C,

bottom). On the first and second trials, r1 and r2 first ramp up

together and then begin to diverge at a time that varies

considerably from trial to trial. After the diverging point, one

further ramps up, while the other ramps down. On the third trial,

r1 and r2 remain comparable with r1 slightly larger than r2,

consistent with the fact that the direction estimate is closer to the

stimulus direction. Therefore, even when the motion strength is as

high as 80%, the network behavior can be drastically distinct on

different trials. This implies that the integration process is

essentially stochastic. Moreover, here direction estimates are

based on the profile of network activity, i.e., population averaging.

If we instead used a scheme in which direction estimate is assigned

by the preferred direction of the most active neuron, it would

always be around either h1 or h2, inconsistent with the behavioral

data [4].

Effect of Microstimulation on Direction Judgments
As mentioned above, microstimulation can bias the direction

identification. Here, we systematically change the stimulus

direction (h1) to explore the effect of microstimulation (with fixed

h2) on direction judgments. With the protocol as in [4], a motion

stimulus is presented at 80% coherence with its coherent motion

direction in one of eight directions spanning 360u in 45u
increment. In the absence of microstimulation, the profile of

network activity is peaked at h1, and thus hE is around h1.

Figure 7A displays the distributions of hE values on a circle for

eight different stimuli. In each case, the data points cluster densely

with little variability. The mean value of hE accurately matches the

stimulus direction, and the standard deviations are negligible

(Figure 7B). Therefore, the network judges the stimulus direction

very accurately.

When microstimulation is applied simultaneously with h2 = 90u,
the resulting distribution of hE values depends on the angular

difference between the two stimuli, Dh = |h22h1| (Figure 7C).

Qualitatively, three types of effects can be distinguished. First, for a

small Dh (e.g., 45u with h1 = 45u or 135u), direction estimates from

individual trials spread out between h1 and h2. Second, for an

intermediate Dh (e.g., 135u with h1 = 225u or h1 = 315u), the

Figure 6. Neural activity related to direction identification in a
veridical judgment task. (A) Neural response to the motion stimulus
alone. (Left) Spatiotemporal firing pattern of pyramidal cells superim-
posed by the time course of the population vector (magenta). The
arrow indicates the coherent motion direction (200u) of the stimulus.
The motion stimulus is presented at 500 ms and lasts 1 s. (Right)
Network activity profile at stimulus offset. The firing rate is calculated by
counting the number of spikes fired by each neuron within 50 ms
preceding the stimulus offset, divided by 50 ms. (B) Neural response to
the microstimulation of MT neurons alone. The black arrow marks the
microstimulated direction (90u). Same conventions as in (A). (C) Neural
response to the simultaneous presentation of the motion stimulus and
microstimulation. (Top three panels) Neural activity on three sample
trials. (Bottom panels) Time course of population firing rates of two
neural pools separately centered at 90u (red) and 200u (black),
corresponding to the above three individual trials (from left to right).
doi:10.1371/journal.pcbi.1000253.g006
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distribution of hE values is discontinuous; most estimates cluster

around either h1 or h2, but other estimates scatter between the two

directions. Third, for a large Dh (e.g., 180u with h1 = 270u), the

distribution of hE values is bimodal, narrowly centered at h1 and

h2.

Figure 7D depicts the shift of the mean value of hE away from

the stimulus direction because of microstimulation, which can bias

direction estimates toward the microstimulated direction. This

effect occurs over nearly the whole range of stimulus directions

(except for Dh = 0u or 180u). To show the overall effect of

microstimulation, we calculated both the center-of-mass of all

single-trial direction estimates in the absence of microstimulation

and that in the presence of microstimulation. The black arrow in

the center of Figure 7D denotes the direction of the vector from

the nonstimulated to the stimulated center-of-mass, which is just

the microstimulated direction.

Mixed Strategy of Winner-Take-All and Vector Averaging
To understand the above three types of probabilistic direction

identification, we investigated the network dynamics as Dh was

systematically varied. When Dh is small, the input profile is

unimodal, or there are two peaks but one is much shorter than the

other (cf. Figure 2C, black trace with Dh = 45u). Consequently, the

network response is relatively simple, as illustrated in Figure 8A for

Dh = 70u. The stimuli activate large number of pyramidal cells

with preferred directions between h1 and h2, resulting in a

unimodal activity profile peaked at ,125u, which is the average of

h1 = 160u and h2 = 90u. Therefore, direction judgments are based

on vector averaging.

On the other hand, for Dh = 180u, the input profile consists of two

independent peaks, and two disjoint neural pools are activated.

Thus, the network initially exhibits a bimodal activity profile, but the

two bumps compete against each other over time (Figure 8C). At

stimulus offset, one of the two bumps wins, and hE is close to either h1

or h2 (on the first and second trials). On very few trials (15 among

1800 trials), two bumps are visible (on the third trial); nevertheless, hE

is still close to either h1 or h2. In this sense, direction judgment is

determined by winner-take-all for a great Dh.

For a broad range of intermediate Dh between 70u and 170u,
the input profile has two peaks at h1 and h2, but their width and

height are not identical. The interaction of a visual stimulus and an

artificially elicited directional signal is different from the visual-

visual interactions [42]. Figure 8B shows the network activity for

Dh = 130u, similar to the case with Dh = 110u (Figure 6C). The

network behavior evolves based on the winner-take-all competi-

tion on some trials, where hE is close to either h2 (on the first trial)

Figure 7. Effect of microstimulation on direction judgments.
(A–B) Direction estimates (hE) in the presence of motion stimulus alone.
(A) The distribution of direction estimates on a ring for eight stimulus
directions spanning 360u at 45u intervals. (B) The mean direction
estimate versus the stimulus direction. The unity slope diagonal
represents perfect identification performance on the task. Error bars
indicate SD. (C,D) Direction estimates in the presence of both the
motion stimulus and microstimulation. (C) The distribution of direction
estimates on a ring for eight motion stimuli. Points are staggered
radially for visualization purposes. (D) The shift of the mean direction
estimate away from the stimulus direction (represented by open circle)
due to the microstimulation of MT. The lines and arrows show the
amplitude and direction of the shift in the mean direction estimate
caused by microstimulation. The black arrow in the center denotes the
overall effect of microstimulation on direction estimates, which is also
the microstimulated direction.
doi:10.1371/journal.pcbi.1000253.g007 Figure 8. Distinct behavioral regimes during the probabilistic

estimation of motion direction. Network activity can be distin-
guished based on the difference between the stimulus and micro-
stimulated directions, Dh. Spatiotemporal firing pattern is superim-
posed by the time course of the population vector hPV (magenta). The
network activity profile at the stimulus offset is shown on the right. The
microstimulated direction is always 90u, while the stimulus direction h1

varies with trials. (A) When Dh is relatively small (h1 = 160u), direction
estimates are based on vector averaging. (B) For an intermediate Dh
(h1 = 220u), the network exhibits winner-take-all on some trials (top and
middle) and vector averaging on other trials (bottom). (C) For a large Dh
(h1 = 270u), network activity is predominated by the winner-take-all
mechanism. (D) The percentage of trials on which the smaller of |hE2h1|
and |hE2h2| (with hE being the direction estimate) is larger than 10u as a
function of Dh.
doi:10.1371/journal.pcbi.1000253.g008
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or h1 (on the second trial). On the other trials, however, two

bumps develop initially and are sustained across the trial, in which

cases the direction estimate is determined by vector averaging

(hE = 120u on the third trial). In other words, direction estimates

stochastically switch between the values determined separately by

the winner-take-all and vector-averaging mechanisms across trials.

We found that the percentage P of trials on which the direction

identification results from vector averaging decreases with

increasing Dh (Figure 8D). P is larger than 80% for Dh = 80u;
but it quickly becomes smaller than 10% for Dh.100u and smaller

than 5% for Dh.150u. Therefore, for a sufficiently large distance

between the two directional signals, the winner-take-all mecha-

nism predominates. This can be explained as follows. The two

neural subpopulations selectively responsive to the two input

signals are sufficiently separated, so that they do not overlap nor

excite each other significantly through localized lateral excitatory

connections. Their interaction is mostly through shared feedback

inhibition that underlies the winner-take-all competition. Owing to

trial-to-trial neuronal fluctuations, however, the net inhibitory

interactions may be insufficient to suppress the activity of either

subpopulation on some trials, in which cases the direction

estimation is determined by vector averaging.

We further quantified the network’s decision behavior by

plotting the histograms of direction estimates (Figure 9A). For a

small Dh such as 70u, all estimates lie between h1 and h2, and the

histogram is approximately Gaussian-distributed. For an interme-

diate Dh such as 110u, most estimates are close to either h1 or h2,

but there is also a substantial fraction of estimates in between.

Accordingly, the histogram is bimodal. For a large Dh such as

180u, all estimates lie close to either h1 or h2, so that the histogram

consists of two narrow and isolated peaks. These results confirm

the above conclusion that the network’s direction judgments are

based on vector averaging when Dh is small, winner-take-all when

Dh is large, and a mixture of both for intermediate Dh values.

Nichols and Newsome tested the winner-take-all versus vector-

averaging coding schemes in the monkey experiment, using a

measure called R that is defined as follows [4]. First, the median

direction estimate is calculated separately for trials where the

motion stimulus with c9 = 80% is presented alone (without

microstimulation) and for trials where microstimulation is applied

together with the 0% coherence stimulus. These two medians form

a wedge (shown for our model in the left half of Figure 9A). R is

then defined as the proportion of actual direction estimates (on the

trials with both the 80% coherence stimulus and microstimulation)

that lie within the wedge, divided by 0.5. As a result, R can be used

to quantify the aforementioned three behavioral types. For

instance, vector averaging implies that direction estimates lie

completely within the wedge, so that R.1/0.5 = 2. On the other

hand, for pure winner-take-all, direction estimates are centered

around the two medians, so that R.0.5/0.5 = 1. R as a function of

Dh is plotted in Figure 9B (open circle). R is close to 2 for small Dh,

whereas it approaches unity when Dh is close to 180u, similar to

the experimental observation (Figure 6 in [4]). Moreover, there is a

plateau at R.1.35 for a range of intermediate Dh values, a feature

also present in the monkey data, which indicates a mixture of the

winner-take-all and vector-averaging mechanisms. Note that the R

curve is quite similar to the P curve shown in Figure 8D.

Therefore, both the two entirely different measures confirm the

mixed strategy for direction identification over a wide range of

intermediate Dh values.

We reasoned that when the sensory stimulus and microstimula-

tion provide conflicting signals, time integration may be important

to resolve the ambiguity. In neuronal terms, a longer stimulus

viewing time should allow one of two bumps in the network

activity pattern to evolve to become dominant at the expense of

the other. We tested this prediction by computing R under the

condition where the motion stimulus lasted 2 s instead of 1 s.

Indeed, with a longer stimulus viewing time, R generally becomes

lower and is smaller than 1.15 when Dh$110u (Figure 9B, cross).

This model prediction is testable in future experiments.

Discussion

Growing evidence indicates that in a random-dot motion

discrimination task, while MT neurons encode motion directions,

perceptual decisions are made downstream, perhaps in the parietal

cortex [10,12,13,35,48,49] or the prefrontal cortex [17]. Similarly,

in a detection task (that requires a ‘yes or no’ binary response)

using near-threshold somatosensory stimuli, neural activity in the

prefrontal cortex, but not in the primary somatosensory cortex,

was found to covary trial-by-trial with the subjective report [50].

What are the microcircuit properties that allow a ‘decision circuit’

to subserve perceptual judgments? We have previously proposed a

cortical circuit model endowed with slow reverberatory excitation

Figure 9. Winner-take-all versus vector averaging in direction
identification. (A) The distribution of direction estimates on a circle
(left) and the corresponding histogram with the binwidth of 5u (right).
In each distribution, a wedge is defined by two directions (shown with
open squares), separately denoting the median direction estimate for
trials where the 80% coherence stimulus is applied alone and for trials
where microstimulation is applied together with the 0% coherence
stimulus. Three examples are displayed for Dh = 70u,110u, and 180u,
respectively (from top to bottom). Six hundred simulations were
performed for each case. (B) The index R as a function of the angular
difference between the stimulus and microstimulated directions, Dh.
Pure winner-take-all and vector averaging correspond to R = 1 and 2,
respectively. The model displays a mixed strategy (with R between 1
and 2) for direction judgment over a wide range of Dh values. It also
predicts that for a given intermediate Dh, a longer stimulus viewing
time, for instance from 1 s (circle) to 2 s (cross), enhances the
preponderance of the winner-take-all regime.
doi:10.1371/journal.pcbi.1000253.g009
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and feedback inhibition, which allows for the temporal integration

of sensory stimuli and the formation of categorical choice

[19,21,23]. This type of model framework has also been applied

to somatosensory discrimination [18,20,24] and detection [25]. In

the present study, we extended this approach to a continuous

recurrent network. Our results suggest that a common cortical

circuit can perform both the categorical discrimination and

veridical judgment tasks.

Temporal Integration and Categorical Choice in the
Discrimination Task

In a two-alternative direction discrimination task, a subject must

be instructed what are the discrete choice options by visual targets

[13]. In the continuous recurrent network model, we implemented

the two targets (at h1 and h2) and examined how the network

integrates a motion stimulus biased by the targets and makes a

categorical choice (h1 or h2). In consonance with the previous

models with discrete neural pools [19,21], our model reproduces

salient observations of LIP activity in the monkey experiment [13].

First, the population firing rates of two competing neural pools first

increase together and then diverge, with one continuing to build

up while the other decaying down. Second, cells exhibit ramp-like

activity, which is slower at lower motion strength. Third, the

activity of the winning pool is higher on correct trials than on error

trials, whereas the opposite is true for that of the losing pool.

Furthermore, at the behavioral level, our model reproduces the

psychometric and chronometric functions as well as the observa-

tion that the mean reaction time is longer on error trials than on

correct trials [13].

In our model, slow temporal integration is instantiated by

reverberatory excitation mediated by NMDARs [19,21]. This is

mainly related to its slow synaptic kinetics. We further tested this

mechanism by partially replacing NMDARs with much faster

AMPARs at recurrent excitatory synapses. As a result, the

network’s ability to integrate input signals is significantly reduced

and the network’s performance also deteriorates (data not shown).

Experimentally, it would be interesting to measure whether

direction discrimination becomes more impulsive and less accurate

when NMDAR antagonists are applied to LIP in behaving

monkeys. On the other hand, other slow positive feedback

processes, such as short-term synaptic facilitation and those

involving specific ion channels, could also contribute to time

integration, which remains to be investigated experimentally and

theoretically. In sum, we suggest that strong reverberation in a

cortical microcircuit should be slow in order to subserve cognitive-

type computations.

Recurrent excitation must be balanced by feedback inhibition

[34,51]. Lateral inhibition between neural pools involved in

decision computation is consistent with the observation that the

microstimulation of one neural pool in LIP not only speeds up the

choices in its preferred direction but also slows down the choices in

its null direction [49]. Ditterich found that an accumulator model

produces reaction time distributions with long right tails,

inconsistent with the behavioral data, and that the inclusion of

lateral inhibition worsens the problem, resulting in even longer

right tails especially at low coherence levels [30]. This is not the

case in our model; the decision time distributions, although not

Gaussian-distributed, do not show pronounced right tails, similar

to those observed experimentally [30]. A distinguishing feature of

our nonlinear network model is strong recurrent excitation, which

is absent in linear accumulator models. The positive feedback

mechanism ultimately leads to an acceleration of ramping neural

activity toward a decision bound, preventing excessively long

decision times. Indeed, Ditterich showed that the monkey’s reaction

time distributions can be well fitted by the accumulator model with

an additional assumption that the decision bound decreases over

time. This is functionally equivalent to a temporally increasing

ramping slope, which naturally occurs in our recurrent circuit

model.

Mixed Strategy for Probabilistic Estimation of an Analog
Stimulus Feature

We also applied the continuous recurrent network model to a

direction identification task [4], assuming that the network

represents a cortical area like LIP, downstream from MT. In the

absence of physiological data, we assumed for the sake of simplicity

that the inputs separately representing the motion stimulus and the

electrically evoked directional signal sum linearly before being fed

into the decision circuit. We also took into account lateral

inhibition in MT [52,53], assuming that the input profile for

microstimulation has a Mexian-hat shape, which represents a

nonlinear effect.

Since MT neurons are broadly tuned to visual motion signals,

an important issue is how to link MT activity profile to subjects’

percept. A number of studies have explored decoding strategies

that the brain might use when there are two coexisting competing

signals, each activating a different pool of MT neurons [42,54,55].

Nichols and Newsome inferred from the monkey’s behavioral

performance that different decoding schemes might be used when

the angular distance between the direction signals is smaller or

larger than 140u [4]. MT neurons with nearly opposite direction

preferences appeared to compete to determine the monkey’s

percept, as predicted by winner-take-all; whereas MT neurons

with preferred directions as different as 140u could cooperate to

influence the monkey’s percept, consistent with vector averaging

or other distributed coding.

In our decision circuit, which is downstream from MT,

direction judgments are based on the activity of all neurons. That

is, we always use the population vector for direction estimation,

and such estimates are in good agreement with the behavioral

data. Nevertheless, when the stimulus and microstimulated

directions are separated by a sufficiently large distance, direction

judgments naturally instantiate winner-take-all, whereas when

they are close to each other, direction judgments are consistent

with vector averaging.

Interestingly, for the two directions with an intermediate

angular distance, the network displays a ‘‘mixed strategy’’, i.e.,

perceptual estimates are produced by winner-take-all on some

trials and by vector averaging on the other trials. A prediction is

that within this mixed-strategy regime, quick responses are based

on vector averaging, whereas a longer integration of conflicting

signals is more likely to yield a winner-take-all based categorical

choice. Such temporal tradeoff should be observable at the level of

neural activity. These specific model predictions can be tested in

future experiments.

Readout of Direction Judgments by Neurons
Downstream from LIP

In the present work, we used a simple method (i.e., the

population-vector analysis) to read out a direction estimate on

each trial. In the future, it would be worthwhile to explicitly

examine the neural circuit mechanism underlying the readout

process. While cortical areas like LIP may be critically involved in

accumulating information and making choices, the actual saccadic

response that signals the monkey’s decision is produced down-

stream. For instance, neurons in the superior colliculus, a

command center for saccadic eye movements, respond to both
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the targets and the random-dot motion stimulus in the direction

discrimination task [56]. It has been proposed that burst firing of

movement neurons in the superior colliculus may be triggered

when the synaptic excitation from ramping cortical neurons

exceeds a threshold, thereby providing a cellular basis for a

decision bound [22]. It will be worth exploring whether the

superior colliculus circuit provides additional mechanisms that

contribute to readout of perceptual decisions.

In fact, we have already developed an extended model in which

a second circuit (that mimics the superior colliculus) receives

synaptic input from the decision circuit and can generate a burst of

activity signaling a saccade. This is essentially a continuous

network version of the cortico-superior colliculus model (with four

discrete neural pools) [22]. In this double-ring model, it is natural

to read out direction estimates without assuming the threshold

crossing of neural firing rates. Preliminary data (not shown) suggest

that this extension does not significantly alter the conclusions

drawn in this paper.

Comparison with Other Models
It is worth noting that the continuous recurrent network model

is adequate for the simulation of two perceptual decision tasks. In

both tasks, the decision is about the coherent motion direction,

which is a one-dimensional feature. In our network, each neuron

has a preferred motion direction to which it is most sensitive.

When the readout of direction judgments is based on population

vector, downstream neurons will pool the activity of LIP neurons

to produce a directional signal for saccadic eye response.

Compared with the previous spiking network models on

perceptual discrimination [19,21], which have discrete (usually

two) neural pools rather than a continuous network like ours, our

work represents a distinct advance in the field. It would be rather

straightforward to extend this one-dimensional model to a two-

dimensional network model. For example, a two-dimensional

firing-rate model for saccadic action selection (not perceptual

decisions) has been proposed in [57]. However, computer

simulations of such spiking neural circuits are computationally

costly, especially for stochastic decision tasks where thousands of

trials are required to gather necessary statistics under each

condition (just as in the monkey experiments).

In this work, we have focused on the reaction-time version of

the categorical discrimination task, in which a simulated trial is

terminated when either of two population firing rates first reaches

a threshold, and the corresponding choice and decision time are

recorded. In the direction identification task, the response

signaling a veridical judgment is produced at the offset of the

visual stimulus presentation, as in the experiment of Nichols and

Newsome [4]. Neither of the task paradigms involves working

memory, and we did not specifically simulate the fixed-duration

version of the discrimination task [12,13].

While our model was based on that designed for spatial working

memory [34], we changed some parameter values to reproduce

comparable behavioral data from the monkey experiments (such

as the psychometric and chronometric functions for the discrim-

ination task and the R plot for the identification task). Interestingly,

with this new set of parameter values, the network does not exhibit

self-sustained persistent activity. This is at variance with our

previous work using a model with discrete neural pools [19,21]. In

the future, it would be interesting to use the same model to

simulate the fixed-duration version of the categorical discrimina-

tion task (where two targets exist throughout the trial) and analyze

systematically to what extent the ability to carry out decision

computation depends on the working memory capacity in the

continuous network model (as we have previously done with the

discrete model [21]).

A Cognitive-Type Cortical Circuit Capable of Performing
Multiple Functions

A continuous recurrent network model, which was originally

developed for mnemonic delay-period activity in spatial working

memory [34], has been elaborated in several ways [58–61].

Direction-selective persistent neural activity has been observed in

both the prefrontal [62] and the posterior parietal cortex [63]. We

argue that a cognitive-type cortical circuit like the parietal or

prefrontal cortex is equipped with strongly recurrent connectivity

to subserve both internal representation of information and

dynamic decision computations. On the other hand, it is still

unclear to what extent a network’s capacity of decision

computations and that of working memory necessarily depend

on each other. Conceivably, top-down control signals could

adaptively modulate a cortical circuit such as LIP, so that it can

operate in different dynamical regimes to fulfill different

computational demands. Regardless, the present work, by

demonstrating that a single cortical circuit is able to perform the

veridical judgment and categorical discrimination tasks, represents

a significant step toward uncovering the circuit and neurodyna-

mical underpinnings of cognition.
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