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Abstract5

Behavioral flexibility relies on the brain’s ability to switch rapidly between
multiple tasks, even when the task rule is not explicitly cued but must
be inferred through trial and error. The underlying neural circuit mecha-
nism remains poorly understood. We investigated recurrent neural networks
(RNNs) trained to perform an analog of the classic Wisconsin Card Sorting
Test. The networks consist of two modules responsible for rule representation
and sensorimotor mapping, respectively, where each module is comprised of
a circuit with excitatory neurons and three major types of inhibitory neu-
rons. We found that rule representation by self-sustained persistent activity
across trials, error monitoring and gated sensorimotor mapping emerged
from training. Systematic dissection of trained RNNs revealed a detailed
circuit mechanism that is consistent across networks trained with different
hyperparameters. The networks’ dynamical trajectories for different rules re-
side in separate subspaces of population activity; they become virtually iden-
tical and performance was reduced to chance level when dendrite-targeting
somatostatin-expressing interneurons were silenced, demonstrating that rule-
based gating critically depends on the disinhibitory motif.

6

Introduction7

A signature of cognitive flexibility is the ability to adapt to a changing task demand.8

Oftentimes, the relevant task is not explicitly instructed, but needs to be inferred from9

previous experiences. In laboratory studies, this behavioral flexibility is termed un-cued10

task switching. A classic task to evaluate this ability is the Wisconsin Card Sorting Test11
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(WCST) [1]. During this task, subjects are presented with an array of cards, each with12

multiple features, and should respond based on the relevant feature dimension (i.e. the task13

rule) that changes across trials. Crucially, subjects are not instructed on when the rule14

changes, but must infer the currently relevant rule based on the outcome of previous trials.15

Intact performance on un-cued task switching depends on higher-order cortical areas such16

as the prefrontal cortex (PFC) [2, 3, 4, 5, 6], which has been proposed to represent the task17

rule and modulate the activity of other cortical areas along the sensorimotor pathway [7].18

Four essential neural computations must be implemented by the neural circuitry un-19

derlying un-cued task switching. First, it should maintain an internal representation of20

the task rule across multiple trials when the rule is unchanged. Second, soon after the21

rule switches, the animal will inevitably make errors and receive negative feedback, since22

the switches are un-cued. This negative feedback should induce an update to the internal23

representation of the task rule. Third, the neural signal about the task rule should be24

communicated to the brain regions responsible for sensory processing and action selection.25

Fourth, this rule signal should be integrated with the incoming sensory stimulus to produce26

the correct action.27

Prior work has identified neural correlates of cognitive variables presumed to underlie28

these computations including rule [8], feedback [8, 9, 10] and conjunctive codes for sensory,29

rule, and motor information [11]. In addition, different types of inhibitory neurons are30

known to play different functional roles in neural computation: while parvalbumin (PV)-31

expressing interneurons are suggested to underlie feedforward inhibition [12], interneurons32

that express somatostatin (SST) and vasoactive intestinal peptide (VIP) have been pro-33

posed to mediate top-down control [13, 14, 15, 16]. In particular, SST and VIP neurons34

form a disinhibitory motif [17, 18, 19] that has been hypothesized to instantiate a gating35

mechanism for flexible routing of information in the brain [20]. However, there is currently a36

lack of mechanistic understanding of how these neural representations and cell-type-specific37

mechanisms work together to accomplish un-cued task switching.38

To this end, we used computational modeling to formalize and discover mechanistic39

hypotheses. In particular, we used tools from machine learning to train a collection of40

biologically informed recurrent neural networks (RNNs) to perform an analog of the WCST41

used in monkeys [21, 8, 9]. Training RNN [22] does not presume a particular circuit solution,42

enabling us to explore potential mechanisms. For this purpose, it is crucial that the model43

is biologically plausible. To that end, each RNN was set up to have two modules: a “PFC”44

module for rule maintenance and switching and a “sensorimotor” module for executing the45

sensorimotor transformation conditioned on the rule. To explore the potential functions46

of different neuronal types in this task, each module of our network consists of excitatory47

neurons with somatic and dendritic compartments as well as PV, SST and VIP inhibitory48
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neurons, where the connectivity between cell types is constrained by experimental data49

(Methods).50

After training, we performed extensive dissection of the trained models to reveal51

that close interplay between local and across-area processing was essential for solving the52

WCST. First, we found that abstract cognitive variables were distinctly represented in the53

PFC module. In particular, two subpopulations of excitatory neurons emerge in the PFC54

module - one encodes the task rule and the other shows mixed-selectivity that nonlinearly55

depends on rule and negative feedback. Notably, neurons with similar response profiles56

have been reported in neurophysiological recordings of monkeys performing the same task57

[8, 9]. Second, we identified interesting structures in the local connectivity between differ-58

ent neuronal assemblies within the PFC module, which enabled us to compress the high-59

dimensional PFC module down to a low-dimensional simplified network. Importantly, the60

neural mechanism for maintaining and switching rule representation is readily interpretable61

in the simplified network. Third, we found that the rule information in the PFC module is62

communicated to the sensorimotor module via structured long-range connectivity patterns63

along the monosynaptic excitatory pathway, the di-synaptic pathway that involves PV neu-64

rons, as well as the trisynaptic disinhibitory pathway that involves SST and VIP neurons.65

In addition, different dendritic branches of the same excitatory neuron in the sensorimotor66

module can be differentially modulated by the task rule depending on the sparsity of the lo-67

cal connections from the dendrite-targeting SST inhibitory neurons. Fourth, single neurons68

in the sensorimotor module show nonlinear mixed selectivity to stimulus, rule and response,69

which crucially depends on the activity of the SST neurons. On the population level, the70

neural trajectories for the sensorimotor neurons during different task rules occupy nearly71

orthogonal subspaces, which is disrupted by silencing the SST neurons. Lastly, we found72

structured patterns of input and output connections for the sensorimotor module, which73

enables appropriate rule-dependent action selection. These results are consistent across74

dozens of trained RNNs with different types of dendritic nonlinearities and initializations,75

therefore pointing to a common neural circuit mechanism underlying the WCST.76

Results77

Training modular recurrent neural networks with different types of inhibitory78

neurons79

We trained a collection of modular RNNs to perform the WCST. Each RNN consists80

of two modules: the “PFC” module receives an input about the outcome of the previous81

trial, and was trained to output the current rule; the “sensorimotor” module receives the82

sensory input and was trained to generate the correct choice (Figure 1b). The inputs83

and outputs were represented by binary vectors (Figure 1b, Methods) Each module was84
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endowed with excitatory neurons with somatic and two dendritic compartments, as well as85

three major types of genetically-defined inhibitory neurons (PV, SST and VIP). Different86

types of neurons have different inward and outward connectivity patterns constrained by87

experimental data in a binary fashion (Methods, Figure 1b). The somata of all neurons were88

modeled as standard leaky units with a rectified linear activation function. The activation89

of the dendritic compartments, which can be viewed as a proxy for the dendritic voltage, is a90

nonlinear sigmoidal function of the excitatory and inhibitory inputs they receive (Methods).91

The specific form of the nonlinearity is inspired by experiments showing that inhibition acts92

subtractively or divisively on the dendritic nonlinearity function depending on its relative93

location to the excitation along the dendritic branch [23]. Therefore, we trained a collection94

of RNNs, each with either subtractive or divisive dendritic nonlinearity, to explore the effect95

of dendritic nonlinearity on the network function.96

The task we trained the network on is a WCST variant used in monkey experiments97

[21, 8, 9, 6] (Figure 1a). During each trial, a reference card with a particular color and98

shape is presented on the screen for 500 ms, after which three test cards appear around99

the reference card for another 500 ms. Each card can have one of the two colors (red or100

blue) and one of the two shapes (square or triangle). A choice should be made for the101

location that contains the test card that has the same relevant feature (color or shape) as102

the reference card, after which the outcome of the trial is given, followed by an inter-trial103

interval. The relevant feature to focus on, or the task rule, changes randomly every few104

trials. Critically, the rule changes were not cued, requiring the network to memorize the rule105

of the last trial using its own dynamics. Therefore, the network dynamics should be carried106

over between consecutive trials, rather than reset at the end of each trial as has been done107

traditionally [24, 25]. To this end, the network operated continuously across multiple trials108

during training, and the loss function was aggregated across multiple trials (Methods). We109

use supervised learning to adjust the strength of all the connections (input, recurrent and110

output) by minimizing the mean squared error between the output of both modules and111

the desired output (rule for the PFC module and response for the sensorimotor module).112

Notably, only the connections between certain cell types are non-zero and can be modified.113

This is achieved using a mask matrix, similar to [26] (Methods).114

After training converged, we tested the models by running them continuously across115

100 trials of WCST with 10 rule switches at randomly chosen trials. The networks made a116

single error after each rule switch, and were able quickly switch to the new rule and main-117

tain good performance (Figure 1c, d). Correspondingly, single neurons from both modules118

exhibited rule-modulated persistent activity that lasted several trials (Supplementary Fig-119

ure 1).120

Our networks can reliably maintain good performance after a single correct trial in the121
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new rule, which matches the behavior of monkeys in some previous studies (e.g. Figure 1e).122

However, the performance of monkeys during this task showed substantial variability across123

different studies as well as different sessions with a study. The number of error trials that124

monkeys take to switch to the new rule ranges from one trial to tens of trials [21, 8, 9, 6]. One125

reason is that performance typically reaches a certain criterion (e.g. 80% correct) but not126

perfect accuracy before rule switching, therefore an error signal could mean an erroneous127

sensori-motor decision rather than rule change. Indeed, when training of our model is128

stopped at 80% rather than 100% accuracy, the resulting network shows gradual switching129

(Figure 1f, Methods). This point will be addressed further in the Discussion section. In the130

following sections, we will “open the black box” to understand the mechanism the networks131

used to perform the WCST.132

Two rule attractor states in the PFC module maintained by interactions between133

modules134

We first dissected the PFC module, which was trained to represent the rule. Since135

there are two rules in the WCST task we used, we expected that the PFC module might have136

two attractor states corresponding to the two rules. Therefore, we examined the attractor137

structure in the dynamical landscape of the PFC module by initializing the network at138

states chosen randomly from the trial, and evolving the network autonomously (without any139

input) for 500 time steps (which equals 5 seconds in real time). Then, the dynamics of the140

PFC module during this evolution was visualized by applying principal component analysis141

to the population activity. The PFC population activity settled into one of two different142

attractor states depending on the rule that the initial state belongs to (Supplementary143

Figure 2a). Therefore, there are two attractors in the dynamical landscape of the PFC144

module, corresponding to the two rules.145

Historically, persistent neural activity corresponding to attractor states were first146

discovered in the PFC [28, 29, 30, 31]. However, more recent experiments found persistent147

neural activity in multiple brain regions, suggesting that long-range connections between148

brain regions may be essential for generating persistent activity [32, 33, 34, 35]. Inspired149

by these findings, we wondered if the PFC module in our network could support the two150

rule attractor states by itself, or that the long-range connections between the PFC and the151

sensorimotor module are necessary to support them. To this end, we lesioned the inter-152

modular connections in the trained networks and repeated the simulation. Interestingly,153

we found that for the majority of the trained networks (42 out of 52 for the fast switching154

networks and 3 out of 3 for the slow switching networks), their PFC activity settled into a155

trivial fixed point corresponding to an inactive state (Supplementary Figure 2b, c). This156

result shows that the two rule attractor states in these networks are dependent on the157
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Figure 1 : (Caption next page.)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2024. ; https://doi.org/10.1101/2023.08.15.553375doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.15.553375
http://creativecommons.org/licenses/by-nc-nd/4.0/


DISSECTING MODULAR RNNS TRAINED TO PERFORM A WCST ANALOG 7

Figure 1 : (Previous page.) Model setup and performance.
a. The schematic of the WCST task. Subjects are required to choose the card that matches
the reference card at the center in either shape or color, depending on a hidden rule that
switches after a number of trials.
b. The RNN contains a “PFC” module and a “sensorimotor” module. The PFC module
receives an input about the feedback of the previous trial, and was trained to produce
the current rule. The sensorimotor module receives the sensory input and was trained to
produce the correct choice. The input to the PFC module about the feedback is represented
by a two-dimensional binary vector. The input to the sensorimotor module represents
the features of the cards on the screen. Each card is represented by a four-dimensional
binary vector, where the two non-zero entries represent the color and shape of the card.
The target output of the PFC module about the correct rule is represented by a two-
dimensional binary vector. The target output of the sensorimotor module about the correct
choice is represented by a three-dimensional binary vector. Each module is endowed with
excitatory neurons and three types of inhibitory neurons: PV, SST and VIP. The cell-type-
specific connectivity is constrained by experimental data (Methods). Bottom panel shows
the decomposition of the model architecture into the input and output connectivity (left,
magenta. The dashed line from PFC to rule represents the fact that the PFC module was
trained to represent the rule but there are no explicit rule output neurons in the model), the
local recurrent connectivity (middle, black) and inter-modular connectivity (green, right).
All connections were trained. Each excitatory neuron is modeled with a somatic and two
dendritic compartments. Inset shows for the two types of dendritic nonlinearities used the
relationship between the excitatory input onto the dendrite and the dendritic activity for
different levels of inhibitory inputs.
c. The performance of the model during testing, for an example network. The network made
one error after each rule switch (red vertical lines) and quickly recovered its performance.
d. Performance as a function of trial position relative to the first correct trial after rule
change, or the “shift” trial, for the same example network as in c.
e. The performance of two monkeys as a function of trial position relative to the shift trial.
Figure adapted from Ref. [27]
f. The performance of an example model where training was stopped before it reached
perfect performance. This model exihibit more gradual switching between rules.
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interactions between the PFC and the sensorimotor modules.158

Two emergent subpopulations of excitatory neurons in the PFC module159

For the PFC module to keep track of the current rule in effect, the module should160

stay in the same rule attractor state after receiving positive feedback, but transition to the161

other rule attractor state after receiving negative feedback. We reasoned that this network162

function might be mediated by single neurons that are modulated by the task rule and163

negative feedback, respectively. Therefore, we set out to look for these single neurons.164

In the PFC module of the trained networks, there are indeed neurons whose activity165

is modulated by the task rule in a sustained fashion (example neurons in Supplementary166

Figure 1 and Figure 2a, top). In contrast, there are also neurons that show transient167

activity only after negative feedback. Furthermore, this activity is also rule-dependent. In168

other words, their activity is conjunctively modulated by negative feedback and the task169

rule (example neurons in Supplementary Figure 1, red traces and Figure 2a, bottom). We170

termed these two classes of neurons “rule neurons” and “conjunctive error x rule neurons”171

respectively.172

We identified all the rule neurons and conjunctive error x rule neurons in the PFC173

module using a single neuron selectivity measure (see Methods for details). The two classes174

of neurons are clearly separable on the two-dimensional plane in Figure 2c, where the x axis175

is the input weight for negative feedback, and the y axis is the rule modulation, which is the176

difference in the mean activity between the two rules (for trials following a correct trial).177

As shown in Figure 2c, rule neurons receive negligible input about negative feedback, and178

many of them have activity modulated by rule. On the other hand, conjunctive error x rule179

neurons receive a substantial amount of input about negative feedback, yet their activity is180

minimally modulated by rule on trials following a correct trial (Figure 2b). This pattern181

was preserved when aggregating across trained networks (Figure 2c and Supplementary182

Figure 3). Interestingly, neurons with similar tuning profiles have been reported in the183

PFC and posterior parietal cortex of macaque monkeys performing the same WCST analog184

[8, 9].185

Across different cell types in the PFC module, on average 23.1% of excitatory neurons,186

57.3% of PV neurons and 38.1% of SST neurons were classified as rule neurons in each model.187

Compared to excitatory neurons, a much smaller fraction of inhibitory neurons in the PFC188

were classified as conjunctive error x rule neurons. On average, 22.9% excitatory neurons189

were conjunctive error x rule neurons in each model, compared with 11.5% PV neurons190

and 5.2% SST neurons. Therefore, we focus only on the excitatory conjunctive error x rule191

neurons in the analysis below.192

We also performed the same analysis on the trained networks that switch rules more193
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slowly (e.g. Figure 1f). In those networks there is not a clear separation between the two194

subpopulations of excitatory neurons in the PFC module (data not shown).195

Maintaining and switching rule states via structured connectivity patterns be-196

tween subpopulations of neurons within the PFC module197

Given the existence of rule neurons and conjunctive error x rule neurons, what is the198

connectivity between them that enables the PFC module to stay in the same rule attractor199

state when receiving correct feedback, and switch to the other rule attractor state when200

receiving negative feedback?201

To this end, we examined the connectivity between different subpopulations of neu-202

rons in the PFC module explicitly, by computing the mean connection strength between203

each pair of subpopulations. This analysis reveals that the excitatory rule neurons and204

PV rule neurons form a classic winner-take-all network architecture [36] with selective in-205

hibitory populations [37, 38], where excitatory neurons preferring the same rule are more206

strongly connected, and they also more strongly project to PV neurons preferring the same207

rule (Figure 3a). On the other hand, PV neurons project more strongly to both excitatory208

neurons and other PV neurons with the opposite rule preference (Figure 3a). This winner-209

take-all network motif together with the excitatory drive from the sensorimotor module210

(Supplementary Figure 2) is able to sustain one of the two attractor states.211

Next, how are the rule neurons connected with the conjunctive error x rule neurons212

such that the sub-network formed by rule neurons can switch from one attractor to the other213

in the presence of the negative feedback input? Using the same method, we found that the214

connectivity between the rule neurons and the conjunctive error x rule neurons exhibited215

an interesting structure: the excitatory rule neurons more strongly target the conjunctive216

error x rule neurons that prefer the opposite rule; the PV rule neurons more strongly target217

conjunctive error x rule neurons that prefer the same rule (Figure 3b, top two panels). On218

the other hand, the conjunctive error x rule neurons more strongly target the excitatory219

and PV rule neurons that prefer the same rule (Figure 3b, bottom two panels).220

This connectivity structure gives rise to a simple circuit diagram of the PFC module221

(Figure 3c), which leads to an intuitive explanation of the circuit mechanism underlying the222

switching of rule attractor state. For example, suppose the network is in the attractor state223

corresponding to color rule, and has just received a negative feedback and is about to switch224

to the attractor corresponding to the shape rule (Figure 3e, left). As shown in Figure 2b-c,225

the input current that represents the negative feedback mainly targets the conjunctive error226

x rule neurons. In addition, since the network is in the color rule state, the excitatory and227

PV neurons that prefer the color rule are more active than those that prefer the shape228

rule. According to Figure 3b (top two panels), the excitatory neurons that prefer the color229
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Figure 2 : Emergence of two subpopulations of excitatory neurons in the PFC
module after training.
a. Two example rule neurons (top) and conjunctive error x rule neurons (bottom). The solid
traces represent the mean activity across trials that follows a correct trial, when those trials
belong to color rule (blue) or shape rule (green) blocks. The dashed traces represent the
mean activity after error trials, when those trials belong to color rule (blue) or shape rule
(green) blocks. We use rule 1 and color rule, as well as rule 2 and shape rule interchangeably
hereafter.
b. Rule neurons and conjunctive neurons are separable. The x axis represents the input
weight for negative feedback, and the y axis is the difference between the mean activity over
color rule trials and shape rule trials (for trials following a correct trial). As shown, the
rule neurons (blue points) receive little input about negative feedback, but their activity
is modulated by rule; The conjunctive error x rule neurons (red points) receive substantial
input about negative feedback, but their activity is not modulated by rule (during trials
following a correct trial).
c. The trend in b is preserved across a collection of trained networks. Here the results are
shown for networks with subtractive dendritic nonlinearity. Networks with divisive dendritic
nonlinearity show a similar pattern (Supplementary Figure 3).
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rule strongly excite the error x shape rule neurons, and the PV neurons that prefer the230

color rule strongly inhibit the error x color rule neurons. Therefore, the error x shape rule231

neurons receive stronger total input than the error x color rule neurons, and will be more232

active (Figure 3e, middle). Their activation will in turn excite the excitatory neurons and233

PV neurons that prefer the shape rule (Figure 3b, bottom two panels). Finally, due to the234

winner-take-all connectivity between the rule populations (Figure 3a), the excitatory and235

PV neurons that prefer the color rule will be suppressed, and the network will transition to236

the attractor state for the shape rule (Figure 3e, right).237

It is worth noting that the same mechanism can also trigger a transition in the opposite238

direction (from shape rule to color rule) in the presence of the same negative feedback239

signal. This is enabled by the biased connections between the rule and conjunctive error x240

rule populations.241

Is the simplified circuit diagram (Figure 3c) consistent across trained networks, or242

different trained networks use different solutions? To examine this question, we computed243

a “connectivity bias” measure between each pair of populations for each trained network.244

This measure is greater than zero if the connectivity structure between a pair of populations245

is closer to the one in the simplified circuit diagram in Figure 3c than to the opposite246

(see Methods for details). Across trained networks, we found that the connectivity biases247

were mostly greater than zero (Figure 3d), indicating that the same circuit motif for rule248

maintenance and switching underlies the PFC module across different trained networks.249

A similar circuit architecture exists between the excitatory neurons and the SST neu-250

rons in the PFC module (Supplementary Figure 5), where SST neurons receive stronger251

excitatory input from the conjunctive error x rule neurons that prefer the same rule, and252

also more strongly inhibit the error x rule neurons that prefer the same rule. In addi-253

tion, they form a winner-take-all connectivity with the rule excitatory neurons by receiving254

stronger projections from the rule neurons that prefer the same rule and projecting back255

more strongly to the rule neurons that prefer the opposite rule. Therefore, they contribute256

to rule maintenance and switching in a similar way as the PV neurons.257

When the same analysis was performed on the slow-switching networks (e.g. Fig-258

ure 1f), we found that although the rule neurons in these networks also form a winner-take-259

all connectivity structure, the connectivity between error x rule neurons and rule neurons260

does not exhibit the same structure as in the fast-switching models (data not shown). There-261

fore, the slow-switching networks have a similar sub-network that encodes the rule, but a262

poorly organized sub-network between the error x rule and rule neurons, which may explain263

why switching the rule takes more trial-and-error in these networks.264

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2024. ; https://doi.org/10.1101/2023.08.15.553375doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.15.553375
http://creativecommons.org/licenses/by-nc-nd/4.0/


DISSECTING MODULAR RNNS TRAINED TO PERFORM A WCST ANALOG 12

c

e

d

C
on

ne
ct

iv
ity

 b
ia

s

rule E à 
error x rule

rule PVà
 error x rule

error x rule
à rule E

error x rule
à rule PV

0.45
C

on
ne

ct
iv

ity
 b

ia
s

-0.6

rule E 
à rule E

rule E
à rule PV

rule PV
à rule E

rule PV
à rule PV

0

1

2

2

1

1

2 1

2

2

1

1

2 1

PFC rule E 
neurons

PFC rule PV 
neurons

1

1

2

2

PFC conjunctive 
error x rule E 
neurons

2

error errorerror

PFC conjunctive 
error x rule E 

neurons

ba
0.040

0.109

0.123

0.013

ru
le

1
ex

c
ru

le
2

ex
c

Fr
om

error 
x rule1

error 
x rule2

0.2

1.0

To

-0.204

-0.059

-0.139

-0.253

ru
le

1
PV

ru
le

2
PV

Fr
om

error x rule1 error x rule2
To

-0.5

-0.1

0.111
0.012

0.047 0.087

er
ro

r x
 ru

le
 1

er
ro

r 
x 

ru
le

2

Fr
om

rule 1 exc rule 2 exc
To

0.04

0.54

0.466

0.057

0.105

0.265

er
ro

r x
 ru

le
 1

er
ro

r
 x

 ru
le

2

Fr
om

rule 1 
PV

rule 2 
PV

To

0.2

1.0

0.8

0.071 0.024

0.199

0.070

0.016 0.066

0.103

0.165

-0.074 -0.219 -0.075 -0.190

-0.143 -0.106 -0.145

ru
le

1
ex

c
ru

le
2

ex
c

ru
le

1
PV

ru
le

2
PV

rule 1 exc rule 1
PV

rule 2
PV

Fr
om

To

-0.6

0.8

rule 2 exc

PFC rule E 
neurons

PFC rule PV
neurons

1

1 2

2

1 2

error error

error

rule 1 = color; rule 2 = shape

-0.080

Figure 3 : (Caption next page.)

Top-down propagation of the rule information through structured long-range265

connections266

Given that the PFC module can successfully maintain and update the rule represen-267

tation, how does it use the rule representation to reconfigure the sensorimotor mapping?268

First, we found that neurons in the sensorimotor module were tuned to rule (Supplementary269

Figure 6a), since they receive top-down input from the rule neurons in the PFC module. The270

PFC module exerts top-down control through three pathways: the monosynaptic pathway271

from the excitatory neurons in the PFC module to the excitatory neurons in the sensori-272

motor module, the tri-synaptic pathway that goes through the VIP and SST neurons in273

the sensorimotor module, and the di-synaptic pathway mediated by the PV neurons in the274

sensorimotor module (Figure 1b). We found that there are structured connectivity pat-275
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Figure 3 : (Previous page.) An emergent circuit wiring diagram in the PFC module
enables un-cued switching between rule attractor states.
a. The connectivity matrix between different populations of rule neurons, for an example
model. Text indicates the mean connection strength between two populations. The exci-
tatory rule neurons project more strongly to, and receive more input from, neurons with
the same preferred rule. The PV rule neurons project more strongly to and receive more
input from neurons with the opposite rule preference. As a result, rule neurons form a
classic winner-take-all connectivity with selective inhibitory populations that maintain the
two rule attractor state.
b. The connectivity between rule neurons and conjunctive error x rule neurons, for an
example model. Top left: excitatory rule neurons project more strongly to the conjunc-
tive error x rule neurons that prefer the opposite rule; Top right: PV rule neurons project
more strongly to conjunctive error x rule neurons that prefer the same rule; Bottom left:
conjunctive error x rule neurons project more strongly to the excitatory rule neurons that
prefer the same rule; Bottom right: conjunctive error x rule neurons project more strongly
to the PV rule neurons that prefer the same rule.
c. The simplified circuit diagram between rule neurons and conjunctive neurons based on
the result of b. The weaker connections are ignored. Rule 1 represents the color rule and
rule 2 represents the shape rule
d. A connectivity bias was computed to describe the extent to which the connectivity
pattern between each pair of subpopulations conform to the simplified diagram in c. A
value greater than 0 indicates the connectivity structure is more similar to that in c than
to the opposite. The connectivity biases across all trained models are mostly above 0, both
for the connection among rule neurons (top) and the connection between rule neurons and
conjunctive error x rule neurons (bottom). Here the results are shown for networks with
subtractive dendritic nonlinearity. Networks with divisive dendritic nonlinearity show sim-
ilar result (Supplementary Figure 4).
e. A schematic showing how the simplified circuit can switch from the rule 1 attractor
state to the rule 2 attractor state after receiving the input about negative feedback. The
conjunctive error x rule 2 neurons receive excitation from the currently-active rule 1 exci-
tatory neurons (red arrow, left panel), and the conjunctive error x rule 1 neurons receive
inhibition from the currently-active rule 1 PV neurons (blue arrow, left panel). This makes
conjunctive error x rule 2 neurons more active than the conjunctive error x rule 1 neurons,
even though the negative feedback input targets both error x rule 1 and error x rule 2 popu-
lations (left panel). The conjunctive error x rule 2 neurons then excite the rule 2 excitatory
and PV neurons (red arrows, middle), which suppress the rule 1 excitatory and PV neurons
due to the winner-take-all connectivity (blue arrows, middle) and eventually become more
active (right).

terns along all three pathways. Along the monosynaptic pathway, excitatory rule neurons276

in the PFC module preferentially send long-range projections to the excitatory neurons277

in the sensorimotor module that prefer the same rule (Figure 4a). Along the tri-synaptic278

pathway, PFC excitatory rule neurons also send long-range projections to the SST and VIP279

interneurons in the sensorimotor module that prefer the same rule (Figure 4b-c). The SST280
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Figure 4 : (Caption next page.)

neurons in turn send stronger inhibitory connections to the dendrite of the local excita-281

tory neurons that prefer the opposite rule (Figure 4d). Along the di-synaptic pathway, the282

PV neurons are also more strongly targeted by PFC excitatory rule neurons that prefer the283

same rule (Figure 4e), and they inhibit local excitatory neurons that prefer the opposite rule284

(Figure 4f). These trends are preserved across trained networks (Supplementary Figure 7).285

Therefore, rule information is communicated to the sensorimotor module synergistically via286

the mono-synaptic excitatory pathway, the tri-synaptic pathway that involves the SST and287

VIP neurons, as well as the di-synaptic pathway that involves the PV neurons, as illustrated288

in Figure 4g.289

Structured input and output connections of the sensorimotor module enable290

rule-dependent action selection291

How does the sensorimotor module implement the sensorimotor transformation (from292

the cards to the response to one of the three spatial locations) given the top-down rule293

information from the PFC module? We sought to identify the structures in the input,294

recurrent and output connections of the sensorimotor module that give rise to this function.295

296

We start by observing that excitatory neurons in the sensorimotor module show a297

continuum of encoding strengths for task rule, response location and card features, and298

many neurons show conjunctive selectivity for these variables (Figure 5b, Supplementary299

Figure 6b). Therefore, we assigned each excitatory neuron in the sensorimotor module a300

preferred rule R, a preferred response location L and a preferred shared feature between301
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Figure 4 : (Previous page.) Structured top-down connections enable the propaga-
tion of the rule information.
a. Each line represents the mean connection strength onto one excitatory neuron in the
sensorimotor module, from the PFC excitatory neurons that prefer the same rule and the
different rule. Bars represent mean across neurons. PFC excitatory neurons project more
strongly to excitatory neurons in the sensorimotor module that prefer the same rule (Stu-
dent’s t test, p < .001).
b. Each line represents the mean connection strength onto one VIP neuron in the sensori-
motor module, from the PFC excitatory neurons that prefer the same rule and the different
rule. Bars represent mean across neurons. PFC excitatory neurons project more strongly
to VIP neurons in the sensorimotor module that prefer the same rule (Student’s t test,
p = .002).
c. Each line represents the mean connection strength onto one SST neuron in the sensori-
motor module, from the PFC excitatory neurons that prefer the same rule and the different
rule. Bars represent mean across neurons. PFC excitatory neurons project more strongly
to SST neurons in the sensorimotor module that prefer the same rule (Student’s t test,
p < .001).
d. Each line represents the mean connection strength onto one excitatory neuron of the
sensorimotor module, from the local SST neurons that prefer the same rule and the differ-
ent rule. Bars represent mean across neurons. Local SST neurons project more strongly
to excitatory neurons in the sensorimotor module that prefer the opposite rule (Student’s t
test, p < .001).
e. Each line represents the mean connection strength onto one PV neuron in the sensori-
motor module, from the PFC excitatory neurons that prefer the same rule and the different
rule. Bars represent mean across neurons. PFC excitatory neurons project more strongly
to PV neurons in the sensorimotor module that prefer the same rule (Student’s t test,
p = 0.004).
f. Each line represents the mean connection strength onto one excitatory neuron of the
sensorimotor module, from the local PV neurons that prefer the same rule and the different
rule. Bars represent mean across neurons. PV neurons in the sensorimotor module project
more strongly to local excitatory neurons that prefer the opposite rule (Student’s t test,
p < .001).
g. The structure of the top-down connections as indicated by the results in a-f. The weaker
connections are not shown.
Results in a-f are shown for an example network with subtractive dendritic nonlinearity.
Networks with divisive and subtractive dendritic nonlinearity show similar patterns (Sup-
plementary Figure 7).

the reference card and the test card at L, which we call F . For example, neurons with302

R = color rule, L = 1 and F = blue would have the highest activity during color rule303

trials when the correct response is to choose the test card at location 1, and when that304

test card shares the blue color with the reference card (it belongs to the population in the305

sensorimotor module with the filled green color in Figure 5a). Intuitively, for this group of306
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neurons to show such selectivity, they should receive strong input from the input neurons307

that encode the F = blue feature of the test card at location L = 1 and the same feature308

for the reference card. This would enable them to detect when the test card at L = 1 and309

the reference card both have the feature F = blue.310

In general, for neurons that prefer rule R, response location L and shared feature F ,311

we can define their “preferred features” as the feature F of the reference card and the same312

feature F for the test card at location L. Across all neurons, we found that the weights313

from the input neurons encoding these preferred features were significantly stronger than314

those encoding other features (Figure 5c). In addition, there is also an intuitive structure315

in the output connections, where excitatory neurons in the sensorimotor module that prefer316

a given response location L send stronger output connections to the output neuron that317

prefers the same response location (Figure 5d). These structures were found to be consistent318

across trained networks (Supplementary Figure 8).319

These structures in the input and output connections give rise to an intuitive explana-320

tion of how the sensorimotor module can perform rule-dependent action selection required321

for the WCST. Here we illustrate this mechanism with an example trial (Figure 5a), where322

the current rule is color, the reference card is a blue circle, and the test cards at locations 1323

2 and 3 are blue triangle, red circle and red triangle, respectively. According to the rule324

of WCST, the correct response should be location 1, since the test card at that location325

matches the reference card in color. This choice can be generated as follows: the excitatory326

population in the sensorimotor module that prefers R = color rule, L = 1 and F = blue will327

be most strongly activated since they not only receive strong top-down input from the PFC328

module, but also the strongest feedforward input. Therefore, they are the most strongly329

activated population (Figure 5a). And since they prefer response location 1, they will excite330

the output neuron that prefers response location L = 1, which is the correct choice.331
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Figure 5 : (Previous page.) Structures in the input and output weights of the
sensorimotor module enable rule-dependent action selection.
a. Excitatory neurons in the sensorimotor module were classified according to their preferred
rule R, response location L and shared feature F . For example, neurons with R = color rule,
L = 1 and F = blue have the highest activity during color rule trials when the network
chooses the test card at L = 1, and when that card shares the F = blue feature with the
reference card. For a neuron with a given R, L and F , its “preferred features” are defined
as the feature F of the reference card and same feature of the test card at location L. For
example, the preferred features for neurons with R = color rule, L = 1 and F = blue are
the blue feature of the reference card and the test card at L = 1.
b. The joint distribution of the selectivity for rule (R), response location (L) and shared
feature (F ) across all neurons in the sensorimotor module. Result is aggregated across all
trained networks.
c. Excitatory neurons in the sensorimotor module receive stronger connections from the
input neurons that encode their preferred features (as defined in a). Student’s t-test, p <
.001
d. Excitatory neurons in the sensorimotor module send stronger connections to the output
neuron that represents their preferred response location. Student’s t-test, p < .001.
Panel a shows an example trial illustrating how the sensorimotor module can generate the
correct response. During this trial, the reference card is a blue circle, and the test cards at
location 1, 2, 3 are blue triangle, red circle and red triangle, respectively. The current rule is
color. Therefore the correct response location should be L = 1. The network can generate
that response because (a) the PFC population that encode the color rule are active, which
send strong top-down excitation to the R = color rule population in the sensorimotor
module; (b) the input neurons that encode the F = blue feature of the reference card
and the test card at L = 1 are both active, which provide strong feedforward input to the
excitatory population in the sensorimotor module with R = color rule, L = 1 and F = blue.
Therefore, this population will be most strongly activated. Since they send strong long-
range excitations to the output neuron that represents L = 1, the correct output neuron
will be activated.
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Recurrent connectivity and dynamics within the sensorimotor module332

Given that different populations of neurons in the sensorimotor module receive dif-333

ferential inputs about the external sensory stimuli and rule via the structured input and334

top-down connections, how are they recurrently connected to produce dynamics that lead335

to a categorical choice? To answer this, we first visualized the population neural dynamics336

in the sensorimotor module by using principal component analysis (Figure 6a-b). As shown337

in Figure 6a, neural trajectories during the inter-trial interval are clustered according to338

the task rule. During the response period, the neural trajectories are separable according339

to the response locations, albeit only in higher-order principal components (Figure 6b). In340

addition, the subspaces spanned by neural trajectories of different rules and response loca-341

tions are more orthogonal to each other compared to randomly shuffled data (Figure 6c-d,342

Methods).343

What connectivity structure gives rise to this signature in the population dynamics?344

To answer this, we examined the pattern of connection weights between excitatory and345

PV neurons that prefer different rules (R), response locations (L), and shared features (F )346

by computing the connectivity biases between populations of neurons that are selective to347

different rules (Figure 6e), response locations (Figure 6f) and shared features (Figure 6g). A348

greater than zero connectivity bias means populations that prefer different rules (or response349

locations or shared features) form a winner-take-all circuit structure analogous to the one350

observed between rule-selective populations in the PFC module (c.f. top panel of Figure 3d,351

details about how the connectivity biases were computed is described in Methods). We352

observed that many of the connectivity biases were significantly above zero (Figure 6e-g),353

especially for the ones that correspond to the inhibitory connections originating from the354

PV neurons. This indicates that populations of neurons in the sensorimotor module that355

are selective to different rules, response locations and shared features overall inhibit each356

other. This mutual inhibition circuit structure magnifies the difference in the amount of357

long-range inputs that different populations receive (Figure 5) and lead to a categorical358

choice.359

SST neurons are essential to dendritic top-down gating360

The previous sections elucidate the key connectivity structures that enable the net-361

work to perform the WCST. In this final section we are going to take advantage of the362

biological realism of the trained RNN and examine the function of SST neurons in this363

task.364

It has been observed that different dendritic branches of the same neuron can be tuned365

to different task variables [39, 40, 41, 42]. This property may enable individual dendritic366

branches to control the flow of information into the local network [17, 20]. Given these367

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2024. ; https://doi.org/10.1101/2023.08.15.553375doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.15.553375
http://creativecommons.org/licenses/by-nc-nd/4.0/


DISSECTING MODULAR RNNS TRAINED TO PERFORM A WCST ANALOG 20

Response
response location 1 trials
response location 2 trials
response location 3 trials

b

PC5
-0.2

0.4

0.4

-0.
2 PC6

-0.2

0.4PC
7

c

Principal angle (deg)
900

Pr
ob

ab
ilit

y
 d

en
si

ty

Between rule subspaces

0

0.1

e Connectivity bias between different
rule-selective populations

excà
exc

excà
PV
PVà exc

PVà PV

0.25

0
0

0.1

f Connectivity bias between different
response location-selective populations

excà
exc

excà
PV
PVà exc

PVà PV

0

0.1

Connectivity bias between different
shared feature-selective populations

0

0.15

excà
exc

excà
PV
PVà exc

PVà PV

g

Principal angle (deg)
900

0

0.1

Pr
ob

ab
ilit

y
 d

en
si

ty

d Between response location
subspaces

a

2.0

ITI
color rule trials
shape rule trials0.6

-0.2
-0.

2

PC2

-0.
8

PC
3

2.0PC1

0.5

𝐹 = 𝑏𝑙𝑢𝑒 𝐹 = 𝑐𝑖𝑟𝑐𝑙𝑒

𝐹 = 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒

𝐿 = 1 𝐿 = 2

Sensorimotor module

𝑅 = 𝑐𝑜𝑙𝑜𝑟	𝑟𝑢𝑙𝑒 𝑅 = 𝑠ℎ𝑎𝑝𝑒	𝑟𝑢𝑙𝑒

𝐿 = 3 𝐿 = 1 𝐿 = 2 𝐿 = 3

h

𝐹 = 𝑟𝑒𝑑

Figure 6 : Recurrent dynamics and connectivity within the sensorimotor module.
a. Neural trajectories during the intertrial interval (ITI) for different task rules, visualized
in the space spanned by the first three principal components. Black circles represent the
start of the ITI. Only trials following a correct trial were included.
b. Neural trajectories during the response period for different choices, visualized in the
space spanned by higher order principal components. Black circles represent the start of
the response period. Only trials following a correct trial were included.
c. The principal angle between the subspaces spanned by neural trajectories during different
task rules (gray distribution represents the principal angle obtained through shuffled data,
see Methods). Each data point represents one trained network.
d. The principal angle between the subspaces spanned by neural trajectories during different
responses (gray distribution represents the principal angle obtained through shuffled data,
see Methods). Each data point represents one trained network.
e. The connectivity biases between different rule-selective populations across models.
f. The same as e but for different response location-selective populations.
g. The same as e but for different shared feature-selective populations.
h. The results in e - g show that neural populations selective for different rules, response
locations and shared features mutually inhibit each other.
Data in c-g are shown for networks with subtractive dendritic nonlinearity. Networks with

divisive dendritic nonlinearity show similar result (Supplementary Figure 9).
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previous findings, we examined the coding of the top-down rule information at the level368

of individual dendritic branches. Since each excitatory neuron in our networks is modeled369

with two dendritic compartments, we examined the encoding of rule information by different370

dendritic branches of the same excitatory neuron in the sensorimotor module.371

One strategy of gating is for different dendritic branches of the same neuron to prefer372

the same rule, in which case these neurons form distinct populations that are preferentially373

recruited under different task rules (population-level gating, Figure 7a, right). An alterna-374

tive strategy is for different dendritic branches of the same neuron to prefer different rules,375

which would enable these neurons to be involved in both task rules (dendritic branch-specific376

gating, Figure 7a, left).377

In light of this, we examined for our trained networks to what extent they adopt these378

strategies. We found that the rule selectivity between different dendritic branches of the379

same neuron were highly correlated (Figure 7b). This indicates that the trained networks380

are mostly using the population-level gating strategy, where different dendritic branches of381

the same neuron encode the same rule.382

What factors might determine the extent to which the trained networks adopt these383

two strategies? Previous modeling work suggests that sparse connectivity from SST neurons384

to the dendrites of the excitatory neurons increases the degree of dendritic branch-specific385

gating, in the case where the connectivity is random (Figure 4f in Ref.[20]). To see if the386

same effect is present in our task-optimized network with structured connectivity, we re-387

trained networks with different levels of sparsity from 0 to 0.8 and studied its effect on388

the dendritic branch specificity of rule coding (Methods). We found that the degree of389

dendritic branch-specific encoding of the task rule increased with sparsity (see Figure 7c,390

d for subtractive dendritic nonlinearity; Supplementary Figure 10a for divisive dendritic391

nonlinearity). Intuitively, when the connection is sparse, a smaller number of SST neurons392

target each dendritic branch, making it more likely that the branch receives an uneven393

number of inputs from SST neurons selective for different rules. Taken together, we observed394

that the trained networks adopted a mixture of population-level and dendritic-level gating395

strategies for top-down control, and the balance between the two strategies depends on the396

sparsity of the connections from the SST neurons to the dendrites of excitatory neurons.397

Indeed, SST neurons play a causal role in relaying the top-down rule information into398

the sensorimotor network and reconfiguring its dynamics according to the task rule. We399

simulated optogenetic inhibition by silencing the SST neurons in the sensorimotor module,400

which significantly impaired task performance (Figure 7e, see Methods section for details of401

the protocol). In addition, the principal angle between the subspaces for different rules (Fig-402

ure 6c) significantly decreased after SST neurons in the sensorimotor module were silenced403

(Figure 7f). Silencing of the SST neurons in the sensorimotor module also significantly404
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diminished nonlinear mixed-selective coding of rule and stimulus among the excitatory neu-405

rons in the sensorimotor module (Figure 7g, Supplementary Figure 11, Methods), which has406

been proposed to be important for rule-based sensorimotor associations [43, 44, 45]. Taken407

together, these results highlight the role that SST neurons in the sensorimotor module play408

during top-down control. This analysis also shows that by combining artificial neural net-409

work with knowledge from neurobiology, it is possible to probe the functions of fine-scale410

biological components in cognitive behaviors.411

Discussion412

In this paper, we analyzed recurrent neural networks trained to perform a classic413

task involving un-cued task switching - the Wisconsin Card Sorting Test. The networks414

consist of a “PFC” module trained to represent the rule and interacts with a “sensorimotor”415

module that instantiates different sensorimotor mappings depending on the rule. In order416

to study the functions of dendritic computation and different neuronal types, each module417

is endowed with excitatory neurons with two dendritic branches as well as three major types418

of inhibitory neurons - PV, SST and VIP. After training, we dissected the trained networks419

to elucidate a number of intra-areal and inter-areal neural circuit mechanisms underlying420

WCST, as summarized in Figure 8.421

Mapping between model components and brain regions422

Different components of the trained network can be mapped to different brain regions423

(Figure 8). While single neurons in the dorsal-lateral PFC (DLPFC) are shown to encode the424

task rule [46], neurons in the anterior cingulate cortex (ACC) are thought to be important425

for performance monitoring [47], and have been shown to receive more input about the426

feedback [48, 49, 50, 51]. Therefore, the rule neurons and conjunctive error x rule neurons427

in the model correspond to the putative functions of the neurons in DLPFC and ACC. The428

input to the PFC module about negative feedback may come from subcortical areas such429

as the amygdala [52] or from the dopamine neurons in the substantia nigra pars compacta430

(SNc) and ventral tegmental area (VTA) [53, 54]. The sensorimotor module may correspond431

to parietal cortex or basal ganglia which have been shown to be involved in sensorimotor432

transformations [55, 56]. The neurons in the input layer that encode the color and shape of433

the card stimuli exist in higher visual areas such as the inferotemporal cortex [57, 58, 59].434

The neurons in the output layer that encode different response locations could correspond435

to movement location-specific neurons in the motor cortex [60].436
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Figure 7 : Examining the role of SST neurons in the sensorimotor module in
top-down gating.
a. Two scenarios for top-down gating. Blue and green color represent dendritic branches
that prefer one of the two rules. Different dendritic branches of the same neuron could have
similar (right) or different (left) rule selectivity.
b. The rule selectivity of one dendritic branch against the other, aggregated across all
models where the connections from the SST neurons to the excitatory neurons are all-
to-all. The rule selectivity for different dendritic branches of the same neuron are highly
correlated.
c. The rule selectivity of one dendritic branch against the other, aggregated across all
models where the 80% of the connections from the SST neurons to the excitatory neurons
are frozen at 0 throughout training. Note the the rule selectivity for different dendritic
branches of the same neuron are less correlated than in b.
d. The degree of dendritic branch-specific encoding of the task rule is quantified as the
difference in the rule selectivity between the two dendritic branches of the same excitatory
neuron in the sensorimotor module. Across all dendritic branches, this quantity increases
with the sparsity of the SST → dendrite connectivity.
e. Task performance drops significantly after silencing SST neurons in the sensorimotor
module. Each line represents a trained network.
f. The principal angle between rule subspaces (c.f. Figure 6c) drops significantly after
silencing SST neurons in the sensorimotor module. Each line represents a trained network.
g. The strength of conjunctive coding of rule and stimulus (as measured by the R2 value in
a linear model with conjunctive terms, see Methods) decreases after silencing SST neurons
in the sensorimotor module (Student’s t-test, p < .001). Each line represents one neuron.
Results are aggregated across networks.
Results in b-g are for networks with subtractive dendritic nonlinearity. Networks with
divisive dendritic nonlinearity show similar result (Supplementary Figure 10).
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Higher visual
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Figure 8 : A summary of the main results.
Different components of the model can be mapped to different brain regions; The conjunctive
error x rule neurons may reside in the anterior cingulate cortex; The rule neurons may be
found in the dorsal-lateral PFC; The input to the PFC module about negative feedback
may come from subcortical areas such as the amygdala or the midbrain dopamine neurons;
The sensorimotor module may correspond to parietal cortex or basal ganglia which have
been shown to be involved in sensorimotor transformations; Neurons in the input layer
that encode the color and shape of the card stimuli exist in higher visual areas such as the
inferotemporal cortex; Neurons in the output layer that encode different response locations
could correspond to neurons in the motor cortex.

Attractor states supported by inter-areal connections.437

We observed that in many networks, the interaction between the two modules was438

needed to sustain the two rule attractor states (Supplementary Figure 2b,c), although the439

majority of the excitatory input to PFC neurons come from local population (Supplementary440

Figure 2d). Traditionally, it was thought that local interactions within the frontal cortex are441

sufficient for the maintenance of the persistent activity [28, 29, 30, 31]. Recent large-scale442

electrophysiological recordings, on the other hand, revealed highly distributed encoding of443

cognitive variables [32, 34, 61, 62, 63, 64]. In addition, distributed patterns of persistent444

activity emerge in neural network models of multiple brain regions that are constrained445

by anatomical and neurophysiological data [65, 66]. Despite the empirical evidence, the446
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functional advantages of this multi-areal encoding scheme remain an open question.447

Circuit mechanism in the frontal-parietal network for rule maintenance and448

update449

Two distinct types of responses among the excitatory neurons emerge in the PFC450

module as a result of training: neurons that only encode the rule, and neurons that con-451

junctively encode negative feedback and rule. Neurons that show conjunctive selectivity452

for rule and negative feedback have been reported in monkey prefrontal and parietal cor-453

tices while they perform the same WCST task [8, 9]. Theoretical work suggests that these454

mixed-selective neurons are essential if the network needs to switch between different rule455

attractor states after receiving the same input that signals negative feedback [67].456

We further revealed the connectivity pattern between different populations of excita-457

tory and PV neurons in the PFC module in order for the network to switch between rule458

attractor states (Figure 3c). In addition, this connectivity pattern is consistent across dozens459

of trained networks with different initializations and dendritic nonlinearities (Figure 3d and460

Supplementary Figure 4). This circuit mechanism bears resemblance to a previous circuit461

model of WCST [68]. In that model, the switching between different rule states is achieved462

by synaptic desensitization caused by the convergence of two signals - one that signals the463

recent activation of the synapse, and another that signals the negative feedback. However,464

that model does not predict the existence of neurons with conjunctive coding of negative465

feedback and rule, which has been observed experimentally [8, 9].466

The simplified circuit for the PFC module in Figure 3c can be applied not only to467

rule switching, but to the switching between other behavioral states as well. For example, it468

resembles the head-direction circuit in fruit fly [69], where the offset in the connections be-469

tween the neurons coding for head direction and those coding for the conjunction of angular470

velocity and head direction enables the update of the head-direction attractor state by the471

angular velocity input. In addition, this circuit structure may underlie the transition from472

staying to switching during patch foraging behavior. Indeed, in a laboratory task mimicking473

natural foraging for monkeys, it was found that neurons in the anterior cingulate cortex474

increase their firing rates to a threshold before animals switch to another food resource [70].475

Connecting subspace to circuits476

Methods that describe the representation and dynamics on the neuronal population477

level have gained increasing popularity and generated novel insights that cannot be discov-478

ered using single neuron analysis (e.g. [60, 71]). In the meantime, it would be valuable to479

connect population-level phenomena to their underlying circuit basis [72]. In our model, we480

found that silencing of the SST neurons has a specific effect on the population-level repre-481
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sentation, namely, it decreases the angle between rule subspaces (Figure 7f). We also found482

that silencing the other types of inhibitory neurons has different effects (data not shown).483

Silencing the PV neurons to an instability of the network dynamics, whereas silencing the484

VIP neurons caused an insignificant decrease of the network performance. The lack of ef-485

fect after silencing the VIP neurons is due to the fact that the VIP neurons were largely486

inhibited by the SST neurons in the trained model. Future work could study the function487

of VIP neurons under different connectivity constraints between SST and VIP neurons.488

Dynamics of behavior during rule switching489

Our networks switch rules in just one trial (Figure 1c, d). This fast switching agrees490

with the monkey behavior in some studies [21, 9, 27], but other studies report that monkeys491

switch rules using on average tens of trials [8, 6]. For example, in Ref.[6], monkeys’ perfor-492

mance is at chance after a single error (Figure 3D in [6]), and they gradually use positive493

feedback to reinforce their behavior according to the new rule (Figure 4A in [6]). However,494

when our network model was trained to achieve less than perfect accuracy, switching after495

a rule change now takes a few trials (Figure 1f) similar to behavioral observations of many496

monkey experiments. In this case, the dissected network mechanism is compatible with497

what we reported here, albeit not as clear cut.498

Indeed, in WCST and related rule switching paradigms, subjects’ performance is499

often not perfect even during trials when the rule is fixed. This is possibly because during500

training, the rule is switched when the subjects’ performance reaches a certain criterion501

(e.g. 85% correct in a sequence of 20 trials in Ref.[6]). In that case, negative feedback can502

due to either a rule switch or the inaccuracy in the sensorimotor transformation (even under503

the correct rule). Therefore, subjects need to integrate information across several trials to504

decide whether the rule has actually switched. For example, Purcell and Kiani [73] analyzed505

the behavior of humans in an environment switching task. The task is similar to the WCST506

analog used in this paper, except that the noise level in the stimuli varies from trial to507

trial. It was shown that the behavior of subjects can be well described by a Bayesian ideal508

observer model, where the evidence towards an environment switch is increased whenever509

the subjects performs an error trial, and the amount of increase depends on the difficulty510

of that trial: the easier the error trial is, the more likely that the environment has switched511

and the larger the incremental evidence towards an environment switch is.512

Aside from the difficulty of the task under a fixed rule, the relationship between the513

different rules may also play a role in how fast animals can switch between them. In tasks514

that involve simple reversal of motor response or sensorimotor mappings, monkeys usually515

use a small number of trials to switch between rules [74, 75, 76]. On the other hand, for516

WCST with more than two rules, as is usually used for humans, subjects typically use more517
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trials to switch to the new rule [1, 77].518

There are other reasons that may contribute to the suboptimality of behavior during519

rule switching, including random exploration [77], poor sensitivity to negative feedback [77],520

integration of reward history across multiple trials [78, 73, 10, 79], the gradual update of521

the value of the counterfactual rule [80] or the cost of cognitive control [81]. Neuronal522

mechanisms on longer timescales such as synaptic mechanisms [82] may be required to523

produce the slow switching behavior.524

In conclusion, our approach of incorporating neurobiological knowledge into train-525

ing RNNs can provide a fruitful way to build circuit models that are functional, high-526

dimensional, and reflect the heterogeneity of biological neural networks. In addition, dis-527

secting these networks can make useful cross-level predictions that connect biological ingre-528

dients with circuit mechanisms and cognitive functions.529
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Methods538

Model setup539

The RNN consists of two bidirectionally-connected modules, the PFC module and540

the sensorimotor module. Each module consists of 70 excitatory neurons and 30 inhibitory541

neurons. Each excitatory neuron has 2 dendritic compartments. The inhibitory neurons542

are evenly divided into three types: PV, SST and VIP. Different types of neurons have543

different connectivity, inspired by experimental findings [83]: PV neurons target the somatic544

compartment of excitatory neurons and other PV neurons, SST neurons target the dendritic545

compartment of excitatory neurons as well as PV and VIP neurons, and VIP neurons target546

SST neurons. Excitatory neurons target other excitatory neurons, PV and SST neurons.547

The connection strength between all other types of neurons were fixed at zero throughout548

training.549
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Only excitatory neurons send long-range projections to other modules. The long-550

range projections from the sensorimotor module to the PFC module target the dendritic551

compartment of the excitatory neurons and the PV neurons. This is inspired by the ex-552

perimental evidence that PV neurons mediate feedforward inhibition [12]. The long-range553

top-down projections from the PFC to the sensorimotor module target the dendritic com-554

partments of the excitatory neurons and all three types of inhibitory neurons. Finally,555

external inputs to both modules target the dendritic compartment of excitatory neurons556

and PV neurons.557

The dynamics of the somata of the excitatory neurons in the RNN are described by558

τ
dhesoma

dt
= −hesoma + fsoma(W rec

esoma → esomahesoma + W rec
PV → esomahPV +

∑
dendrites

hdendrite),

(1)559

where τ = 100 ms, dt = 10 ms. Somata of excitatory neurons in both the sensorimotor560

and PFC modules obey the same equation. Here “esoma” stands for the soma of excita-561

tory neurons. W rec
esoma → esoma and W rec

PV → esoma represent the connectivity matrix between562

the soma of excitatory neurons and from the local PV neurons to the soma of excitatory563

neurons, respectively. hesoma and hP V are the activity of the soma of excitatory neurons564

and PV neurons. hdendrite is the activity of the dendritic compartment. fsoma is the somatic565

nonlinear activation function which was modeled as a rectified linear function:566

fsoma =

x, x > 0

0, otherwise
(2)567

The dendritic activity is a nonlinear function of the excitatory and inhibitory inputs.568

hdendrite = fdendrite(Iexc, Iinh). (3)569

Iexc is the total excitatory input to the dendrite. It consists of long-range inputs from the570

input neurons (neurons that encode the feedback for the PFC module and neurons that571

encode the stimulus for the sensorimotor module) as well as the long-range input from the572

excitatory neurons in the other module. Iexc = Iin +Icross-module. Iinh is the inhibitory input573

to the dendrite from the local SST neurons. Iinh = ISST→edend. Here “edend” stands for574

the dendrite of excitatory neurons. The functional form of fdendrite is described in the next575

section.576

The inhibitory neurons are modeled as standard point neurons. Different types of577

inhibitory neurons receive different input connections. In the sensorimotor (SM) module,578
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the dynamics of PV neurons are described by579

τ
dhSM,PV

dt
= −hSM,PV + fsoma(W rec

SM,PV → SM,PVhSM,PV

+W rec
SM,SST → SM,PVhSM,SST

+W rec
SM,esoma → SM,PVhSM,esoma

+Win→SM,PVusensory

+WPFC,esoma → SM,PVhPFC,esoma),

(4)580

where W rec
SM,PV → SM,PV, W rec

SM,SST → SM,PV, W rec
SM,esoma → SM,PV are the connection weight581

matrices between the PV neurons, from local SST neurons to the PV neurons, and from local582

excitatory neurons to the PV neurons, respectively. Win→SM,PV is the input weight matrix583

to the PV neurons, and usensory is the input to the sensorimotor module that represents584

the features about the cards. WPFC,esoma → SM,PVhPFC,esoma is the top-down connection585

weight matrix from the excitatory neurons in the PFC module to the PV neurons in the586

sensorimotor module.587

For the SST neurons,588

τ
dhSM,SST

dt
= −hSM,SST + fsoma(W rec

SM,VIP → SM,SSThSM,VIP

+W rec
SM,esoma → SM,SSThSM,esoma

+WPFC,esoma → SM,SSThPFC,esoma),

(5)589

where W rec
SM,VIP → SM,SST and W rec

SM,esoma → SM,SST are the connection weight matri-590

ces from local VIP neurons and excitatory neurons to the SST neurons, and591

WPFC,esoma → SM,SSThPFC,esoma is the top-down connection weight matrix from the exci-592

tatory neurons in the PFC module to the SST neurons in the sensorimotor module.593

For the VIP neurons,594

τ
dhSM,VIP

dt
= −hSM,VIP + fSM,soma(W rec

SM,SST → SM,VIPhSM,SST

+WPFC,esoma → SM,VIPhPFC,esoma),
(6)595

where W rec
SM,SST → SM,VIP is the connection weight matrix from the local SST neurons to the596

VIP neurons, and WPFC,esoma → SM,VIPhPFC,esoma is the top-down connection weight matrix597

from the excitatory neurons in the PFC module to the VIP neurons in the sensorimotor598

module.599

The inhibitory neurons in the PFC module are described by similar equations, except600

only the PV neurons receive long-range bottom-up inputs from the sensorimotor module:601
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τ
dhPFC,PV

dt
= −hPFC,PV + fsoma(W rec

PFC,PV → PFC,PVhPFC,PV

+W rec
PFC,SST → PFC,PVhPFC,SST

+W rec
PFC,esoma → PFC,PVhPFC,esoma

+Win→PFC,PVufeedback

+WSM,esoma → PFC,PVhSM,esoma),

(7)602

τ
dhPFC,SST

dt
= −hPFC,SST + fsoma(W rec

PFC,VIP → PFC,SSThPFC

+W rec
PFC,esoma → PFC,SSThPFC,esoma),

(8)603

τ
dhPFC,VIP

dt
= −hPFC,VIP + fsoma(W rec

PFC,SST → PFC,VIPhPFC,SST), (9)604

where ufeedback represents the external input to the PFC module about the feedback605

of the previous trial.606

In practice, we used a mask matrix to enforce the connectivity between different cell607

types.608

W rec = |W̃ rec| ∗ M + W fix, (10)609

where W̃rec is the unconstrained connectivity matrix updated by the learning algorithm, M610

is a matrix consisting of 1, 0 and -1 depending on whether the corresponding connection611

is excitatory, inhibitory or nonexistent. W fix implements the fixed coupling between the612

dendrite and the soma.613

Only the somata of excitatory neurons send output connections. The output in each614

module is generated via a simple linear readout:615

ySM = Wout, SMhSM, esoma. (11)616

yP F C = Wout, PFChPFC, esoma. (12)617

The output connections were constrained to be positive.618

Variations in the model hyperparameters619

Dendritic nonlinearities. We trained models with two types of dendritic nonlin-620

earities fdendrite - subtractive and divisive. They are inspired by in-vitro and computational621

studies showing different types of inhibitory modulation on the dendritic activity depending622

on the location of inhibition relative to excitation [23]. Both types of dendritic nonlineari-623

ties are sigmoidal functions of the excitatory input. Under subtractive nonlinearity, as the624
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inhibitory input increases, the turning point of the sigmoid function moves to larger values,625

consistent with the experimental observation when the inhibitory current is injected at the626

same location or more distal than the excitation [23]. For the divisive nonlinearity, the turn-627

ing point of the sigmoid is not affected by the level of inhibition, but the saturating level of628

the sigmoid function decreases with the level of inhibition, consistent with the experimental629

observation when the inhibitory current is injected close to the soma [23].630

The equations of the different dendritic nonlinearities are given by:631

f subtractive
dendrite (Iexc, Iinh) = tanh (Iexc − Iinh)632

fdivisive
dendrite(Iexc, Iinh) = k1(1 + tanh(Iexc − 1)) + k2,633

where k1 = 1
eIinh and k2 = −1 − tanh(−1). The form of the divisive dendritic nonlinearity634

was specified such that it is divisively modulated by Iinh (even when Iexc=0), and that it is635

0 only when both Iexc and Iinh are 0.636

Initializations. The connectivity matrices were initialized either using a normal637

distribution with mean 0 and standard deviation
√

2
N (where N is the total number of638

recurrent units) or a uniform distribution between −
√

6
N and

√
6
N .639

Sparsity of the SST→dendrite connectivity in the sensorimotor module.640

To study how the degree of dendritic branch-specific rule encoding in the sensorimotor641

module is affected by the sparsity of the connections from SST neurons to the dendrite642

of excitatory neurons, we varied this sparsity by fixing a fraction of randomly chosen con-643

nections to be 0 throughout training. The sparsity levels used were 0, 0.2, 0.4, 0.6 and644

0.8.645

Random seeds. For each combination of the hyperparameter configuration intro-646

duced above (except the sparsity), we trained models using 50 random seeds for Pytorch647

(other random seeds were fixed). For each sparsity level other than 0, we trained models648

using 10 random seeds for Pytorch.649

Task650

The networks were trained on an analog of the Wisconsin Card Sorting Test (WCST)651

used for monkeys [21, 8, 9]. Each trial starts with the presentation of a “reference card” for652

500 ms, after which three “test cards” appear around the reference card for 500 ms. Each653

card contains an object with a specific color (blue or red) and shape (circle or triangle).654

Among the three test cards, one of them matches the color of the reference card, another655

one matches the shape of the reference card, and the third card matches neither feature656

of the reference card. Depending on the rule (color or shape), the location where the test657
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card has the same color or shape feature as the reference card should be chosen. The choice658

should be made during the 500 ms when both the reference card and the test cards are659

presented. At the end of this period, a feedback signal is presented for 100 ms, indicating660

whether the choice is correct or incorrect. This is followed by a 1 second inter-trial interval.661

The task rule switches after a random number of trials, without informing the network.662

Therefore, the network inevitably makes an error for the first trial after the rule switch since663

it has not yet received the information that the rule has switched. The network should then664

adjust its behavior to the new rule by utilizing the feedback signal.665

Representation of inputs and outputs666

Each card is represented as a four-dimensional binary vector, where different entries667

represent the presence of the two colors and shapes. The feedback input is a two-dimensional668

one-hot vector, where the two entries represent positive and negative feedback. The target669

output for the sensorimotor module is a three-dimensional one-hot vector, where each entry670

represents one response location on the screen. This target is non-zero only during the 500671

ms response period when both the reference card and the test cards are presented. The672

target output for the PFC module is a two-dimensional one-hot vector, where each entry673

represents one rule. This target is non-zero during the entire trial.674

Training method675

During training, the networks ran continuously across 20 consecutive trials with 3676

random rule switches. Importantly, the network dynamics were not reset during the inter-677

trial interval. The loss function was aggregated across the 20 trials.678

L =
20∑

trial=1

∑
t

(
||yPFC(trial, t) − ŷrule(trial, t)||2 + ||ySM(trial, t) − ŷchoice(trial, t)||2

)
,

(13)679

where yPFC(trial, t) and ySM(trial, t) are the activity of the readout neurons for the PFC680

and sensorimotor module at time t in a given trial, respectively. ŷrule(trial, t) is the target681

output for the PFC module which represents the rule of the current trial. It is a binary682

vector of dimension 2 where each entry represents one rule. The activation of the entry683

that represents the correct rule is 1 throughout the entire trial. ŷchoice(trial, t) is the target684

output for the sensorimotor module which represents the correct choice for the current trial.685

It is a binary vector of dimension 3 where each entry represents one of the three response686

locations. The activation of the entry that represents the correct choice is 1 during the687

response period (500 ms when both the reference card and the tests card are shown).688
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The standard backpropogation through time algorithm [84] with the Adam optimizer689

[85] was used to update all connection weights.690

We also used curriculum learning to speed up training. Initially, the stimulus, choice691

and outcome of the previous trial were all provided to the PFC module as input. This692

way all the information needed to perform the current trial is contained within the input,693

and the networks do not need to memorize past trials. During the training phase, the694

network performs 20 consecutive trials with 3 random rule switches, therefore the maximum695

performance is 85%. When the training performance reached above 65%, we started testing696

the network on longer trial sequences (200 consecutive trials with 10 rule switches). The697

maximum performance during testing is 95%. If the networks reached on average 90%698

performance during the recent 5 tests, the input about the previous stimulus was removed.699

When the networks reached 90% performance again, the information about the previous700

choice information was removed. The networks were then trained until they reached 90%701

performance.702

Lower performance criteria was used for the model trained using early stopping (Fig-703

ure 1f). In particular, curriculum training advanced to the next stage when the testing704

performance reached 80%.705

Single neuron selectivity metric706

The selectivity index (SI) for rule is defined as707

SIrule = h(color) − h(shape)
|h(color)| + |h(shape)| , (14)708

where h(color) and h(shape) represent the trial-averaged single neuron activity during color709

rule and shape rule, respectively. Neural activity was first averaged over the inter-trial710

interval before further being averaged across trials.711

The error selectivity is defined similarly712

SIerror = h(after error) − h(after correct)
|h(after error)| + |h(after correct)| , (15)713

where h(after error) and h(after correct) are the mean single neuron activity after error and714

correct trials, respectively. Neural activity was first averaged across the feedback presenta-715

tion and inter-trial interval periods before being averaged across trials.716

The selectivity for response location is defined as717

SIresponse = h(L∗) − h(L̄)
|h(L∗)| + |h(L̄)|

, (16)718
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where L∗ the preferred response location of the neuron, and h(L∗) represents the mean719

activity across trials when the network chooses location L∗. h(L̄) represents the mean720

activity across trials when the choice of the network is not location L∗. Therefore, this721

selectivity index ranges from 0 to 1. We included neural activity during the response period722

when computing this selectivity index.723

Neurons that prefer color/shape rule were further divided according to their preferred724

shared feature. The selectivity for the shared feature is defined as725

SIshared feature = h(blue) − h(red)
|h(blue)| + |h(red)| , (17)726

for neurons that prefer the color rule, and727

SIshared feature = h(circle) − h(triangle)
|h(circle)| + |h(triangle)| , (18)728

for neurons that prefer the shape rule. Here h(blue), h(red), h(circle), h(triangle) represent729

the mean activity of a neuron across trials when the reference card is blue, red (when the730

current rule is color), circle or triangle (when the current rule is shape). We included neural731

activity during the response period when computing this selectivity index.732

Classification criteria for different neuronal populations733

Each neuron in the PFC module was classified as a “rule neuron” if the absolute value734

of its rule selectivity was greater than 0.5 and the absolute value of its error selectivity was735

smaller than 0.5. The rest of the neurons were classified as “error neurons” if their error736

selectivity was greater than 0.5. Error neurons with greater mean activity during the color737

rule trials that follow an error trial were defined as error x color rule neurons, and the other738

error neurons were defined as error x shape rule neurons.739

Each neuron in the sensorimotor module was assigned with a preferred rule, response740

location and shared feature according to the condition during which it has the highest741

activity. There was no threshold for this classification.742

Connectivity bias743

The connectivity bias (CB) was defined as the difference in the average connection744

weight between different sub-population of neurons. A positive value indicates an agreement745

with the simplified circuit diagram (Figures 3c, Figure 6h). For example, the connectivity746

bias from the PFC PV neurons to the PFC excitatory neurons is given by747
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CB(PFC PV −→ PFC E) = W̄ (PFC PV rule1 −→ PFC E rule2)

+ W̄ (PFC PV rule2 −→ PFC E rule1)

− W̄ (PFC PV rule1 −→ PFC E rule1)

− W̄ (PFC PV rule2 −→ PFC E rule2),

(19)748

where for example W̄ (PFC PV rule1 −→ PFC E rule2) represents the average (unsigned)749

connection strength from the PFC PV neurons that prefer rule 1 to PFC excitatory neurons750

that prefer rule 2. Here rule 1 refers to color rule and rule 2 refers to shape rule.751

The other connectivity biases were defined analogously.752

CB(PFC E −→ PFC E) = W̄ (PFC E rule1 −→ PFC E rule1)

+ W̄ (PFC E rule2 −→ PFC E rule2)

− W̄ (PFC E rule1 −→ PFC E rule2)

− W̄ (PFC E rule2 −→ PFC E rule1)

(20)753

CB(PFC E −→ PFC PV) = W̄ (PFC E rule1 −→ PFC PV rule1)

+ W̄ (PFC E rule2 −→ PFC PV rule2)

− W̄ (PFC E rule1 −→ PFC PV rule2)

− W̄ (PFC E rule2 −→ PFC PV rule1)

(21)754

CB(PFC PV −→ PFC PV) = W̄ (PFC PV rule1 −→ PFC PV rule2)

+ W̄ (PFC PV rule2 −→ PFC PV rule1)

− W̄ (PFC PV rule1 −→ PFC PV rule1)

− W̄ (PFC PV rule2 −→ PFC PV rule2)

(22)755

CB(PFC E −→ PFC error x rule) = W̄ (PFC E rule1 −→ PFC error x rule2)

+ W̄ (PFC E rule2 −→ PFC error x rule1)

− W̄ (PFC E rule1 −→ PFC error x rule1)

− W̄ (PFC E rule2 −→ PFC error x rule2)

(23)756
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CB(PFC PV −→ PFC error x rule) = W̄ (PFC PV rule1 −→ PFC error x rule1)

+ W̄ (PFC PV rule2 −→ PFC error x rule2)

− W̄ (PFC PV rule1 −→ PFC error x rule2)

− W̄ (PFC PV rule2 −→ PFC error x rule1)

(24)757

CB(PFC error x rule −→ PFC E) = W̄ (PFC error x rule1 −→ PFC E rule1)

+ W̄ (PFC error x rule2 −→ PFC E rule2)

− W̄ (PFC error x rule1 −→ PFC E rule2)

− W̄ (PFC error x rule2 −→ PFC E rule1)

(25)758

CB(PFC error x rule −→ PFC PV) = W̄ (PFC error x rule1 −→ PFC PV rule1)

+ W̄ (PFC error x rule2 −→ PFC PV rule2)

− W̄ (PFC error x rule1 −→ PFC PV rule2)

− W̄ (PFC error x rule2 −→ PFC PV rule1)

(26)759

The connectivity biases between the different response location-selective populations760

in the sensorimotor module (SM) are defined as761

CB(SM response E −→ SM response E) = W̄ (SM E response 1 −→ SM E response 1)

+ W̄ (SM E response 2 −→ SM E response 2)

+ W̄ (SM E response 3 −→ SM E response 3)

− W̄ (SM E response 1 −→ SM E response 2 and 3)

− W̄ (SM E response 2 −→ SM E response 1 and 3)

− W̄ (SM E response 3 −→ SM E response 1 and 2).
(27)762

In the last equation, for example, W̄ (SM response 1 −→ SM response 2 and 3) rep-763

resents the mean connection strength from excitatory neurons in the sensorimotor module764

that prefer response location 1 to those that prefer response locations 2 and 3.765
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The other connectivity biases were defined similarly766

CB(SM response E −→ SM response PV) = W̄ (SM E response 1 −→ SM PV response 1)

+ W̄ (SM E response 2 −→ SM PV response 2)

+ W̄ (SM E response 3 −→ SM PV response 3)

− W̄ (SM E response 1 −→ SM PV response 2 and 3)

− W̄ (SM E response 2 −→ SM PV response 1 and 3)

− W̄ (SM E response 3 −→ SM PV response 1 and 2).
(28)767

CB(SM response PV −→ SM response E) = W̄ (SM PV response 1 −→ SM E response 2 and 3)

+ W̄ (SM PV response 2 −→ SM E response 1 and 3)

+ W̄ (SM PV response 3 −→ SM E response 1 and 2)

− W̄ (SM PV response 1 −→ SM E response 1)

− W̄ (SM E response 2 −→ SM PV response 2)

− W̄ (SM E response 3 −→ SM PV response 3).
(29)768

CB(SM response PV −→ SM response PV) = W̄ (SM PV response 1 −→ SM PV response 2 and 3)

+ W̄ (SM PV response 2 −→ SM PV response 1 and 3)

+ W̄ (SM PV response 3 −→ SM PV response 1 and 2)

− W̄ (SM PV response 1 −→ SM PV response 1)

− W̄ (SM PV response 2 −→ SM PV response 2)

− W̄ (SM PV response 3 −→ SM PV response 3).
(30)769

The connectivity biases between the different rule-selective populations in the senso-770

rimotor module are defined as771

CB(SM rule E −→ SM rule E) = W̄ (SM E rule 1 −→ SM E rule 1)

+ W̄ (SM E rule 2 −→ SM E rule 2)

− W̄ (SM E rule 1 −→ SM E rule 2)

− W̄ (SM E rule 2 −→ SM E rule 1).

(31)772
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The other connectivity biases were defined similarly773

CB(SM rule E −→ SM rule PV) = W̄ (SM E rule 1 −→ SM PV rule 1)

+ W̄ (SM E rule 2 −→ SM PV rule 2)

− W̄ (SM E rule 1 −→ SM PV rule 2)

− W̄ (SM E rule 2 −→ SM PV rule 1).

(32)774

CB(SM rule PV −→ SM rule E) = W̄ (SM PV rule 1 −→ SM E rule 2)

+ W̄ (SM PV rule 2 −→ SM E rule 1)

− W̄ (SM PV rule 1 −→ SM E rule 1)

− W̄ (SM PV rule 2 −→ SM E rule 2).

(33)775

CB(SM rule PV −→ SM rule PV) = W̄ (SM PV rule 1 −→ SM PV rule 2)

+ W̄ (SM PV rule 2 −→ SM PV rule 1)

− W̄ (SM PV rule 1 −→ SM PV rule 1)

− W̄ (SM PV rule 2 −→ SM PV rule 2).

(34)776

The connectivity biases between the different shared feature-selective populations in777

the sensorimotor module are defined similarly. For the populations selective for the two778

colors779

CB(SM share feature (color) E −→ SM shared feature (color) E) = W̄ (SM E blue −→ SM E blue)

+ W̄ (SM E red −→ SM E red)

− W̄ (SM E blue −→ SM E red)

− W̄ (SM E red −→ SM E blue),
(35)780

where for example W̄ (SM E blue −→ SM E blue) is the average connection strength781

within the neural population selective for the shared feature blue.782

The other connectivity biases were defined similarly783

CB(SM shared feature (color) E −→ SM shared feature (color) PV) = W̄ (SM E blue −→ SM PV blue)

+ W̄ (SM E red −→ SM PV red)

− W̄ (SM E blue −→ SM PV red)

− W̄ (SM E red −→ SM PV blue).
(36)784
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CB(SM shared feature (color) PV −→ SM shared feature (color) E) = W̄ (SM PV blue −→ SM E red)

+ W̄ (SM PV red −→ SM E blue)

− W̄ (SM PV blue −→ SM E blue)

− W̄ (SM PV red −→ SM E red).
(37)785

CB(SM shared feature (color) PV −→ SM shared feature (color) PV)

= W̄ (SM PV blue −→ SM PV red)

+ W̄ (SM PV red −→ SM PV blue)

− W̄ (SM PV blue −→ SM PV blue)

− W̄ (SM PV red −→ SM PV red).
(38)786

The connectivity biases between populations selective for different shared shapes were787

defined analogously by substituting blue and red with circle and triangle.788

Simulation of the optogenetic inhibition789

Optogenetic inhibition was simulated by clamping the activity of neurons at 0790

throughout the entire trial and the inter-trial interval.791

Principal angle between subspaces792

The principal angle between two subspaces is a generalization of angle between lines793

and planes in Euclidean space to arbitrary dimensions [86]. It can be computed by iteratively794

finding pairs of unit length “principal vectors”, one from each subspace, that have the795

greatest inner product, subject to the condition that the principal vectors are orthogonal796

to all previous principal vectors [87].797

In computing the principal angles between different rule-selective and response-798

selective subspaces, we first determined the dimensionality of the subspaces using the par-799

ticipation ratio [88]. Then the principal angles were computed using the “subspace_angles”800

function from the Python package Scipy. The largest principal angle was used.801

To obtain a shuffled distribution, we first evenly split all trials belonging to a particular802

rule or response into two halves. Then, we generated two subspaces from neural trajectories803

during the two group of trials. A principal angle between these two subspaces was then804

computed for each rule/response. The angles were then averaged across all rules/responses805

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2024. ; https://doi.org/10.1101/2023.08.15.553375doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.15.553375
http://creativecommons.org/licenses/by-nc-nd/4.0/


DISSECTING MODULAR RNNS TRAINED TO PERFORM A WCST ANALOG 40

to obtain a principal angle from shuffled data. This process was repeated 100 times to806

generate a distribution of principal angles from shuffled data.807

Assessing the strength of non-linear mixed selectivity808

The extent to which neurons in the sensorimotor module encode the conjunction of
stimulus and rule in a non-linear fashion was evaluated using the coefficient of determination
of a linear regression model. To tease apart non-linear and linear mixed selectivity, we first
fitted the mean activity of each neuron during response period using a set of regressors that
represent either the rule or the stimulus alone:

FR(n, tr) =
∑

s

βn,s1(stim(tr) = s) +
∑

r

βn,r1(rule(tr) = r), (39)

where FR(n, tr) is the firing rate of neuron n during trial tr. 1 is the indicator function.809

For example, 1(stim(tr) = s) = 1 if the stimulus during trial tr is s, and it is 0 otherwise.810

Then, another linear regression model was fitted on the residual activity unexplained
by the linear regression model above, using the conjunction of rule and stimulus as regres-
sors:

F̃R(n, tr) =
∑
s,r

βn,s,r1(stim(tr) = s, rule(tr) = r), (40)

where F̃R(n, tr) is the firing rate of neuron n during trial tr subtracted by the pre-811

dicted firing rate from the model defined by Equation 39. The R2 value of this regression812

model was used to represent the strength of non-linear mixed selectivity.813
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Supplementary Figure 1 : Activity of single neurons.
Left: activity from example neurons across three consecutive trials with a rule switch.
Blue and green traces represent neurons with higher activity during the color rule and
shape rule respectively. Red traces for the PFC excitatory neurons represent neurons that
are preferentially activated by negative feedback.
Right: Rule selectivity across neurons and task epochs.
VIP neurons in the PFC module do not receive any excitatory inputs, therefore are not
shown.
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Supplementary Figure 2 : Two attractor states in the PFC module supported by
inter-modular connections.
The neural trajectories that represent the autonomous dynamics of the trained RNN with
intact inter-modular connections (a), when the connections from the PFC module to the
sensorimotor module were lesioned (b), and when the connections from the sensorimotor
module to the PFC module were lesioned (c). The networks started from random time
point during color rule (blue) and shape rule (green) trials. Black points represent the final
states of the networks after 500 timesteps (5 seconds). d. Excitatory and PV neurons
in the PFC module receive stronger local excitation than long-range excitation. Each line
represents a neuron. Bars represent average across neurons. Result aggregated across all
trained networks. Student’s t-test, p < .001.
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Supplementary Figure 3 : The emergence of two populations of excitatory neurons
in the PFC module of networks with divisive dendritic nonlinearity. The rule
modulation against input weight for negative feedback for all the rule neurons and conjunc-
tive error x rule neurons in the PFC module of networks with divisive dendritic nonlinearity
(c.f. Figure 2c).
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Supplementary Figure 4 : The connectivity biases between different subpopulations of exci-
tatory and PV neurons in the PFC module of networks with divisive dendritic nonlinearity
(c.f. Figure 3d).
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Supplementary Figure 5 : The connectivity structure between the excitatory neu-
rons and SST neurons in the PFC module. a. The connectivity bias between the
SST neurons and the conjunctive error x rule neurons in the PFC module, for networks with
subtractive dendritic nonlinearity. b. The connectivity bias between the SST neurons and
the rule neurons in the PFC module, for networks with subtractive dendritic nonlinearity.
c - d. The same connectivity biases but for networks with divisive dendritic nonlinearity.
e The connectivity structure between the SST and excitatory neurons in the PFC module
as revealed by a- d. Only the stronger connections are plotted. A similar connectivity pat-
tern exists between SST and excitatory neurons as compared to the connectivity pattern
between PV and excitatory neurons (c.f. Figure 3c).
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Supplementary Figure 6 : Single neurons feature selectivity in the PFC and senso-
rimotor modules
a. The distribution of rule selectivity across different cell types. Result is aggregated across
all trained networks. Result for VIP neurons in the PFC module is not shown since they
do not receive excitation.
b. The trial-averaged activity of an example excitatory neuron in the sensorimotor module
with preferred rule R = color rule, response location L = 3 and shared feature F = circle.
Trials were sorted according to rule (left), response (middle) and shared feature (right).
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Supplementary Figure 7 : Structure in the top-down projections, across all net-
works.
a. Each line represents the mean connection strength onto one excitatory neuron in the
sensorimotor module, from the PFC excitatory neurons that prefer the same rule and the
different rule. Bars represent the mean across neurons. PFC excitatory neurons project
more strongly to the excitatory neurons in the sensorimotor module that prefer the same
rule (c.f. Figure 4a).
b. Each line represents the mean connection strength onto one VIP neuron in the sen-
sorimotor module, from the PFC excitatory neurons that prefer the same rule and the
different rule. Bars represent the mean across neurons. PFC excitatory neurons project
more strongly to the VIP neurons in the sensorimotor module that prefer the same rule
(c.f. Figure 4b).
c. Each line represents the mean connection strength onto one PV neuron in the sen-
sorimotor module, from the PFC excitatory neurons that prefer the same rule and the
different rule. Bars represent the mean across neurons. PFC excitatory neurons project
more strongly to the PV neurons in the sensorimotor module that prefer the same rule (c.f.
Figure 4c).
d. Each line represents the mean connection strength onto one SST neuron in the sen-
sorimotor module, from the PFC excitatory neurons that prefer the same rule and the
different rule. Bars represent the mean across neurons. PFC excitatory neurons project
more strongly to local SST neurons that prefer the same rule (c.f. Figure 4d).
e. Each line represents the mean connection strength onto one excitatory neuron of the
sensorimotor module, from the SST neurons in the sensorimotor module that prefer the
same rule and the different rule. Bars represent mean across neurons. SST neurons in
the sensorimotor module project more strongly to local excitatory neurons that prefer the
opposite rule (c.f. Figure 4e).
f. Each line represents the mean connection strength onto one excitatory neuron of the sen-
sorimotor module, from the PV neurons in the sensorimotor module that prefer the same
rule and the different rule. Bars represent mean across neurons. PV neurons in the senso-
rimotor module project more strongly to local excitatory neurons that prefer the opposite
rule (c.f. Figure 4f).
g - l. Same as a - f for networks with the divisive dendritic nonlinearity.
p < 0.001 for all panels, Student’s t test.
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Supplementary Figure 8 : The structure in the input and output weights of the sensorimotor
module. Data is aggregated across all trained networks with subtractive (a, c) and divisive
(b, d) dendritic nonlinearity (c.f. Figure 5b, c). Student’s t-test, p < .001 for all panels.
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Supplementary Figure 9 : a-b. The principal angle between different rule and response
subspaces for networks trained with divisive dendritic nonlinearity (c.f. Figure 6c-d). c-e.
The connectivity bias between different subpopulations of excitatory and PV neurons in
the sensorimotor module of networks with divisive dendritic nonlinearity (c.f. Figure 6e-g).

b c

Pe
rfo
rm
an
ce

An
gl
e
be
tw
ee
n

ru
le
su
bs
pa
ce
s
(d
eg
) 90

0

1

0
Intact Silence

SST

Pe
rfo
rm
an
ce

a

Sparsity
0

0

0.25

0.8 Intact Silence
SST

𝑅
!

d

R
ul
e
se
le
ct
iv
ity
di
ffe
re
nc
e

be
tw
ee
n
br
an
ch
es

0

1

Intact Silence
SST

***

Supplementary Figure 10 : a. The relationship between the sparsity of the connection
from SST to the dendrites of excitatory neurons in the sensorimotor module, for networks
with divisive dendritic nonlinearity (c.f. Figure 7d). b-d. The performance (b), principal
angle between rule subspaces (c) and the strength of conjunctive coding (d) decreased
after silencing SST neurons in the sensorimotor module, for networks trained with divisive
dendritic nonlinearity (for d, Student’s t-test, p < .001. Each line represents one neuron.
Results are aggregated across networks). c.f. Figure 7e-g.
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Supplementary Figure 11 : Example neurons in the sensorimotor module showing decreased
conjunctive coding of rule and stimulus when SST neurons in the sensorimotor module
are silenced. The strength of conjunctive coding is assessed by the R2 value of a linear
regression model where the independent variables are conjunctions of rule and stimulus and
the dependent variable is the trial-to-trial residual neural activity unexplained by a model
with only rule and stimulus as independent variables (see Methods for details).
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