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Introduction

In Computational Neuroscience, also known as Theoretical Neuroscience, one

studies how the brain works using theories, models and analysis (Sejnowski et al

1988, Koch and Segev 1998). Because of its emphasis on quantitative methods, this

discipline is highly cross-disciplinary, and has flourished in recently years with the

participation of physicists, applied mathematicians and engineers, working together

with neuroscientists. Neurophysiology is one of the most quantitative branches of

Biology, with a long tradition of precise measurements and mathematical analy-

sis. Today, as experimental data are accumulating at a staggering pace, we know

more and more details about the “building blocks” of the brain (genes, ion chan-

nels, neurons and synapses). This allows us to start to put pieces together, and

truly elucidate brain functions in terms of the underlying synaptic circuitry and

neurophysiology. In this endeavor, theory and models provide a powerful tool to

synthesize our knowledge, test hypotheses and uncover fundamental principles.

There are three types of modeling approaches. First, descriptive models are

designed to quantitatively characterize experimental data. Signal processing al-

gorithms and stochastic process models for neuronal spike trains belong to this

category, so are linear filter models of sensory neurons, or population coding and

decoding algorithms (Rieke et al. 1999). Second, computational theories aim at

explaining brain processes at the functionally level. For instance, Horace Barlow

proposed decorrelation, a computation that renders neural coding of sensory in-

formation more efficient by reducing redundancy in stimulus inputs, as a general

principle for understanding multiple aspects of adaptation in early sensory systems.

Statistical Bayesian inference theory argues that neural coding and processing of

sensory stimuli depends on the organism’s prior knowledge about the environment,

hence can be optimized based on stimulus’ prior probability distribution (Rao et

al 2002). Yet another example is reinforcement learning theory, initially developed

in Computer Science, which is now applied to the study of reward-dependent de-

cision behavior. Third, biophysically-realistic models are constructed based on the

principle that nervous membrane and synapses can be described by equivalent elec-
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trical circuits. Well known examples include Hodgkin and Huxley’s ionic current

model of action potential, and Rall’s cable model of neuronal dendritic tree (Koch

1999). With the advance of cellular neurobiology in recent years, one can now build

models firmly grounded in the known “hardware” of the brain, not just for single

neurons and synapses, but also large-scale networks. Such networks are described

using concepts and tools from statistical physics and nonlinear dynamical systems

theory. It is sometimes said that “top-down” theories are concerned with uncovering

computational principles, whereas “bottom-up” realistic models deal with biologi-

cal implementations. This dichotomy is a misconception, an indication of the still

large existing gap between computational theories and neurobiology. The situation,

however, is changing rapidly, as we are entering a new era when computational the-

ories and biologically-constrained models are becoming integral parts of a unified

framework.

The physicist Leo Kadanoff is fond of saying: “The World is like an onion”.

What he means is that we progress in understanding the world by peeling through

layers, one at a time, going from observed phenomena at one level to the underlying

mechanism at a deeper level. In Neuroscience, there are many levels of investigation,

from molecules, neurons, networks, brain systems, to psychology. This chapter

will be mainly concerned with neuronal microcircuitry, which is ideally suited for

bridging the gap between functions at the network level and underlying biophysical

substrates at the cellular level. This is also the level of investigation optimal for close

two-way interactions between models and rigorous experimentation. However, the

examples discussed below reflect but one particular point of view. To gain a broader

perspective about the field, the reader is recommended to consult the textbook by

Dayan and Abbott (2001), and recently published collections of articles (Feng 2004,

Chow et al 2005).

Structurally, a neuronal circuit is a “network graph”, i.e. a collection of “nodes”

connected by “links”. For a neuronal circuit, nodes are nervous cells and links

are made of synaptic connections. Because neurons and synapses can be described

as electrical elements, a network is equivalent to a complex electrical circuit, and

mathematically described by coupled nonlinear differential equations (dynamical
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systems). To understand how such a circuit works, we need to have two kinds of

information: the inner working of neurons and synapses, circuit architecture and sta-

tistical properties of network connectivity. I will begin by talking about single nodes

and isolated links, using examples to show that single neurons and synapses are ca-

pable of sophisticated computations. Then, I will discuss how to study networks of

interconnected neurons, and for that purpose synchronous oscillations represent an

example par excellence. Finally, I will cover models of strongly recurrent networks.

The discussion on single synapses and cells focuses on sensory adaptation, which

can be conceptualized as calculating the time derivative of an external input. By

contrast, the discussion on recurrent networks deals with cognitive functions such

as working memory and decision making, which can be conceptualized in terms of

time integration of inputs. In the brain, it is probably impossible to attribute a par-

ticular function completely to either single synapse/neuron dynamics or to a purely

network phenomenon. Network behavior is a result of an interplay between cellular

processes and synaptic network dynamics.

Adaptive computation by single synapse and neuron

In order for external stimuli to be coded efficiently in the brain, it is desirable

that sensory neurons adapt to the natural environment in which the organism lives.

A simple but important form of such adaptation is reduction of redundancy, or

correlations in the input across space and time. When an input stays relatively

constant, our senses become less responsive to it over time. This is accomplished by

sensory neurons that become “fatigued” and show a decreasing time course of spiking

activity. Neurons at different stages of processing in the brain may be specialized

in adaptation to distinct features of inputs. For example, in the mammalian visual

system, retina is responsible for adaptation to light luminance, whereas adaptation

to contrast (relative luminance of an object with respect to its background) and

stimulus pattern take place mostly in the primary visual cortex.

Short-term synaptic plasticity

Adaptation of a neuron’s activity can result from either short-term plasticity of
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afferent synapses, or intrinsic membrane properties in the cell. Short-term synaptic

plasticity refers to the phenomenon that synaptic transmission between two neurons

is not static, but can either decrease (Fig. 1A left) or increase (Fig. 1A right)

depending on the history of the presynaptic neuron’s firing activity. Consider a

presynaptic terminal with a certain number N ≤ N0 of readily releasable vesicles of

neurotransmitters. Upon arrival of an action potential, a vesicle of neurotransmitters

is released with certain probability Prel, hence in average PrelN vesicles are released,

and N is reduced to N − PrelN = fDN (fD = 1 − Prel). Between two stimuli, the

pool of docked vesicles is gradually refilled, with a recovery time constant τD. Hence,

the postsynaptic potential response (proportional to PrelN) is initially PrelN0 but

can exhibit short-term depression (Fig. 1A left) as N decreases with time, typically

on a timescale of hundreds of milliseconds. On the other hand, Prel depends on

the dynamical state of the transmitter release machinery, and can increase over

time in response to a stimulus train, leading to short-term facilitation (Fig. 1A

right). Interestingly, experimentalists and theorists recently showed that synapses

endowed with short-term depression are sensitive to changes in the input but not its

steady state. This can be seen using a simple phenomenological model (Dayan and

Abbott 2001). Let D = N/N0, then after each release in average D is reduced to

fDD with fD ≤ 1, and between release events D recovers towards one with a time

constant τD. For a Poisson spike train at rate r, the dynamical equation for D can

be approximately written as

D

dt
= −(1 − fD)rD +

1 − D

τD

The steady state of this equation is given by dD/dt = 0, which yields

Dss =
1

1 + (1 − fD)rτD

Therefore, for the input rate r higher than 1/(1−fD)τD, Dss ≃ 1/((1−fD)rτD),

inversely proportional to r. For instance, if fD = 0.4 and τD = 500 ms, then

1/((1 − fD) = 1/0.3 ≃ 3 Hz. The transmission rate (release per unit time) is

PrelrD, its steady state becomes independent of input rate r when the latter is
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above 1/(1− fD)τD. These model predictions have been confirmed by experimental

observations on synapses between neocortical neurons (Abbott et al. 1997, Tsodyks

and Markram 1997). Functionally, this means that the impact on the postsynaptic

cell is not sensitive to the steady state level of presynaptic activity. On the other

hand, when there is a sudden change in the input, the synapse can detect it by a

transient response before the slow depression has the time to react. This is illustrated

in Fig. 1B, where the transmission rate, PrelrD, is plotted in response to a series

of steps in the presynaptic firing rate. Note first that regardless of the presynaptic

firing rate 25, 100, 10, 40 Hz, the steady state PrelrD is quite similar, as predicted

before. Second, when there is a sudden jump in the presynaptic rate, because the

depression process takes time to react, the synapse can still signal input change by

a rigorous but transient response. When r is decreased or increased to r + ∆r, D

briefly remains ∼ 1/r (where r is the rate prior to the jump), thus the response

jump is ∼ ∆r/r, reflecting the change in the input relative to the baseline, rather

than the absolute amount of input change. This feature is apparent in Fig. 1B,

where the transient response is similar for the transitions from 25 Hz to 100 Hz

and from 10 Hz to 40 Hz. In both cases, ∆r/r = 3. Moreover, the time constant

governing the decay process toward a steady state is given by τD/(1+ (1− fD)rτD),

which is shorter at a higher input rate r. This explains why the transient response

is longer lasting for the 10 to 40 Hz transition than for the 25 to 100 Hz transition.

Therefore, short-term depression provides a synaptic mechanism for adaptation, i.e.

for postsynaptic neurons to be responsive to changes in the input but not sensitive

to constant input level.

Neuronal adaptation

An alternative mechanism is membrane dynamics of single neurons. Contrast

adaptation by visual neurons offers an example of this scenario. Our visual sys-

tem can detect an object only when its contrast (difference in luminance relative to

the surrounding background) is above a threshold. This threshold is dynamically

adapted to the natural environment. For instance, after being exposed to a high

contrast stimulus, the visual system becomes less sensitive to the same stimulus
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at low contrast. Physiological investigations revealed that presentation of a high

contrast visual stimulus results in a prolonged hyperpolarization of neurons in the

primary visual cortex, and this reduced excitability correlates with the persistent

decrease in sensitivity following adaptation. The long (seconds) hyperpolarization

appears to be mediated to a large extent by a Na+-activated K+ current (IKNa)

in visual cortical neurons. What happens is that during a high contrast stimula-

tion, prolonged firing of action potentials leads to a gradual Na+ influx into the cell

through the opening of sodium channels. Intracellular sodium accumulation even-

tually activates a potassium conductance, which gives rise to hyperpolarization of

neuronal membrane and a reduced responsiveness of the cell. After the offset of high

contrast stimulus, sodium ions are slowly extruded from the cell, probably through

a Na+/K+ ionic pump. This process underlies recovery of neuronal responsiveness

with a time constant of about ten seconds.

Computational approach has been used to test this mechanism which has sup-

porting evidence but not conclusive experimental proof. A single neuron model was

constructed that includes a fast sodium current (INa) and a potassium delayed rec-

tifier (IK) for action potential generation, an IKNa, and intracellular Na+ dynamics

(influx through INa and outflux through a Na+/K+ pump) (Wang et al. 2003). Fig.

2A shows a computer simulation of this model. The input is a sinusoidal current (at

2 Hz) mimicking a periodic visual stimulus such as a moving grating pattern. Input

amplitude represents stimulus contrast. Initially, the model neuron responds to a

low amplitude input at a constant rate. During a high amplitude input, the firing

rate transiently increases, then decays to a lower steady state level according to a

time course in parallel with that of intracellular Na+ accumulation, hence activation

of IKNa. After the stimulus returns from the high to the original low amplitude, the

membrane potential is hyperpolarized thus the model neuron is incapable of spiking

response for seconds. Slowly, however, intracellular Na+ decays back to baseline,

and the model neuron resumes the same activity level as before. Thus, the model

captures essential observations from neurons in the primary visual cortex.

Decorrelation
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It has long been assumed that neuronal adaptation provides a mechanism for a

decorrelation operation that reduces input redundancy in time. If IKNa subserves

adaptation, is it capable of input decorrelation as well? Specifically, light intensity

signals of optical flow, observed with a narrow visual field, exhibit correlations at

all timescales. This is quantified by a scale-free power spectrum, with the power

growing like 1/f at decreasing frequencies f (red curve in Fig. 2B), characterizing

correlations at increasingly longer timescales. By contrast, a completely uncorre-

lated signal has a constant power spectrum, i.e. the same power at all frequencies

(hence the name “white noise”). How would a cell endowed with adaptation respond

to an 1/f-type input? This question can be investigated in model simulations, using

stochastic inputs with strong time correlations. When an 1/f stochastic input is

used as injected current to drive the model neuron, long-term correlations of the

spiking activity are suppressed, so that the power spectrum of the output becomes

essentially flat (“whitened”) at frequencies below 1 Hz (blue curve, Left panel in

Fig. 2B). Decorrelation takes place due to the negative feedback mediated by IKNa:

a higher firing activity leads to a larger IKNa, hence a stronger negative signal to

subtractively counterbalance the external input drive. Decorrelation takes place on

a timescale of a second or longer, hence whitening of the power spectrum below

1 Hz. Therefore, a single neuron mechanism can subserve decorrelation function.

This model prediction was directly tested in an in vitro preparation of ferret cortical

slices. When a real neuron of primary visual cortex receives a stochastic 1/f -type

input, the output of the neuron exhibits the same kind of decorrelation as the model

(Right panel, Fig. 2B). This experiment demonstrates that decorrelation can def-

initely occur in single cortical cells. Whether the same mechanism is responsible

for adaptation at the psychological level remains an open question. Nonetheless,

it is clear that single neuron dynamics is capable of complex computations likely

important to behavior. Furthermore, this example illustrates a two-way process of

interaction between experimentation and modeling: a model is built on experimen-

tal findings and gives rise to a prediction that is later tested and confirmed by new

laboratory experiments.
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Coupled neurons and brain rhythms

I have discussed how to model a single synapse or a single neuron. Now I

turn to studies of neurons coupled by synapses. This is a vast topic, since there

are virtually unlimited varieties of coordinated firing patterns in large-scale neural

networks. To be specific, I will focus on synchronous neural oscillations, a type

of neural population dynamics that has been intensively studied by modelers and

experimentalists. Rhythmicity is obviously essential for certain brain functions, like

locomotion produced by central pattern generators (Marder and Calabrese 1996).

Diverse types of synchronous rhythms have also been observed in the mammalian

cortex, such as spontaneous spindle wave during quiet sleep or gamma (∼ 40 Hz)

oscillation induced by external stimulation. Another prominent example is theta

(∼ 8 Hz) rhythm observed in hippocampus during exploratory movement and spatial

navigation. “Place cells” in hippocampus code an animal’s current (or immediate

future) spatial location. Spikes of a place cell are locked to a particular phase of the

theta cycle that systematically changes as the animal moves across the place field

of that cell, indicating that precise timing of spike discharges relative to a coherent

oscillation plays a role in information coding and processing.

Typically, a coherent neural network rhythm is generated within a relatively lo-

calized brain circuit, which nevertheless is composed of many hundreds or thousands

of neurons. Therefore, studies of the neural mechanisms underlying brain rhythms

provide an excellent venue to investigate how circuit dynamics emerges from the

interplay between synaptic and intrinsic cellular properties. There are two general

questions in terms of mechanisms of a coherent oscillation: First, what determines

its oscillation frequency; are there pacemaker neurons, or is rhythmicity largely a

network phenomenon? Second, what are the synaptic mechanisms for network syn-

chronization? I will discuss these two issues in turn.

Cellular Pacemakers

Single neurons in the CNS are endowed with a large repertoire of voltage- and

calcium-gated ion channels, distributed across the dendritic and somatic membrane,
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which can give rise to complex neuronal dynamics. In general, oscillation occurs in

a single cell, when a strong fast positive feedback (generating the rising phase of

membrane voltage) interacts with a slower negative feedback (producing the decay

phase of the cycle). Positive feedback within a cell can be provided by activation

of voltage-gated inward Na+ or/and Ca2+ currents, whereas negative feedback is

mediated by either inactivation of inward currents or activation of outward K+ cur-

rents. A special combination of such membrane processes can endow a neuron with

the pacemaker property of exhibiting robust oscillations in a well defined frequency

range. Fig. 3 shows three such examples.

Spindle oscillations during quiet sleep originate in the thalamus. It was discov-

ered by H. Jahnsen and R. Llinás that thalamocortical projection cells show two

modes of firing patterns: upon depolarization they discharge single spikes tonically;

whereas upon hyperpolarization they fire bursts of spikes, possibly in a rhythmic

fashion (Fig. 3A, upper panel). During quiet sleep, thalamic cells are in the burst

mode and entrain the spindle oscillations in the entire thalamocortical system. The

bursts of spikes are produced by a low-threshold voltage-gated (T-type) Ca2+ ion

channel IT , which de-inactivates during hyperpolarization; and a hyperpolarization-

activated cation channel Ih. Such bursting mechanism is demonstrated by a single

thalamic neuron model in Fig. 3A (lower panel). Intuitively, rhythmic bursting

can be generated as follows (Fig. 3A, upper panel) A hyperpolarizing input slowly

activates Ih and de-inactivates IT . The buildup of the IT eventually leads to a de-

polarization wave triggering a rebound burst of rapid (250-500 Hz) spikes. The burst

is terminated by the inactivation of the same IT at depolarized voltage, and the

oscillatory cycle can start over again. The period of oscillation (∼ 100 ms) is deter-

mined by the inactivation time constant of IT and the activation time constant of Ih,

during hyperpolarization. Waking process is associated with a switch of thalamic

cells from the burst to tonic firing mode, due to an increase in the neuromodulatory

(cholinergic, noradrenergic, and other) inputs.

Gamma (∼ 40 Hz) rhythm is commonly observed in waking and behaving states.

In the neocortex, intrinsic γ oscillations have been reported in a subclass of neurons,

called ‘chattering cells’ (Fig. 3B, upper panel). These cells display repetitive burst
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firing in the γ frequency range, with intraburst spike rates of 300-500 Hz. A com-

partmental model suggests that the fast rhythmic bursting in chattering neurons is

generated by a Ca2+-independent ionic mechanism (Fig. 3B, lower panel). Instead,

it relies on voltage-gated Na+ currents in the dendrite. In this scenario, perisomatic

action potentials propagate back to the dendritic sites, where a Na+-dependent slow

depolarization is produced, which in turn triggers more spikes in the soma. This

somato-dendritic “ping-pong” interplay underlies a burst of spikes, which is termi-

nated by the activation of a K+ current. The de-activation of the K+ current during

hyperpolarization leads to the recovery and to the start of a new burst. Experi-

mental evidence in support for such a Na+-dependent mechanism has recently been

reported from cortical slice studies. It still remains to be demonstrated that chatter-

ing neurons indeed serve as pacemakers for γ oscillations observed in the neocortex

in vivo.

Theta (7-10 Hz) rhythm in hippocampus and surrounding limbic structures is

believed to depend on the input pathway from the medial septum, where pacemaker-

like neural discharges have been observed. There are two major cell types in the

septum, which are thought to play distinct roles in the theta rhythm generation:

cholinergic cells modulate slowly the excitability of hipoccampal neurons, whereas

GABAergic cells play a role of pacemakers. Recent physiological studies have re-

vealed that non-cholinergic (putative GABAergic) neurons in the medial septum

display robust intrinsic oscillations in the theta frequency range, where clusters of

spikes are inter-nested in time with episodes of subthreshold membrane oscillations

(Fig. 3C, upper panel). Interestingly, similar membrane oscillations have been ob-

served in single principal neurons of the rat olfactory bulb, which displays prominent

γ and θ rhythms. A conductance-based model (Fig. 3C, lower panel) suggests that

such intrinsic rhythmicity can be generated by a low-threshold, slowly-inactivating

K+ current IKS. When the cell fires, the IKS slowly de-inactivates during spike

afterhyperpolarization, and a sufficiently large IKS terminates the spiking episode.

When the cell does not fire spikes, IKS slowly decreases due to inactivation, until

the cell is sufficiently recovered and can start to fire again. The subthreshold oscil-

lations are produced by the interplay between a Na+ current and the low-threshold

12



activation of IKS. In this scenario, the periodicity of the theta rhythm is largely

controlled by a single current (IKS) in septal GABAergic cells. This hypothetical

mechanism has not yet been tested experimentally.

Several general comments can be made. First, a single neuron can display dif-

ferent dynamical (e.g. single-spiking and bursting) modes, which depend on the

membrane potential level and are under neuromodulatory control. Second, there

are at least two general classes of ionic mechanisms for rhythmogenesis, one de-

pends on an interplay between Na+ and K+ currents, the other on Ca2+ currents.

Pacemaker neurons for the γ and θ rhythms of the waking brain seem to rely on

Na+ and K+ currents, whereas pacemaker neurons for the spindle and delta sleep

rhythms depend on Ca2+ currents. Third, and finally, subthreshold oscillations and

repetitive bursting may have different implications for synchronization of coupled

neurons. Subthreshold oscillations can serve as a signal carrier for phase-locking

and resonance, by virtue of the cell’s sensitivity to small but precisely timed inputs

(at the peak of the membrane oscillation cycle). On the other hand, bursts may

provide a reliable signal for the rhythmicity to be transmitted across unreliable and

facilitating synapses between neurons (Fig. 1A, right panel).

Synchronization mechanisms

A neural circuit, be it thalamic, neocortical or hippocampal, consists of two ma-

jor cell types: excitatory principal neurons and inhibitory interneurons. It follows

that three types of synchronization mechanisms by chemical synapses are conceiv-

able: recurrent excitation between principal neurons, mutual inhibition between

interneurons, and feedback inhibition through the excitatory-inhibitory loop.

Recurrent excitation model. Recurrent excitatory connections have been histor-

ically the first synchronization mechanism under detailed experimental and compu-

tational analyses. This was motivated by the observation that blockade of synaptic

inhibition in a cortical network led to extremely synchronous neural firing patterns,

resembling epileptic discharges. Intuitively, mutual excitation is expected to syn-

chronize coupled neurons: if cells firing earlier in time excite the others and advance

their firing times, a network can thus be brought to fire in phase. However, model
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simulations of biophysically realistic coupled neurons have shown that synaptic ex-

citation often delays rather than advances the firing time in the postsynaptic cell,

whether mutual excitation can synchronize depends on the intrinsic membrane prop-

erties of the constituent neurons (Hansel et al. 1995, van Vreeswijk et al. 1994).

In general, synchronization of normal brain rhythms is not realized by excitation

alone; it depends critically on synaptic inhibition.

Interneuronal network model. Computational studies have revealed that, sur-

prisingly, reciprocal synaptic inhibition is capable of synchronizing certain rhythmic

activities in an interneuronal network (Wang and Rinzel 1992). This finding was

derived from an appreciation of the importance of quantitative synaptic current

kinetics. If mutual inhibition is instantaneous, coupled neurons obviously would

supress each other’s firing hence cannot be synchronized to zero phase. However,

as it turns out, if the inhibitory synaptic current has a rise time, and decay slowly

compared to the intrinsic neuronal time constant, then neurons can recover from

synaptic inhibition together and fire action potentials synchronously. One feature of

this mechanism is that the decay time of the inhibitory synaptic current is compara-

ble with the oscillation period. For example, GABAB receptor mediated inhibition

with a time constant of 100-200 ms could in principle synchronize slow oscillations

at a few Hz. GABAA receptor mediated inhibition with a time constant of about 10

ms is too fast for synchronizing an oscillation at a few Hz, but is sufficiently slow for

a 40 Hz oscillation (with a period of about 25 ms) (Fig. 4). Indeed, a physiological

study using in vitro slices provided evidence that GABAA receptor mediated inhibi-

tion in a hippocampal interneuronal network, without the involvement of pyramidal

neurons, could give rise to coherent 40 Hz oscillations (Whittington et al. 1995).

Feedback inhibition model. A competing network mechanism for coherent γ oscil-

lations is based on feedback between excitatory and inhibitory neural populations.

W. J. Freeman first proposed this scenario to explain 40 Hz oscillations observed

in the olfacory bulb and cortex. Such a scenario does not depend on single neu-

ron’s clock-like behavior, but emerges as a large-population phenomenon. Like any

strongly nonlinear dynamical system, the interplay between a fast positive feedback

(mediated by the AMPA receptors) and a slower negative feedback (mediated by the
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GABAA receptors) readily gives rise to oscillations. This scenario has been demon-

strated in hippocampal slices, where spontaneously occurring 40 Hz oscillations have

been shown to depend both on the excitatory and inhibitory synaptic transmissions.

This experiment can be reproduced robustly in a network of pyramidal cells and in-

terneurons, even in a randomly connected network model with in the presence of a

large amount of synaptic noise (Fig. 5). As can be seen in Fig. 5, while the neural

population as a whole oscillates in the 40 Hz frequency range, individual neurons

fire more randomly and intermittently in time (at about 10 Hz for interneurons and

only 2 Hz for principal cells). This is similar to neural firing activities during γ

rhythms of the intact brain.

Therefore, coherent brain oscillations primarily rely on synaptic inhibition, within

interneuronal networks or/and through feedback between excitatory and inhibitory

cells. The conceptual shift from excitation to inhibition, somewhat contrary to in-

tuition, is a direct result of biophysically-realistic modeling work. Moreover, two

theoretical frameworks have emerged. One approach considers synchronization in

terms of coupled oscillators, with individual neurons firing regularly like a clock.

This view is applicable to pacemaker-driven rhythms. By contrast, a different ap-

proach describe networks in which single neurons are driven by noise and exhibit

highly irregular spiking discharges, and coherent oscillation emerges as a collective

population dynamical phenomenon.

Synchronous rhythms represent only one form of network dynamics. Other possi-

ble activity patterns are synfire chains, propagating waves, asynchronous stochastic

firing, etc. Now I am going to discuss computations that can be performed by

recurrent network dynamics.

Recurrent neural networks

Neural processing can proceed in a feedforward fashion. For instance, in the

mammalian visual system, light signals propagate from retina to lateral geniculate

thalamic nucleus, primary visual cortex, and on to higher visual areas in a series.

On the other hand, within a local network neurons interact with each other through

recurrent connections that are characterized by feedback loops (from neuron A to
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B, then back to A either directly or via other neurons). From anatomical studies we

know that neocortical microcircuits are endowed with massive amount of synaptic

recurrency. However, it is notoriously difficult to dissect contributions from feedfor-

ward and feedback mechanisms to a network’s function. For example, in layer 4 of

primary visual cortex, the input layer for thalamaic afferents, a neuron is selective

for orientation of a light bar, whereas its presynaptic thalamic cells are not. How

orientation selectivity emerges has been intensely and fruitfully studied collabora-

tively by experimentalists and theorists. A typical layer 4 neuron has thousands of

synapses, even though less than 1% of them originating from the thalamus, orienta-

tion selectivity can still arise from a feedforward mechanism, a feedback mechanism,

or a combination of the two (Sompolinsky and Shapley 1997).

In contrast to early sensory systems, cognitive processes are not “enslaved” to

the instantaneous information flow from the external world. A central cognitive

function is working memory, the brain’s ability to actively hold and manipulate in-

formation internally, in the absence of external input. The stored information can be

a sensory stimulus which guides a prospective action, a delayed perceptual decision

or behavioral response. It can also be an item retrieved from long-term memory, for

instance when the memory of a face is activated and used in visual search of a friend

in a crowd. Neurophysiological studies with behaving monkeys have established that

working memory is stored in the form of self-sustained persistent neuronal activity.

Mnemonic persistent activity is especially common and robust in the prefrontal cor-

tex, which is critically important to working memory (Goldman-Rakic 1995), but it

has also been observed in other brain areas like posterior parietal, inferotemporal

and premotor cortices. Persistent activity is clearly not driven directly by external

stimulus, thus cannot be explained by feedforward processing.

Moreover, the persistence time (up to 10 seconds) of sustained firing activity

during working memory is orders of magnitude longer than the biophysical time

constants (tens of milliseconds) of fast electrical signals in neurons and synapses.

For this reason, persistent activity is believed to be generated by recurrent network

“reverberation” a concept going back to the work in 1930’s of R Lorente De Nó.

The characteristic horizontal connections found in the superficial layers II-III of
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the dorsolateral prefrontal cortex may provide the anatomical substrate for such a

recurrent circuit (Goldman-Rakic 1995). This idea is made precise in theoretical

work where persistent activity is described as “dynamical attractors” (Amit 1995,

Wang 2001). The mathematical term “attractor” simply means any self-sustained

and stable state of a dynamical system, such as a neural network. According to this

picture, in a working memory system, the spontaneous state and stimulus-selective

memory states are assumed to represent multiple and co-existing attractors, such

that a memory state can be switched on and off by transient inputs.

Fig. 6 illustrates the biophysics of an attractor network. In an object working

memory model, subpopulations of neurons are selective to different object stimuli.

When the strength of excitatory connections between neurons within each subpop-

ulation is larger than a threshold level, persistent activity appears as an all-or-none

phenomenon (Fig. 6A-B). Below the critical threshold, only the spontaneous state

exists. Above the threshold, the spontaneous activity state is still dynamically stable

to small perturbations, because at low firing rates excitation is effectively counter-

acted by feedback inhibition (Fig. 6C). However, if a stimulus generates a transient

high activity in a neural subpopulation, now recurrent reverberation is sufficiently

powerful to drive this group of cells to “escape” from the spontaneous state. A higher

firing activity leads to an even larger recurrent synaptic excitation, which becomes

sufficient to sustain a persistent active state after the stimulus is withdrawn. The

firing rate is stabilized by negative feedback (Fig. 6C). As a result, a stable attrac-

tor of persistent activity with an elevated firing rate is realized, that coexists with

the stable spontaneous state (Fig. 6C). Biophysical mechanisms that control the

firing rates in a working memory network remain to be identified. Among possible

contributors are outward ion currents in single cells, feedback inhibition, short-term

synaptic depression, and saturation of the synaptic drive at high frequencies.

Biophysically-realistic models shed insights into the circuit properties required

for the generation of stimulus-selective persistent activity. In particular, it was

found that a network with strong recurrent loops is prone to instability, if excita-

tion (positive feedback) is fast compared to negative feedback, as is expected for a

nonlinear dynamical system in general. This is the case when excitation is mediated
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by the AMPA receptors, which is typically about 2-3 times faster than inhibition

mediated by GABAA receptors (time constant 5-10 ms). As we have seen earlier,

the interplay between AMPA and GABAA receptors in a excitatory-inhibitory loop

naturally gives rise to fast network oscillations. In a working memory model, the

large amount of recurrent connections, needed for the generation persistent activity,

often lead to excessive oscillations that are detrimental to network stability. Work-

ing memory function can be rendered robust and stable, if excitatory reverberation

is slow, i.e. contributed by the NMDA receptors (time constant 50-100 ms) at re-

current synapses. Thus, the model predicts a critical role of NMDA receptors in

working memory (Wang 2001).

On the other hand, it is essential that exuberant excitation be tightly balanced

by inhibition (Brunel and Wang 2001). Synaptic inhibition plays a major role in

stimulus selectivity of persistent activity. The model predicts quantitative features

of GABAergic inhibitory cells, which have been supported by measurements of puta-

tive inhibitory neurons from behaving monkeys, and by the observation that GABAA

receptor antagonists resulted in the loss of spatial tuning of prefrontal neurons dur-

ing a delayed oculomotor task. Further, a key aspect of memory maintenance is

resistance against distractors: while behaviorally relevant information is actively

held in mind, irrelevant sensory stimuli should be denied entrance to the working

memory system. We found that synaptic inhibition enables our model network to

resist distracting stimuli during working memory, and that the network’s ability to

ignore distractors can be enhanced by dopamine modulation of recurrent excitation

and inhibition (Brunel and Wang 2001).

Perceptual decision making

Cortical areas that are engaged in working memory – like the prefrontal and

parietal cortices – also play a critical role in other cognitive functions such as deci-

sion making, selective attention, behavioral control. This suggests that microcircuit

organization in these areas is endowed with the necessary properties to subserve

both internal representation of information and dynamical computations of cogni-

tive types. As it turns out, models originally developed for working memory can
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account for decision making processes as well (Wang 2002). An example is shown

in Fig. 7 from model simulations of a visual motion discrimination experiment

(Shadlen and Newsome 2001, Schall 2001). In this two-alternative forced choice

task, monkeys are trained to make a judgment about the direction of motion (say,

left or right) in a stochastic random dot display, and to report the perceived direc-

tion with a saccadic eye movement. A percentage of dots (called motion strength)

move coherently in the same direction, so the task can be made easy or difficult

by varying the motion strength (close to 100% or 0%) from trial to trial. While a

monkey is performing the task, single-unit recordings revealed that neurons in the

posterior parietal cortex and prefrontal cortex exhibit firing activity correlated with

the animal’s perceptual choice (Shadlen and Newsome 2001). For example, in a

trial the motion strength is low (say 3.2%), if the stimulus direction is left whereas

the monkey’s choice is right, cells selective for right display a higher activity than

those selective for left. This experiment can be simulated using the same model de-

signed for working memory (Brunel and Wang 2001). The only difference between

a working memory simulation and a decision simulation is that, while for a delayed

response task only one stimulus is presented, for a perceptual discrimination task

conflicting sensory inputs are fed into competing neural subpopulations in the cir-

cuit. This is schematically depicted in Fig. 7A, where the relative difference in the

inputs (IA − IB)/(IA + IB) mimicks the motion strength in the visual motion dis-

crimination experiment. Fig. 7B shows a simulation with zero coherence (IA = IB).

At the stimulus onset, the firing rates of the two competing neural populations rA

and rB initially ramp up together for hundreds of milliseconds, before diverging

from each other when one (rA in this case) increases while the other (rB) declines.

The perceptual choice is decided based on which of the two neural populations wins

the competition. Therefore, consistent with the physiological observations from the

monkey experiment (Shadlen and Newsome 2001), decision process proceeds in two

steps. Sensory data are first integrated over time in a graded fashion, which in the

model is instantiated by the NMDA receptor dependent slow reverberation. This is

followed by winner-take-all competition produced by synaptic inhibition, leading to

a categorical (binary) choice).
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Note that in the case of zero coherence, the input is identical to both neural

populations, hence which of the two wins is determined by noise, due to irregular

spiking dynamics of neurons in the decision circuit. From one trial to the next, the

network’s choice is probabilistic at chance level (Fig. 7C). When the motion strength

is not zero, IA > IB, neuronal ramping activity is faster, with a slope increasing with

the motion strength (Wang 2002). In other words, the network integrates sensory

information at a higher accumulation rate, and the decision is reached more rapidly,

when the evidence about a stimulus is stronger. The network’s probability of correct

choice as a function of the motion strength (Fig. 7D) is similar to the animal’s

behavioral performance (Shadlen and Newsome 2001). Hence, the model is able to

account for both neurophysiological and psychophysical observations of the monkey

experiment. Once again, the essential network requirement is slow reverberation (for

time integration) balanced by synaptic inhibition (for winner-take-all competition).

In the model slow excitation depends on the synaptic NMDA receptors. Conceivably,

though, slow voltage- or/and calcium-gated inward ion channels in single neurons

could also contribute to such reverberatory circuit dynamics.

Time integration

Qualitatively speaking, working memory requires neurons to convert a transient

input pulse into a sustained persistent activity, like a time integral of the stimulus.

Similarly, in perceptual decisions, approximate linear ramping activity, at a rate

proportional to input strength, can also be conceptualized as time integration. It

is worth noting, however, a genuine integrator implies that, after a transient input

is turned off, the activity is persistent at a level that varies with the input ampli-

tude in a graded manner. This is not the case in Fig. 7, where after the stimulus

offset the neural activity is binary (representing one of the two categorical choices),

independent of the input motion strength. Indeed, this is what has been observed

in posterior parietal neurons, and is the kind of neural signals required by the be-

havioral task (Shadlen and Newsome 2001). Using other task paradigms and in

a number of neural systems, graded (or “parametric” persistent activity has been

observed, and found to store short-term memory of an analog quantity like spatial
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location of a stimulus (Goldman-Rakic 1995), frequency of a somatosensory vibra-

tional input (Romo et al 1999), allocentric head direction of an animal (Taube and

Bassett 2003), and gaze position during eye fixation (Seung et al. 2000).

There are two known coding schemes by neural integrators. In a “rate code”,

persistent firing rate of each neuron varies linearly with the encoded feature. As

a result, if rates of different neurons are plotted against each other, they fall on

a straight line in the “firing-rate space”. This observation led to the theoretical

concept of “line attractors” (Seung et al 2000). By contrast, according to a “location

code” neurons exhibit a bell-shaped Gaussian tuning curve of an encoded feature,

therefore distinct neural groups are engaged in storing different values of the analog

feature. In other words, the stimulus feature is specified by “how much active are

neurons” in a rate code, and by “which neurons are active” in a location code.

Mathematically, a perfect integrator is described by dX/dt = I(t), where I(t) is the

input, X is either neural firing activity level (in a rate code) or the peak locus of

network activity (in a location code).

Fig. 8 shows an neural integrator model in which the encoded feature is specified

by the peak location of the network activity profile. This model was proposed for

head direction (HD) cells (Song and Wang 2005). HD neurons are part of the spa-

tial navigation system and signal the animal’s directional heading. When an animal

turns its head, the angular velocity signal carried by vestibular inputs is integrated

over time by HD cells into a positional signal, and the latter is sustained internally

when the animal keeps the head direction fixed. HD cells are selective for angular

head direction according to a Gaussian (bell-shaped) tuning curve. Interestingly,

available evidence indicates that HD cells are generated in a neural circuit char-

acterized by a paucity of local excitatory connections (Taube and Bassett 2003).

Consistent with this observation, the model of Fig. 8 proposes a cross-inhibition

mechanism, without recurrent excitation, that gives rise to direction-selective “hill

of persistent activity” Moreover, the model surmises a shift mechanism by “rotation

cells” consisting of two inhibitory cell populations (Fig. 8A). When the head di-

rection is fixed, the inputs from the two inhibitory neural populations are balanced

with each other, and the hill of activity of a third, excitatory, neural population is
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maintained fixed (Fig. 8B, time epochs between input pulses). As the head turns,

the angular velocity signal increases the firing of one inhibitory population, while

decreases the firing of the other. The resulting asymmetric inhibitory inputs induce

the activity pattern in the excitatory neural population to move, at a constant speed

proportional to the input amplitude (angular velocity) (Fig. 8B, time epochs during

input pulses). Computation performed by the model is quite close to an integral op-

eration in the sense of Calculus. When the input intensity is doubled (second versus

first input pulse), the hill of activity moves twice as fast. Moreover, the network can

integrate both positive inputs (first and second pulses) and negative inputs (third

pulse). In fact, with a third input half in amplitude but lasting twice as long as the

second input, the hill of activity moves back to the position before the second pulse,

as expected by perfect integration.

This model assumes certain network symmetry, whose biological basis remains

unclear. Also, models of perfect line attractors require fine-tuning of network param-

eters (Seung 2000, Wang 2001). To see why this is the case, consider the following

simple firing-rate equation

dr

dt
=

(−r + wrecr)

τ
+ I(t)

where r is a firing rate, τ is a typical biophysical (membrane or synaptic) time con-

stant, and wrec is the strength of recurrent connections. The effective time constant

of the system by given by τeff = τsyn/(1 − wsyn), which is longer than τ in the

presence of wrec. For instance, if τ = 100 ms and 1 − wrec = 0.05, then τeff = 2

sec. When wrec = 1 (which requires fine-tuning of the parameter wrec), τeff = ∞,

and the system becomes a perfect integrator. How neural integrators can be real-

ized robustly by plausible biophysical mechanisms remain a topic of active current

research. Also, as we have seen, integrators can rely either on synaptic excitation,

or cross-inhibition, or intrinsic cellular mechanisms. Further progress depends on

new experiments to put more constraints, and establish a firmer mechanistic basis,

for computational modeling in this area.

In summary, it is worth contrasting neural integration with adaptation discussed

at the beginning of this chapter: early sensory processing appears to require “time
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derivative” type neural computation, whereas cognitive functions involve “time in-

tegral” type neural circuits.

Concluding remarks

Half century after Hodgkin and Huxley pioneered a quantitative description of

the electrical activity of nervous membrane, Computational Neuroscience has grown

into a mature field. As illustrated by various examples here, theory and models,

in close interaction with experimentation, can be fruitfully applied to problems of

different types (sensory processing versus cognitive functions) and at different levels

(single synapse/cell versus networks). I have emphasize microcircuit modeling, at

the interface between network behavior and underlying cellular mechanisms. Among

open questions for future research is to delineate the contributions of detailed single

neuron dynamics (like active dendritic properties) to network function. Another

intriguing problem is to better quantitatively characterize the statistics of neural

microcircuits as complex networks. A third direction is to study adaptive brain

functions at many spatial and temporal scales. For instance, learning and memory

formation span timescales from milliseconds to many years, and involve processes

at the molecular (intracellular protein signaling network), neuronal (concerted firing

pattern) and systems levels. Finally, biologically constrained modeling will need to

be expanded to large neural networks encompassing multiple brain areas, for which

a solid theoretical foundation is still lacking.
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Figure Captions

Figure 1: (A) Short-term plasticity of excitatory intracortical synapses. Left panel:

depression of an excitatory synapse between two layer 5 pyramidal cells recorded

in a slice of rat somatosensory cortex. Spikes were evoked by current injection into

the presynaptic neuron and the postsynaptic potential was recorded with a second

electrode (from H Markram and M Tsodyks Nature 382: 807-810 (1996)). Right

panel: facilitation of an excitatory synapse from a pyramidal cell to an inhibitory

interneuron in layer 2/3 of rat somatosensory cortex (from H Markram et al. Proc.

Natl. Acad. Sci. (USA) 95: 5323-5328 (1998)). (B) The average rate of synaptic

transmission for a synapse model with short-term depression when the presynaptic

firing rate changes in a sequence of steps. The parameters of the model are P0 = 1,

fD = 0.4 and τD = 500 ms. This figure is adapted from Dayan and Abbott (2001).

Figure 2: Adaptation and decorrelation by a single neuron. (A) Response of the

model neuron to a low-high-low sinusoidal current input. Top to bottom: Mem-

brane potential, number of spikes per cycle, intracellular Na+ concentration, and

2 Hz sinusoidal injected current that varies from low to high to low in amplitude.

Following the injection of high-amplitude sinusoidal current there is a slow hyper-

polarization lasting for about ten seconds (indicated by an arrow). Intracellular

Na+ accumulation mirrors the adaptation time course of the instantaneous firing

rate during the high-contrast input; whereas Na+ decay is correlated with the slow

hyperpolarization and recovery during the second low-amplitude period. (B) Decor-

relation of 1/f -type stochastic input by the model (Left panel) and a visual cortical

neuron recorded intracellularly in a ferret cortical slice (Right panel). See text for

detailed discussion. This figure is adapted from Wang et al. (2003).

Figure 3. Intrinsic membrane oscillations of single neurons. In each panel are

shown experimental data and model simulations. (A) A thalamic relay cell displays

two distinct spiking modes: tonic firing upon depolarization, and burst discharges

upon hyperpolarization. (Upper trace adapted from DA McCormick and HC Pape

J. Physiol. Lond. 431:319-342 (1990); lower trace adapted from X-J Wang Neu-
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rosci 59:21-31 (1994)) (B) A chattering neuron from the cat visual cortex shows

rhythmic bursting in the gamma frequency range. (Upper trace from CM Gray and

DA McCormick Science 274:109-113 (1996); lower trace from X-J Wang Neurosci

89:347-362 (1999)) (C) A non-cholinergic (putative GABAergic) cell in the rat me-

dial septum displays rhythmic alternations at theta frequency between clusters of

spikes and epochs of subthreshold membrane potential oscillations. (Upper trace

from M Serafin et al. Neurosci 75:671-675 (1996), lower trace: from X-J Wang,

J Neurophysiol 87: 889-900 (2002)). The simulated oscillation is faster than the

experimental data (see the different time scales), because the model simulation was

done at body temperature (37oC), whereas the in vitro trace was recorded at 32oC.

This figure is adapted from X-J Wang Encyclopedia of Cognitive Science, MacMillan

Reference Ltd, pp. 272-280 (2003).

Figure 4. Interneuronal network model for synchronization of coupled oscillators.

(A) An example of network synchronization in a fully connected regular network.

Upper panel: the rastergram where each row of vertical bars represents spikes dis-

charged by one of the neurons in the network. Lower panel: membrane potentials

of two neurons. Neurons initially fire asynchronized, but quickly become perfectly

synchronized by mutual inhibition. (B) In a random network, the network coherence

is plotted versus the mean number of synaptic inputs per cell Msyn (The correction

term (∼ 1/N) takes into account the finite size effect). Different curves correspond

to different network size (N=100, 200, 500, 1000). There is a critical threshold for

the connectedness above which network synchrony occurs. This threshold connectiv-

ity is independent of the network size. Figures are adapted from Wang and Buzsáki,

J Neurosci 16: 6402-6413 (1996) and Buzsáki G, Geisler C, Hinze D and Wang X-J

Trends in Neurosci 27: 186-193 (2003).

Figure 5. Feedback inhibition model for synchronous oscillations with irregularly

firing neurons. Computer simulation of a model with two neural populations (pyra-

midal cells and interneurons) in a sparsely connected random network. The network

shows a collective oscillation at 55 Hz (see population rates, and the power spec-

trum), whereas Single neurons fire spikes intermittently in time at low rates (2 Hz
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for pyramidal cells, 10 Hz for interneurons; see rastergrams). The spike discharges

are synchronized to zero-phase between the two populations (second trace on the

left); whereas the inhibitory synaptic current shows a phase lag of about 2 ms com-

pared to the excitatory synaptic current (third and bottom traces on the left). (N

Brunel and X-J Wang J Neurophysiol 94: 4344-4361 (2003)).

Figure 6: Attractor paradigm for persistent activity. (A) Delayed match-to-sample

simulation of an object working memory model. Neural subpopulations (labeled 1

to 5) are selective to different stimuli. Average activity from each neural group is

plotted below the rastergram. Inhibitory (I) cell population is shown in black. In the

simulation, the shown stimulus triggers persistent activity in a pyramidal cell group

(red) at about 30 Hz, but not in other pyramidal groups. Delay period activity is

switched off by a transient excitatory input generating a brief surge of activity in all

neurons. (B) Dependence of network activity on the strength of recurrent synaptic

connectivity. Solid lines: spontaneous state and persistent memory state; dashed

line: unstable states. There is a critical threshold of synaptic strength, above which

persistent activity appears abruptly as an all-or-none phenomenon. The example

in (A) corresponds to the parameter indicated by the star sign. (C) Schematic

illustration of the biophysics underlying an attractor dynamics. An attractor is a

neural firing state that is stable to perturbations: when a small input perturbs the

network to a lower or higher activity level, there is a restoring force to bring the

network back to the attractor state. In this case, the spontaneous state is stabilized

from below by background inputs, and from above by feedback synaptic inhibition.

A sufficiently powerful sensory stimulus can drive a cell assembly to escape from

the spontaneous state, and after the stimulus is withdrawn the system settles in

one of the active memory states at an elevated firing rate. The persistent activity

state is stabilized from below by excitatory reverberation, and from above by various

negative feedback rate control mechanisms. Finally, a behavioral response or reward

signal can turn the network off and erase the memory. Adapted from Brunel and

Wang (2001) and Wang (2001).

Figure 7: A simple model for two-alternative forced-choice tasks. (A) Model
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scheme. There are two pyramidal cell groups, each of which is selective to one

of the two directions (A=left, B=right) of random moving dots in a visual motion

discrimination experiment. Within each pyramidal neural group there is strong re-

current excitatory connections which can sustain persistent activity triggered by a

transient preferred stimulus. The two neural groups compete through feedback inhi-

bition from interneurons. (B) A network simulation with zero coherence. Population

firing rates rA and rB exhibit an initial slow ramping (time integration) followed by

eventual divergence (categorical choice). (C) Decision dynamics shown in the two-

dimensional plane where firing rates rA and rB are plotted against each other. Traces

with different colors are from different trials, demonstrating probabilistic decision

behavior. With IA = IB, the choice is at chance level across trials. (D) Decision

performance (percentage of correct choices) as a function of the relative difference

in the inputs. Stimulus is shown for a fixed duration of 1 second. Adapted from

Wang (2002).

Figure 8: Time integration by a “hill of persistent activity”. (A) Model scheme. An

excitatory neural network, encoding a directional angle (0 to 360 degrees), receives

inputs from two inhibitory neural populations that are balanced with each other

when there is no input. A velocity signal increases input to one of the inhibitory

population (+I) and decreases input to the other (−I), leading to a bias for the

excitatory network. (B) Network firing pattern (Top) in response to a series of

input signal steps (Bottom). Neurons in the network are aligned along the y-axis,

labelled by their preferred directional angles. X-axis is time. Each dot is a spike.

The network activity pattern has the form of a bell-shaped profile (Upper panel,

right), its peak location encodes the directional angle (white line in the rastergram).

In the absence of an external input, the directional information is maintained by

persistent firing pattern. An input induces the hill of activity to move at a speed

proportional to the stimulus amplitude, hence the network performs a time integral

of the input. See text for more detailed discussion. Simulation by P. Song using the

model published by Song and Wang (2005).
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