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Schema formation in a neural population 
subspace underlies learning-to-learn in 
flexible sensorimotor problem-solving

Vishwa Goudar1, Barbara Peysakhovich2, David J. Freedman    2, 
Elizabeth A. Buffalo    3,4 & Xiao-Jing Wang    1 

Learning-to-learn, a progressive speedup of learning while solving a series 
of similar problems, represents a core process of knowledge acquisition 
that draws attention in both neuroscience and artificial intelligence. To 
investigate its underlying brain mechanism, we trained a recurrent neural 
network model on arbitrary sensorimotor mappings known to depend 
on the prefrontal cortex. The network displayed an exponential time 
course of accelerated learning. The neural substrate of a schema emerges 
within a low-dimensional subspace of population activity; its reuse in new 
problems facilitates learning by limiting connection weight changes. Our 
work highlights the weight-driven modifications of the vector field, which 
determines the population trajectory of a recurrent network and behavior. 
Such plasticity is especially important for preserving and reusing the 
learned schema in spite of undesirable changes of the vector field due to 
the transition to learning a new problem; the accumulated changes across 
problems account for the learning-to-learn dynamics.

In psychology, a ‘schema’ is an abstract mental representation deployed 
to interpret and respond to new experiences and to recall these expe-
riences later from memory1,2. Mental schemas are thought to express 
knowledge garnered from past experiences2–4. For example, expert 
physicists apply relevant schemas when they categorize mechanics 
problems based on governing physical principles (for example, con-
servation of energy or Newton’s second law); by contrast, novice physi-
cists who lack these schemas resort to categories based on concrete 
problem cues (for example, objects in the problem or their physical 
configuration)5. What is the brain mechanism of schemas, and what 
makes it essential for rapid learning and abstraction?

One type of schema is called a ‘learning set’. In a pioneering experi-
ment, H. F. Harlow trained macaque monkeys on a series of stimulus–
reward association problems6. While keeping the task structure fixed, 
each problem consisted of two novel stimuli that had to be correctly 
mapped onto rewarded versus non-rewarded, respectively. Harlow 

found that the monkeys progressively improved their learning effi-
ciency over the course of a few hundred problems, until they learned 
new problems in one shot. He concluded that, rather than learning each 
problem independently of the earlier ones, the monkeys formed an 
abstract learning set that they deployed to learn new problems more 
efficiently—they were ‘learning-to-learn’.

Schemas are posited to emerge as an abstraction of the com-
monalities across previous experiences4,7, whose generalization to 
novel situations accelerates learning8–10. Indeed, the abstract neural 
representation of shared task variables has been observed across 
consecutively learned problems when experience on earlier problems 
facilitates later learning11,12. Furthermore, the progressive improvement 
in learning efficiency observed by Harlow suggests that this process 
of abstract representation-facilitated learning undergoes progres-
sive refinement. The structure learning hypothesis13 equates learning 
to a change in the brain’s internal parameters that control behavior 
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each problem, the model learned a unique mapping between a pair of 
sensory stimuli (for example, images) and a pair of motor responses 
(Fig. 1a). Each trial began with a 0.5-second sample epoch, when a 
sensory stimulus was presented together with a fixation cue, and the 
model was required to maintain fixation. A 1-second delay epoch fol-
lowed, when the model had to continue fixation in the absence of the 
sample stimulus. The trial concluded with a 0.5-second choice epoch 
signalled by removal of the fixation cue, when the model had to report 
its choice of the appropriate motor response. The two sample stimuli 
in each problem were randomly generated. The model was composed 
of a population of recurrently (or laterally) connected firing rate units 
that received 11 inputs, one signaling fixation and ten signaling fea-
tures of a sample stimulus (Fig. 1b). Such stimulus representations 
are consistent with the finding that visual objects are represented in 
the monkey inferotemporal cortex by a feature-based topographic 
map25. The model is also consistent with lesion studies demonstrating 
the causal involvement of inferotemporal–prefrontal connections in 
visuomotor learning and retention20,26. Response choices were read out 
from the population’s activity by three output units that represented 
fixation, motor response 1 or motor response 2.

The model was trained on a problem one trial at a time. Its param-
eters were adjusted at the end of each trial to minimize the errors in 
its output responses, until the output responses achieved criterion 
accuracy (Methods). The model was then transitioned to a new problem  
(Fig. 1c). Crucially, training was performed without an explicit 
meta-learning objective. A network trained on a series of these prob-
lems demonstrated learning-to-learn (Fig. 1d). The network required 
a few thousand trials to learn the first problem, which was expected 
because it was initialized with random connection weights. By con-
trast, solving the second problem took a few hundred trials. Thereaf-
ter, the trials to criterion progressively decreased over the next few 
hundred problems, plateauing at an average of 20 trials per problem. 
This decrease was well fit by a decaying exponential function, which 
closely matched a 30-problem moving average of the network’s trials 
to criterion. This performance is commensurate with learning-to-learn 
in macaque monkeys, which exhibit an exponential decrease in their 
trials to criterion when trained on a series of association problems 
(Peysakhovich et al., unpublished), and demonstrate learning within 
15–20 trials when well trained19. The fit’s parameters quantify the net-
work’s learning-to-learn performance: the time constant measures 
how quickly it produces learning-to-learn, and the learning efficiency 
asymptote measures its trials to criterion plateau. Although naive mon-
keys undergo behavioral shaping on the desired response set before 
they are introduced to the task, a naive network’s learning efficiency 
on the first problem reflects learning both to generate basic responses 
and the specifics of the problem. To avoid this confound related to 
learning the response set, we quantified the network’s learning-to-learn 
performance starting with the second problem.

We tested the robustness of these results by similarly training 
30 independently initialized networks. Across these networks, the 
learning-to-learn time constants and asymptotes were limited to a nar-
row range (Fig. 1e; time constant: 47.52 ± 26.22 (mean ± s.d.); asymptote: 
21.33 ± 3.85). We also found that the model’s learning speed on a problem 
depends on the perceptual similarity between its sample stimulus pair 
and that of the previously learned problem (Fig. 1f), with higher similarity 
producing faster learning. We further tested the model over a range of 
hyperparameter settings (f-I transfer functions, learning rates, weight and 
firing rate regularization levels) and observed robust learning-to-learn 
across all conditions (Supplementary Fig. 1). In addition, we found that 
the model was faster at re-learning problems after subsequently learning 
several new problems (Supplementary Fig. 2), suggesting that it retains 
a memory of previously learned problems. Taken together, these results 
demonstrate that networks trained on a series of delayed sensorimotor 
association problems robustly exhibit learning-to-learn, despite the 
absence of an explicit meta-learning objective.

and posits that the progressive improvement in learning efficiency 
emerges with a low-dimensional task-appropriate realization of the 
internal parameter space. Parameter exploration within such a space 
is less demanding, which makes learning more efficient. Therefore, 
whereas schema formation emphasizes an abstraction of the task’s 
structure, structure learning emphasizes learning how to efficiently use 
a schema to aid in generalization. Conceptual theory notwithstanding, 
how, mechanistically, a neural circuit realizes a schema and applies it 
to expedite learning remains to be elucidated.

In spite of tremendous progress in machine intelligence, 
learning-to-learn presents a major challenge in presently available arti-
ficial systems. Machine learning studies have proposed ‘meta-learning’ 
approaches wherein model parameters that promote rapid generaliza-
tion to new problems are explicitly favored and sought14,15. However, it 
is not known whether such mechanisms are necessary computation-
ally or present in the brain. Can learning-to-learn arise solely from 
the natural dynamics of learning? We explored this question of broad 
interest to brain research, cognitive science and artificial intelligence 
by examining the neural mechanisms of learning-to-learn in recurrent 
neural networks (RNNs). We chose learning of arbitrary sensorimotor 
associations, which is essential for flexible behavior16, as our behavio-
ral paradigm. Here, arbitrary mappings between sensory stimuli and 
motor consequents must be learned on each problem17,18. Macaque 
monkeys exhibit learning-to-learn on association problems; they learn 
new problems within an average of 20 trials when they are well trained19. 
Furthermore, their prefrontal cortex is causally engaged during rapid 
problem learning. Prefrontal neurons represent task stimuli and 
responses during visuomotor association trials17,19. Prefrontal lesions 
produce substantial visuomotor association learning deficits16,20,21. We 
sought to understand whether and how a sensorimotor association 
schema may be encoded by these prefrontal representations, how 
it is applied to new problems and how its usage is refined to improve 
learning efficiency.

We found that RNNs trained on a series of sensorimotor associa-
tion problems exhibit robust learning-to-learn despite the absence of 
meta-learning: the number of trials to learn a problem decays expo-
nentially with the number of previously learned problems without an 
explicit mechanism to accelerate learning with increasing experience. 
We analyzed the population activity of the RNN’s units via subspace 
decomposition to uncover population-level latent variable represen-
tations22,23, and we used manifold perturbations to study the causal 
relationship between learning efficiency and the reuse of existing popu-
lation representations to learn24. The analyses revealed that the model 
develops neural correlates of the task’s schema—a low-dimensional 
neural manifold that represents shared task variables in an abstract 
form across problems. Its reuse avoids the formation of representations 
de novo while learning problems, which accelerates learning by limiting 
the connection weight changes required. We introduce a novel measure 
relating these weight modifications to population activity changes, 
which we term the ‘weight-driven vector field change’. This measure 
showed that the reused representations are not entirely invariant 
across problems. Instead, mapping new stimuli can modify the reused 
representations in undesirable ways. Connection weight changes are 
primarily recruited to prevent such modifications. Moreover, the 
weight changes in early problems improve the invariance of the reused 
representations, limiting the degree to which they would be modified 
in the future, which further accelerates learning. The accumulation 
of such improvements over a series of problems supports structure 
learning and promotes learning-to-learn.

Results
Learning-to-learn in trained neural networks without 
meta-learning
We evaluated whether an RNN model could demonstrate 
learning-to-learn on delayed sensorimotor association problems. In 
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Abstracted neural manifold governs the task’s schema
The activity of a population of N recurrently connected units co-evolves 
during a trial, forming a trajectory in N-dimensional population state 
space (Fig. 2a, top). When a problem is learned, the network responds 
to each sample stimulus with a trajectory that appropriately subserves 
stimulus integration, decision-making, working memory maintenance 
and fixation/response choice. We demixed27 (Methods) trajecto-
ries from consecutively learned problems to identify shared neural 
representations that support these computations. This procedure 
decomposed the trajectories into components embedded within two 
non-overlapping subspaces of the state space (Fig. 2a, middle). Decision 
representations embedded within the ‘decision subspace’ revealed 
similarities between trajectories that shared their response choice; 
stimulus representations embedded within the ‘stimulus subspace’ 
varied in a problem-dependent and a sample stimulus-dependent man-
ner. We further decomposed the two decision representations in each 
problem into a mean decision representation, with the mean taken 
over both decision representations (Fig. 2a, bottom left) and residual 
decision representations given by subtracting out this mean from each 
decision representation (Fig. 2a, bottom right).

Decomposing the trajectories from the first 50 consecutively 
learned problems in this manner revealed a low-dimensional shared 
decision subspace (2.36 ± 0.18 dimensions across ten networks), 

whose constituent decision representations explained most of the 
variance in population activity across problems (88.54% ± 3.16% 
across ten networks). Furthermore, the mean decision representa-
tions lay close to each other in state space, forming a shared manifold 
across problems (Fig. 2b, left). The residual decision representations 
consistently encoded the decision and choice of either response 
across problems, thus forming a shared manifold for each decision  
(Fig. 2b, center). The persistence of a low-dimensional shared 
manifold, which explains most of the population’s variance across 
problems, demonstrates a strong abstraction of the shared task vari-
ables that it encodes. The model retains and reuses this manifold 
across problems, despite changes in the stimulus set and the weight 
change-induced change in network dynamics that transpires while 
learning. Moreover, population activity changes during learning 
are largely determined by changes in these shared representations  
(Supplementary Fig. 3). In contrast, the stimulus representations  
(Fig. 2b, right) were higher dimensional (7.98 ± 1.48 dimensions across 
ten networks) but explained a small proportion of the population vari-
ance. Interestingly, the distribution of neural activity in state space 
at the beginning and end of problem learning closely resemble each 
other (Supplementary Fig. 4). These results demonstrate that the 
model even reuses pre-established representations when responding 
to novel sample stimuli and learning their mappings.
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Fig. 1 | RNNs trained on delayed sensorimotor association problems exhibit 
learning-to-learn. a, Structure of an example delayed sensorimotor association 
problem. The model must learn to associate two sensory stimuli (for example, 
images) with corresponding motor responses (for example, a saccade). Target 
are colored to emphasize the distinction between response choices, not to 
indicate that the response targets are colored. b, RNN model is composed of 
recurrently connected rate units that receive a fixation signal and features  
of the sample sensory stimulus as inputs. It reports its response choices via 
output units corresponding to fixation, motor response choice 1 (brown) or 
motor response choice 2 (teal). c, The model is trained on a series of sensorimotor 
association problems, each with a randomly chosen sample stimulus pair. It 
is transitioned to a new problem upon reaching criterion performance on the 
current problem. d, A network’s learning efficiency, measured as the number of 
trials to criterion performance, over 1,000 consecutively learned problems.  

Box plots summarize the learning efficiency in groups of 50 consecutive 
problems (center line: median; box bottom/top edge: 25th/75th percentiles; 
whiskers: minimum/maximum within 1.5× the interquartile range from box 
edge; +: outliers). The number of trials to criterion on a problem decreases with 
the number of previously learned problems. This is characterized by a decaying 
exponential function that demonstrates the model’s ability to produce learning-
to-learn. e, Thirty RNNs with different initial conditions exhibit learning-to-learn, 
as indicated by their learning-to-learn time constants (top) and asymptotes 
(bottom). f, Learning efficiency on the third problem as a function of the cosine 
similarity of its sample sensory stimulus pair to the previously learned problem 
(problem 2). Trials to criterion are averaged over 50 independently chosen 
stimulus pairs for each similarity value and presented as the mean and standard 
error (error bars) of this average across ten networks with different initial 
conditions. Time const., time constants.
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Next, we examined the relative contribution of these components 
to the output responses by measuring the net current from each com-
ponent to the choice outputs (Fig. 2c). During trials where response 
1 was chosen (mapping 1 trials), residual decision representations 
excited the response 1 output unit and inhibited the response 2 output 
unit, particularly within the choice epoch (Fig. 2d, center). During map-
ping 2 trials, these representations had the opposite effect. In contrast, 
the mean decision representations inhibited both response choices 
throughout the sample and delay epochs but not the choice epoch 
(Fig. 2d, left). This prevented premature choice initiation during the 
delay epoch (Fig. 2d, center). The contribution of stimulus representa-
tions to response selection was negligible throughout the trial (Fig. 2d, 
right). Quantitatively similar results were obtained for all consecutively 
learned 50-problem groups in all the networks that we tested. These 
results demonstrate that the decision manifold constitutes the neural 
correlates of the task’s schema—it represents the shared temporal 
(mean decision) and two-alternative (residual decision) structure of 
the task in an abstract form and, thereby, reflects knowledge abstracted 
from past experiences.

Schema manifold scaffolds representations that facilitate 
learning
We have shown that the schematic decision manifold is reused by, or 
‘scaffolds’28–30, the learned representations in subsequent problems. 
This reuse is accompanied by a stark improvement in learning efficiency 

between the first problem and subsequent ones (Fig. 1d). To establish 
whether reuse of the decision manifold causally improves learning 
efficiency, we compared the learning in networks that were barred 
from reusing it to control output responses in new problems, with 
networks that were allowed to do so. This method has been applied 
in brain–computer interface (BCI) studies to establish a causal link 
between monkeys’ ability to rapidly adapt to BCI readout perturbations 
and their reuse of existing motor cortical representations to modulate 
the perturbed readouts24.

In our model, this intervention relies on the concept of a ‘readout 
subspace’. Population activity modulates an output unit’s response, 
only when the sum of the excitatory and inhibitory post-synaptic cur-
rents it produces at the unit is non-zero (output-potent activity31). 
Therefore, the output connection weights, which mediate these cur-
rents, define a readout subspace of population state space that con-
strains the set of population activity levels which can modulate output 
responses. Our observation that population representations within the 
decision subspace predominantly modulate output responses implies 
that the decision and readout subspaces strongly overlap. Eliminating 
this overlap should impair the effectiveness of the pre-existing deci-
sion manifold in scaffolding newly learned trajectories and force the 
development of new decision representations to modulate the output 
responses. The observation of a concurrent learning deficit would caus-
ally link the representational scaffold to accelerated learning. For this 
causal intervention and its controls, we first trained a naive network 
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Fig. 2 | Neural representations of decision and choice are shared across 
problems. a, Schematic of the demixing procedure that identifies shared 
versus problem-dependent components of the neural representations. 
Population trajectories for the two mappings in 50 consecutively learned 
problems (illustrated for two problems, for clarity) are decomposed into 
components within a decision subspace, which are shared across problems 
by trajectories that correspond to the same response choice, and problem-
dependent components embedded in a stimulus subspace. The shared 
decision representations are further decomposed into their mean and residual 
components for each problem. b, Decomposed representations for problems 
1–50, presented along the first three principal components of their respective 

subspaces. c, Schematic illustrating that the component representations 
collectively drive the response choice outputs. d, The net current from the 
mean (left) and residual (center) decision representations and the stimulus 
representations (right) to response 1 (brown) and response 2 (teal) outputs in 
mapping 1 (top) and mapping 2 (bottom) trials. The mean decision components 
inhibit motor responses during the sample and delay epochs, and the residual 
decision components drive the correct response while inhibiting the incorrect 
one. Dashed vertical lines indicate the end of the sample and delay epochs. Plots 
show mean of the net currents across the 50 problems, and error bars indicate 
their standard errors. PC, principal component; resid, residual; stim, stimulus; 
dec, decision.
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on a single problem to let it develop overlapping readout and decision 
subspaces (Fig. 3a).

In the frozen readout condition, we then trained the network 
on its second problem while freezing (or preventing changes to) the 
output weights (Fig. 3b, top right). Such networks exhibited a substan-
tial improvement in learning efficiency from the first problem to the 
second (Fig. 3c). Thus, freezing the output weights does not adversely 
affect learning. In the stimulus-to-stimulus (S→S) manifold perturba-
tion condition, we perturbed the output weights to alter the overlap 
between the readout and stimulus subspaces but not between the 

readout and decision subspaces (Fig. 3b, bottom left, and Methods). 
Then, we trained the network on its second problem with frozen output 
weights to prevent re-alignment of the readout and stimulus subspaces 
during training. Again, we found a substantial speedup in learning from 
the first problem to the second (Fig. 3c).

Finally, in the decision-to-stimulus (D→S) manifold perturbation 
condition, we perturbed the output weights to eliminate all overlap 
between the readout and decision subspaces (Fig. 3b, bottom right). 
We then trained the network on its second problem with frozen output 
weights. This compels the formation of new decision representations 
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within the original stimulus subspace. In contrast to the frozen read-
outs and S→S manifold perturbation conditions, such networks were 
strongly impaired at learning—they learned as slowly as naive networks 
learning their first problem (Fig. 3c). Collectively, these results dem-
onstrate that impeding the reuse of the decision manifold adversely 
affects learning performance.

We also tested whether the transfer of prior knowledge facilitates 
learning of problems with altered but overlapping task structure.  
To do so, we trained a naive network on a single problem comprising 
two mappings, as in Fig. 3a. Next, we trained it on a problem comprising 
three mappings (that is, three sensory stimuli mapped to three motor 
responses). Here, too, we observed a substantial facilitation of learn-
ing performance compared to a naive network (Fig. 3d), accompanied 
by the reuse of the decision manifold from the two-mapping problem 
to learn the three-mapping problem (Fig. 3e). Taken together, these 
results confirm that the schematic decision manifold forms a represen-
tational scaffold that facilitates the transfer of prior knowledge regard-
ing the task’s structure to new problems and, thus, expedites learning.

Distinct roles of representation reuse and plasticity in learning
We have shown that representational reuse improves learning effi-
ciency. However, learning produces large population activity changes 
to mediate the necessary output response corrections (Supplementary 
Fig. 7b). How does the emergence of these large changes benefit from 
the reuse? And how do its contributions compare to those of the 
plasticity-induced connection weight changes? To answer these ques-
tions, we analyzed the activity changes between the beginning and end 
of a problem. The population responds to a novel sample stimulus with 
a ‘pre-learning’ trajectory in state space (Fig. 4a, right, blue curve). This 
trajectory evolves through time via temporal integration of input and 
population activity mediated by input and recurrent connection 
weights, respectively (Eq. (2)). The resulting advance in population 
activity from r′t−1 to r′t (Fig. 4a, left) during the brief time interval from 
t − 1 to t is represented in state space by a vector originating at r′t−1  
(Fig. 4a, right). The direction and magnitude of advance is state depend-
ent—it depends on the activity levels of the population’s units (that is, 
the population state) at time t − 1. The temporal sequence of these 
vectors guides the evolution of population activity between the initial 
(r′0) and final (r′T) states (Fig. 4a, right, blue arrows along blue curve). 
These state-dependent vectors constitute a ‘vector field’32,33 that spans 
the entire state space and describes the network’s dynamics (Fig. 4a, 
right, blue arrows tiling the space).

After a problem is learned, the population activity traverses a 
‘learned’ trajectory (Fig. 4b, right, purple curve) comprising learned 
population states. Because the connection weights after learning are 
a sum of the pre-learning weights and plasticity-induced weight 
changes, the learned trajectory is governed by the sum of the 
pre-learning vector field and the change in this field due to the weight 
changes. Consequently, so is the change in population activity.  
The change in population activity from a pre-learning state (r′T) to a 
learned state (rt) at time t, zt, is represented in state space by a vector 
from the former to the latter (Fig. 4c, solid gray arrows). It emerges 
from an accumulation of activity change increments throughout the 
trial (Fig. 4c, green arrow). The incremental change in population 
activity (Δzt+1) between t and t + 1 derives from the pre-learning vector 
field (that is, the reuse of existing representations) and the 
plasticity-induced change in the vector field.

Setting aside the effect of weight changes for a moment, consider 
the network’s pre-learning vector field at the learned and pre-learning 
states. Due to its state dependence, the vector field may advance 
population activity differently from one state versus from the other. 
In this event, the activity difference between the pre-learning and 
learned states will change between times t (zt) and t + 1 (zt+1). In state 
space, the vector difference (Fig. 4d, left, pink arrow) between the 
pre-learning vector field at the two states (blue arrows) characterizes 

this change and is referred to as the ‘state-driven vector field change’ 
(or state-driven VFC, referred to in the Methods as ΔFields,t+1- Eq. (6)). 
The state-driven VFC depends solely on the pre-learning vector field 
(that is, on reused representations).

The connection weight changes alter the net post-synaptic cur-
rents into the population. This alters how its activity advances over 
time (Fig. 4b, left). In state space, this translates to a VFC all along the 
learned trajectory (Fig. 4b, right, orange arrows), including at time t 
(Fig. 4d, center), and it is referred to as the ‘weight-driven vector field 
change’ (or weight-driven VFC, referred to in the Methods as ΔFieldw,t+1-  
Eq. (7)). The sum of these two types of VFC (weight-driven and 
state-driven VFCs) produces the incremental change in population 
activity (Δzt+1) between t and t + 1 (Fig. 4d, right, and Eqs. (4 and 5)).

Measurements revealed a substantial difference between the 
magnitudes of activity changes (zt; Supplementary Fig. 7b) and activity 
change increments (Δzt; Fig. 5b)—large activity changes emerge from 
an accumulation of relatively small change increments generated 
throughout the trial. We further assessed the relative contribution of 
the weight-driven and state-driven VFCs to the activity change incre-
ments by decomposing them (Fig. 5a and Methods) into their compo-
nents in the direction of the activity change increments (Δz|| - parallel 
component) and orthogonal to them (Δz⊥ - orthogonal component).

The state-driven VFC’s parallel component is much larger in mag-
nitude than the weight-driven VFC’s parallel component (Fig. 5b, green 
bars). Therefore, the network’s pre-learning vector field, which gov-
erns the state-driven VFC, is primarily responsible for the population 
activity changes. Furthermore, these parallel components are low 
dimensional not only in individual problems but also across a group 
of problems (Fig. 5c). This is consistent with the structure learning 
hypothesis13, wherein efficient learning relies on changing behavior 
via changes within a low-dimensional internal parameter space of 
the brain. Our results suggest that this parameter space corresponds 
to a low-dimensional subspace of neural population activity, which 
constrains how population activity and behavior change while learn-
ing a problem.

The weight-driven VFC’s orthogonal component is much larger in 
magnitude than its parallel component. Furthermore, it is equal in mag-
nitude but opposite in direction to its state-driven counterpart and, 
therefore, nullifies it (Fig. 5b, pink bars). These orthogonal components 
are also low dimensional on individual problems but high dimensional 
across a group of problems (Fig. 5c). Moreover, they largely span direc-
tions along which the existing representations do not typically co-vary 
(Supplementary Fig. 8a). These results imply that novel sample stimuli 
interact with the existing representations when mapped onto them, in a 
manner that elicits uncharacteristic population responses. That is, the 
existing representations can be sensitive (that is, not entirely invariant) 
to the sample stimuli that are mapped onto them. The weight-driven 
VFC emerges primarily to impede such interactions and, thereby, 
prevent changes to the existing representations.

To summarize, our analysis of the population activity changes 
between the start and end of problem learning revealed that (1) large 
changes emerge over the trial time course from the accumulation of 
a sequence of small local changes along the learned trajectory; (2) 
these changes are low dimensional and stem primarily from reusing 
the network’s pre-learning vector field to shape the learned trajectory, 
thus elucidating the relative contribution of representational reuse 
to learning; and (3) the pre-existing representations are not entirely 
invariant to having novel sample stimuli mapped onto them and can 
undergo uncharacteristic modifications in the process. Connection 
weight changes emerge largely to prevent such modifications.

Recurrent weight change magnitude determines learning 
efficiency
Next, we examined why learning efficiency is enhanced by repre-
sentational reuse, by exploring how learning efficiency is impacted 
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by the connection weight changes. In Supplementary Note 1.1.1 and 
Supplementary Fig. 5, we show that the model learns via recurrent 
rather than input weight changes. Athough recurrent and input weight 
changes independently contribute to the weight-driven VFC (Eq. (7)), 
in the model the weight-driven VFC is determined by recurrent weight 

changes, as this is more efficient. Moreover, the magnitude of recurrent 
weight changes in a problem explains the number of trials expended in 
learning it (Fig. 6a). This is consistent with analytical bounds relating 
the magnitude of connection weight changes and sample efficiency 
in deep neural networks34,35.
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determines the evolution of the learned population trajectory (right, purple 
curve). c, The divergence of the learned trajectory from the pre-learning 
trajectory (zt+1, right, solid gray arrow) emerges from an accumulation of activity 
change increments throughout the trial (Δzt+1, right, green arrow). d, Each 
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In light of this observation and the exponential decrease in the tri-
als to criterion across problems, we hypothesized that the magnitude 
of recurrent weight changes should also decrease exponentially across 
problems. We further posited that the magnitudes of the post-synaptic 
current changes and the weight-driven VFC should also decrease expo-
nentially, because these quantities are directly related to the recurrent 
weight change magnitude. Figure 6b confirms that the magnitude of 
these three quantities decreases exponentially as a function of the 
number of learned problems. Therefore, the progressive improvement 
in the model’s learning efficiency is explained by a similar decrease in 
the magnitudes of the recurrent weight changes and weight-driven 
VFC required to learn problems.

We can now explain why representational reuse markedly improves 
learning efficiency (Fig. 3). D→S manifold perturbations compel the 
development of new representations that re-encode the task’s structure 
beyond the original decision subspace—in state space, the structure 
and location of these target trajectories are constrained by the arbi-
trarily altered output weights (Fig. 3b, bottom right). However, the 
vector field along such an arbitrarily constrained target trajectory 
is likely misaligned relative to the vector field required to support it  
(Supplementary Fig. 6a, right, purple versus blue arrows along the 
learned trajectory). Consequently, it is unlikely to roughly advance 
population activity along the target trajectory, as it does in unperturbed 
networks (Supplementary Fig. 6a, left). Measurements comparing the 
magnitude of the weight-driven VFC in unperturbed and perturbed 
networks confirms that the vector field in perturbed networks under-
goes drastic re-organization in comparison to unperturbed networks 
(Supplementary Fig. 6b, right), so that they may support new decision 
representations (Supplementary Fig. 6a, large orange arrows). This 
explains the learning impairment after D→S manifold perturbations 
and demonstrates the merits of learning via representational reuse—this 
reuse of existing representations limits the requisite weight changes 
(Supplementary Fig. 6b, left) and, thereby, improves learning efficiency.

In Supplementary Note 1.1.2, we explore the reciprocal interactions 
between stimulus and decision representations during trial perfor-
mance and learning. The analysis reveals a second form of representa-
tional scaffolding by the decision representations, wherein pre-synaptic 
population activity in the decision rather than the stimulus subspace 
modulates the weight-driven VFC (Fig. 6c and Supplementary Fig. 7d).

Accumulation of weight changes progressively speeds up 
learning
In agreement with Harlow’s learning-to-learn experiments, our 
model exhibits a progressive improvement in learning efficiency 
spanning a few hundred problems (Fig. 1). This is explained by a 
progressive decrease in the magnitudes of the weight changes and 
weight-driven VFC per problem (Fig. 6a,b). Because the weight-driven 
VFC prevents distortions to existing representations during learning  
(Fig. 5b), a progressive decrease in its magnitude amounts to a progres-
sive improvement in the invariance of the existing representations to 
learning novel mappings. However, the source of this improvement 
is as of yet undetermined: what causes it in the absence of an explicit 
meta-learning mechanism? We hypothesized that the accumulation 
of weight changes over earlier problems facilitates learning in future 
problems. That is, weight changes elicited while learning problems 
p − k (for 1 ≤ k ≤ p − 2) cumulatively alter the vector field such that 
they suppress the weight-driven VFC required to learn problem p  
(Supplementary Fig. 9a, top, and Methods). More generally, as prob-
lems are learned, their respective weight-driven VFCs accumulate to 
produce a cumulative VFC, which suppresses the weight-driven VFC 
required to learn subsequent problems. This progressively improves 
representational invariance and, thereby, accelerates learning.

To test this hypothesis, for each problem p, we measured the 
magnitudes of its weight-driven VFC plus the cumulative VFC along 
its learned trajectory due to the accumulation of weight changes over 
the sequence of problems that precede it, from problem p − 1 (relative 
problem −1) to problem 2 (relative problem 2 − p). Figure 7a summa-
rizes these measurements across many problems p grouped by their 
learning-to-learn stage—that is, the number of problems they are pre-
ceded by. Here, we focused on the magnitude along each problem’s 
orthogonal weight-driven VFC component (Δz⊥) because it dominates 
the total weight-driven VFC in problems at each learning-to-learn 
stage (Supplementary Fig. 8b). The results show that, at each stage, 
learning earlier problems cumulatively suppresses the weight-driven 
VFC required in subsequent problems. We further found that this is 
predominantly due to an accumulation of recurrent weight changes 
(Supplementary Fig. 8c). These findings confirmed our hypoth-
esis: the accumulation of weight changes over problems progres-
sively improves representational invariance and, therefore, learning 
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efficiency. Moreover, they imply that the cumulative change along 
the orthogonal weight-driven VFC component of problems imposes 
a learning efficiency bottleneck.

Figure 7a demonstrates that the weight-driven VFC in a problem 
depends on its net suppression by the preceding problems—that is, the 
sum of the suppressive cumulative VFC contributions (and enhanc-
ing cumulative VFC contributions, when they increase the requisite 
weight-driven VFC) by the weight changes in each preceding problem 
going back to problem 2 (Supplementary Fig. 9b, left, and Methods).  
A larger net suppression produces a smaller weight-driven VFC. Because 
the weight-driven VFC decays exponentially with the number of pre-
ceding problems (Fig. 6b), we posited that the net suppression must 
similarly increase with it. Measurements of the net suppression along 
the orthogonal and parallel weight-driven VFC components confirmed 
this (Fig. 7b). The net suppression mirrors the exponential decay in the 
weight-driven VFC (Methods)—it rapidly increases across problems at 
the early stages of learning-to-learn, which produces a rapid decrease in 
their weight-driven VFCs, and it gradually plateaus for later problems, 
which explains the plateauing of their weight-driven VFCs. Also, the net 
suppression is weaker along the orthogonal components than along the 
parallel components, which explains why the learning efficiency bot-
tleneck develops along the orthogonal components. In Supplementary 
Note 1.1.3, we explored the dynamics of this cumulative suppression 
mechanism and determined that it resembles a stochastic process, with 
some problems suppressing a future problem’s weight-driven VFC and 
others enhancing it (Supplementary Fig. 10c). However, the process 
exhibits a bias toward suppression, which produces the net suppressive 
effect. Modulation of this bias governs the learning-to-learn dynamics 
and time scale (Supplementary Fig. 10d).

Our results identify a novel neural mechanism of accumulating 
learning experience to progressively improve learning efficiency, 
despite the absence of a meta-learning mechanism. It relies on the 
accumulation of connection weight changes over learned problems to 
suppress the weight-driven VFC required to learn subsequent problems 
and, thus, accelerate their learning. The model progressively acceler-
ates learning via (1) a gradual improvement in the efficiency with which 
weight changes contribute to the suppression of the weight-driven 
VFC in future problems (Supplementary Fig. 10a and Supplementary 
Note 1.1.3) and (2) a modulation of how consistently suppressive these 

contributions are (Supplementary Fig. 10d). Moreover, the fact that 
the weight-driven VFC primarily prevents uncharacteristic represen-
tational changes from developing when learning novel mappings  
(Fig. 5) helps elucidate the objective of this learning-to-learn mech-
anism: the accumulation of weight changes over early problems 
improves the invariance of the existing representations to having 
novel sample stimuli mapped onto them. This refines the model’s 
ability to learn via representational reuse and elicits learning-to-learn.

Discussion
New information is easier to learn when contextualized by prior knowl-
edge. This is facilitated by the instantiation of schemas3,4, which are 
hypothesized to correspond to neocortically encoded knowledge 
structures. Learning-to-learn is a constructive consequence of the 
reciprocal influence between learning and schema tuning, whereby 
schema instantiation facilitates learning, and the assimilation of 
learned information into the schema improves its ability to facilitate 
future learning. To elucidate the underlying neurobiological basis, we 
trained an RNN model on a series of sensorimotor mapping problems, 
without meta-learning. Our main findings are three-fold. First, the 
network model exhibits accelerated learning that is quantified by an 
exponential time course, with a characteristic time constant and a 
plateau. This model prediction is supported by an ongoing experiment 
where monkeys displayed an exponential learning-to-learn time course 
while solving a series of arbitrary sensorimotor mapping problems 
(Peysakhovich et al., unpublished). Second, schema formation cor-
responds to the formation of a low-dimensional subspace of neural 
population activity, thereby bridging a psychological concept with a 
neural circuit mechanism. Third, rather than weight changes per se, it 
is imperative to examine weight-driven changes of the vector field to 
understand the behavior of a recurrent neural network as a dynamical 
system. These new insights can guide the analysis of neurophysiological 
data from behaving animals during learning-to-learn.

Our work revealed that learning-to-learn is a process with three 
time scales (Fig. 8). The fastest time scale governs the evolution of 
population activity over a single trial. Subspace decomposition of this 
activity showed that it encodes three latent variables. First, a mean 
decision component that is analogous to the condition-independent 
component identified in prefrontal and motor cortical activity27,36—it 
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encodes temporal aspects of the task in a trial-condition-invariant man-
ner and explains most of the variance in population activity. Second, 
a residual decision component that encodes decisions and response 
choices. Third, a problem stimulus representation. The first two com-
ponents collectively constitute low-dimensional decision representa-
tions that control fixation and response choices.

We found that these decision representations are shared across 
problems in an abstract form: the model reuses them to contextu-
alize its neural and output responses to new sample stimuli and to 
generalize from previous solutions to newer ones. A manifold per-
turbation intervention showed that this reuse causes a stark improve-
ment in learning efficiency. Therefore, the network not only abstracts 
commonalities across problems but also exploits them to facilitate 
learning4,13,37. This shows that the abstract decision representations 
constitute the neural basis of a sensorimotor mapping schema4,7.  
The abstraction of task variable-encoding and task structure-encoding 
neural representations and their reuse in consecutively learned asso-
ciation problems has indeed been observed in the prefrontal cortex 
and hippocampus11,12,23.

The intermediate time scale governs the process of learning and 
spans the trials between the beginning and end of learning a single 
problem (Fig. 8). We studied learning with a novel measure of how 
connection weight changes (which model the effects of long-term 
synaptic plasticity (LTP)) influence population activity in an RNN—the 
weight-driven VFC. We found that this measure is more informative 
at assessing the effects of the connection weight changes than direct 
measurements of the weight changes: (1) it dissociates the contri-
butions of the changes in different sets of connection weights more 
accurately than directly comparing their magnitudes; (2) its assess-
ments are more interpretable, as they directly relate to the population 
activity; and (3) it isolates the contributions of the initial weights and 
the weight changes to the learning-induced changes in population 
activity. For these reasons, these techniques contribute to a grow-
ing set of methods aimed at overcoming the challenges of interpret-
ability and explainability in RNNs38,39, which hinder their adoption in 
neuroscience. In our analysis, these techniques were instrumental in 
identifying (1) why reusing existing representations improves learning 

efficiency, (2) the relative contributions of this reuse versus the con-
nection weight changes to learning and (3) the mechanism underlying 
learning-to-learn.

In the training RNN framework, the network is initialized with 
random weights, as a blank slate. In contrast, developmental experi-
ence shapes how new information is encoded even in the brain of a 
task-naive animal. This confounds direct comparisons between the 
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different initial conditions, and shading/error bars indicate standard errors. a.u., 
arbitrary units; Orth., orthogonal.
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Fig. 8 | Learning-to-learn is a process with three time scales. The fastest time 
scale (bottom) governs the neural dynamics within a trial that drive output 
responses. The intermediate time scale (middle) governs the learning dynamics 
across trials within a problem; it ultimately produces the requisite weight-
driven VFC, which results in the problem being learned. The slowest time scale 
(top) governs the dynamics of learning-to-learn across problems; it ultimately 
improves the invariance of existing representations to learning new problems, 
which results in asymptotic learning efficiency. L2L, learning-to-learn.
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use of a learning algorithm and a known biological plasticity rule. 
Nevertheless, our findings regarding the benefits of representational 
reuse do not directly depend on our model’s learning algorithm and 
may well be conserved under biologically plausible learning rules. 
Moreover, because our analysis techniques are independent of the 
underlying learning rules, they offer an approach to study learning 
and the properties of schema formation and reuse in models with 
biologically plausible learning rules. Our model further assumes that, 
after schema formation, new problems continue to be learned via 
LTP. Indeed, rapid learning of novel schema-consistent paired associ-
ates is prefrontal NMDA receptor dependent in rodents40, suggest-
ing that Hebbian neocortical synaptic plasticity is likely involved in 
schema-facilitated learning. However, the role of other forms of plastic-
ity, such as intrinsic41 and behavioral time scale42 plasticity, has not been 
experimentally precluded. Further computational and experimental 
studies are required to determine their relative roles in this process.

At the slowest time scale, several problems are learned in suc-
cession with progressively improving efficiency, until asymptotic 
efficiency is realized (Fig. 8). This is the time scale of learning-to-learn. 
We showed that, consistent with macaque monkeys’ behavior19, our 
model’s trials to criterion performance is well characterized by a decay-
ing exponential function, which asymptotes at roughly 20 trials per 
problem. Consequently, our model suggests that learning-to-learn 
can emerge in animal models in the absence of explicit meta-learning 
(Supplementary Discussion 1.2.1).

We identified a novel mechanism for learning-to-learn, which 
relies on the accumulation of weight changes over learned problems 
to progressively improve the invariance of the existing representations 
to subsequent learning. An increase in this invariance suppresses the 
weight-driven VFCs required to learn new problems, which accelerates 
their learning. Interestingly, these cumulative improvements are sto-
chastic in nature—the exponential improvement in learning efficiency 
stems from a modulation of the bias in this stochastic suppression of 
the weight-driven VFCs in future problems. These results also differ-
entiate between schema-facilitated rapid learning and structure learn-
ing, which theorizes that the progressive learning acceleration arises  
from a refinement in the neural control of behavioral parameters13 
(Supplementary Discussion 1.2.2).

Crucially, our results offer experimentally verifiable predic-
tions. First, the sensorimotor mapping schema is encoded by 
low-dimensional neural representations, which are shared across 
problems, and explain most of the variance in population activity. 
They encode shared task variables, including the task’s temporal 
structure and the available choices. Second, the reuse of these rep-
resentations to learn new problems speeds up learning; prevent-
ing this reuse with recently developed BCI interventions24 should 
produce pronounced learning deficits. Third, population activity 
may undergo marked changes between the beginning and end of 
problem learning. However, across problems, these changes are 
restricted to a low-dimensional subspace of the activity. Fourth, the 
number of trials to learn a problem decreases exponentially with the 
number of previously learned problems. Taken together, our results 
provide insights into the neural substrate of a sensorimotor mapping 
schema, the reason for which its reuse markedly improves learning 
efficiency, and the neural mechanisms of structure learning that 
gives rise to learning-to-learn. In doing so, they elucidate the neural 
mechanisms of learning-to-learn and present novel techniques to 
analyze learning-to-learn in RNNs.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41593-023-01293-9.
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Methods
RNN model
The RNN model comprises a fully connected population of N firing rate 
units with firing rates r, receiving inputs from Nin input units with firing 
rates u. Firing rates of the network units follow the dynamical equation:

τ ̇r = −r + f (Winu +Wrecr + brec + ζ)

τζ ̇ζ = −ζ +√2τζσ2recξ
(1)

which expresses the leaky and non-linear integration of input (Winu) and 
recurrent (Wrecr) currents. Win (Wrec) is an N × Nin (N × N) matrix of input 
(recurrent) connection weights, and τ = 100 ms is the integration time 
constant that characterizes the slow decay of NMDA-receptor-mediated 
synaptic currents43. The f-I curve is modeled by a smooth rectification 
function:

f (x) = log (1 + ex)

The bias term brec admits per-unit firing thresholds. Intrinsic back-
ground noise current is modeled by an Ornstein–Uhlenbeck process ζ 
with time constant τζ and variance σrec, where ξ represents the underly-
ing independent white noise process with zero mean and unit variance.

Output responses are readout from the activity of the RNN units 
by Nout output units, y, whose activity is given by

y = g (Woutr + bout)

Here, Wout is an Nout × N output weight matrix; bout is the bias of the 
output units; and g (xi) = exp (xi) /∑

Nout
j=1 exp (xj) is the softmax or normal-

ized exponential function, which produces output unit activity that 
indicates the probability of generating each of the Nout response 
choices.

The model is simulated by temporal discretization of Eq. (1) with 
Euler’s method as

rt = (1 − α) rt−1 + αf (Winut +Wrecrt−1 + brec + ζt)

ζt = (1 − αζ) ζt−1 +√2αζσ2rec𝒩𝒩 (0, I)
(2)

where the time-discretization step size is Δt, α = Δt/τ, αζ = Δt/τζ, and 
𝒩𝒩 (0, I) is a random vector sampled from a Gaussian distribution with 
zero mean and identity covariance (I). In all figures, the network size 
N = 100, Δt = 1·ms, τζ = 2·ms and σrec = 0.05. The magnitude of the net-
work unit and input unit firing rates is measured as the L2-norm of rt 
and ut, respectively, and summarized by averaging over all time points 
in a trial.

Task structure
We trained the network model on a series of delayed sensorimotor 
association problems, one at a time. In each problem, the network 
learned a one-to-one correspondence between a pair of sample stimuli 
and a pair of motor responses. Each problem, therefore, comprised two 
trial types, one per stimulus–response pair. Each trial was 2 seconds 
in duration (T = 2) and started with a 500-ms sample epoch, followed 
by a 1-second delay epoch and ended with a 500-ms choice epoch. 
During the sample epoch, the network concurrently received inputs 
representing a fixation stimulus and one sample stimulus. During the 
delay epoch, it continued to receive only the fixation input. It received 
no inputs during the choice epoch. The model was required to maintain 
fixation during the sample and delay epochs and choose the appropri-
ate motor response during the choice epoch. The model contained 
three output units (Nout = 3), two to report response choices and one for 
fixation. This trial structure, including the available response choices, 
remained fixed across problems.

Sample stimuli were represented by ten-dimensional unit length 
vectors (L2-norm = 1). The two sample stimulus representations in a 
problem were drawn from a random Gaussian distribution with zero 
mean and identity covariance. They were then orthogonalized to avoid 
learning efficiency confounds stemming from the relative difficulty in 
learning to distinguish between more versus less correlated sample 
stimuli. The fixation input was a scalar with value 1/√Nin − 1 when it was 
on and zero when off. Therefore, there was a total of Nin = 11 input units. 
Learning-to-learn was robustly observed even in the absence of the 
orthogonalization step; however, the variance in learning efficiency 
was higher. Qualitatively similar learning-to-learn performance was 
also observed with 200-dimensional sample stimulus representations 
and N = 1,000.

Each problem was learned over a sequence of trials, pseudoran-
domly sampled from the two trial types, until the average error on 50 
consecutive trials fell below a criterion value (see the ‘Network training’ 
subsection). The learning efficiency for a problem was measured by 
the number of trials required to achieve this criterion. After a problem 
was learned, the model was transitioned to the next problem, wherein 
it learned to associate a new pair of pseudorandomly selected sample 
stimuli with the two motor responses.

Network training
A network was trained on a problem by updating its connection 
weights (Win, Wrec and Wout), biases (brec and bout) and initial network 
state (r0), so that it could choose the desired response for each of the 
sample stimuli. These updates were generated by stochastic gradi-
ent descent—an optimization algorithm that incrementally updates 
a network’s parameters at the end of each trial, based on the errors in 
the output unit responses during the trial. In contrast to standard RNN 
training practices, wherein model parameters are adjusted based on 
the average error from a batch of several trials and learning efficiency 
is measured by the number of trial batches to reach criterion perfor-
mance, our training procedure closely matched established animal 
training protocols and allowed learning efficiency to be measured 
by the number of trials to criterion performance. The backpropaga-
tion through time (BPTT) algorithm was used to resolve temporal 
contingencies while computing parameter updates. We additionally 
applied the Adam optimizer44 to enhance the efficacy of the updates. 
All networks were trained with a learning rate of 10−4, except in Sup-
plementary Fig. 1 where the learning rate was systematically varied. 
Adam decay rates for the first and second moment estimates were set 
to 0.3 and 0.999, respectively, and the moment estimates were reset 
at the beginning of each problem. The model implementation and 
parameter update computations were performed with TensorFlow45 
in the Python programming language and supported by the Numpy 
numerical computing library.

Before the first problem, a naive network’s input weights in Win 
were initialized with random values drawn from a Gaussian distribution 
with zero mean and variance 1/Nin; the recurrent weights in Wrec were 
initialized with random values constrained by householder transforma-
tions such that the rows (and columns) of the initial recurrent weight 
matrix were orthogonal to each other and of unit length46. Initializing 
the recurrent weights in this manner allows gradients to be backpropa-
gated more effectively. All other network parameters were initialized to 
zero. Upon transition to a new problem, all parameters retained their 
values. At initialization and throughout learning, the sign and sparsity 
of the weights and biases were not constrained. The initial network 
state was always restricted to non-negative values.

Network training was performed in a supervised setting, wherein 
the parameters were adjusted to minimize an objective function, ℒ, 
that included the errors in the model’s output responses:

ℒerr =
1

T − |Dmask|
∑

t∉Dmask

Nout
∑
i=1

−y̌i,tlog (yi,t)
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The error at each time step t was given by the cross-entropy of the 
probability distribution over responses generated by the network, yt, 
relative to pre-specified target responses, y̌t. The total error for a trial, 
ℒerr, was the mean of the per-time-step error taken over the trial dura-
tion T. This excluded a masking interval, Dmask, set to the first 100 ms of 
the choice epoch, which allowed for flexible reaction times. Networks 
were considered to have learned a problem when the average ℒerr over 
50 consecutive trials of the problem fell below a criterion value  
of 0.005.

The objective of the training procedure was to minimize the sum 
of this error and auxiliary regularization terms:

ℒ = ℒerr + ℒreg,Win
+ ℒreg,Wout

+ ℒreg,Wrec+ℒreg,rate

The regularization terms included both weight and activity regu-
larization to encourage solutions that generalized well47,48 and gener-
ated stable network dynamics. We imposed L2 regularization on the 
input and output weights as follows:

ℒreg,Win
=
βWin

NinN

Nin
∑
i=1

N

∑
j=1

(Win (j, i))
2

ℒreg,Wout
=
βWout

NoutN

N

∑
i=1

Nout
∑
j=1

(Wout (j, i))
2

We observed that networks with a similar L2 regularization of the 
recurrent weights were sensitive to the value of meta-parameter βWrec

, 
particularly when the network size was large—small values of βWrec

 
produced unstable network dynamics during later problems, whereas 
large values hindered learning efficiency. The squared Frobenius norm 
of the recurrent weight matrix, which constitutes such an L2 regulariza-
tion, is given by:

N

∑
i=1

N

∑
j=1

(Wrec (j, i))
2 =

N

∑
i=1
σ2i

where σi is the i-th singular value of the recurrent weight matrix Wrec.
An analysis of these singular values under conditions that led to 

unstable network dynamics revealed that their L2-norm (that is, the 
square root of the righthand side of the equation above) remained 
roughly fixed over the course of learning several problems; however, 
their distribution changed considerably across problems—smaller sin-
gular values shrank, whereas larger singular values grew and ultimately 
resulted in unstable network responses to novel sample stimuli. We miti-
gated this by introducing an alternate form of recurrent weight regulari-
zation that penalized the magnitude of the first k singular values of Wrec:

ℒreg,Wrec
=
βWrec

Nk

k

∑
i=1
σ2i

Finally, we imposed a homeostatic firing rate regularization:

ℒreg,rate = βr
||||
1
NT

∑
t

N

∑
i=1
r2i,t − h

||||

The meta-parameter h was set to zero for the first problem, effec-
tively imposing an L2 regularization of the recurrent unit firing rates as 
the first problem was learned. To avoid unrestrained growth or reduc-
tion in the firing rates while learning subsequent problems, the homeo-
static setpoint h was then set to the mean squared firing rates averaged 
over the last 50 trials of the first problem. All networks were trained 
with βWin

= 10−4, βWrec
= 0.1, βWout

= 0.1, k = 10 and βr = 5 × 10−4, except in 
Supplementary Fig. 1, where these hyperparameters were systemati-
cally varied.

Learning-to-learn performance characterization
A network’s learning-to-learn performance (Fig. 1) was characterized 
by fitting a decaying exponential function to its number of trials to 
criterion l(p) on problem p, as a function of the number of learned 
problems p − 1:

l (p) = sl exp (
− (p − 1)

τl
) + al

Here, al represents asymptotic learning efficiency; τl represents the 
time constant to achieve this asymptote; and sl represents the improve-
ment in learning efficiency between early and late problems. A large 
asymptote signifies poor learning-to-learn, whereas a large time con-
stant signifies slow learning-to-learn. The three parameters of the func-
tion were fit with the Levenberg–Marquardt algorithm implemented 
by the fit function of MATLAB’s Curve Fitting Toolbox. As a validation, 
these fits were compared to a moving average of the number of trials 
to criterion, calculated by MATLAB’s movmean function, with a window 
size of 30 problems. The learning efficiency on the first problem was 
excluded from this analysis.

Subspace decomposition
We performed semi-supervised dimensionality reduction on the popu-
lation activity, to determine how strongly and consistently the shared 
task structure is represented across problems (Fig. 2). First, we com-
piled a tensor Rk,t,j,i of activity patterns generated by the population of 
firing rate units (k ∈ [1,N]) over time (t ∈ [0,T]), for the two response 
types (j ∈ {response1, response2})  across a group of 50 consecutively 
learned problems, (i ∈ [p + 1,p + 50]). Next, a semi-supervised dimen-
sionality reduction extracted decision representations that are shared 
by the group as follows. Stimulus-specific and problem-specific rep-
resentations for each response type are averaged out, or marginalized, 
across problems in the group:

Rk,t,j,. =< Rk,t,j,i >i

Principal component analysis was performed on a concatenation 
of the resulting two trajectories in Rk,t,j,.. The loading vectors for the first 
m principal components were collected into an N × m loading matrix LD. 
These vectors defined a basis for the decision subspace. To ensure that 
the decision subspace fully captured shared decision representations, 
the marginalized trajectories were not de-meaned before performing 
principal component analysis. Here, we set m to 4, as the first four prin-
cipal components collectively explained at least 98% of the variance in 
the marginalized trajectories, in all the networks that we analyzed.

Next, an N × N projection matrix P (Q) that projects population 
activity into the decision subspace (stimulus subspace) was defined as:

P = LDLTD

Q = I − P

where I is the identity matrix. The decision components of the learned 
trajectories for problem p + x (x ∈ [1,50]) were identified as:

Rdk1,t,j,i=p+x =
N

∑
k2=1

P (k1, k2)Rk2,t,j,i=p+x

and their stimulus components as:

Rsk1,t,j,i=p+x =
N

∑
k2=1

Q (k1, k2)Rk2,t,j,i=p+x

where P(k1, k2) and Q(k1, k2) represent the element in the k1-th row and 
k2-th column of the respective projection matrices. The decision 
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components were further decomposed into mean (Rdmk,t,j,i=p+x) and 
residual (Rdrk,t,j,i=p+x) decision components as:

Rdmk,t,.,i=p+x =< R
d
k,t,j,i=p+x >j

Rdrk,t,j,i=p+x = R
d
k,t,j,i=p+x − R

dm
k,t,.,i=p+x

The net current from these components Rνk,t,j,i=p+x (v = ∈ {s, dm, dr}) 

to an output unit o was computed as ∑N
k=1W

p+x
out (o, k)Rνk,t,j,i=p+x  where  

Wp+x
out  is the output weight matrix learned in problem p + x. The  

dimensionality of any set of vectors (for example, population  
activity in the stimulus subspace) was approximated by its participa-

tion ratio49, computed as (∑i λi)
2

∑i λ
2
i

, where λi is the i-th eigenvalue of  

the covariance matrix of the vectors.

Manifold perturbations
To assess whether reuse of the decision representations improves 
learning efficiency, networks were trained on their second problem 
while constraining them in a manner that required the formation of 
new decision representations. The learning efficiency of such networks 
was compared to controls that were allowed to reuse existing decision 
representations while learning their second problem (Fig. 3).

A naive network was first trained on 50 problems, and the corre-
sponding populations trajectories were used to identify its decision 
and stimulus subspaces. All network parameters were reset to their 
values at the end of the first problem. Then, its output weights were 
perturbed, and the network was trained on a new problem—that is, a 
second problem with respect to its parameters while barring the train-
ing procedure from changing its output weights. This procedure was 
repeated 50 times for each network, resetting its parameters, applying 
an independently chosen random perturbation to its output weights, 
freezing the output weights and training the network on a new sample 
stimulus pair each time. The output weights were subjected to one 
of three forms of perturbation. In the frozen readout condition, the 
output weights were unperturbed after the parameter reset. In D→S 
manifold perturbations, after the parameter reset, the output weights 
were perturbed to replace the overlap between the network’s readout 
and decision subspaces with a corresponding overlap between its 
readout and stimulus subspaces:

Wout,D→S = Wout −
4
∑
i=1
WoutlDi l

DT
i +

4
∑
i=1
WoutlDi l

ST
σ(i)

where Wout,D→S is the perturbed output weight matrix; lDi  (lSi ) is the i-th 
principal component loading vector of the decision (stimulus) subspace; 
and σ() represents a random shuffle or permutation of the stimulus 
subspace principal component loading vectors. In S→S manifold pertur-
bations, after the parameter reset, the output weights were perturbed 
to permute the overlap between the readout and stimulus subspaces:

Wout,S→S = Wout −
4
∑
i=1
WoutlSi l

ST
i +

4
∑
i=1
WoutlSi l

ST
σ(i)

Weight-driven and state-driven VFCs
Over the course of learning problem p, the model’s parameters  
change from their values at the beginning of the problem—that is,  
their pre-learning values (Wp−1

in , Wp−1
rec , bp−1rec , Wp−1

out , bp−1out  and rp−10 ) to  
their values at the end of the problem—that is, their learned values  
(Wp

in, Wp
rec, bprec, Wp

out, bpout and rp0). The difference between the learned  
and pre-learning values of the parameters quantify their change  
due to learning problem p (ΔWp

in, ΔWp
rec, Δbprec, ΔWp

out, Δbpout and Δrp0)  
and are collectively referred to as ΔWp.

Here, we present results relating the changes in these parameters 
to changes in the population’s activity and dynamics. Although the 
results are presented in the context of temporally discretized dynamics, 
they may be readily extended to continuous time dynamics. Due to the 
parameter changes, the population activity in response to inputs upt  is 
altered from its pre-learning levels, r′pt∈[0,T], to its learned ones, rpt∈[0,T] 
(Fig. 4c, left). We derive an expression for this change in population 
activity, zpt∈[0,T], in terms of the parameter changes. Based on the 
time-discretized model Eq. (2), we have:

zpt = r
p
t − r

′p
t

= [(1 − α) rpt−1 + αf (W
p
inu

p
t +W

p
recr

p
t−1 + b

p
rec)]−

[(1 − α) r′pt−1 + αf (W
p−1
in upt +W

p−1
rec r

′p
t−1 + b

p−1
rec )]

= [rpt−1 − r
′p
t−1] + α [−r

p
t−1 + f (W

p
inu

p
t +W

p
recr

p
t−1 + b

p
rec)]−

α [−r′pt−1 + f (W
p−1
in upt +W

p−1
rec r

′p
t−1 + b

p−1
rec )]

= [rpt−1 − r
′p
t−1] + α [−r

p
t−1 + f (W

p
inu

p
t +W

p
recr

p
t−1 + b

p
rec)]−

α [−r′pt−1 + f (W
p−1
in upt +W

p−1
rec r

′p
t−1 + b

p−1
rec )]+

α [−rpt−1 + f (W
p−1
in upt +W

p−1
rec r

p
t−1 + b

p−1
rec )]−

α [−rpt−1 + f (W
p−1
in upt +W

p−1
rec r

p
t−1 + b

p−1
rec )]

Rearranging the terms, we have:

zpt = z
p
t−1+

α [{−rpt−1 + f (W
p−1
in upt +W

p−1
rec r

p
t−1 + b

p−1
rec )} −

{−r′pt−1 + f (W
p−1
in upt +W

p−1
rec r

′p
t−1 + b

p−1
rec )}] +

α [f (Wp
inu

p
t +W

p
recr

p
t−1 + b

p
rec) − f (W

p−1
in upt +W

p−1
rec r

p
t−1 + b

p−1
rec )]

(3)

This expression shows that the change in population activity 
emerges from an accumulation of activity change increments, ∆zpt   
(Fig. 4c, center):

∆zpt = z
p
t − z

p
t−1 (4)

These increments are composed of two terms:

∆zpt = ∆Fieldps,t +∆Fieldpw,t (5)

The first term, ∆Fieldps,t, expresses the difference in the 
pre-learning vector field at the positions in state space along the 
learned (rpt−1) and pre-learning (r′pt−1) trajectories (Fig. 4d, left). It is 
referred to as the state-driven VFC:

∆Fieldps,t = α [{−r
p
t−1 + f (W

p−1
in upt +W

p−1
rec r

p
t−1 + b

p−1
rec )} −

{−r′pt−1 + f (W
p−1
in upt +W

p−1
rec r

′p
t−1 + b

p−1
rec )}]

(6)

The second term, ∆Fieldpw,t, expresses the change in the vector 
field at population states along the learned trajectory due to the param-
eter changes (Fig. 4d, center, and Fig. 4b, right). It is referred to as the 
weight-driven VFC:

∆Fieldpw,t = α [f (W
p
inu

p
t +W

p
recr

p
t−1 + b

p
rec) − f (W

p−1
in upt +W

p−1
rec r

p
t−1 + b

p−1
rec )]
(7)

The weight-driven VFC stems from the change in the net afferent 
currents to the population, ∆Currentpw,t, due to the parameter changes 
(Fig. 4b, left):
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∆Fieldpw,t = α [f (W
p
inu

p
t +W

p
recr

p
t−1 + b

p
rec) − f (W

p−1
in upt +W

p−1
rec r

p
t−1 + b

p−1
rec )]

= α [f ((Wp−1
in +∆Wp

in)u
p
t + (Wp−1

rec +∆Wp
rec) r

p
t−1

+(bp−1rec +∆bprec)) − f (W
p−1
in upt +W

p−1
rec r

p
t−1 + b

p−1
rec )]

= α [f (Wp−1
in upt +W

p−1
rec r

p
t−1 + b

p−1
rec +∆Currentpw,t)−

f (Wp−1
in upt +W

p−1
rec r

p
t−1 + b

p−1
rec )]

(8)

where ∆Currentpw,t is determined by ∆Wp
in, ∆Wp

rec and ∆bprec as:

∆Currentpw,t = ∆Wp
inu

p
t +∆Wp

recr
p
t−1 +∆bprec (9)

The change in initial population state is defined as 
∆zp0 = ∆rp0 = rp0 − r

p−1
0 . We omit the contribution of this change from 

our analyses, as it consistently showed a negligible effect on the  
evolution of the learned trajectory and the activity changes, across  
all problems and networks tested.

The contribution of the two VFC terms to the activity change  
increment, ∆zpt , was measured by their magnitude along, or in  
the direction of, ∆zpt  (Fig. 5a). This was computed by vector projec-
tion as:

||∆Fieldpμ,t||
∆zp||

= ∆Fieldpμ,t ⋅ ∆̂z
p
t

where μ ∈ {w, s},· represents the dot product operator, and ∆̂zpt  is  

the unit vector in the direction of ∆zpt  (∆̂zpt =
∆zpt

‖
‖∆zpt

‖
‖2
). Therefore, the 

VFC along ∆zpt  is given by:

∆Fieldpμ,t,Δzp||
= ||∆Fieldpμ,t||

∆zp||
∆̂zpt (10)

The remainder of each VFC term represents its components 
orthogonal to ∆zpt  (Fig. 5a):

∆Fieldpμ,t,Δzp⊥ = ∆Fieldpμ,t −∆Fieldpμ,t,Δzp|| (11)

To compare the relative direction of the orthogonal components 
of the weight-driven and state-driven VFCs (Fig. 5a), we arbitrarily  
(but without loss of generality) chose the direction of ∆Fieldps,t,Δzp⊥  

as the reference—signed magnitudes were computed by vector  
projection of ∆Fieldpμ,t,Δzp⊥  onto a unit vector in the direction of 
∆Fieldps,t,Δzp⊥.

The magnitude of change in the input and recurrent connec-
t i o n  weights was measured by their Frobenius norm, 
‖
‖W

p −Wp−1‖
‖F =√∑i,j (Wp (i, j) −Wp−1 (i, j))2 . Supplementary Methods  

1.3.1 describes how we evaluate the contribution of changes in indi-
vidual parameters (for example, input versus recurrent connection 
weights or recurrent weights from the decision versus stimulus sub-
space) to the change in the weight-driven VFC and the reciprocal inter-
actions between decision and stimulus representations in sustaining 
the learned population trajectories.

Effects of weight change accumulation across problems
We measured the contribution of the weight changes elicited while 
learning problem p − k (∆Wp−k, for 1 ≤ k ≤ p − 2) to the cumulative VFC 
along the learned trajectory for problem p (∆Fieldp−k,pw,t ) as:

∆Fieldp−k,pw,t = α [f (Wp−k
in upt +W

p−k
rec r

p
t−1 + b

p−k
rec )−

f (Wp−k−1
in upt +W

p−k−1
rec rpt−1 + b

p−k−1
rec )]

(12)

Then, the cumulative VFC due to the accumulation of weight 
changes across all the learned problems from p − k to p − 1 was given by:

∑k
j=1∆Field

p−j,p
w,t = α [f (Wp−1

in upt +W
p−1
rec r

p
t−1 + b

p−1
rec )−

f (Wp−k−1
in upt +W

p−k−1
rec rpt−1 + b

p−k−1
rec )]

(13)

The magnitude of cumulative VFC along the parallel (∆zp||) and 
orthogonal (∆zp⊥) components of the VFC for problem p were computed 
via vector projection of the cumulative VFC onto unit vectors in the 
direction of the VFC components. Specifically, given that the vectors 
∆Fieldpw,t,Δzp||

 (∆Fieldpw,t,Δzp⊥) are nearly one-dimensional across trial time 

t within problem p (Fig. 5c), we applied principal component analysis 
to find a single basis (unit-norm) vector, ∆F̂ield

p
w,e,Δzp|| (∆F̂ield

p
w,e,Δzp⊥ ), 

that accurately represents their shared direction during each 
non-overlapping 250-ms epoch, e, of the trial. The magnitude of the 
cumulative change along the parallel/orthogonal VFC component was 
given by:

|||∑
k
j=1 ∆Field

p−j,p
w,t

|||
∆zpμ

= |||(∑
k
j=1 ∆Field

p−j,p
w,t ) ⋅∆F̂ield

p
w,e,Δzpμ

||| (14)

where μ ∈ {||, ⊥}, and time t lies within the interval of epoch e. The  
magnitudes of cumulative VFC contribution by individual problems 

along the parallel/orthogonal VFC component (||∆Field
p−k,p
w,t

||
∆zpμ

)   
were computed similarly.

The signed cumulative VFC and per-problem cumulative VFC 
contributions in Supplementary Fig. 10c were calculated as above but 
without taking the absolute value on the righthand side.

The per-trial magnitude of the cumulative VFC contribution by 

problem p − k to problem p was calculated as 
||∆Fieldp−k,pw,t

||
∆zpμ

l(p−k)
, where l(p − k) 

is the trials to criterion for problem p − k. The sum of the magnitudes 
of the cumulative VFC contributions to problem p was calculated as 
∑p−2
j=1

||∆Field
p−j,p
w,t

||
∆zpμ

.

The magnitude of net suppression of problem pʼs weight-driven 
VFC along its parallel/orthogonal component is defined as the net 
suppression in the direction of the corresponding component due to 
net weight changes between the start of problems 2 and p. It was com-
puted from the total VFC along the learned trajectory for problem p 
since the start of problem 2. Let ∆Fieldtotal,pw,t  represent this total VFC at 
time t:

∆Fieldtotal,pw,t =
p−2
∑
j=1

∆Fieldp−j,pw,t +∆Fieldpw,t

Then, the total change along the parallel/orthogonal VFC com-
ponent was given by:

∆Ftotal,p
w,t,∆zpμ

= ∆Fieldtotal,pw,t ⋅∆F̂ield
p
w,e,Δzpμ

We applied a sign correction to this quantity to ensure that its 
temporal mean is always positive. This allowed us to accurately calcu-
late the net suppression. After sign correction, ∆Ftotal,p

w,t,∆zpμ
 becomes:

∆̃F
total,p
w,t,∆zpμ = sgn (∆F

total,p
w,.,∆zpμ

)∆Ftotal,p
w,t,∆zpμ

where ∆Ftotal,p
w,.,∆zpμ

 represents the temporal mean of ∆Ftotal,p
w,t,∆zpμ

 over time t 
within a trial, and sgn() represents the signum function. Similarly, the 
weight-driven VFC for problem p along its parallel/orthogonal com-
ponents was given by:
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∆Fp
w,t,∆zpμ

= ∆Fieldpw,t ⋅∆F̂ield
p
w,e,Δzpμ

Then, the magnitude of net suppression along the parallel/orthog-
onal VFC component for problem p was:

∆̃F
net,p
w,t,∆zpμ = ∆̃F

total,p
w,t,∆zpμ −∆Fp

w,t,∆zpμ
(15)

The progression of this quantity over the learning-to-learn time 
course can be described in terms of the number of previously learned 
problems. We note that the temporal mean of the magnitude of the 

weight-driven VFC along its parallel/orthogonal component (∆Fp
w,.,∆zpμ

) 

decays exponentially from problem 2 onwards until an asymptotic value 
bμ is converged upon (as in Fig. 6b). This decay may be expressed as:

(∆Fp
w,.,Δzpμ

− bμ) = (∆F2
w,.,Δz2μ

− bμ) rp−2μ

for an appropriate base rμ < 1. Taking the temporal mean of Eq. (15) over 
trial time t, we have:

∆̃F
net,p
w,.,∆zpμ = ∆̃F

total,p
w,.,∆zpμ −∆Fp

w,.,∆zpμ

= ∆̃F
total,p
w,.,∆zpμ − (∆Fp

w,.,∆zpμ
− bμ + bμ)

= ∆̃F
total,p
w,.,∆zpμ − (∆Fp

w,.,Δzpμ
− bμ) − bμ

= ∆̃F
total,p
w,.,∆zpμ − (∆F2

w,.,∆z2μ
− bμ) rp−2μ − bμ

Rearranging, we have:

∆̃F
net,p
w,.,∆zpμ = (∆̃F

total,p
w,.,∆zpμ − bμ) − (∆F2

w,.,∆z2μ
− bμ) rp−2μ (16)

This equation expresses the progression of the magnitude of net 
suppression over the learning-to-learn time course and determines its 
shape as a function of the number of previously learned problems  

(Fig. 7b). Note that, when the first term (∆̃F
total,p
w,.,∆zpμ − bμ)  is roughly  

constant across learning-to-learn stages (as we found by measure-
ment), the magnitude of net suppression is given by an inverted expo-
nential function.

Finally, we determined the relative contributions of the cumulative 
input versus recurrent weight changes to the cumulative VFC along the 
orthogonal VFC component (Supplementary Fig. 8c). To do so, we calcu-
lated the cumulative VFC for problem p solely due to the accumulation 
of input weight changes elicited by previously learned problems as:

k
∑
j=1

∆Fieldp−j,pwin ,t

= α [f (Wp
inu

p
t +W

p
recr

p
t−1 + b

p
rec) − f (W

p−k−1
in upt +W

p
recr

p
t−1 + b

p
rec)]

The cumulative VFC solely due to recurrent weight changes was 
calculated similarly. Both quantities were then projected onto the basis 
vector for the orthogonal VFC components in problem p (as in Eq. (14)), 
to compare their contributions along this component.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data files, including pre-trained networks, are available for further 
analyses on GitHub (https://github.com/xjwanglab/learning-2-learn) 
in Python and MATLAB readable formats.

Code availability
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