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N E U R O S C I E N C E

The neural basis of delayed gratification
Zilong Gao1,2†, Hanqing Wang3†‡§, Chen Lu4, Tiezhan Lu1,2, Sean Froudist-Walsh3, Ming Chen4, 
Xiao-Jing Wang3*, Ji Hu4,5*, Wenzhi Sun2,6*

Balancing instant gratification versus delayed but better gratification is important for optimizing survival and 
reproductive success. Although delayed gratification has been studied through human psychological and brain 
activity monitoring and animal research, little is known about its neural basis. We successfully trained mice to 
perform a waiting-for-water-reward delayed gratification task and used these animals in physiological recording 
and optical manipulation of neuronal activity during the task to explore its neural basis. Our results showed that the 
activity of dopaminergic (DAergic) neurons in the ventral tegmental area increases steadily during the waiting period. 
Optical activation or silencing of these neurons, respectively, extends or reduces the duration of waiting. To interpret 
these data, we developed a reinforcement learning model that reproduces our experimental observations. Steady 
increases in DAergic activity signal the value of waiting and support the hypothesis that delayed gratification 
involves real-time deliberation.

INTRODUCTION
To optimize survival and reproductive success, animals need to 
balance instant gratification versus delayed but better gratification. 
Repeated exposure to instant gratification may disrupt this balance, 
thereby increasing impulsive decisions. These decisions contribute 
to numerous human disorders, such as addiction and obesity (1, 2). 
Delayed gratification is an important process that balances time delay 
with increased reward (3). It is influenced by strengths in patience, 
willpower, and self-control (4). Psychologists and neuroscientists 
have long studied this important behavior through human psycho-
logical and brain activity assessments and rodent-based studies. 
Although the dopamine system has been implicated in delayed 
gratification, the precise neural activity of the dopamine system that 
allows better gratification has not been demonstrated. In addition, 
no studies to date have causally manipulated the dopamine system 
during delayed gratification tasks.

During a well-controlled delayed gratification task, an individual 
must balance the benefits versus risks of delay in receiving an avail-
able reward. The choice to continue waiting requires suppression of 
the constant temptation of an immediate reward, in favor of an 
enhanced reward in the future (3, 5, 6). Midbrain dopaminergic 
(DAergic) neurons are well known to play central roles in reward-
related and goal-directed behaviors (7–12). Studies have revealed that 
DAergic activity signals spatial or operational proximity to distant 
rewards (7, 13, 14), which has been postulated to sustain or motivate 
goal-directed behaviors while resisting distractions. DAergic neu-
rons play important roles in time judgment (15) and cost-benefit 

calculations, which are necessary for value-based decision-making 
(13, 16–18).

We successfully trained mice to perform a waiting-for-water-
reward delayed gratification task. Recording and manipulation of 
neuronal activities during this task allowed us to explore the cellular 
regulation of delayed gratification. We found that the activity of 
ventral tegmental area (VTA) DAergic neurons ramped up consist
ently while mice were waiting in place for rewards. Transient acti-
vation of DAergic neurons extended, whereas inhibition reduced 
the duration of the waiting period. Then, we adopted reinforcement 
learning (RL) computational models to predict and explain our ex-
perimental observations.

RESULTS
Mice can learn to wait for greater rewards by delayed 
gratification task training
First, we trained water-restricted mice to perform a one-arm foraging 
task (pretraining) in which delay did not result in an increased re-
ward (19). The period in which the mouse remained in the waiting 
zone was defined as the waiting duration, and the time during which 
the mouse traveled from the waiting zone to reach the water reward 
was defined as the running duration (Fig. 1A, left). When the mouse 
exited the waiting zone and licked the water port in the reward 
zone, it could receive a 10-l water drop regardless of the time spent 
in the waiting zone [Fig. 1A, right (black line)]. During a week of 
training, the average waiting and running durations both signifi-
cantly decreased from days 1 to 7 (day 1: waiting, 5.58 ± 0.63 s; run-
ning, 3.46 ± 0.28 s; P < 0.001; day 7: waiting, 1.99 ± 0.19 s; running, 
1.28 ± 0.09 s; P < 0.001, n = 7 mice, Friedman test; Fig. 1, C to E, and 
movie S1). All mice learned the strategy of reducing durations of 
both waiting and running to maximize the reward rate (defined as 
microliters of water per second in a given trial; fig. S1C).

Next, we trained the same mice using a delayed gratification 
paradigm, where the size of the reward increased quadratically with 
time spent in the waiting zone [Fig. 1A, right (green line)]. Over the 
next 3 weeks, this resulted in shifting the distributions of the wait-
ing duration toward a longer wait. The averaged waiting period sig-
nificantly increased from 2.76 ± 0.15 s on day 1 to 4.62 ± 0.30 s on 
day 15 (P < 0.001, n = 7 mice, Friedman test; Fig. 1, F and H, and 
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movie S2). Continuous training steadily increased the averaged 
waiting duration, whereas the training did not change the average 
running duration from 1.19 ± 0.13 s on day 1 to 1.24 ± 0.10 s on day 
15 (P = 0.97, n = 7 mice, Friedman test; Fig. 1, G and H). The reward 
rate increased steadily, indicating that the mice were successfully 
learning to successfully delay gratification (fig. S1D).

The activity of VTA DAergic neurons increases steadily 
during the waiting period
To monitor the activity of VTA DAergic neurons during the delayed 
gratification task, we used fiber photometry to record the calcium 
signals in VTA DAergic neurons in freely moving mice for as long 
as 1 month (Fig. 2, A to C; optical fiber placement illustrated in 
fig. S2). On the first day of pretask training, the calcium signal rose 
rapidly upon reward and quickly reached a peak. A few days of 

training markedly reshaped the response pattern. Once the mice 
reentered the waiting zone, the activity of DAergic neurons started 
to rise and reached the highest level when the animal received a 
reward (fig. S3A).

We next analyzed the activity of these same neurons in the mice 
as they learned the delayed gratification task. The recording traces 
showed that training gradually reshaped the pattern and time course 
of activity (Fig. 2D). The activity started to ramp up once the mice 
entered the waiting zone and then reached its highest level when 
they exited. To investigate carefully the dynamical properties of the 
ramping activity during waiting, we sorted the calcium signals from 
day 15 of one mouse by their length of waiting durations and plot-
ted them with a heatmap (Fig. 2E). We divided trials according to 
the trial outcome (reward volume) and calculated the calcium sig-
nals while the mouse exited the waiting zone with different reward 
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Fig. 1. The behavioral performance of mice during learning of a delayed gratification task. (A) Left: Schematic of the delayed gratification task. Right: Relationship 
between reward volumes and waiting durations in the two behavioral tasks. (B) A plot of transistor-transistor logic signals for the chronological sequence of behavioral 
events in the tasks. (C to E). The waiting duration and running duration both decreased during the training process in the pretraining phase (P < 0.001). (F) The distribution 
of waiting durations from the behavioral session on the last analyzed day (day 15, light red), revealing significantly longer waiting durations compared to those from day 1 
(day 1: gray, n = 7 mice). (G) The distribution of running durations on days 1 and 15 did not differ with training. (H) Continuous training significantly increased the average 
waiting duration (P < 0.001), whereas the training did not change the average running duration (P = 0.97).
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volumes. Our results showed that the z-scored calcium signals at 
0.5 s before exit were significantly increased as reward volumes in-
creased [F = 24.67, P < 0.001, n = 7, one-way analysis of variance 
(ANOVA); Fig. 2F], but the mean signal curves followed similar 
trajectories regardless of trial outcome (Fig. 2G). Then, we calculated 
the slopes of signal curves with different outcomes over four time 
windows (0 to 2, 2 to 4, 4 to 6, and 6 to 8 s) by linear regression 
analysis. The slopes during the same time window did not differ 
significantly between reward groups (0 to 2 s: F = 0.10, P = 0.96; 2 to 

4 s: F = 1.03, P = 0.38; 4 to 6 s; F = 1.00, P = 0.34, n = 7, one-way 
ANOVA; Fig. 2H). We pooled and plotted the slopes of different 
waiting periods together and found that the activity curves kept 
rising steadily, almost saturating after 6 s from the time the mice 
entered the waiting zone. The ramp-up of DAergic activity became 
less variable with delayed gratification task training in our experi-
mental data (fig. S4, A to D). All these results indicated that VTA 
DAergic neurons consistently ramp up their activity during waiting 
in as animals are trained in the delayed gratification task.
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Fig. 2. VTA DAergic activity ramps up consistently while the mice are waiting for the reward. (A) Schematic of stereotaxic virus injection procedures. (B) Confocal 
images illustrating GCaMP6m expression in VTA TH+ neurons. (C) A live recording trace (magenta) of Ca2+ signal in VTA DAergic neurons and running speed (black) when 
the mouse was performing the delayed gratification task. Task events over time (top): The dashed vertical lines indicate waiting onset (blue), waiting termination (green), 
and reward onset (red). (D) The scaled Ca2+ signals (magenta) and green fluorescent protein signal (green) curves of VTA DAergic neurons from the last day of pretraining 
and days in the delayed gratification task training (black, speed). (E) Waiting duration sorted ramping Ca2+ signal data from one mouse during the delayed gratification 
task training (150 trials). (F) z-scored F/F values at 0.5 s before exit were significantly different when the reward volumes were different (***P < 0.001). (G) Averaged Ca2+ 
signal curves with different outcomes from (E). (H) Shown separately for different trial stages (DAergic ramping periods) during the last week of training. There were no 
differences in the slope of the Ca2+ signals between trials with different reward outcomes. NS, not significant. WPRE, Woodchuck Post-transcriptional Regulatory Element; 
PMT, PhotoMultiplier Tube; TH, Tyrosine Hydroxylase.
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High-frequency spiking of VTA DAergic neurons sustains 
waiting in the delayed gratification task
Does tonic or phasic firing of DAergic neurons underlie the ramping 
calcium signal? To answer this, we conducted single unit recordings 
when mice were performing the delayed gratification task (Fig. 3A). 
A custom-made head plate was placed on the skull and affixed in 
place with dental cement. After recording, placements of recording 
electrodes were confirmed with electrolytic lesion inside VTA of all 
five mice (Fig. 3B). We found that 17 putative DAergic neurons dis-
played short bursts of firing during the waiting period (Fig. 3C). On 
trials in which the mice waited for a short duration, the firing rate 

was low throughout the waiting period (Fig. 3, D to E). On trials in 
which the mice waited for a long duration, the firing rate was initially 
low before increasing during the later waiting period (Fig. 3, D to 
E). We averaged peristimulus time histograms (PSTHs) of all trials 
to obtain a response curve (n = 17 cells; Fig. 3F). Similar to calcium 
signal, the response curve of firing rate noticeably ramped up with 
increased waiting time before reaching a plateau at around 4 s. To 
compare with the experimental calcium signal, we used a convolu-
tion algorithm to predict calcium responses trial by trial based on 
the firing rate of all 17 recorded cells (Fig. 3G showed the predicted 
calcium responses from Fig. 3E). The average of predicted calcium 
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Fig. 3. Single unit recordings reveal that high-frequency spiking of VTA DAergic neurons sustains waiting in the delayed gratification task. (A) Schematic of 
single unit electrical recordings in the delayed gratification task. DAQ, Data Acquisition. (B) An example image showing the placement of electrode tips in VTA with an 
electrolytic lesion. (C) An example recording trace when a mouse performed a whole trial of the delayed gratification task. The waiting period was noted with a solid 
magenta line. (D) Raster plot of spikes trial by trial sorted by waiting duration of the delayed gratification task. (E) Three-dimensional PSTH plot for (D). (F) Average 
response curve during the waiting period (n = 17 cells, each dashed line represents one cell). (G) Predicted calcium responses based on the convolution of the spike rate 
from (E) with a 0.1-s time bin. (H) The predicted calcium response curve (black) is based on the spiking response curves in (F), compared to the measured calcium 
response curve (blue line) (r = 0.982, Pearson correlation).
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signal (F/F %, 0.5 s before exiting from all trials) of all cells fit the 
measured calcium response (z-scored F/F, 0.5 s before exit from the 
last week of training) curve very well (r = 0.982, Pearson correlation; 
Fig. 3H). This analysis shows that the spiking activity of single 
DAergic neurons underlies the ramping calcium signal revealed by 
fiber photometry recording.

Optogenetic manipulation of VTA DAergic activity alters 
the waiting durations in the delayed gratification task
To determine whether VTA DAergic activity controls performance 
in the delayed gratification task, we manipulated VTA DAergic 
neurons temporally using optogenetic tools in 20% of pseudorandomly 
chosen trials while the mice were waiting during the delayed grati-
fication task (Fig. 4, A to C). Activating the VTA DAergic neurons 
shifted the cumulative probability distribution toward a longer 
waiting duration (F = 12.93, P = 0.002, n = 6 mice, one-way ANOVA; 
Fig. 4D, blue), while inhibiting these same neurons shifted the dis-
tribution significantly in the opposite direction (F = 7.76, P = 0.008, 
n = 6 mice, one-way ANOVA; Fig. 4E, yellow). The effects of 
optogenetic stimulation or inhibition on the cumulative probability 

distributions for waiting duration were only observed in the laser-on 
trials. In contrast, the laser-off trials, including those immediately 
after the laser-on trials treated as a single group, were not signifi-
cantly different from the trials from the previous day (P > 0.5; 
Fig. 4, D and E). The optical manipulation did not influence the 
running durations in the delayed gratification task in mice that ex-
pressed Channelrhodopsin-2 (ChR2) or enhanced Halorhodopsin 3.0 
(eNpHR3.0) (fig. S5, A and B), nor did it change the waiting duration 
distribution of mice that expressed mCherry in DAergic neurons in 
delayed gratification tasks (fig. S6, A and B). To rule out the possi-
bility of optogenetic manipulation–induced memory, we performed 
a random place preference test with the same stimulation dosage. 
Neither activating nor inhibiting VTA DAergic neurons significantly 
changed the transient waiting duration or pattern in the location in 
which the laser was activated in any of the tested mice (fig. S5, E to 
H) or in the mCherry expressing controls (fig. S6, C to F).

An RL model suggests that ramping up VTA DAergic activity 
signals the value of waiting for delayed gratification
How does a mouse manage to wait longer for a larger reward while 
ignoring smaller but more immediate reward options? We propose 
two models of behavioral scenarios that exemplify possible strategies 
a mouse may implement to achieve extended waiting performances: 
(i) setting a goal of expected waiting duration before the initiation 
of waiting or (ii) continuously deliberating during the waiting period. 
According to the first hypothesis (i), we modeled an RL agent that 
keeps time until a predetermined moment has passed (Fig. 5A, De-
cision Ahead); according to (ii), we modeled a second RL agent that 
continuously balances the values of waiting versus leaving to con-
trol the decision to wait or to leave for the reward. To implement 
these models, we used a version of the state-action-reward-state-
action (SARSA) algorithm with a series of states (Fig. 5A, Continuous 
Deliberation; see Materials and Methods) (20, 21). The behaviors of 
both models were able to replicate the behavioral performance that 
we observed in animal experiments (Fig. 5, B and C). The distribu-
tions of behavioral performances between early training days and 
late training days from the experimental data were very different 
from each other, such that the Kullback-Leibler (KL) divergence was 
large (0.39 ± 0.06). The KL divergences between the distributions of 
simulated behavioral performances and experimental data were sig-
nificantly small to the large KL divergence value (P = 0.005, n = 7 
mice, Friedman test), and there was no difference (P > 0.99) be-
tween Decision Ahead RL model and Continuous Deliberation RL 
model in either the early or late training session. (Fig. 5D). We 
could not determine which model is better on the basis of behav-
ioral performance alone, given that both models reproduced the 
behavioral data well.

What does the ramping up of DAergic activity mean in the de-
layed gratification task? We tried to explain it with our RL models. 
In the Decision Ahead model, the agent keeps time until the pre-
determined moment has passed, which suggests that the ramping 
DAergic activity may relate to timing in the delayed gratification 
task. Some studies have proposed that the ramping activity is con-
sistent with a role in the classical model of timing, with the move-
ment being initiated when the ramping activity reaches a nearly fixed 
threshold value, following an adjusted slope of ramping activity 
(22–25). In contrast, our results showed that the DAergic activity 
ramped up to different values with similar trajectories on at a nearly 
constant slope (Fig. 2, F to H). This suggests that VTA DAergic 
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neurons may not implement a decision variable for the Decision 
Ahead scenario. In the Continuous Deliberation RL model, we 
compared the curves of the value of waiting and leaving with the 
ramping up of DAergic activity and found that the behavioral per-
formance of both animals and model agents reached the asymptote. 
The values of waiting (r = 0.99, Pearson correlation; Fig. 5E, purple) 
and the leaving (r = 0.91, Pearson correlation; Fig. 5E, green) each 
correlated positively with the ramp of DAergic activity during 
waiting (z-scored F/F, 0.5 s before exit from the last week of training; 
Fig. 5E, blue). This detailed analysis suggested that the Continuous 
Deliberation RL model agreed with previous studies (13,  26–28) 
and that ramping DAergic activity signals the value of actions, ei-
ther waiting or leaving, in the delayed gratification task.

In the Decision Ahead RL model, if the agent keeps timing 
during the waiting period through ramping DAergic activity to 
encode the elapse of time (29–31), then extra VTA DAergic activation 

should represent a longer time, thus leading to earlier cessation of 
waiting. This prediction is contrary to our optogenetics result that 
DAergic activation led to a longer waiting (Fig. 4D). Instead, we 
reproduced the optogenetic manipulations in the Continuous 
Deliberation RL model by either increasing or decreasing the value 
of waiting (Qwait) in a pseudorandom 20% of trials. The increase or 
decrease in waiting durations only occurred in the Qwait-manipulated 
trials (P < 0.001, Friedman test, n = 10), whereas the remaining 
trials, including the next trials after value manipulation, did not 
differ significantly from controls (P > 0.999, Friedman test, n = 10; 
Fig. 5, F to G). Manipulating the value of leaving (Qleave) in a pseu-
dorandom 20% of trials induced the opposite results, inconsistent 
with the experimental data (fig. S8, A and B). Manipulating the 
reward prediction error (RPE) signal in the model led to persistent 
changes to the waiting time on subsequent trials (fig. S8, C and D). 
This is inconsistent with the experimental finding that optogenetic 
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manipulation of dopamine neuron firing only affects waiting time 
on the current trial (Fig. 4, D and E). Thus, the ramping dopamine 
signal is not consistent with an RPE signal in the delayed gratifica-
tion task. Our experimental data and the Continuous Deliberation 
RL model together indicated that the ramping up of VTA DAergic 
activity profoundly influenced the waiting behavioral performance 
in the delayed gratification task, which suggested that this activity 
signals the value of waiting, rather than the value of leaving or 
RPE. Conceptually, our analysis revealed that delayed gratification 
involves real-time deliberation.

VTA DAergic activity during waiting predicts the behavioral 
performance in the delayed gratification task
Our optogenetic manipulation experiments and Continuous 
Deliberation RL model indicated that VTA DAergic activity during 
waiting influenced the waiting durations while the mouse per-
formed the delayed gratification task (Figs. 4, D and E, and 5, F and 
G). Although the activity of VTA DAergic neurons ramped up 
consistently during waiting (Fig. 2, G and H), it still fluctuated to a 
certain extent moment by moment. Therefore, we sought next to 
determine whether this fluctuation of DAergic activities influences 
the waiting behavior in the delayed gratification task. A strong 
prediction made by the Continuous Deliberation model is that, if 
DAergic activity signals the value of waiting at each specific moment, 
then a momentary increase in the DA signal will make the agent 
more likely to keep waiting in the next “time bin” but not in subse-
quent time bins (fig. S8, E and F). That is to say, the value of waiting 
is only positively correlated with the behavior of the immediately 
following time bin, which indicates the Markovian nature of the 
model (32). We thus aimed to test the relationship between the am-
plitude of the momentary VTA DAergic signal and the behavior 
(i.e., waiting or leaving) within each time bin to determine how the 
momentary DAergic activity (the calcium signal amplitude in 0 to 
1 s, 1 to 2 s, 2 to 3 s, or 3 to 4 s after waiting onset, shown as each 
cluster of bars in Fig.  6B) affects the waiting performance in the 
subsequent periods (behavior from 1 to 2 s, 2 to 3 s, 3 to 4 s, and 
4 to 5 s for DAergic activity from 0 to 1 s; behavior within 2 to 3 s, 
3 to 4 s, and 4 to 5 s for DAergic from in 1 to 2 s; and so on; Fig. 6A). 
To integrate data from multiple sessions and multiple animals, we 
took advantage of the linear mixed model (LMM) analysis (see 
Materials and Methods) (33–35). We examined the correlation 
between momentary DAergic activity and behavior (i.e., the mo-
mentary binary waiting decision). For the behavior, we coded 
sustained waiting as 1 and leaving in that time bin as 0 (trials that 
stopped before the examined time window were not taken into 
account) for different pairs of time bins. Ten independent LMM 
analyses were done for each activity-behavior pair, as indicated by 
the dash lines in Fig. 6A. The regression coefficients, as well as the 
confidence intervals of each of the 10 pairs, are shown by corre-
sponding bars in Fig. 6B. The correlation is only significantly posi-
tive between adjacent DAergic and waiting bins (P < 0.001, n = 7 
mouse, black lines, regressed coefficient median; boxes, 50% confi-
dence interval; whisker, 95% confidence interval; Fig. 6B, the first 
bar of each cluster, where the DA activity bin is 1  s ahead of the 
waiting bin). There was no significant correlation between DAergic 
activity at 3 to 4 s and behavior at 4 to 5 s (r = 0.007, P = 0.61, n = 7), 
which may result from insufficient data for those long trials. Apart 
from these pairs with adjacent bins, other pairs of DAergic activity 
and waiting behavior did not show any significant correlation 

(Fig. 6B, the remaining bars of each cluster). These results indicate 
that the waiting decision of the current moment is only influenced 
by the most recent DAergic signal but not by DAergic signal further 
in the past, which suggests that deliberation for waiting in delayed 
gratification may be a Markov process as we formalized in the 
Continuous Deliberation RL model (32).

In the Continuous Deliberation RL model, the probability of 
waiting (Pw) positively correlates with the value of waiting (Qwait). 
To explore the impact of DAergic activity on the probability of 
waiting in our experimental data, we binned DAergic activity of 
every trial and normalized data points (VDA) in each momentary 
DAergic period [with each period lasting 1 s and starting from 0 to 
9 s, as shown in Fig. 6C (top right)]. Then, we divided the trials into 
two groups by setting a series of arbitrary thresholds (red: high 
DAergic activity, VDA-Z  ≥  Th; green: low DAergic activity, 
VDA-Z ≤ −Th, where Th was the threshold for the analysis of high/
low DAergic activity) from these trials (Th was set to 0.9; Fig. 6C). 
We analyzed the Pw of low or high DAergic activity trials for the 
adjacent waiting period with different thresholds. In doing so, we 
found that the probability of waiting increased rapidly as the 
absolute value of the threshold increased. The Pw of high DA and 
low DA activity trials fit well with a fifth-degree polynomial func-
tion (R2 = 0.93, −2.1 ≤ threshold ≤ 2.1). When the absolute values 
of the threshold are large enough (|Th| ≥ 1.7), the Pw of the high DA 
activity trials is significantly (P = 0.04, F1,12 = 5.483, two-way ANOVA) 
higher than the Pwait of the low DA-ramping activity trials in adjacent 
waiting periods (|threshold| = 2.0, P = 0.02; |threshold| = 2.1, 
P < 0.001, Sidak’s multiple comparisons test, n = 7; Fig. 6D).

Last, we investigated the influence of fluctuations of intrinsic 
VTA DAergic activity on the waiting performance of mice in the 
delayed gratification task. There were certain trials in which 
DAergic activity across the whole duration of waiting was signifi-
cantly higher (red, high-ramping) or lower (green, low-ramping) 
than the mean DAergic activity (see Materials and Methods). We 
then got two groups of trials and found that the cumulative distri-
bution of waiting durations in high-ramping trials shifted to the 
right, with significantly higher normalized waiting durations 
(1.03 ± 0.01) compared to those low-ramping trials (0.98 ± 0.01, 
P = 0.024, n = 7, paired Student’s t test; Fig. 6E), but there was no 
difference between the normalized waiting durations for the trials 
immediately following the high-ramping and low-ramping trials 
(next trial of high-ramping, 1.01 ± 0.01; next trial of low-ramping, 
0.99 ± 0.01; P = 0.290, n = 7, paired Student’s t test; Fig. 6F). These 
results accorded with our optogenetic manipulation experiment 
(Fig. 4, D and E), which indicated that optogenetically manipulated 
VTA DAergic activity transiently influences the duration of waiting 
in the delayed gratification task.

DISCUSSION
Here, we reported a previously unreported behavioral task in which 
the mice were trained to learn a foraging task with a delayed gratifi-
cation paradigm. Mice learned to wait for bigger rewards that they 
received after waiting for longer (Fig. 1, F to H). On a neural level, 
we found that the calcium signal of VTA DAergic neurons ramped 
up consistently when mice waited in place before taking action to 
fetch the expected reward (Fig. 2, G and H). Further data analysis 
showed that the ramping VTA DA activity indeed influenced the 
behavioral performance of waiting (Fig. 6, B to E), which was 
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confirmed with bidirectional optogenetic manipulations of VTA 
DAergic activity (Fig. 4, D and E). Last, we developed an RL model 
that predicted our experimental observations well and consolidated 
the conclusion that the ramping up of VTA DAergic activity signaled 
the value of waiting in the delayed gratification task, which involved 
real-time deliberation (Fig. 5, B to G).

DA release in the nucleus accumbens (NAc) was previously 
conjectured to sustain or motivate the goal-directed behavior and 
resistance to distractions (13, 14). Here, we explicitly implemented 
continuous less-optimal options during the delayed gratification 
process, in which, to achieve better performance, mice needed to 
sustain waiting and prevent/control impulsivity (3, 6, 36, 37). We 
found remarkable and sustained DAergic activation when mice 

managed to wait longer and further demonstrated a causal link 
between DAergic activation and the increase in transient waiting 
probability. Furthermore, we found DAergic activity ramps up in a 
consistent manner during waiting, mimicking the value of waiting 
along with a series of states in our Continuous Deliberation RL 
model, both of which presumably contributed to pursuing a more 
valuable future goal and resisting the distraction of the less-optimal 
immediate options in our task. The momentary DAergic activity 
was found to correlate positively with the momentary waiting prob-
ability, which also suggested that DAergic activity may be involved 
in the continuous deliberation process. Therefore, we not only 
demonstrated the behavioral significance of DAergic activity in de-
layed gratification but also depicted “a continuous deliberation” 
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Fig. 6. VTADAergic activity during waiting predicts the behavioral performance in the delayed gratification task. (A) Schematic of waiting probability (Pwait) in 
waiting periods after momentary DAergic periods. (B) Relationship between momentary VTA DAergic activity (Ca2+ signals) and its waiting probability. For each momentary 
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framework in which DAergic activity may participate to help achieve 
more flexible and sophisticated performance.

Numerous works have used Pavlovian conditioning in studying 
DAergic activity (10, 12, 38–40). Some studies paired the reward 
with a cue (or cues) such that the animals do not need to per-
form effortful work to obtain rewards. It is well known that this 
kind of DAergic activity signals the RPE via phasic firing. In the 
studies using operant conditioning or goal-directed behavior, the 
animals have to perform actions and need effortful work to ob-
tain outcomes, and a ramping up of DAergic activity was reported 
to emerge while the animals were approaching the reward 
(13, 14, 41, 42). This ramping activity was suggested to signal the 
value of work (13) or a distant reward (14), but key evidence is 
lacking because the change of sensory input flow markedly alters 
the DAergic activity over time. Under such mutual influence, it is 
impossible to identify the RPE or the value of work from external 
cues. The RPE model of ramping activity assumes that the value 
increases exponentially (or at least in a convex curve) as the reward 
is approached. Under this model, sensory feedback is suggested to 
result in the RPE signal ramping up (41, 43, 44), while a lack of 
sensory feedback is predicted to make a flat RPE signal. In contrast, 
the ramping up of DAergic activity is well isolated from the external 
sensory inputs when performing the delayed gratification task in 
our model. Mice continuously deliberate about the current state 
and future rewards without any external sensory inputs while 
waiting in place. Despite the lack of external sensory inputs, we still 
observed the calcium signal of VTA DAergic neurons ramping up 
in a consistent manner, functionally mimicking an inner variable 
of the evolving value of waiting. This observation is consistent 
with the hypothesis of dopamine signaling the value that is related 
to time and effort investment under certain circumstances (13) but 
cannot be immediately explained by an RPE response to external 
sensory inputs.

Midbrain DAergic neurons play an important role in RL 
(9, 11, 12, 45, 46), where activation of DAergic neurons usually 
produces a reinforcement effect on an associated action, stimulus, 
or place. However, in our delayed gratification task, optogenetic 
manipulation of DAergic activity substantially influenced the ongo-
ing behavior during the current trial without a visible reinforcement 
effect on later trials. Notably, this optogenetic manipulation was not 
sufficient to induce a reinforcement effect in the random place 
performance test (RPPT). These results revealed the distinct and 
potent instantaneous effect of DAergic activity during delayed 
gratification. By simulating transient manipulations of variables in 
the RL model, we showed that manipulating dopamine activity was 
equivalent to manipulating the value of waiting in the model. In 
contrast, manipulating the value of leaving or the RPE signal itself 
caused markedly different effects on behavior. The observations 
and analysis in our experiments suggest that the value of waiting is 
represented in VTA DAergic neurons during a delayed gratification 
task. This significantly updates the understanding of the coding 
mechanisms and fundamental functions of the DAergic system in 
delayed gratification. Our results suggested that DAergic neuron 
stimulation during the RPPT test is not rewarding but does lead to 
a shift in wait time. This control experiment was performed to 
exclude the rewarding effect of our DAergic stimulation paradigm 
during the delayed gratification task. However, such a test may not 
be strictly comparable with stimulation during the delayed gratifi-
cation task because of the differences in the behavioral contexts.

The previous finding suggested that reasonable behavior in the 
face of instant gratification requires suppression of reflexive reward 
desiring. Human brain imaging results demonstrated that hemo-
dynamic responses to conditioned (rewarding) stimuli in both the 
NAc and the VTA were significantly attenuated during the desire-
reason dilemma (47). Such discrepancies with our results may be 
the consequence of different behavioral strategies, in which they 
measured the reward-related activation during a desire-reason 
dilemma, and we measured the DA activity during the waiting time. 
In addition, the different temporal and spatial resolution of human 
brain imaging and fiber photometry and electrophysiology may 
lead to the discrepancies, and our ramping pattern of DAergic 
activity also indicated that there are inhibitory tones in the NAc and 
VTA during the beginning phase of wait.

The design of our delayed gratification task recapitulates the 
realistic situation where immediate less-valuable choices lie in the way 
of pursuing a later but possibly larger benefit. A deficit in the ability 
to resist immediate reward for the delayed but possibly larger 
reward is closely related to a variety of disorders such as obesity, 
gambling, and addiction (1, 48). The ramping VTA DAergic activity 
accords with a model of NOW versus LATER decisions in which 
DAergic signals have a strong influence on the prefrontal cortex in 
favoring LATER rewards (2). We propose that the sustained phasic 
VTA DAergic activity during the delay period could serve as a 
neural basis for the power to resist a temptation close at hand and 
improve reward rate or goal pursuit in the long run.

MATERIALS AND METHODS
Mice
Animal care and use strictly followed institutional guidelines and 
governmental regulations. All experimental procedures were approved 
by the Institutional Animal Care and Use Committee at the Chinese 
Institute for Brain Research (Beijing) and ShanghaiTech University. 
Adult (8 to 10 weeks) dopamine transporter (DAT)–internal ribo-
some entry site (IRES)–Cre knock-in mice (JAX, stock no. 006660) 
were trained and recorded. Mice were housed under a reversed 
12-hour day/12-hour night cycle at 22° to 25°C with free access to 
ad libitum rodent food.

Stereotaxic viral injection and optical fiber implantation
After deep anesthesia with isoflurane in oxygen, mice were placed 
on the stereoscopic positioning instrument. Anesthesia remained 
constant at 1 to 1.5% isoflurane supplied per anesthesia nosepiece. 
The eyes were coated with Aureomycin eye cream. The scalp was cut 
open, and the fascia over the skull was removed with 3% hydrogen 
peroxide in saline. The bregma and lambda points were used to 
level the mouse head. A small window of 300 to 500 m in diameter 
was drilled just above the VTA [Anterior–Posterior (AP), −3.10 mm; 
Medial–Lateral (ML), ±1.15 mm; and Dorsal-Ventral (DV), −4.20 mm] 
for viral injection and fiber implantation. A total of 300 nl of 
AAV2/9-hSyn-DIO-GCamp6m (1012) solution was slowly injected 
at 30 nl/min unilaterally for fiber photometry recording. Either 300 nl 
of AAV2/9-EF1a-DIO-hChR2(H134R)-mCherry (1012) or 300 nl of 
AAV2/9-EF1a-DIO-eNpHR3.0-mCherry (1012) was injected bilaterally 
for optogenetic experiments. The injection glass pipette was tilted at 
an angle of 8° laterally to avoid the central sinus. After injection, the 
glass pipette was kept in place for 10 min and then slowly withdrawn. 
An optical fiber [200 m outside diameter (O.D.), 0.37 numerical 
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aperture (NA); Anilab] hold in a ceramic ferrule was slowly inserted 
into the brain tissue with the tip slightly above the viral injection sites. 
The fiber was sealed to the skull with dental cement. Mice were trans-
ferred to a warm blanket for recovery and then housed individually 
in a new home until all experiments were done.

Behavioral tasks
One week after surgery, mice started a water restriction schedule to 
maintain 85 to 90% of free-drinking bodyweight for 5 days. The 
experimenter petted the mice 5 min per day for 3 days in a row and 
then started task training. All behavioral tasks were conducted 
during the dark period of the light/dark cycle.

The foraging task shuttle box had two chambers (10 cm by 10 cm 
by 15 cm) connected by a narrow corridor (45 cm by 5 cm by 15 cm; 
Fig. 1A). A water port (1.2-mm O.D. steel tube, 3 cm above the floor) 
was attached to the end of one chamber, defined as the reward zone, 
with the other as the waiting zone. The position of the mouse in the 
shuttle box was tracked online with a custom MATLAB (2016b, 
MathWorks) program through an overhead camera (XiangHaoDa, 
XHD-890B). The experimental procedure control and behavioral 
event acquisition were implemented with a custom MATLAB pro-
gram and an integrated circuit board (Arduino UNO R3).

One-arm foraging task (pretraining)
A water-restricted mouse was put in the shuttle box for free explo-
ration for up to 1 hour. When the animal traveled from the waiting 
zone through the corridor to the reward zone to lick the water port, 
10 l of water was delivered by a step motor in 100 ms as a reward. 
A capacitor sensor monitored the timing and duration of licking. 
The animals return to the waiting zone to initiate the next trial. 
Exiting from the waiting zone triggered an auditory cue (200 ms at 
4-kHz sine wave with 90 dB) to signal this exit from the waiting 
zone. The time spent in the waiting zone was defined as the waiting 
duration. The training was conducted every day for a week. All mice 
learned to move quickly back and forth between the two chambers 
to maximize the reward rate within 1 week.

Delayed gratification task
From the second week, the volume of water reward was changed to 
a function proportional to the waiting time: a wait time of 0 to 2 s 
for 0 l; 2 to 4 s triggered delivery of 2 l; 4 to 6 s, 6 l; 6 to 8 s, 18 l; 
and >8 s, 30 l, as shown in Fig. 1A. The training was conducted 
5 days a week, from Monday to Friday.

Pw calculation
We divided all trials into two groups, waiting trials and leaving 
trials, according to whether the animal remained to wait or left 
during a given time interval, such as 1 s after each behavioral period. 
Then, we calculated the Pw in this given time interval by the number 
of “waiting trials” [Nw(n)] and the number of “leaving trials” [NL(n)] 
in the time window n

	​​ P​ w(n)​​  = ​  
​N​ w(n)​​ ─ ​N​ w(n)​​ + ​N​ L(n)​​

 ​​	

Then, we could calculate the Pw for a given time duration

	​​ P​ w​​ = ​ 
​∑ 0​ 9 ​​ ​N​ w(n)​​  ────────────  

​∑ 0​ 9 ​​ ​N​ w(n)​​ + ​∑ 0​ 9 ​​ ​N​ L(n)​​
 ​​	

Linear mixed model
We implemented the LMM analysis using the open-source Python 
package “statsmodels” (www.statsmodels.org/stable/mixed_linear.
html). The binary value of waiting or leaving during a specific 
behavioral period tbeh was set as the dependent factor [tbeh = [1, 2), 
[2, 3), [3, 4), or [4, 5); unit, seconds]. The fluctuation of momentary 
DA signal from its mean during a preceding period tDA was set as 
fixed effects [tDA = [0, 1), [1, 2), [2, 3), [3, 4); unit, seconds; note that 
tDA is always smaller than tbeh]. The animal identity and session 
numbers were set as a random effect (n = 5 for each animal from the 
third week). The parameters of the model were estimated by re-
stricted maximum likelihood estimation.

Optogenetic stimulation
Lasers, with wavelength of 473 nm for activation and 589 nm for 
inhibition, were coupled to the common end of a patchcord 
(200-m O.D., 1 m long, and 0.37 NA). The patchcord split through 
an integrated rotatory joint into two ends connected to optical fibers 
implanted as described above (200-m O.D. and 0.37 NA) for 
bilateral light delivery. First, the mice were trained for 3 weeks to 
learn the delayed gratification task. Optical stimulation was deliv-
ered pseudorandomly in ~20% of behavioral trials in the test experi-
ment. Square pulses of 20 ms at 10 Hz for activation or a continuous 
stimulation for inhibition were delivered. The laser was set to ON 
when the animal entered the reward zone and to OFF upon exiting 
from the reward zone. The maximal laser stimulation was no longer 
than 16 s, even if, in the case, a mouse stayed in the waiting zone 
longer than this time. Continuous laser power at the tip of the 
splitting patchcord was about 10 mW for the 473-nm laser and 
8 mW for the 589-nm laser, respectively.

Random place performance test
After finishing optogenetic tests for delayed gratification, all mice 
took an RPPT. The RPPT was carried on in a rectangular apparatus 
consisting of two chambers (30 cm by 30 cm by 30 cm) separated by 
an acrylic board. With an 8-cm-wide door open, the mice could 
move freely between the two chambers. Before testing, each mouse 
was placed into the apparatus for 5-min free exploration. The RPPT 
consisted of two rounds of 10-min tests. First, we randomly as-
signed one chamber as a test chamber. Laser pulses were delivered 
with 20% possibility (in accord with the setting of laser pulses 
delivering in delayed gratification task) while the mouse entered 
the test chamber. The delivery of light, no longer than 16 s, stopped 
while the mouse exited the test chamber. Next, we switched the 
chamber in which laser pulses were delivered. The laser output 
power and pulse length were set the same as in the optogenetic 
manipulations in the delayed gratification task. In this task, we 
analyzed the time in each chamber with or without laser delivered.

Fiber photometry recording
During the behavioral task training and test, we recorded the 
fluorescence signal of VTA DAergic neurons. The signal was ac-
quired with a fiber photometry system equipped with a 488-nm 
excitation laser and a 505- to 544-nm emission filter. The GCaMP6m 
signal was focused on a photomultiplier tube (Hamamatsu, R3896 
and C7319) and then digitalized at 1 kHz and recorded with a 1401 
digitizer and Spike2 software (Cambridge Electronic Design, 
Cambridge, UK). An optical fiber (200-m O.D., 0.37 NA, and 1.5 m 
long; Thorlabs) was used to transfer the excitation and emission 
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light between recording and brain tissue. The laser power output at 
the fiber tip was adjusted to 5 to 10 W to minimize bleaching.

All data were analyzed with custom programs written in 
MATLAB (MathWorks). First, we sorted the continuously recorded 
data by behavioral trials. For each trial, the data spanned the range 
between 1 s before the waiting onset and 2 s after the reward. Before 
hooking up the fiber to the mouse, we recorded 20 s of data and 
averaged as Fb as the ground baseline. For each trial, we averaged 
1 s of data before the waiting onset as the baseline F0 and then 
calculated its calcium transient as

	​ F / F(%) = (F − ​F​ 0​​ ) / (​F​ 0​​ − ​F​ b​​ ) × 100(%)​	

In the correlation analysis between VTA DAergic activity before 
waiting and the waiting duration of mice, we used averaged 1-s data 
before the waiting onset as the DAergic activity before waiting. In 
the analysis of high-ramping and low-ramping DAergic activity, we 
compared the whole calcium signal of every trial with the average 
curve (the same length as the analyzed calcium signal) of all trials 
from one mouse in a single training day with paired a t test and 
then separated their waiting times into high-ramping group and 
low-ramping group.

To facilitate presenting the data, we divided each trial data into 
four segments, including 1 s before waiting onset, waiting, running, 
and 2 s after rewarding. For comparing the rising trends, we 
resampled the data segments at 100, 100, 50, and 100 data points, 
respectively. In the delayed gratification task, the trial data were 
aligned to the waiting onset and presented as the mean plots with a 
shadow area indicating SEM of fluctuations.

In vivo electrophysiological recording
A custom-made head plate was placed on the skull of each mouse 
and affixed in place with dental cement. We removed the skull and 
dural carefully above the recording window before the implantation. 
Stereotrodes were twined from 12.7-m Ni-Cr-Fe wires (Stablohm 
675, California Fine Wire, CA, USA). Then, eight stereotrodes were 
glued together and gold plated to reduce impedance to 250 to 
500 kilohms. The stereotrodes were gradually lowered to a depth of 
0.7  mm above the VTA. A silver wire (127  m diameter; A-M 
System) was attached to one of the four skull-penetrating M1 screws 
to serve as ground (19). Mice were allowed a recovery time of 7 days. 
Extracellular spiking signals were detected with eight stereotrodes 
and amplified (1000×) through a custom-made 16-channel amplifi-
er with built-in band-pass filters (0.5 to 6 kHz). We selected one 
channel that did not show spike signals and defined it as a reference 
ground to reduce movement artifacts. Analog signals were digitized 
at 25 kHz and sampled by a Power1401 digitizer and Spike2 software 
(Cambridge Electronic Design). Spikes recorded by the stereotrode 
were sorted offline using Spike2 software (Cambridge Electronic 
Design). Classified single units should have a high signal-to-noise ratio 
(>3:1), reasonable refractory period (interspike interval, >1 ms), and 
relatively clear boundaries among different principal components 
analysis clusters. The spike frequency and waveform were used to 
determine cell type as the DA or -aminobutyric acid neurons. 
The putative DA neurons were identified by their relatively low firing 
rate (the mean firing rate, <15 Hz) and a broad initial positive 
phase of >1 ms. Then, the spike trains were aligned with the waiting 
onset in delayed gratification task. PSTHs (bin width, 100 ms) for 
each trial were calculated and presented with averages in plots.

Calcium signal simulation
We performed a simple simulation of the “calcium fluorescence 
signal” contributed by each recorded unit using kernel convolution 
with 0.1-s time bin (49). The kernel that we used is composed of a 
linear rising edge and exponential decay. We set the kernel param-
eters, namely, the rise time and half-peak decay time, to 0.2 and 
0.7 s, respectively, from the relationship between fluorescence signal 
and a single action potential, without concerning the nonlinear 
effect of multiple action potentials (50).

RL model
We investigated two potential scenarios. One was that the mouse 
decided on a waiting duration before entering the waiting area and 
then waited according to the decided goal. The other scenario was 
that the mouse entered the waiting zone and determined whether to 
wait or leave as an ongoing process throughout the whole waiting 
period. We called these two scenarios “Decision Ahead” and 
“Continuous Deliberation,” respectively, and formulated corre-
sponding RL-based models for simulation using Python (Python 
Software Foundation, version 2.7, available at www.python.org/).

Decision ahead
Inspired by animal behavior, we simply set three optional “actions” 
with different expected waiting durations that could empirically 
cover the main range of animals’ waiting durations seen during 
training (Ta1 = 1.65 s for action 1, Ta2 = 2.72 s for action 2, and 
Ta3 = 4.48 s for action 3). These waiting durations were equally 
spaced on the log-time axis, consistent with Weber’s law [that is, 
ln(Ta1) = 0.5, ln(Ta2) = 1, and ln(Ta3) = 1.5]. During the execution of 
action ai, we imposed additional noise on the timing so that the 
actual waiting time ai for action ai followed a Gaussian distribution 
on the log-time axis centered at the Tai, ln ~N(ln(Τai), 0.42), i = 
1,2,3. These settings allowed us to best capture the animals’ waiting 
performance in the model. For each trial, the agent chose an action 
randomly based on the three action values and a Boltzmann distri-
bution (SoftMax)

	​​ P​ ​a​ i​​​​  = ​   ​e​​ ​Q​ ​a​ i​​​​​ ─ 
​∑ j=1,2,3​​ ​e​​ ​Q​ ​a​ j​​​​​​

 ​​	

where Pai was the probability of choosing action ai and waiting for 
ai. Qai was the value for ai.  was the inverse temperature constant 
tuned to 5 to best fit the animal experimental data. After waiting, 
the agent would get a reward according to the same reward schedule 
used in our experiment. Each action value was updated separately 
during the reward delivery

	​  =  r – ​Q​ a​​​	

	​ r  =  R / ( + 1)​	

	​​ Q​ a​​ ← ​ Q​ a​​ +  * ​	

where the RPE  was calculated by the difference between the 
hyperbolically discounted reward r (or “reward rate,” given by the 
absolute reward R dividing total time  + 1 for obtaining the reward, 
where  was the waiting duration and the additional 1  s was the 
estimated delay of running between the two zones) and the chosen 
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action value Qa. The RPE was then used to update the value of the 
chosen action. We tuned the learning rate  to 0.002 to fit the ani-
mal behavioral data.

Continuous deliberation
In each trial, the agent would go through a series of hidden states, 
each lasting for 0 to 2 s randomly according to a Gaussian distribu-
tion (mean at 1 s). At each hidden state, the agent had two action 
options, either to keep waiting or to leave. If it chose to keep 
waiting, then the agent would transition to the next hidden state, 
with the past time of the previous state cumulated to the whole 
waiting duration. If the choice was to leave, then the cumulation 
would cease and a virtual reward dependent on the duration was 
delivered; a new trial would then begin from the initial state. The 
reward schedule was identical to that used for the animals during 
the experiments.

The action choice for the future was determined randomly by a 
Boltzmann distribution (SoftMax) and action values

	​​ P​​a​ w​​​ (T+1)​  = ​   ​e​​ ​Q​​a​ w​​​ (T+1)​​ ─  
​e​​ ​Q​​a​ w​​​ (T+1)​​ + ​e​​ ​Q​​a​ L​​​ (T+1)​​

 ​​	

​​P​​a​ w​​​ (T+1)​​ was the probability of choosing to wait for the next state T + 1. 
​​Q​​a​ w​​​ (T+1)​​ and ​​Q​​a​ L​​​ (T+1)​​ were the value of waiting and leaving, respec-
tively, for state T + 1.  was the inverse temperature constant tuned 
to 5 to best fit the animal experimental data. The action values 
for each hidden state T were updated by a temporal difference 
learning algorithm (SARSA)

	​  =  r +  * ​Q​a′​ 
(T+1)​ – ​Q​a​ (T)​​	

	​ r =  R / ( + 1)​	

	​​ Q​a​ (T)​ ← ​ Q​a​ (T)​ +  * ​	

where the future action a′was determined by the Boltzmann distri-
bution in the previous step. The current action a and the future 
action  a′ could both be either waiting or leaving. The prediction 
error  was calculated by the sum of reward rate r (r remained zero 
until the reward R was delivered;  + 1 was the total time for obtain-
ing the reward, where  was the waiting duration and the additional 
1 s was the estimated delay of running between the two zones) and 
the future action value ​ * ​Q​a′​ 

(T+1)​​ discounted by  ( = 0.9), minus the 
current action value ​​Q​a​ (T)​​. When a was leaving, the future action value 
​​Q​a′​ 

(T+1)​​ would always be zero. This error signal  was used to update 
​​Q​a​ (T)​​ with the learning rate  = 0.001.

As a Markovian process, each state would be identical to the 
agent no matter how the state was reached or what the following 
actions might be. Thus, we extracted the learned value of waiting as 
a time series along all the hidden states to compare with the aver-
aged curve of VTA DAergic activity. For each trial, we also extracted 
the time series of the transient waiting value for a trial-wise analysis. 
Apart from the value of waiting, we could also extract the time 
series of RPE for each trial. We simulated optogenetic manipulation 
in the model after normal training was accomplished as in the 
animal experiments.

Value manipulation
In 20% of trials in the simulation session, the future waiting value 
throughout the whole waiting period was manipulated. The opto-
genetics activation was simulated as an extra positive value added 
onto the future waiting value, and the optogenetics inhibition 
corresponded to a proportional decrease of the future waiting value 
as follows

	​​ Q​​a​ w​​​ (T+1)​  ← ​ ​   Q ​​​a​ w​​​ 
(T+1)

​, for the current trial​	

	​​ where​​   Q ​​​a​ w​​​ 
​(​​T+1​)​​

​  = ​ {​​​ 
​Q​​a​ w​​​ ​(​​T+1​)​​​ + ​∆​ value−ext​​, if″ChR2 − lighton″

​   
​κ​ value−inh​​ * ​Q​​a​ w​​​ ​(​​T+1​)​​​, if″eNPHR − lighton″

​​​	

and ​ =  r +  * ​​   Q ​​​a​ w​​​ 
(T+1)

​ – ​Q​a​ (T)​, if ​a ′ ​  = ​ a​ w​​​.
Here, we set ∆value−ext = 0.15 and value−inh = 0.9 so that the 

change in averaged waiting duration in the simulated “light-on” 
trials could capture the magnitude of the instantaneous effect of 
optogenetic stimulations on the current trials. Using these parameters 
“calibrated” by the current trial effect, we were able to compare the 
stimulation effect on the light-off or the following trials in both real 
and simulated situations. In addition, note that if the future action 
was chosen as waiting, then the manipulated value of waiting would 
be used in the RPE calculation and, thus, current action value 
updating as well.

RPE manipulation
Under this situation, in 20% of trials in the stimulation session, 
instead of the future waiting value, RPE () was manipulated 
throughout the whole waiting period as follows

	​​  ~ ​  =  {​ 
 + ​∆​ RPE−ext​​, if″ChR2 − lighton″

​   
 − ​∆​ RPE−inh​​, if″eNPHR − lighton″

​​	

and ​​Q​a​ (T)​ ← ​ Q​a​ (T)​ +  * ​ ~ ​​. We set ∆RPE−ext = 15 and ∆RPE−inh = 20, 
which was calibrated by the current trial effect of real light stimulation.

To simulate the fluctuation in real DAergic signal, we simply 
multiplied the future waiting value during each state by a factor of 
 ~ N(1, 0.32) (determined by the averaged signal-dependent noise 
magnitude/relative SD for all momentary DAergic amplitudes), as 
an addition to the original model [this is only implemented for 
fig. S8 (E and F)].

Electrophysiological recordings
Adult (8 to 10 weeks) DAT-IRES-Cre knock-in male mice 4 weeks 
after injection with AAV2/9-EF1a-DIO-ChR2(H134R)-mCherry 
or AAV-DIO-eNpHR3.0-mCherry were anesthetized with an intra-
peritoneal injection of pentobarbital (100 mg kg−1) and then per-
fused transcardially with ice-cold oxygenated (95% O2/5% CO2) 
N-methyl-d-glucamine (NMDG) artificial cerebrospinal fluid (ACSF) 
solution [93 mM NMDG, 93 mM HCl, 2.5 mM KCl, 1.25 mM 
NaH2PO4, 10 mM MgSO4·7H2O, 30 mM NaHCO3, 25 mM glucose, 
20 mM Hepes, 5 mM sodium ascorbate, 3 mM sodium pyruvate, 
and 2 mM thiourea (pH 7.4), 295 to 305 mosM]. After perfusion, 
the brain was rapidly dissected out and immediately transferred 
into an ice-cold oxygenated NMDG ACSF solution. Then, the brain 
tissue was sectioned into slices horizontally at 280 m in the same 
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buffer with a vibratome (VT-1200 S, Leica). The brain slices con-
taining the VTA were incubated in oxygenated NMDG ACSF at 
32°C for 10 to 15 min and then transferred to a normal oxygenated 
solution of ACSF (126 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 
2 mM MgSO4·7H2O, 10 mM glucose, 26 mM NaHCO3, and 2 mM 
CaCl2) at room temperature for 1 hour. A slice was then transferred 
to the recording chamber and then submerged and superfused with 
ACSF at a rate of 3 ml/min at 28°C. Cells were visualized using 
infrared differential interference contrast and fluorescence micros-
copy (BX51, Olympus). VTA DAergic neurons were identified by 
their fluorescence and other electrophysiological characteristics. 
Whole-cell current-clamp recordings of VTA DAergic neurons were 
made using a MultiClamp 700B amplifier and Digidata 1440A 
interface (Molecular Devices). Patch electrodes (3 to 5 megohms) 
were backfilled with internal solution containing the following: 
130 mM K-gluconate, 8 mM NaCl, 10 mM Hepes, 1 mM EGTA, 
2 mM Mg·adenosine triphosphate, and 0.2 mM Na3·guanosine 
triphosphate (pH 7.2, 280 mosM). Series resistance was monitored 
throughout the experiments. For optogenetic activation, blue light 
was delivered onto the slice through a 200-m optical fiber attached 
to a 470-nm light-emitting diode (LED) light source (Thorlabs, USA). 
The functional potency of the ChR2-expressing virus was validated 
by measuring the number of action potentials elicited in VTA 
DAergic neurons using blue light stimulation (20 ms, 10 Hz, 2.7 mW) 
in VTA slices. For optogenetic inhibition, yellow light (0.7 mW) 
was generated by a 590-nm LED light source (Thorlabs, USA) and 
delivered to VTA DAergic neurons expressing eNpHR3.0 through 
a 200-m optical fiber. To assure eNpHR-induced neuronal inhibi-
tion, whole-cell recordings were carried out in current-clamp mode 
and spikes were induced by current injection (200 pA) with the 
presence of yellow light. Data were filtered at 2 kHz, digitized at 10 kHz, 
and acquired using pClamp10 software (Molecular Devices).

Immunostaining
Mice were deeply anesthetized with pentobarbital (100 mg/kg, 
intraperitoneally), followed by saline perfusion through the heart. 
After blood was drained out, 4% paraformaldehyde (PFA) was used 
for fixation. Upon decapitation, the head was soaked in 4% PFA at 
room temperature overnight. The brain was harvested the next day, 
postfixed overnight in 4% PFA at 4°C, and transferred to 30% 
sucrose in 0.1  M phosphate-buffered saline (PBS) (pH 7.4) for 
24 to 48 hours. Coronal sections (20 m) containing the VTA were 
cut on a cryostat (Leica CM3050 S). The slides were washed with 
0.1 M PBS (pH 7.4), incubated in blocking buffer [0.3% Triton 
X-100 and 5% bovine serum albumin in 0.1 M PBS (pH 7.4)] for an 
hour, and then transferred into the primary antibody (rabbit anti-
tyrosine hydroxylase antibody, 1:1000; Invitrogen) in blocking 
buffer overnight at 4°C. The sections were washed three times in 
0.1 M PBS and then incubated with donkey anti-rabbit immuno-
globulin G H&L secondary antibody (conjugated to Alexa Fluor-488 
or Alexa Fluor-594, 1:1000; Jackson ImmunoResearch) at room tem-
perature for 2 hours. The nucleus was stained with 4′,6-diamidine-
2-phenylindole. Sections were mounted in glycerin and covered with 
coverslips sealed in place. Fluorescent images were collected using a 
Zeiss confocal microscope (LSM 880).

Quantification and statistics
All statistics were performed by MATLAB (R2016b, MathWorks) 
and Python (v2.7, Python Software Foundation) routines. Data 

were judged to be statistically significant when the P values were 
less than 0.05. Asterisks denote statistical significance: *P < 0.05, 
**P < 0.01, and ***P < 0.001. Unless stated otherwise, values were 
presented as means ± SEM.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abg6611

View/request a protocol for this paper from Bio-protocol.

REFERENCES AND NOTES
	 1.	 D. Tomasi, N. D. Volkow, Striatocortical pathway dysfunction in addiction and obesity: 

Differences and similarities. Crit. Rev. Biochem. Mol. Biol. 48, 1–19 (2013).
	 2.	 N. D. Volkow, R. D. Baler, NOW vs LATER brain circuits: Implications for obesity 

and addiction. Trends Neurosci. 38, 345–352 (2015).
	 3.	 W. Mischel, Y. Shoda, M. I. Rodriguez, Delay of gratification in children. Science 244, 

933–938 (1989).
	 4.	 J. E. Maddux, J. P. Tangney, in Social Psychological Foundations of Clinical Psychology 

(Guilford Press, 2010), pp. xv.
	 5.	 J. Grosch, A. Neuringer, Self-control in pigeons under the Mischel paradigm. J. Exp. Anal. 

Behav. 35, 3–21 (1981).
	 6.	 B. Reynolds, H. de Wit, J. B. Richards, Delay of gratification and delay discounting in rats. 

Behav. Processes 59, 157–168 (2002).
	 7.	 B. Engelhard, J. Finkelstein, J. Cox, W. Fleming, H. J. Jang, S. Ornelas, S. A. Koay, 

S. Y. Thiberge, N. D. Daw, D. W. Tank, I. B. Witten, Specialized coding of sensory, motor 
and cognitive variables in VTA dopamine neurons. Nature 570, 509–513 (2019).

	 8.	 C. K. Starkweather, B. M. Babayan, N. Uchida, S. J. Gershman, Dopamine reward prediction 
errors reflect hidden-state inference across time. Nat. Neurosci. 20, 581–589 (2017).

	 9.	 P. W. Glimcher, Understanding dopamine and reinforcement learning: The dopamine 
reward prediction error hypothesis. Proc. Natl. Acad. Sci. U.S.A. 108 Suppl 3, 15647–15654 
(2011).

	 10.	 G. Morris, A. Nevet, D. Arkadir, E. Vaadia, H. Bergman, Midbrain dopamine neurons 
encode decisions for future action. Nat. Neurosci. 9, 1057–1063 (2006).

	 11.	 J. R. Hollerman, W. Schultz, Dopamine neurons report an error in the temporal prediction 
of reward during learning. Nat. Neurosci. 1, 304–309 (1998).

	 12.	 W. Schultz, P. Dayan, P. R. Montague, A neural substrate of prediction and reward. Science 
275, 1593–1599 (1997).

	 13.	 A. A. Hamid, J. R. Pettibone, O. S. Mabrouk, V. L. Hetrick, R. Schmidt, C. M. Vander Weele, 
R. T. Kennedy, B. J. Aragona, J. D. Berke, Mesolimbic dopamine signals the value of work. 
Nat. Neurosci. 19, 117–126 (2016).

	 14.	 M. W. Howe, P. L. Tierney, S. G. Sandberg, P. E. M. Phillips, A. M. Graybiel, Prolonged 
dopamine signalling in striatum signals proximity and value of distant rewards. Nature 
500, 575–579 (2013).

	 15.	 S. Soares, B. V. Atallah, J. J. Paton, Midbrain dopamine neurons control judgment of time. 
Science 354, 1273–1277 (2016).

	 16.	 M. Guitart-Masip, U. R. Beierholm, R. Dolan, E. Duzel, P. Dayan, Vigor in the face 
of fluctuating rates of reward: An experimental examination. J. Cogn. Neurosci. 23, 
3933–3938 (2011).

	 17.	 Y. Niv, Cost, benefit, tonic, phasic: What do response rates tell us about dopamine 
and motivation? Ann. N. Y. Acad. Sci. 1104, 357–376 (2007).

	 18.	 Y. Niv, N. D. Daw, P. Dayan, Choice values. Nat. Neurosci. 9, 987–988 (2006).
	 19.	 Y. Li, W. Zhong, D. Wang, Q. Feng, Z. Liu, J. Zhou, C. Jia, F. Hu, J. Zeng, Q. Guo, L. Fu, 

M. Luo, Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat. Commun. 
7, 10503 (2016).

	 20.	 G. A. Rummery, M. Niranjan, “On-line Q-learning using connectionist systems” (Technical 
Report CUED/F-Infeng/TR 166, 1994).

	 21.	 R. S. Sutton, A. G. Barto, in Reinforcement Learning: An Introduction (Adaptive 
Computation and Machine Learning series, MIT Press, 1998), pp. xviii.

	 22.	 M. Treisman, Temporal discrimination and the indifference interval. Implications 
for a model of the "internal clock". Psychol. Monogr. 77, 1–31 (1963).

	 23.	 P. R. Killeen, J. G. Fetterman, A behavioral theory of timing. Psychol. Rev. 95, 274–295 
(1988).

	 24.	 W. H. Meck, Neuropharmacology of timing and time perception. Brain Res. Cogn. Brain 
Res. 3, 227–242 (1996).

	 25.	 M. Jazayeri, M. N. Shadlen, A neural mechanism for sensing and reproducing a time 
interval. Curr. Biol. 25, 2599–2609 (2015).

	 26.	 Y. Niv, N. D. Daw, D. Joel, P. Dayan, Tonic dopamine: Opportunity costs and the control 
of response vigor. Psychopharmacology (Berl) 191, 507–520 (2007).

	 27.	 R. S. Sutton, A. G. Barto, in Reinforcement Learning : An Introduction (Adaptive 
Computation and Machine Learning series, MIT Press, ed. 2, 2018), pp. xxii.

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 18, 2021

https://science.org/doi/10.1126/sciadv.abg6611
https://science.org/doi/10.1126/sciadv.abg6611
https://en.bio-protocol.org/cjrap.aspx?eid=10.1126/sciadv.abg6611


Gao et al., Sci. Adv. 7, eabg6611 (2021)     1 December 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

14 of 14

	 28.	 B. A. Bari, C. D. Grossman, E. E. Lubin, A. E. Rajagopalan, J. I. Cressy, J. Y. Cohen, Stable 
representations of decision variables for flexible behavior. Neuron 103, 922–933.e7 (2019).

	 29.	 P. Simen, F. Balci, L. de Souza, J. D. Cohen, P. Holmes, A model of interval timing by neural 
integration. J. Neurosci. 31, 9238–9253 (2011).

	 30.	 D. Durstewitz, Self-organizing neural integrator predicts interval times through climbing 
activity. 23, 5342–5353 (2003).

	 31.	 F. Balcı, P. Simen, A decision model of timing. Curr. Opin. Behav. Sci. 8, 94–101 (2016).
	 32.	 S. I. Gass, C. M. Harris, Markov property, in Encyclopedia of Operations Research and 

Management Science, S. I. Gass, C. M. Harris, Eds. (Springer, 2001), pp. 490–490.
	 33.	 T. K. Koerner, Y. Zhang, Application of linear mixed-effects models in human neuroscience 

research: A comparison with Pearson correlation in two auditory electrophysiology 
studies. Brain Sci. 7, 26 (2017).

	 34.	 M. P. Boisgontier, B. Cheval, The anova to mixed model transition. Neurosci. Biobehav. Rev. 
68, 1004–1005 (2016).

	 35.	 S. N. Chettih, C. D. Harvey, Single-neuron perturbations reveal feature-specific 
competition in V1. Nature 567, 334–340 (2019).

	 36.	 K. Jimura, M. S. Chushak, T. S. Braver, Impulsivity and self-control during intertemporal 
decision making linked to the neural dynamics of reward value representation. 
J. Neurosci. 33, 344–357 (2013).

	 37.	 B. Schmidt, C. B. Holroyd, S. Debener, J. Hewig, Why is it so hard to wait? Brain responses 
to delayed gratification predict impulsivity and self-control. Psychophysiology 52, 
S42–S42 (2015).

	 38.	 C. D. Fiorillo, W. T. Newsome, W. Schultz, The temporal precision of reward prediction 
in dopamine neurons. Nat. Neurosci. 11, 966–973 (2008).

	 39.	 B. M. Babayan, N. Uchida, S. J. Gershman, Belief state representation in the dopamine 
system. Nat. Commun. 9, 1891 (2018).

	 40.	 J. Y. Cohen, S. Haesler, L. Vong, B. B. Lowell, N. Uchida, Neuron-type-specific signals 
for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012).

	 41.	 J. G. Mikhael, H. R. Kim, N. Uchida, S. J. Gershman, The role of state uncertainty in the 
dopamine signal. bioRxiv 805366 [Preprint] (2019). https://doi.org/10.1101/805366.

	 42.	 A. Guru, C. Seo, R. J. Post, D. S. Kullakanda, J. A. Schaffer, M. R. Warden, Ramping activity 
in midbrain dopamine neurons signifies the use of a cognitive map. bioRxiv 
2020.2005.2021.108886 [Preprint] (2020). https://doi.org/10.1101/2020.05.21.108886.

	 43.	 S. J. Gershman, Dopamine ramps are a consequence of reward prediction errors. Neural 
Comput. 26, 467–471 (2014).

	 44.	 H. R. Kim, A. N. Malik, J. G. Mikhael, P. Bech, I. Tsutsui-Kimura, F. Sun, Y. Zhang, Y. Li, 
M. Watabe-Uchida, S. J. Gershman, N. Uchida, A unified framework for dopamine signals 
across timescales. Cell 183, 1600–1616.e25 (2020).

	 45.	 W. X. Pan, R. Schmidt, J. R. Wickens, B. I. Hyland, Dopamine cells respond to predicted 
events during classical conditioning: Evidence for eligibility traces in the reward-learning 
network. J. Neurosci. 25, 6235–6242 (2005).

	 46.	 H. C. Tsai, F. Zhang, A. Adamantidis, G. D. Stuber, A. Bonci, L. de Lecea, K. Deisseroth, 
Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 
324, 1080–1084 (2009).

	 47.	 E. K. Diekhof, O. Gruber, When desire collides with reason: Functional interactions 
between anteroventral prefrontal cortex and nucleus accumbens underlie the human 
ability to resist impulsive desires. J. Neurosci. 30, 1488–1493 (2010).

	 48.	 A. E. Goudriaan, M. Yücel, R. J. van Holst, Getting a grip on problem gambling: What can 
neuroscience tell us? Front. Behav. Neurosci. 8, 141 (2014).

	 49.	 M. Pachitariu, C. Stringer, K. D. Harris, Robustness of spike deconvolution for neuronal 
calcium imaging. J. Neurosci. 38, 7976–7985 (2018).

	50.	 T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, 
E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, 
D. S. Kim, Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 
499, 295–300 (2013).

Acknowledgments: We thank M. Luo, W. Ge, Y. Rao, W. Zhou, and B. Min for comments on the 
manuscript. We thank L. Lu for help with in vivo electrophysiology recording. We thank the 
Molecular Imaging Core Facility (MICF) at the School of Life Science and Technology, 
ShanghaiTech University for providing technical support. This work was supported by the 
National Natural Science Foundation of China (grant nos. 31922029, 31671086, 61890951, and 
61890950 to J.H.) and a Shanghai Pujiang Talent Award (grant no. 2018X0302-101-01 to W.S.). 
Author contributions: W.S. and J.H. oversaw the whole project. W.S., J.H., and Z.G. designed 
the experiments. Z.G., C.L., and T.L. performed all animal experiments. Z.G. and H.W. analyzed 
the data. H.W. and S.F.-W. performed the computational modeling under the supervision of 
X.-J.W. M.C. performed the electrophysiological recordings. W.S., J.H., Z.G., and H.W. wrote 
the paper with the participation of all other authors. Competing interests: The authors 
declare that they have no competing interests. Data and materials availability: All data 
needed to evaluate the conclusions in the paper are present in the paper and/or the 
Supplementary Materials.

Submitted 20 January 2021
Accepted 12 October 2021
Published 1 December 2021
10.1126/sciadv.abg6611

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 18, 2021

http://dx.doi.org/10.1101/805366
http://dx.doi.org/10.1101/2020.05.21.108886


Use of think article is subject to the Terms of service

Science Advances (ISSN ) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW,
Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

The neural basis of delayed gratification
Zilong GaoHanqing WangChen LuTiezhan LuSean Froudist-WalshMing ChenXiao-Jing WangJi HuWenzhi Sun

Sci. Adv., 7 (49), eabg6611. • DOI: 10.1126/sciadv.abg6611

View the article online
https://www.science.org/doi/10.1126/sciadv.abg6611
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 18, 2021

https://www.science.org/about/terms-service

