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Gradients of neurotransmitter receptor 
expression in the macaque cortex

Sean Froudist-Walsh    1,2, Ting Xu    3, Meiqi Niu4, Lucija Rapan4, Ling Zhao    4, 
Daniel S. Margulies    5, Karl Zilles7, Xiao-Jing Wang    2,8 & 
Nicola Palomero-Gallagher    4,6,8 

Dynamics and functions of neural circuits depend on interactions mediated 
by receptors. Therefore, a comprehensive map of receptor organization 
across cortical regions is needed. In this study, we used in vitro receptor 
autoradiography to measure the density of 14 neurotransmitter receptor 
types in 109 areas of macaque cortex. We integrated the receptor data 
with anatomical, genetic and functional connectivity data into a common 
cortical space. We uncovered a principal gradient of receptor expression per 
neuron. This aligns with the cortical hierarchy from sensory cortex to higher 
cognitive areas. A second gradient, driven by serotonin 5-HT1A receptors, 
peaks in the anterior cingulate, default mode and salience networks. We 
found a similar pattern of 5-HT1A expression in the human brain. Thus, 
the macaque may be a promising translational model of serotonergic 
processing and disorders. The receptor gradients may enable rapid, 
reliable information processing in sensory cortical areas and slow, flexible 
integration in higher cognitive areas.

A key challenge in neuroscience is to discover how a relatively static 
brain anatomy can adapt to a changing world. The brain’s connectivity  
is a key component. Mapping brain connectivity (the connectome) 
exhaustively across species is a major ongoing advance1–5. However, 
connectivity alone is insufficient to explain neural circuit dynamics 
underlying brain functions. The functional impact of synaptic con-
nections depends on receptors. Thus, connectivity approaches, which 
are blind to receptor types, may not be sufficient to understand the 
computational capabilities of the cortex. To complement ongoing 
efforts to map the connectome, a systematic map of receptor densities 
across cortex is needed. This would provide a crucial link between the 
molecular and systems organization of the cortex.

The cortex displays a very similar regional and laminar receptor 
profile in macaques and humans6. Neuroanatomists have quantita-
tively mapped mesoscopic and microscopic anatomical details across 
the macaque cortex3,7,8. This currently outpaces our knowledge of 

human anatomy. In contrast, in vivo neuroimaging is less advanced 
in macaques than in humans. Nonetheless, recent developments in 
macaque neuroimaging can accelerate interspecies comparison and 
translation9. However, few studies have yet integrated in vitro neuro-
anatomy with in vivo neuroimaging10–15. In particular, receptor data are 
usually displayed in in vitro slices and seldom openly available. Creating 
openly accessible maps of receptor expression across the cortex that 
integrate with neuroimaging data could speed up translation across 
species and levels of neuroscience.

At the level of microcircuits, different regions of cortex share a com-
mon organization. However, their properties vary across the cortex in the 
form of macroscopic gradients16. Gradients of connectivity have been 
used to demonstrate the organizational structure of the cortex17. Similar 
understanding of the brain’s large-scale neurotransmitter and receptor 
organization is beginning to emerge. In the mouse brain, subcortical 
neuromodulatory centers are ‘connector hubs’18. Receptor expression 
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Fig. 5). The principal receptor gradient (PC1) explains 81% of the  
variance in the receptor data (per neuron). The top five principal com-
ponents (PCs) explain over 95% of the variance (Fig. 2a and Supplemen-
tary Fig. 6; PCs 1–5 explain 81.2%, 6.5%, 3.5%, 2.4% and 1.4%, respectively).

All receptors contribute similarly to the principal receptor gradient  
(Supplementary Figs. 6c and 7). The gradient dependence is a meas-
ure of how much the spatial pattern of a gradient changes upon 
removal of one receptor type from the dataset. The principal receptor  
gradient is robust to removal of any individual receptor (Supplementary  
Fig. 7). Thus, the principal receptor gradient captures strong underly-
ing trends across receptors. In contrast, serotonin 5-HT1A expression 
drives the spatial pattern of PC2 (Supplementary Fig. 7). Similarly, 
acetylcholine M2 contributes strongly to PC3. M2 and dopamine D1 
contribute to PC4 and noradrenaline α2, acetylcholine M1 and other 
receptors to PC5 (Supplementary Fig. 7).

Brain regions within the same functional system have similar 
receptor expression. We projected the data onto the first two PCs, 
which defined a ‘receptor space’. Visual, somatomotor, premotor, 
parietal, cingulate, prefrontal and orbitofrontal each occupy distinct 
sections of the receptor space (Fig. 2b). In Fig. 2b, we colored cortical 
areas according to these groupings for visualization purposes only.

The raw receptor gradients are similar to the receptor-per-neuron 
gradients. Each of the top five PCs of the raw receptor data (Supplemen-
tary Fig. 5a) is strongly correlated with the corresponding PC of the 
receptor-per-neuron data (Supplementary Fig. 5b). One difference is 
that V1 (which has a very high neuron density) shifts from the bottom of 
PC1 (per neuron data) to the bottom of PC2 (raw data). Below, we show 
that PC1 or PC2 in the receptor-per-neuron data correlates with various 
features of anatomy and function. Each of these correlations also holds 
for either PC1 or PC2 of the raw receptor data (Supplementary Fig. 8).

Receptor expression increases along the principal gradient
Receptor fingerprints show the pattern of receptors expressed in each 
cortical area25. The size of the receptor fingerprint increases along the 
principal receptor gradient (Fig. 2c, areas V1, 3al and 12o). This shows 
an increase in receptor density per neuron across almost all receptors. 
The receptor-per-neuron density is four times higher in areas at the 
top of the gradient than in areas at the bottom (Fig. 2d). The principal 
receptor gradient closely tracks the total receptors per neuron across 
brain areas (Fig. 2d).

The principal gradient aligns with the cortical hierarchy
The cortical hierarchy is anatomically defined by laminar connectivity 
patterns26. Functionally, the hierarchy spreads from areas that process 
simple sensory stimuli to areas that integrate varied and highly pro-
cessed information. Could the receptor profile differ according to these 
distinct computational roles? Using retrograde tract-tracing data, we 
recently calculated the hierarchy of 40 cortical areas27. Here, we found 
that the principal receptor gradient is strongly correlated with the 
cortical hierarchy (Fig. 3a). Thus, neurons near the top of the hierarchy, 
which contribute to more complex functions, express more receptors.

Dendritic trees increase in size along the principal gradient
How could neurons high in the principal receptor gradient house more 
receptors? Pyramidal cells receive the vast majority of their synaptic 
inputs on their dendrites. Thus, we hypothesized that dendritic proper-
ties would change along the principal receptor gradient. Elston et al.7 
measured dendritic properties across dozens of areas of macaque 
cortex. We focused on the size of the dendritic tree and the number 
of dendritic spines on layer 3 pyramidal cells, for which most data 
were available. We mapped the locations for the dendritic injections 
to the Yerkes19 cortical surface (Fig. 3b,c). We found that the princi-
pal receptor gradient is positively correlated with dendritic tree size  
(Fig. 3b). The correlation between the principal receptor gradient 
and the total number of dendritic spines per neuron did not remain 

in the human brain is associated with in vivo connectivity patterns 
and functional activity patterns19–21. However, it is not yet known how  
receptor expression relates to anatomical organization that we can 
measure in the macaque cortex.

In this study, we measured the density of 14 types of neurotrans-
mitter receptors across 109 areas of macaque cortex. We mapped 
these data and multiple types of anatomical and functional data onto 
a common cortical space. These other data types included neuron 
density, dendritic tree size, spines, tract-tracing connectivity, gene 
expression and structural and functional magnetic resonance imag-
ing (MRI). We found that the receptor architecture of macaque cortex 
can be well described by a small number of gradients. The principal 
receptor gradient defines a putative cortical hierarchy. Cortical areas 
high on the gradient had a higher density of receptors per neuron, 
larger dendrites and less myelin. Receptor gradients also segregated 
functional networks. This suggests a potential role for neuromodula-
tors in propagating activity along cortical hierarchies and between 
higher cognitive networks.

Results
Distribution of receptors across macaque cortex
We analyzed receptor expression in the macaque brain using in vitro 
receptor autoradiography. This uses radioactive ligands to quantify the 
endogenous receptors in the cell membrane. Our analysis included 14 
receptor types (glutamate: AMPA, kainate and NMDA; GABA: GABAA, 
GABAA/BZ and GABAB; acetylcholine: M1, M2 and M3; serotonin: 5-HT1A 
and 5-HT2A; noradrenaline: α1 and α2; and dopamine: D1). We extracted 
receptor densities from regions defined by cyto and receptor archi-
tecture. Within each brain region, receptor densities were highly 
consistent across sections (median coefficient of variation = 0.08; 
Supplementary Fig. 1a) and across subjects (median coefficient of vari-
ation = 0.18; Supplementary Fig. 1b). Borders between brain regions are 
usually accompanied by a change in expression of two or more recep-
tors. For example, changes in α1 and 5-HT1A receptor density highlight 
the border between LIPd and LIPv (Supplementary Fig. 2; ref. 22). In the 
raw data, several receptors reached their highest densities in primary 
visual cortex (Supplementary Fig. 3a; GABAA, acetylcholine M2 and 
serotonin 5-HT2A; ref. 23). Many other receptors reached their highest 
densities in parts of the anterior cingulate. This includes all glutamater-
gic receptors, GABAB, serotonin 5-HT1A, noradrenaline α1 and dopamine 
D1 (Supplementary Fig. 3). M1, GABAA/BZ and α2 receptors are notable 
for having high densities in both cingulate cortex and V1. Thus, some 
common patterns of expression are seen across several receptors.

Serotonin 5-HT1A has the steepest gradient of expression of all 
receptors. Generally, receptor density (per milligram of protein) varied 
by a factor of 1–5 across cortical areas. The receptor with the shallow-
est gradient in raw expression is serotonin 5-HT2A. The area with the 
greatest density of 5-HT2A receptors has a density just 1.67 times higher 
than the area with the lowest density. In contrast, the peak expression 
of 5-HT1A in area a24′ab of anterior cingulate cortex is over 17 times the 
density of 5-HT1A receptors in area V1 (Supplementary Fig. 3b).

The high density of receptors in V1 is due to its high neuron density. 
Neuron density varies by a factor of 5 across macaque cortex (Supple-
mentary Fig. 3b). We mapped the receptor data and published neuron 
density data8 to the Yerkes19 cortical surface24. We estimated the recep-
tor density per neuron across the cortex for all 14 receptor types (Fig. 1,  
Supplementary Tables 1 and 2 and Supplementary Fig. 4). Notably, 
although the density of several receptors peaks in V1 in the raw data, 
this is mostly erased when accounting for neuron density.

The principal receptor gradient of macaque cortex
The principal receptor gradient spreads from early sensory to higher 
cognitive regions. Τo identify the main patterns of receptor expression, 
we performed a principal component analysis (PCA). We performed this 
on both the data per neuron (Fig. 2) and the raw data (Supplementary 
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significant when accounting for the spatial autocorrelation and  
multiple comparisons (Fig. 3c). No significant correlation was observed 
between the principal receptor gradient and the density of spines per 
micrometer (r(20) = 0.28 (range: −0.16 to 0.63), P = 0.21, uncorrected). 
Thus, neurons at the top of the principal receptor gradient contain 
larger dendrites. This likely provides the neural real estate required 
to house a greater number of synaptic connections and receptors.

An inverse relationship between myelin and receptor density
Myelin inhibits synapse formation, axonal growth and experience- 
dependent plasticity28. The ratio of T1-weighted to T2-weighted (T1w/T2w)  

MRI signal is a proposed marker of myelination in the cortical gray  
matter. We analyzed T1w/T2w data from Donahue et al.24. We found that 
there is a strong negative correlation between the principal receptor 
gradient and the T1w/T2w ratio (Fig. 4a).

We also compared the densities of all 14 receptors across cortical 
layers to the pattern of laminar myelination using a histological myelin 
stain. We performed this comparison in primary visual area V1 (Fig. 4b),  
primary motor area 4a (Supplementary Fig. 9) and association parietal 
area PEipe (Supplementary Fig. 9). In areas 4a and PEipe, all recep-
tors (except kainate and 5-HT2A in PEipe) had higher densities in the 
supragranular layers (that is, I–III; Supplementary Fig. 9). In V1, most 
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Fig. 1 | The density of 14 receptors per neuron across macaque cortex. a, Neuron density data from ref. 8 were delineated on the cortex and used to normalize 
receptor data. b, The receptor density per neuron of 14 receptor types assessed with in vitro receptor autoradiography.
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receptors had highest densities in layers II and III, followed by layer V 
and lowest densities in layers I, VI and IVb. Low receptor densities in 
layers I and VI may reflect the low cell densities in those layers (Fig. 4b). 
Some receptors, including NMDA, GABAA, GABAB, M2 and 5-HT2, also 
had high densities in layer IVc (Fig. 4b). In contrast, myelin is higher in 
the infragranular layers (that is, V–VI) than the supragranular layers. 
Additionally, V1 contains a high level of myelin in granular layer IVb. 
Thus, the receptor density pattern is opposite to the myelin density pat-
tern across layers. Therefore, receptor expression may be constrained 
by myelination across cortical regions and layers.

Principal gradient separates sensory and cognitive networks
Does the principal receptor gradient shape in vivo interactions between 
cortical areas? Xu et al.29 used connectivity gradients to map from the 
human cortex to corresponding points on the macaque cortex. This 
method was used to align seven canonical cognitive networks30 to the 
macaque cortex (Fig. 5). We used this alignment to identify the receptor 

gradient expression across cognitive networks. The overlap of each area 
of the Julich Brain Macaque Maps with the seven cognitive networks is 
quantified in Supplementary Table 3. We excluded the ‘limbic’ network 
from this analysis due to the lack of vertices with receptor data and low 
signal-to-noise ratio (SNR) in functional MRI (fMRI) data.

The principal receptor gradient separates the sensory and higher 
cognitive networks (Fig. 5). Almost all areas of the visual and soma-
tosensory networks had negative gradient scores. Areas in the higher 
cognitive networks encompassed a range of positive and negative 
values (Fig. 5). Taken with the above, we conclude that neurons in higher 
cognitive networks express more receptors.

Gradient 2 captures 5-HT1A expression across cognitive areas
The secondary receptor gradient (PC2) separates higher-order cortical 
areas (Fig. 6a). Parietal areas (for example, LIPv) are at one end of the 
gradient, whereas cingulate areas (for example, 24ab and 25) are at the 
other end (Fig. 6a). The receptor fingerprints reveal a striking change 
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again to 12o. For information on standard deviations, see Supplementary Table 2.  
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in the serotonin 5-HT1A receptor density (Fig. 6b,c and Supplemen-
tary Fig. 7). Other receptor densities also changed along the second-
ary gradient, such as AMPA-kainate/NMDA ratio and GABAA density  
(Fig. 6b,c), but not serotonin 5-HT2A (Supplementary Fig. 10). The peak 
of serotonin 5-HT1A receptor expression in the subgenual cingulate 
area is notable as the serotonin system and the subgenual cingulate 
are both targeted in treatments for depression31.

Gradient 2 separates anticorrelated cognitive networks
The secondary receptor gradient has opposing values in the dorsal 
attention network and the default mode network (Fig. 6d). Activity 

in these two higher cognitive networks is often anticorrelated32,33. 
The salience network may act as a ‘switch’ between activity in these 
two networks34. We also found positive values for the secondary 
receptor gradient in the salience network. Gradients of functional 
connectivity exist in the human and macaque cortex17,29. This recep-
tor gradient also resembles the third functional connectivity gradi-
ent (Fig. 6e). No other correlations between receptor and functional 
connectivity gradients passed this strict statistical correction. 
Thus, the secondary receptor gradient may suggest a serotonergic 
mechanism by which the cortex switches between higher cognitive  
states.
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5-HT1A receptor expression is conserved across species
Serotonin is involved in the pathophysiology of emotion regulation. 
Much of the basic research on emotion is performed in animal mod-
els. To ease the translation of findings, we compared 5-HT1A expres-
sion in humans, macaques and rats. We performed this analysis on 
the raw receptor densities, as neuron density data were not available  
in all species.

In humans, we found that 5-HT1A receptor expression peaks in area 
25 (subcallosal cingulate). Humans have high 5-HT1A density in anterior 
cingulate and frontal regions and low density in motor and visual cor-
tex (Fig. 7a). This general pattern was also true in macaque cortex and 

in that of the rat. However, the peak of 5-HT1A receptor density shifts 
from area 25 to neighboring parts of anterior cingulate in the macaque.  
A similar shift is even more apparent in the rat. In the rat, the gra-
dient of 5-HT1A receptor density across cortex was flatter than in  
primates.

In the macaque brain, 5-HT1A receptor density increases in the 
caudo-rostral and latero-medial directions (Fig. 7b). Across layers, 
5-HT1A receptor expression has two peaks. There is an absolute maxi-
mum in the superficial layers. A second, considerably lower peak is 
in layers V and VI (Supplementary Figs, 4, 9 and 10). The difference in 
height between both peaks is larger in sensory areas than in associa-
tion areas. However, the primary visual cortex is a notable exception, 
because, in V1, the superficial and deep peak reach similar values.  
We also see this pattern in allocortical area 25 in the anterior  
cingulate cortex.

5-HT1A peaks in default and salience networks across species
We investigated the relationship between receptor expression in 
macaques and gene expression in humans. The Allen Human Brain 
Atlas provides mRNA expression across six individual human brains35. 
We mapped this mRNA expression data onto a 180-area multimodal 
parcellation of the human cortex1. We used functional alignment to 
reverse translate this gene expression map to the macaque cortex29 
(Fig. 7c). In the human brain, HTR1A (5-hydroxytryptamine receptor 1A 
(Homo sapiens (human))) encodes the 5-HT1A receptor. HTR1A expres-
sion peaks in anterior/medial temporal cortex, insula, subcallosal/
anterior cingulate and postero-medial cortex (posterior cingulate/
precuneus) (Fig. 7c). We found that human HTR1A gene and macaque 
5-HT1A receptor expression are strongly correlated (Fig. 7d). Human 
HTR1A gene and macaque 5-HT1A receptors are expressed similarly 
across cognitive networks. For both, the lowest densities are in the 
visual network, and the highest densities are in the default mode and 
salience networks (Fig. 7e,f). In contrast to 5-HT1A, serotonin 5-HT2A 
receptors peak in the dorsal attention and fronto-parietal networks 
(Supplementary Fig. 10). Therefore, the cortical expression of sero-
tonin 5-HT1A receptors is conserved between macaques and humans. 
In both species, 5-HT1A receptor is highest in the default mode and 
salience networks.

A wide range of receptor–gene correlations across receptors
Gene expression is increasingly used as a proxy for receptor expression. 
However, some researchers have found weak correlations between gene 
and receptor expression36. We performed an exploratory analysis on 
the relationship between human gene and monkey receptor expres-
sion (Supplementary Fig. 11). We first aimed to find the upper limit 
on inter-species correlations. For this, we used maps of the T1w/T2w 
ratio and cortical thickness. These maps were acquired in a similar 
manner by the same laboratory in both macaques and humans1,24. We 
registered the human maps to the macaque cortex using cross-species 
functional alignment29. The cross-species correlation for the  
T1w/T2w map was very high (Supplementary Fig. 11; Pearson correla-
tion, r(107) = 0.79 (range 0.70–0.85)). This likely represents a ceiling 
value for inter-species gene–receptor correlations. The correlation 
was moderate for cortical thickness (Pearson correlation, r(107) = 0.55 
(range 0.40–0.67)). Some gene–receptor correlations were within 
or close to this range. Several correlations passed a strict correction 
for spatial autocorrelation37 (Supplementary Fig. 11; noradrenaline: 
α1-ADRA1B and α2-ADRA2A; serotonin: 5-HT1A-HTR1A; acetylcholine: 
M3-CHRM3; glutamate: AMPA-GRIA1A, kainate-GRIK1, GRIK2 and 
GRIK3; and GABA: GABAB-GABBR1 and GABAA-GABRG3). Another set 
of gene–receptor correlations fell just below this range and passed a less 
stringent threshold (P < 0.005, uncorrected, glutamate: AMPA-GRIA2, 
NMDA-GRIN2B, NMDA-GRIN2C, NMDA-GRIN3A and kainate-GRIK5 and 
GABA: GABAA-GABRA2, GABAA-GABRE and GABAA-GABRG1). These 
gene–receptor correlations may be considered of moderate strength. 
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It is possible that they could pass the more stringent correction if they 
were acquired in the same species. The remaining gene–receptor cor-
relations, including several neuromodulatory, excitatory and inhibitory 
receptors, were weak. This suggests that using gene expression as a 

proxy for receptor expression may be appropriate for a small number 
of receptors, such as the 5-HT1A receptor. However, for many receptors, 
including the dopamine D1 receptor, gene expression is not a good 
proxy for receptor expression.
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Fig. 7 | Serotonin 5-HT1A receptor expression across the human, macaque 
and rat cortex. a, Density of 5-HT1A receptors (in fmol mg−1 of protein) across 
multiple areas of human, macaque and rat cortex. The filled gray shapes indicate 
the mean 5-HT1A receptor density within each area. Dotted lines indicate standard 
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peak density shifts slightly across species. b, The density of 5-HT1A receptor 

expression across a single macaque cortical hemisphere. c, We mapped human 
HTR1A gene expression data35 to the human cortex and then to the macaque 
cortex using cross-species functional alignment. d, Human gene expression and 
macaque receptor expression for the 5-HT1A receptor were positively correlated 
(Pearson correlation, r(107) = 0.66 (range: 0.54–0.76), P = 0.011, corrected for 
spatial autocorrelation). e,f, Human HTR1A gene expression (e) and macaque 
5-HT1A receptor expression (f) are expressed similarly across cognitive networks, 
peaking in the default mode and salience networks.
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Acetylcholine and dopamine receptors vary along the cortical 
hierarchy
In an exploratory analysis, we compared PC3, PC4 and PC5 with each of 
the anatomical maps investigated above. Outside of the first two PCs, 
the strongest correlation was between PC4 and the cortical hierarchy 
(r = −0.50, P = 0.004, uncorrected; Supplementary Fig. 6h). Primary 
sensory areas in both visual and somatosensory cortex have high scores 
on PC4. This pattern is driven by a positive loading on the M2 receptor. 
This was previously identified as a potential marker of primary sensory 
cortex in humans19. There is also a negative loading on the dopamine D1 
receptor (Supplementary Fig. 6f). This matches previous reports of D1 
increasing strongly along the hierarchy27. All other correlations were 
weak (PC4-FC3: r = −0.21, P = 0.03, uncorrected; PC3-myelin: r = 0.23, 
P = 0.02, uncorrected) or not significant. Therefore, the two principal 
gradients of receptor expression capture the strongest spatial relation-
ships between receptors and the structural and functional organization 
of the cortex.

Receptor expression in functionally defined networks
Common brain functions activate networks of areas across the cortex. 
Do these different functional networks express distinct receptors? We 
used the NeuroQuery meta-analysis tool38 to define activation maps in 
the human cortex for functions of interest. We aligned the activation 
maps to the macaque cortex using cross-species functional alignment. 
By comparing each functional map to the first two receptor gradients, 
we could embed each function in the receptor space. We estimated the 
homology based on a recently published human–macaque homology 
map29. We also used this alignment to extract the receptor fingerprint 
of each functional activity map.

We found that the principal receptor gradient separates visual 
activity from higher cognitive activity (Fig. 8). We also observed that the 
second receptor gradient separates social-emotional value activity from 
numerical and spatial activity (Fig. 8). Activity maps of visual, motor, 
attention and emotion functions have a high estimated homology  
(Fig. 8). Activity maps of social cognitive, visuospatial, numerical, work-
ing memory and response inhibition functions have lower homology.

The receptor fingerprint for emotion stands out. The emo-
tion activity map overlaps with areas of high 5-HT1A and GABAB, α1 
and kainate densities. This contrasts with numerical-spatial activity. 
Numerical-spatial activity maps overlap with areas that express more 
D1 and 5-HT2A receptors. Therefore, this exploratory analysis suggests 
that gradients of receptor expression align with gradients of function 
along two major axes. These axes distinguish sensory-to-cognitive and 
emotion-to-numerical-spatial functions.

Discussion
In this study, we measured receptor expression across the macaque 
cortex and uncovered general organizational principles. We discovered 
a principal gradient of increasing receptor expression along the corti-
cal hierarchy. This receptor gradient separates sensory and cognitive 
networks. We show that the size of pyramidal cell dendrites increases 
with receptor expression along this gradient. In contrast, myelin and 
receptor expression are anticorrelated across brain areas and layers. 
The secondary receptor gradient is driven by the serotonin 5-HT1A 
receptor. We show that 5-HT1A receptor expression across cortex is 
very similar between macaques and humans. The secondary gradient 
segregates the dorsal attention from the default mode network and 
salience network. The second receptor gradient also separates activity 
from socio-emotional and numerical-spatial functions. This suggests a 
potential serotonergic basis for a switch between external and internal 
focus of attention and highlights the relevance of the macaque monkey 
as a research model.

The principal receptor gradient may help functional diver-
sity emerge across the cortex. In the 1950s and 1960s, Sanides and 
Braitenberg contended that the cortex is organized in gradients39,40.  

Recently, gradients of connectivity17,29,41, cell types42, receptors19–21 and 
gene expression43,44 have been found. Many of these properties vary 
along an axis that aligns with the cortical hierarchy26,27,45. A puzzle is 
how anatomical gradients can lead to the emergence of different func-
tions across the cortex. We chose to analyze a representative subset 
of receptors for classical neurotransmitters. In the human brain, the 
distribution of these receptors segregates cortical types and functional 
systems19–21. We discovered a principal receptor gradient in macaque 
cortex that increased along the hierarchy. Along the principal receptor 
gradient, we show that receptor expression increases by a factor of 4. 
We found that neurons at the top of the gradient have larger dendritic 
trees. They are, thus, equipped to integrate information from a greater 
number of sources. This may be the anatomical basis by which neurons 
in higher areas integrate information over longer timescales46 and 
display an increased dynamic range47. This large and varied receptor 
expression may enable neurons in higher cortical areas to act flexibly. 
In contrast, the neurons of early sensory cortex express relatively few 
receptors. This may ensure that sensory stimuli are processed reliably 
in different contexts. However, our analysis of dendritic properties was 
solely focused on the basal dendrites of layer 3 pyramidal cells7. This is 
of particular interest, as this is the site of recurrent cortical connections 
that allow for sustained activity48. This activity is thought to support 
many functions, including working memory and decision-making. 
In the future, it will be important to discover whether gradients of 
dendritic properties exist for pyramidal cells in other layers and for 
interneurons. Increased dendritic length and spine count in frontal 
cortex compared to V1 has been shown for the apical and basal den-
drites of layer 3 pyramidal cells in the macaque but not the mouse49. 
It is possible that gradients of receptor expression and function may 
also differ between primates and rodents.

The second receptor gradient reveals a link between distinct treat-
ments for depression. We found that the second receptor gradient is 
dominated by serotonin 5-HT1A receptor expression. This resembles 
a pattern seen in vivo in the macaque monkey by means of receptor 
positron emission tomography (PET) and [11C]6BPWAY, a full antago-
nist of the 5-HT1A receptor50. It is similar to the rostro-caudal gradient 
found in the human brain19,51. Regions scoring high on this gradient 
strongly overlap with areas activated during studies of emotion (Fig. 8).  
This gradient peaks in the cingulate cortex, with high expression in the 
subcallosal cingulate. This is a principal target of deep brain stimula-
tion for treating depression31. Serotonin release may be reduced in 
patients with depression. Interestingly, deep brain stimulation of 
the subcallosal cingulate and selective serotonin reuptake inhibi-
tors (SSRIs) have almost identical effects on cerebral blood flow31,52,53. 
SSRIs increase the activation of 5-HT1A receptors. They act to reduce 
neural activity around the subcallosal cingulate. This counteracts the 
increased glucose metabolism seen in patients with depression in this 
area54. Our analysis of 5-HT1A receptor expression suggests that subcal-
losal cingulate stimulation and SSRIs target the same brain network.

The macaque may be a promising animal model for serotonergic 
functions and related disorders. Here, using in vitro autoradiography, 
we found that 5-HT1A receptor density in the macaque is very similar to 
the HTR1A gene expression and receptor expression in humans (Fig. 7  
and Supplementary Fig. 7). Gene expression is not always a good pre-
dictor of receptor expression. However, a previous study (using PET) 
found that, in humans, 5-HT1A receptor and gene expression are highly 
correlated55. Here, 5-HT1A had one of the highest gene–receptor cor-
relations of all receptors (Supplementary Fig. 11). This is consistent 
with a contemporaneous analysis of gene–receptor correlations in 
the human brain by other authors36. In the rat, 5-HT1A receptor expres-
sion also peaked in the cingulate cortex. However, the gradient of 
expression was flatter than in the macaque or human brain. Notably, 
in the rat, the laminar receptor expression pattern differs from that 
observed in human and macaque cortex6. Receptors for serotonin 
and other neuromodulators may also be expressed on different cell 
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types between rodents and primates56–58. Recognizing differences in 
serotonin receptor expression across species may be important when 
interpreting animal models of serotonergic functions and disorders.

The secondary receptor gradient separates the dorsal attention 
network from the default mode network and salience network. Asso-
ciation cortex can be divided into four networks (dorsal attention, 
salience, frontoparietal and default). These networks each occupy 

parts of the frontal, parietal and temporal lobes. In several patches of 
cortex, they appear in a consistent order17. Among the higher cognitive 
networks, the dorsal attention network lies closest to sensory areas. 
The dorsal attention network is active when attention is focused on 
external stimuli59. The default mode network lies farthest away from 
sensory areas. The default mode network is active when attention is not 
focused on the external world. This includes during autobiographical 
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Fig. 8 | Receptor expression in functionally defined networks. Representative 
activation patterns for 12 functions were generated using the automatic 
meta-analysis software NeuroQuery. These activation maps were transformed 
from the human cortex to the macaque cortex using cross-species functional 
alignment. Each functional map is located within the two-dimensional receptor 

space according to the spatial overlap with the receptor gradients. The intensity 
of purple for each term within the plot corresponds to the estimated human–
macaque homology. For each function, the receptor fingerprint plots on the 
outside show the average receptor density across significantly activated vertices. 
RL, reinforcement learning.
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memory or imagination60. Activity in these two networks is often anti-
correlated32,33, in line with their opposing roles in cognition. The fron-
toparietal network (also known as the multiple demand system, the 
cognitive control network and the central executive network) lies 
anatomically between these two networks. The frontoparietal net-
work may couple with either of the other two networks, depending on 
task demands61. In line with this role, we found that the frontoparietal 
network lies between the dorsal attention and default mode networks 
along the secondary receptor gradient (Fig. 6).

Serotonin and noradrenaline release may shift the brain from inter-
nally focused to externally focused attention states. The mechanism 
of antagonism between the dorsal attention network and the default 
mode network is unknown. It could result from long-range projections 
to inhibitory neurons62. Here, we show that serotonin release should 
engage 5-HT1A receptors in the default mode and salience networks. The 
noradrenaline α1 receptor similarly peaks in these networks. The sali-
ence network can switch the brain from default mode network to fron-
toparietal and dorsal attention network-dominated activity34. Some 
stimuli, such as surprising stimuli, activate the salience network and 
also induce serotonin and noradrenaline release34,63,64. This suggests 
a functional link between these systems that supports the anatomical 
results found here. The 5-HT1A receptor has a high affinity for serotonin. 
For this reason, it normally dominates cortical serotonin processing. In 
contrast, massive serotonin release under extreme conditions engages 
5-HT2A receptors65. These are events when attention needs to be rapidly 
shifted to external stimuli. We show that the excitatory effects of the 
5-HT2A receptors may complement the 5-HT1A effects by exciting the 
dorsal attention and frontoparietal networks (Supplementary Fig. 11).  
Therefore, serotonin and noradrenaline release may shift activity 
between relatively stable states. This is compatible with recent findings 
that genes for neuromodulatory receptors are expressed at cortical 
locations that may affect the flow of brain states over time66. This sug-
gests a potential neuromodulatory mechanism by which the brain may 
shift activity between cardinal cognitive networks.

The high neuron density in V1 underlies its high receptor expression. 
A gradient of receptor expression was recently discovered in the human 
cortex19–21. The human receptor gradient resembles the principal receptor 
gradient of the macaque brain. An advantage of studying the macaque 
cortex is that it allows for comparison with gold standard invasive ana-
tomy data. For example, comprehensive maps of neuron density are not 
currently available for the human8. We compared the receptor and neuron 
density data. This revealed that several receptors are highly expressed 
in V1 because of the high neuron density in that area. The receptor maps 
that we provide are only a snapshot in time. In the future, much remains 
to be discovered, including the variation by sex, pathological changes 
associated with brain disorders and changes across time.

The present study provides insights into the relationships between 
the densities of 14 receptors from six classical neurotransmitter systems 
and cortical hierarchy in the macaque monkey brain. Across these recep-
tors, some methodological considerations must be considered because, 
despite decades of research, not all currently available ligands are able 
to completely segregate different receptor types (for example, D1 and D5 
receptors; Supplementary Table 4). Interestingly, the NMDA receptor 
antagonist [3H]MK-801 was found to inhibit human nicotinic acetyl-
choline receptors by blocking the open pore67,68. Because the nicotinic 
receptor channel requires acetylcholine to open, and all endogenous 
substances were removed during the pre-incubation step of the binding 
protocol, it is highly unlikely that the binding sites labeled here with [3H]
MK-801 include the nicotinic cholinergic receptor. Future studies will 
be necessary to develop, characterize and quantify the distribution of 
more specific radioligands for all receptor types analyzed here.

Recent developments in large-scale recordings have high-
lighted the distributed nature of cognitive functions. However, 
theoretical understanding of how cortical activity patterns enable 
function remains limited. The receptor data presented here, along 

with connectivity data3, can provide an anatomical basis for large-scale 
models and theories of brain function27,69–74. Future large-scale theories 
of brain function may reveal how flexible higher cognition emerges 
along the principal receptor gradient.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41593-023-01351-2.

References
1. Glasser, M. F. et al. A multi-modal parcellation of human cerebral 

cortex. Nature 536, 171–178 (2016).
2. Majka, P. et al. Open access resource for cellular-resolution 

analyses of corticocortical connectivity in the marmoset monkey. 
Nat. Commun. 11, 1133 (2020).

3. Markov, N. T. et al. A weighted and directed interareal connectivity 
matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 
(2014).

4. Oh, S. W. et al. A mesoscale connectome of the mouse brain. 
Nature 508, 207–214 (2014).

5. Scheffer, L. K. et al. A connectome and analysis of the adult 
Drosophila central brain. eLife 9, e57443 (2020).

6. Zilles, K. & Palomero-Gallagher, N. Comparative analysis of 
receptor types that identify primary cortical sensory areas. In 
Evolution of Nervous Systems 2nd edn (ed Kaas, J. H.) 225–245 
(Elsevier, 2017).

7. Elston, G. N. in Evolution of Nervous Systems (eds Kaas, J. H. & 
Preuss, T. M.) 191–242 (Elsevier, 2007).

8. Collins, C. E., Airey, D. C., Young, N. A., Leitch, D. B. & Kaas, J. H. 
Neuron densities vary across and within cortical areas in primates. 
Proc. Natl Acad. Sci. USA 107, 15927–15932 (2010).

9. Milham, M. P. et al. An open resource for non-human primate 
imaging. Neuron 100, 61–74 (2018).

10. Froudist-Walsh, S. et al. Macro-connectomics and microstructure 
predict dynamic plasticity patterns in the non-human primate 
brain. eLife 7, e34354 (2018).

11. Scholtens, L. H., Schmidt, R., Reus de, M. A. & Heuvel den van, M. P.  
Linking macroscale graph analytical organization to microscale 
neuroarchitectonics in the macaque connectome. J. Neurosci. 34, 
12192–12205 (2014).

12. Rapan, L. et al. Multimodal 3D atlas of the macaque monkey 
motor and premotor cortex. Neuroimage 226, 117574 (2021).

13. Hayashi, T. et al. The nonhuman primate neuroimaging and 
neuroanatomy project. Neuroimage 229, 117726 (2021).

14. Paquola, C. et al. Microstructural and functional gradients are 
increasingly dissociated in transmodal cortices. PLoS Biol. 17, 
e3000284 (2019).

15. Howard, A. F. D. et al. Joint modelling of diffusion MRI and 
microscopy. Neuroimage 201, 116014 (2019).

16. Wang, X.-J. Macroscopic gradients of synaptic excitation and 
inhibition in the neocortex. Nat. Rev. Neurosci. 21, 169–178 (2020).

17. Margulies, D. S. et al. Situating the default-mode network along a 
principal gradient of macroscale cortical organization. Proc. Natl 
Acad. Sci. USA 113, 12574–12579 (2016).

18. Coletta, L. et al. Network structure of the mouse brain 
connectome with voxel resolution. Sci. Adv. 6, eabb7187 (2020).

19. Zilles, K. & Palomero-Gallagher, N. Multiple transmitter receptors 
in regions and layers of the human cerebral cortex. Front. Neuroanat. 
11, 78 (2017).

20. Goulas, A. et al. The natural axis of transmitter receptor 
distribution in the human cerebral cortex. Proc. Natl Acad. Sci. USA 
118, e2020574118 (2021).

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-023-01351-2


Nature Neuroscience | Volume 26 | July 2023 | 1281–1294 1293

Resource https://doi.org/10.1038/s41593-023-01351-2

21. Hansen, J. Y. et al. Mapping neurotransmitter systems to the 
structural and functional organization of the human neocortex. 
Nat. Neurosci. 25, 1569–1581 (2022).

22. Niu, M. et al. Receptor-driven, multimodal mapping of cortical areas 
in the macaque monkey intraparietal sulcus. eLife 9, e55979 (2020).

23. Rapan, L. et al. Receptor architecture of macaque and human 
early visual areas: not equal, but comparable. Brain Struct. Funct. 
227, 1247–1263 (2022).

24. Donahue, C. J. et al. Using diffusion tractography to predict 
cortical connection strength and distance: a quantitative 
comparison with tracers in the monkey. J. Neurosci. 36,  
6758–6770 (2016).

25. Zilles, K., Schleicher, A., Palomero-Gallagher, N. & Amunts, K. 
Quantitative analysis of cyto-and receptor architecture of the 
human brain. In Brain Mapping: The Methods 2nd edn (eds Toga, 
A. & Mazziotta, J.) 573–602 (Elsevier, 2002).

26. Markov, N. T., Vezoli, J., Chameau, P., Falchier, A. & Quilodran, R. 
Anatomy of hierarchy: feedforward and feedback pathways in 
macaque visual cortex. J. Comp. Neurol. https://doi.org/10.1002/
cne.23458 (2014).

27. Froudist-Walsh, S. et al. A dopamine gradient controls access to 
distributed working memory in the large-scale monkey cortex. 
Neuron 109, 3500–3520 (2021).

28. McGee, A. W., Yang, Y., Fischer, Q. S., Daw, N. W. & Strittmatter, S. M.  
Experience-driven plasticity of visual cortex limited by myelin and 
nogo receptor. Science 309, 2222–2226 (2005).

29. Xu, T. et al. Cross-species functional alignment reveals 
evolutionary hierarchy within the connectome. Neuroimage 223, 
117346 (2020).

30. Yeo, B. T. T. et al. The organization of the human cerebral cortex 
estimated by intrinsic functional connectivity. J. Neurophysiol. 
106, 1125–1165 (2011).

31. Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant 
depression. Neuron 45, 651–660 (2005).

32. Fox, M. D. et al. The human brain is intrinsically organized into 
dynamic, anticorrelated functional networks. Proc. Natl Acad.  
Sci. USA 102, 9673–9678 (2005).

33. Kelly, A. M. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X. & 
Milham, M. P. Competition between functional brain networks 
mediates behavioral variability. Neuroimage 39, 527–537 (2008).

34. Menon, V. & Uddin, L. Q. Saliency, switching, attention and 
control: a network model of insula function. Brain Struct. Funct. 
214, 655–667 (2010).

35. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the 
adult human brain transcriptome. Nature 489, 391–399 (2012).

36. Hansen, J. Y. et al. Correspondence between gene expression and 
neurotransmitter receptor and transporter density in the human 
brain. Neuroimage 264, 119671 (2022).

37. Burt, J. B., Helmer, M., Shinn, M., Anticevic, A. & Murray, J. D. 
Generative modeling of brain maps with spatial autocorrelation. 
Neuroimage 220, 117038 (2020).

38. Dockès, J. et al. NeuroQuery, comprehensive meta-analysis of 
human brain mapping. eLife 9, e53385 (2020).

39. Sanides, F. Die Architektonik des Menschlichen Stirnhirns: Zugleich 
eine Darstellung der Prinzipien Seiner Gestaltung als Spiegel der 
Stammesgeschichtlichen Differenzierung der Grosshirnrinde 
(Springer-Verlag, 1962).

40. Braitenberg, V. A note on myeloarchitectonics. J. Comp. Neurol. 
118, 141–156 (1962).

41. Vos de Wael, R. et al. Structural connectivity gradients of the 
temporal lobe serve as multiscale axes of brain organization and 
cortical evolution. Cereb. Cortex 31, 5151–5164 (2021).

42. Kim, Y. et al. Brain-wide maps reveal stereotyped cell-type-based 
cortical architecture and subcortical sexual dimorphism. Cell 171, 
456–469 (2017).

43. Burt, J. B. et al. Hierarchy of transcriptomic specialization across 
human cortex captured by structural neuroimaging topography. 
Nat. Neurosci. 21, 1251 (2018).

44. Fulcher, B. D., Murray, J. D., Zerbi, V. & Wang, X.-J. Multimodal 
gradients across mouse cortex. Proc. Natl Acad. Sci. USA 116, 
4689–4695 (2019).

45. Theodoni, P. et al. Structural attributes and principles of the 
neocortical connectome in the marmoset monkey. Cereb. Cortex 
32, 15–28 (2022).

46. Murray, J. D. et al. A hierarchy of intrinsic timescales across 
primate cortex. Nat. Neurosci. 17, 1661–1663 (2014).

47. Shafiei, G. et al. Topographic gradients of intrinsic dynamics 
across neocortex. eLife 9, e62116 (2020).

48. Goldman-Rakic, P. S. Cellular basis of working memory. Neuron 
14, 477–485 (1995).

49. Gilman, J. P., Medalla, M. & Luebke, J. I. Area-specific features of 
pyramidal neurons—a comparative study in mouse and rhesus 
monkey. Cereb. Cortex 27, 2078–2094 (2017).

50. Sandell, J. et al. New halogenated [11C]WAY analogues, 
[11C]6FPWAY and [11C]6BPWAY—radiosynthesis and assessment 
as radioligands for the study of brain 5-HT1A receptors in living 
monkey. Nucl. Med. Biol. 28, 177–185 (2001).

51. Varnäs, K., Halldin, C. & Hall, H. Autoradiographic distribution of 
serotonin transporters and receptor subtypes in human brain. 
Hum. Brain Mapp. 22, 246–260 (2004).

52. Mayberg, H. S. et al. Regional metabolic effects of fluoxetine 
in major depression: serial changes and relationship to clinical 
response. Biol. Psychiatry 48, 830–843 (2000).

53. Erritzoe, D. et al. Brain serotonin release is reduced in patients 
with depression: a [11C]Cimbi-36 positron emission tomography 
study with a d-amphetamine challenge. Biol. Psychiatry  
https://doi.org/10.1016/j.biopsych.2022.10.012 (2022).

54. Mayberg, H. S. Positron emission tomography imaging in 
depression: a neural systems perspective. Neuroimaging Clin. N. 
Am. 13, 805–815 (2003).

55. Beliveau, V. et al. A high-resolution in vivo atlas of the human 
brain’s serotonin system. J. Neurosci. 37, 120–128 (2017).

56. Hodge, R. D. et al. Conserved cell types with divergent features in 
human versus mouse cortex. Nature 573, 61–68 (2019).

57. Anastasiades, P. G., Boada, C. & Carter, A. G. Cell-type-specific 
D1 dopamine receptor modulation of projection neurons and 
interneurons in the prefrontal cortex. Cereb. Cortex 29,  
3224–3242 (2019).

58. Mueller, A., Krock, R. M., Shepard, S. & Moore, T. 
Dopamine receptor expression among local and visual 
cortex-projecting frontal eye field neurons. Cereb. Cortex 30, 
148–164 (2019).

59. Corbetta, M. & Shulman, G. L. Control of goal-directed and 
stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 
201–215 (2002).

60. Andrews-Hanna, J. R., Smallwood, J. & Spreng, R. N. The default 
network and self-generated thought: component processes, 
dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 1316, 
29–52 (2014).

61. Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W. &  
Schacter, D. L. Default network activity, coupled with the 
frontoparietal control network, supports goal-directed cognition. 
Neuroimage 53, 303–317 (2010).

62. Anticevic, A. et al. NMDA receptor function in large-scale 
anticorrelated neural systems with implications for cognition and 
schizophrenia. Proc. Natl Acad. Sci. USA 109, 16720–16725  
(2012).

63. Matias, S., Lottem, E., Dugué, G. P. & Mainen, Z. F. Activity patterns 
of serotonin neurons underlying cognitive flexibility. eLife 6, 
e20552 (2017).

http://www.nature.com/natureneuroscience
https://doi.org/10.1002/cne.23458
https://doi.org/10.1002/cne.23458
https://doi.org/10.1016/j.biopsych.2022.10.012
https://doi.org/10.1016/j.biopsych.2022.10.012


Nature Neuroscience | Volume 26 | July 2023 | 1281–1294 1294

Resource https://doi.org/10.1038/s41593-023-01351-2

64. Aston-Jones, G. & Cohen, J. D. An integrative theory of locus 
coeruleus-norepinephrine function: adaptive gain and optimal 
performance. Annu. Rev. Neurosci. 28, 403–450 (2005).

65. Carhart-Harris, R. & Nutt, D. Serotonin and brain function: a tale of 
two receptors. J. Psychopharmacol. 31, 1091–1120 (2017).

66. Shine, J. M. et al. Human cognition involves the dynamic 
integration of neural activity and neuromodulatory systems.  
Nat. Neurosci. 22, 289–296 (2019).

67. Amador, M. & Dani, J. A. MK-801 inhibition of nicotinic 
acetylcholine receptor channels. Synapse 7, 207–215 (1991).

68. Briggs, C. A. & McKenna, D. G. Effect of MK-801 at the human 
α7 nicotinic acetylcholine receptor. Neuropharmacology 35, 
407–414 (1996).

69. Deco, G. et al. Whole-brain multimodal neuroimaging model 
using serotonin receptor maps explains non-linear functional 
effects of LSD. Curr. Biol. 28, 3065–3074 (2018).

70. Cano-Colino, M., Almeida, R., Gomez-Cabrero, D., Artigas, F. & 
Compte, A. Serotonin regulates performance nonmonotonically 
in a spatial working memory network. Cereb. Cortex 24,  
2449–2463 (2014).

71. Durstewitz, D. & Seamans, J. K. The computational role of dopamine 
D1 receptors in working memory. Neural Netw. 15, 561–572 (2002).

72. Klatzmann, U. et al. A connectome-based model of conscious 
access in monkey cortex. Preprint at bioRxiv https://doi.org/ 
10.1101/2022.02.20.481230 (2022).

73. Mejias, J. F. & Wang, X.-J. Mechanisms of distributed working 
memory in a large-scale network of macaque neocortex. eLife 
11, e72136 (2022).

74. Ding, X., Froudist-Walsh, S., Jaramillo, J., Jiang, J. &  
Wang, X.-J. Predicting distributed working memory activity  
in a large-scale mouse brain: the importance of the cell 
type-specific connectome. Preprint at https://doi.org/10.1101/ 
2022.12.05.519094 (2022).

75. Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R. & Kievit, R. A.  
Raincloud plots: a multi-platform tool for robust data 
visualization. Wellcome Open Res. 4, 63 (2019).

Publisher’s note Springer Nature remains neutral with  
regard to jurisdictional claims in published maps and institutional 
affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/natureneuroscience
https://doi.org/10.1101/2022.02.20.481230
https://doi.org/10.1101/2022.02.20.481230
https://doi.org/10.1101/2022.12.05.519094
https://doi.org/10.1101/2022.12.05.519094
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Neuroscience

Resource https://doi.org/10.1038/s41593-023-01351-2

Methods
In vitro receptor autoradiography
Quantitative in vitro receptor autoradiography was applied to label 14 
neurotransmitter receptors in three male Macaca fascicularis brains 
(7.3 ± 0.6 years old; body weight 6 ± 0.8 kg) obtained from Covance 
Preclinical Services, where they were housed and used as control  
animals for pharmaceutical studies performed in compliance with legal 
requirements. Serotonin 5-HT1A receptor densities were also quantified 
in six adult male Lewis rat brains from the Central Animal Facility of 
the Hannover Medical School. Animal experimental procedures and 
husbandry had the approval of the respective Institutional Animal 
Care and Use Committee and were carried out in accordance with the 
European Council Directive of 2010. Human data used here were previ-
ously published19,76,77 and come from the brains of five donors (three 
males, 76 ± 3 years old) without a history of neurological or psychiatric 
diseases. No statistical methods were used to pre-determine sample 
sizes, but our sample sizes are similar to those reported in previous 
publications12,19,22,23,76,77.

Monkeys were sacrificed by an intravenous lethal dose of sodium 
pentobarbital, and brains were removed immediately from the skull. 
Brain stem and cerebellum were dissected off in close proximity to the 
cerebral peduncles, and hemispheres were separated into a rostral and 
a caudal block by a cut in the coronal plane of sectioning within the cen-
tral sulcus. Rats were decapitated under ketamine–xylazine narcosis, 
and the brains were removed immediately from the skull. Brain tissue 
was shock frozen in isopentane at −40 °C to −50 °C.

Brain tissue was serially sectioned in the coronal plane (section 
thickness 20 µm) using a cryostat microtome (Leica, CM3050S). Sections  
were thaw mounted on gelatine-coated slides, sorted into 22 parallel 
series and freeze dried overnight. Alternating series of sections were 
processed for visualization of receptors according to previously pub-
lished protocols, which were also established for the macaque brain78,79 
(Supplementary Table 4), cell bodies80 or myelin81, so that there was a 
gap of ~800 µm between two acquired sections for a given receptor 
type or histological staining.

Receptor binding protocols encompass a pre-incubation to rehy-
drate sections, a main incubation with a tritiated ligand in the pres-
ence of or without a non-labeled displacer and a final rinsing step 
to terminate binding (Supplementary Table 4). Incubation with the 
tritiated ligand alone demonstrates total binding; incubation in com-
bination with the displacer reveals the proportion of non-specific 
binding sites. Specific binding is the difference between total and 
non-specific binding and was less than 5% of the total binding. Thus, 
total binding is considered to be equivalent of specific binding78. Sec-
tions were exposed together with standards of known radioactivity 
against tritium-sensitive films (Hyperfilm, Amersham) for 4–18 weeks 
depending on the receptor type.

Ensuing autoradiographs were processed by densitometry with 
a video-based image analyzing technique (for methodical details, see 
refs. 25,78). In short, autoradiographs were digitized as 8-bit images. 
Gray values in the images of the standards were used to compute a 
calibration curve indicating the relationship between gray values in 
an autoradiograph and binding site concentrations in femtomole 
per milligram (fmol mg−1) of protein. Concentrations of radioactivity  
(R, counts per minute) in each standard, which had been calibrated 
against brain tissue homogenate, were converted to binding site con-
centrations (Cb, fmol mg−1 of protein) using:

Cb =
R

E × B ×Wb × Sa
× KD + L

L

where E is efficiency of scintillation counter used to measure concentra-
tion of radioactivity in brain tissue homogenate (Hidex, 300SL); B is a 
constant representing number of decays per unit of time and radioac-
tivity (Ci min−1); Wb is protein weight of a standard (mg); Sa is specific 

activity of the ligand (Ci mmol−1); KD is the dissociation constant of the 
ligand (nM); and L is concentration of the ligand during incubation 
(nM, measured by liquid scintillation counting using same counter as 
for brain tissue homogenate). The ensuing calibration curve is used 
to linearize the autoradiographs—that is, to convert the gray value of 
each pixel into a binding site concentration in fmol mg−1 of protein.

Cortical areas were identified in the cell-body-stained sections 
based on previously published criteria for the rat82 and macaque  
(Visual23; Parietal22,79,83 and Motor12; Cingulate84, Prefrontal and Orbito-
frontal85–87) brains, and borders were transferred to the neighboring 
sections processed for receptor autoradiography. The mean receptor 
density for each area was determined by density profiles extracted 
vertical to the cortical surface over a series of 3–5 linearized autoradio-
graphs per receptor type, area and brain using MATLAB-based in-house 
software25,78. Specifically, densities were extracted from three sections 
spread throughout areas of the rat brain or small areas of the macaque 
brain (for example, area 25) and from five sections for larger areas of 
the macaque brain (for example, p24).

Surface representation of cyto-architectonic and 
receptor-architectonic atlas and receptor data
In total, 109 cortical areas were defined in the macaque monkey 
brain based on their cyto-architecture and receptor-architecture, as 
described above. We call this parcellation the Julich Brain Macaque 
Maps (https://search.kg.ebrains.eu/instances/e39a0407-a98a-
480e-9c63-4a2225ddfbe4). The location and extent of the corti-
cal areas were delineated in the three-dimensional space of the 
Yerkes19 surface24 by L.R., M.N. and N.P.G. using the connectome 
workbench software (https://www.humanconnectome.org/soft-
ware/connectome-workbench) by carefully aligning boundaries to 
macro-anatomical landmarks identified using the cyto-architecture. 
The location of all regions on the Yerkes19 surface were indepen-
dently checked and verified by M.N., S.F.W., L.R. and N.P.G. Addition-
ally, the mean receptor densities of all 14 receptor types have been 
projected onto the corresponding area on the Yerkes19 surface for 
visualization.

Surface representation of neural density data
Collins et al.8 measured neural density across the macaque cortex 
using isotropic fractionation. Those authors studied the brain of a 
4-month-old macaque monkey. Adult neural density is already pre-
sent at this age88. In that article, the cortex is presented as a flat map 
divided into sections (that is, the Vanderbilt sections; their Fig. 2 and 
Supplementary Fig. 6). We used these maps, along with several sulcal 
and areal landmarks (their Fig. 2), to estimate the location of each 
cortical section. The landmarks included the following sulci: calcarine 
sulcus, lunate sulcus, intraoccipital sulcus, occipitotemporal sulcus, 
intraparietal sulcus, cingulate sulcus, lateral sulcus, arcuate sulcus 
and principal sulcus and the following brain areas: V1, V2, V4, DM, LIP, 
MIP, VIP, AIP, MT, A1, parabelt, insula, 5a, 2, 1, 3b, M1, PMv, PMd, FEF 
and SMA. We then transferred the locations of the sections onto the 
Yerkes19 surface.

This was performed by S.F.W. and independently verified by L.R., 
M.N. and N.P.G. This allowed us to estimate the neural density in each 
of the 109 areas of the Julich Brain Macaque Maps. Several of the brain 
areas in the Julich Brain Macaque Maps overlapped with two or more of 
the Vanderbilt sections. In these cases, we estimated the neural density 
in each Julich Brain Macaque Maps area according to the degree of 
overlap with each Vanderbilt section.

The neuron density data were originally in units of neurons per 
gram, and the receptor density data were in fmol mg−1 of protein. To 
estimate the receptor density in fmol per neuron, we used the previ-
ously reported figure that 8% of brain tissue is protein89. This amounts 
to multiplying by a constant and does not affect the calculation of the 
gradients via PCA or the correlations with other maps.
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Receptor gradients
To identify the receptor gradients, we z-scored the receptors- 
per-neuron data and performed a PCA. z-scoring ensured that 
high-density receptors would not dominate the PCs.

Cortical hierarchy and retrograde tracing data
The cortical connectivity data were obtained from Henry Kennedy 
(Lyon, France) and are available at https://core-nets.org. The retrograde 
tracing data were obtained by injections into 40 cortical regions27,90. 
This was performed using consistent methods in the same laboratory. 
We recently estimated the cortical hierarchy using these data, based 
on the laminar patterns of connections27. The parcellation for this 
connectivity data is already available on the Yerkes19 surface. This 
parcellation is known in BALSA as the M132 atlas. We used this to fill in 
hierarchy values on the surface. We estimated the receptor gradients 
within each area of the M132 Atlas. Gradient values were calculated 
based on the overlap with each area of the Julich Brain Macaque Maps.

Surface representation of dendritic data
Elston et al. measured dendritic tree length and spine density across the 
macaque cortex. In our study, we analyzed the data for layer 3 pyramidal 
neurons, for which most data are available. We mapped the injection 
sites onto the Yerkes19 template. Borders for injection sites in the series 
of papers by Elston et al. were drawn on the Yerkes19 template by S.F.W. 
All identified injection sites on the cortical surface were independently 
verified by M.N., L.R. and N.P.G. Direct comparison with the hand-drawn 
maps was possible for areas V1, V2, MT, LIPv, 7a, V4, TEO, STP, IT, ant. cing., 
post. cing, TEpd, 12vl, A1, 3b, 4, 5, 6, 7b, 9, 13, 46 and 7m91–99. The following 
references were also used to identify the locations of injection sites on the 
Yerkes19 surface. Areas 10, 11 and 12 (ref. 100) were described with refer-
ence to ref. 101. The injection in area TEa, as described in ref. 102, used 
the maps in Seltzer and Pandya103 for area definition. We used these maps 
to approximate the injection location. Area STP was identified with the 
corresponding region STPp in the atlas of Felleman and Van Essen104. Area 
FEF was identified according to the description in ref. 105. It is described 
as lying on the anterior bank of the medial aspect of the arcuate sulcus. 
The receptor PC score was averaged within all vertices in each injection 
site. This allowed us to compare dendritic and receptor data.

Cortical T1w/T2w data
The T1w/T2w data were acquired by Donahue et al.24 and were down-
loaded from the BALSA neuroimaging website (https://balsa.wustl.edu/
study/W336). To compare the T1w/T2w data with the receptor data, we 
simply averaged the T1w/T2w signal within each of the 109 areas of the 
Julich Brain Macaque Maps.

Cross-species functional alignment and functional 
connectivity data
We used cross-species functional alignment to compare macaque and 
human data. This method relies on three major steps: (1) construct a 
cross-species joint similarity matrix; (2) based on the joint similarity 
matrix, calculate matching gradients of functional connectivity across 
species; and (3) use the functional connectivity gradients as input to 
multimodal surface matching (MSM), to create a vertex-to-vertex 
mapping across species. For details of the method, see Xu et al.29; for 
a similar approach, see Mars et al.106. The original macaque data were 
from Oxford, obtained via PRIME-DE. The original human data were 
from the Human Connectome Project (HCP).

Xu et al.29 transferred the cognitive networks defined in Yeo et al.30 
from human to macaque using this cross-species functional align-
ment29. We used this human-to-monkey mapping to identify the recep-
tor expression across cognitive networks. We excluded the limbic 
network from analysis. This is due to a lack of receptor data and a very 
low SNR in fMRI data. We also used this method to compare human 
gene expression and functional activation to macaque receptor data.

Human gene expression data
Human gene expression data were downloaded from the Allen Human 
Brain Atlas35. We analyzed data from hundreds of microarray samples 
across the left cortical hemispheres of six donors (five males, one 
female, age 24–55 years).

We performed the following steps to process the gene expression 
data.

 (1) Remove probes without a valid Entrez ID
 (2) For each subject

 (a) Extract left hemisphere cortical samples in native MRI space 
from the SampleAnnot file

 (b) Register samples to the native FreeSurfer conformed space
 (c) Map samples to the cortical ribbon, using the manually  

curated individual cortical surface reconstructions of Vincent  
Beliveau and Melanie Ganz (https://surfer.nmr.mgh.harvard. 
edu/fswiki/AllenBrainAtlas)55

(i) Remove samples >2 mm from the cortical ribbon
(ii)  Move samples on edge of cortical ribbon to closest corti-

cal voxel containing no samples
 (d) Map samples from volume to individual surface
 (e) Register native and fs_LR (HCP) surfaces via the FSaverage 

surface, using surface-based alignment. This is likely prefer-
able to volume-based alignment due to the nonlinear distor-
tions that are common with postmortem brains.

 (f) Move each sample to closest HCP cortical vertex containing 
no samples

 (g) Remove samples from medial wall
 (3) Remove samples with exceptionally low inter-areal similarity43

 (4) z-score across probes, within samples
 (5) Map cortical samples to cortical areas, from the HCP MMP 

parcellation1

 (6) Remove probes that do not have above-threshold expression in 
at least 40% of cortical areas (parcels)43

 (7) Account for inter-individual differences using scaled robust 
sigmoid normalization107,108

 (8) Map significant probes to cortical areas
 (a) For each area and probe

(i)  Check if there are any samples within an area that show 
significant expression for that probe
(1)  If there are, calculate the average expression of that 

probe across all the significant samples within the area
(2)  Otherwise, for each vertex in the area, find the closest  

sample with significant expression of that probe. Then,  
calculate the average of the closest samples (one per 
vertex) to estimate the expression for the area43.

 (9) Create the gene expression by cortical area matrix. For each 
gene assessed via multiple probes, we selected the most repre-
sentative probe, as follows43. Where two probes were available, 
we selected the probe with the maximum gene expression vari-
ance across cortical areas. If three or more probes were avail-
able, we selected the probe with the highest average correlation 
(of expression across areas) with the other probes.

Our code for pre-processing and analyzing gene expression data 
on the cortical surface is available. The code also enables easy visualiza-
tion of gene expression data on the cortical surface. Lastly, it allows for 
easy correlation of gene expression data with various other anatomical 
and functional maps. Access the code on github (https://github.com/
seanfw/genemapper).

Receptor expression within functional activity maps from 
NeuroQuery
We used a human meta-analysis database to explore potential receptor 
expression–function associations. We first identified 12 representa-
tive cognitive topics. These included basic sensorimotor functions 
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(for example, visual, pain and motor) and higher-order functions (for 
example, attention, emotion, reinforcement learning and working 
memory). We performed a decoding analysis based on the recently 
published meta-analysis database NeuroQuery38. We then gener-
ated the likelihood z-map in human Montreal Neurological Institute 
(MNI) volume space. Next, we mapped each of the likelihood z-maps 
from the MNI volume space to the FreeSurfer fsaverage surface. This 
was performed using the RF-ANTs (that is, ANTs-based registration 
fusion) tool109. After that, z-maps were further transformed to HCP fsLR  
surface using the HCP tool wb_command. z-maps were then projected 
to the macaque Yerkes19 template space using cross-species functional 
alignment29. We then binarized the likelihood z-maps (thresholded 
at z > 3.1). This enabled us to locate the significant brain areas associ-
ated with each cognitive topic. Finally, we examined the association 
between cognitive topics and receptor expression patterns. We did 
this by measuring the overlap (that is, Dice coefficient) of the binarized 
maps with 20 percentile bins of receptor gradient maps in macaque 
space17. Note that the functional activation map is driven from the 
human meta-analysis database. Thus, we used the human–macaque 
homology score to weight the cognition terms of interest. For each of 
the 12 functions, we extracted the average receptor expression across 
all vertices with significant functional activation (z > 3.1).

Statistical analysis
The mean receptor expression across three brains was used for most 
analysis. We analyzed variation in receptor expression across 109 
regions of these brains. Pearson correlations were performed between 
the receptor PCs and several other anatomical and functional maps. 
Data distribution was assumed to be normal, but this was not formally 
tested. Similar results were obtained using equivalent non-parametric 
tests. We provide the two-tailed P value, adjusted to account for the 
spatial autocorrelation of the data37. These spatial P values were then 
Bonferroni corrected based on the number of correlations between 
receptor gradients and structural or functional maps. No animals or 
data points were excluded from the analyses for any reason.

We defined the gradient dependence of PCs on receptor types 
as follows.

We first compute the singular value decomposition of the normalized  
receptor data matrix. The data were normalized by removing the 
mean from each column and then dividing each column entry by that  
column’s standard deviation.

Xnorm = USVT

The representation of the data in the PC space is given by
Z = US
In the singular value decomposition, Xnorm = USVT. S is a diagonal 

matrix, with the singular values of Xnorm along the diagonal in decreasing 
order. U is an orthonormal matrix whose columns are the left singular 
vectors of Xnorm. To reconstruct the original normalized data, we can 
multiply Z by VT. V is an orthonormal matrix whose columns are the 
right singular vectors of Xnorm. T here denotes the transpose.

Xnorm = ZVT

To reconstruct the data with the first (n − 1) PCs removed (XPCn+), 
we can calculate

XPCn+ = Zn+VTn+

where Zn+ and Vn+ are Z and V with the first (n − 1) columns removed.
For each PC n, we repeated the following procedure. We removed 

each receptor type r, one at a time, from the dataset XPCn+ with (n − 1) 
PCs removed, to obtain a new reduced dataset Xr−

PCn+. This is similar in 
spirit to earlier leave-one-receptor-out analyses110. We then calculated 
the projections (Z1,r−

PCn+) of the data onto the first PC of this reduced 
dataset. Note that if we do not remove any receptors from the data-
set, then the first PC of XPCn+ corresponds to the nth PC of the original 

dataset Xnorm. For each PC and receptor, we calculated the Pearson 
correlation between the projection of the data onto the original PC 
and the new projection:

ρZn ,Z1,r−
PCn+ =

cov(Zn,Z1,r−
PCn+)

σZn σZ1,r−PCn+

where cov is the covariance and σ is the standard deviation. The  
gradient dependence g is defined as 

g = 1 − ρ2
(Zn ,Z1,r−

PCn+)
,

where squaring accounts for the arbitrary signs of PCs.

Reporting Summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Data are available in table format in Supplementary Tables 1 and 2 and 
are available on the BALSA neuroimaging repository (study ID: P2Nql, 
https://balsa.wustl.edu/study/P2Nql) and the Human Brain Project 
platform EBRAINS (https://doi.org/10.25493/5HK3-S8M).

Code availability
Code used for data integration and analysis in this study is available on 
GitHub (github.com/seanfw/macaque-receptor-gradients and github.
com/seanfw/genemapper).
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- A list of figures that have associated raw data 

- A description of any restrictions on data availability

Data used for the analyses presented in this study is available in table format in the Source data flie associated with the article  

(FroudistWalsh_SourceData_Fig1.xlsx). It is also available via BALSA (Study ID: P2Nql, https://balsa.wustl.edu/study/P2Nql) and the EBRAINS platform (https://
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Online Data sources: https://core-nets.org; https://balsa.wustl.edu/study/W336; https://surfer.nmr.mgh.harvard.edu/fswiki/AllenBrainAtlas; Allen Brain Map; 

https://search.kg.ebrains.eu/instances/e39a0407-a98a-480e-9c63-4a2225ddfbe4; human meta-analysis database (https://neuroquery.org/)

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size n = 3 for receptor data from Macaca fascicularis specimens. n = 6 for data from rat specimens. n = 5 for data from human specimens. Other 

data was previously described elsewhere (cited in manuscript). No statistical methods were used to pre-determine sample sizes but our 

sample sizes are similar to those reported in previous publications (cited in the manuscript)

Data exclusions None. 

Replication None. A replication would require the sacrifice of further monkeys and rats, and this would not be ethically justifiable

Randomization N/A. We analyzed data from a single experimental group. Thus, randomization was not necessary.

Blinding N/A. We analyzed data from a single experimental group. Thus, randomization was not necessary.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Adult (8, 7 and 7 years old) male Macaca fascicularis specimens. Adult (exact age not available) male Lewis rats. 

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected in the field.

Ethics oversight The procedures used in this study had the approval of the Institutional Animal Care and Use Committee and were carried out in 

accordance with the European Council Directive of 2010. Covance Preclinical Services GmbH

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics We examined a total of 5 post-mortem human brains from subjects (76±3 years of age; 3 males) without a history of 

neurological or psychiatric diseases. 
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Recruitment Brain samples were obtained through the body donor program of the Department of Anatomy, University of Düsseldorf, 

Germany.

Ethics oversight The use of these samples was approved by the Ethics board of the Medical Faculty of the University of Düsseldorf, Germany.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type We re-used previously published and publicly available structural and resting-state functional MRI datasets.

Design specifications Full description of the MRI data is available in the papers by Xu et al., NeuroImage, 2020 and Glasser and Van Essen, J. 

Neurosci, 2011 as cited in the manuscript . 

Behavioral performance measures N/A.

Acquisition

Imaging type(s) structural (T1w/T2w) and resting-state fMRI

Field strength Full description of the MRI data is available in the papers by Xu et al., NeuroImage, 2020 and Glasser and Van Essen, J. 

Neurosci, 2011 as cited in the manuscript . 

Sequence & imaging parameters Full description of the MRI data is available in the papers by Xu et al., NeuroImage, 2020 and Glasser and Van Essen, J. 

Neurosci, 2011 as cited in the manuscript . 

Area of acquisition whole brain. 

Diffusion MRI Used Not used

Preprocessing

Preprocessing software We re-used fully pre-processed data. Preprocessing is described completely in Xu et al., NeuroImage, 2020, and Glasser and 

Van Essen, J. Neurosci, 2011, as cited in manuscript. 

Normalization We re-used fully pre-processed data. Preprocessing is described completely in Xu et al., NeuroImage, 2020, and Glasser and 

Van Essen, J. Neurosci, 2011, as cited in manuscript. 

Normalization template We re-used fully pre-processed data. Preprocessing is described completely in Xu et al., NeuroImage, 2020, and Glasser and 

Van Essen, J. Neurosci, 2011 as cited in manuscript. 

Noise and artifact removal We re-used fully pre-processed data. Preprocessing is described completely in Xu et al., NeuroImage, 2020, and Glasser and 

Van Essen, J. Neurosci, 2011 as cited in manuscript. 

Volume censoring We re-used fully pre-processed data. Preprocessing is described completely in Xu et al., NeuroImage, 2020, and Glasser and 

Van Essen, J. Neurosci, 2011, as cited in manuscript. 

Statistical modeling & inference

Model type and settings We used output from the study of Xu et al., NeuroImage, 2020. They used diffusion map embedding to identify gradients of 

functional connectivity.

Effect(s) tested N/A

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

N/A

Correction N/A

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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Functional and/or effective connectivity Thresholded functional connectivity matrices (based on Pearson correlations) were used to create joint-

similarity matrices. See Methods and Xu et al., NeuroImage, 2020 for details.
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