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Abstract. A reduction method is used to analyze a spatially structured network model of inhibitory neurons. This
network model displays wave propagation of postinhibitory rebound activity, which depends on GABAB synaptic
interactions among the neurons. The reduced model allows explicit solutions for the wavefronts and their velocity
as a function of various parameters, such as the synaptic coupling strength. These predictions are shown to agree
well with the numerical simulations of the conductance-based biophysical model.
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1. Introduction

GABA (gamma-aminobutyric acid) is the most preva-
lent inhibitory neurotransmitter in the central nervous
system. There are two main types of GABA recep-
tors, GABAA and GABAB. The GABAA receptor is
ligand-gated and binds with a Cl− channel. Its activa-
tion produces a brief (about 10 ms) hyperpolarization
in the postsynaptic neuron. This rapid synaptic inhi-
bition has been implicated in important functions such
as gating signal transmission (Steriade et al., 1990),
shaping the response selectivity of cortical neurons
(Mize et al., 1992), and synchronizing fast (∼40 Hz)
cortical oscillations (Whittington et al., 1995; Wang
and Buzs´aki, 1996). The action of the GABAB receptor
is slower (100–300 ms), mediated through a G-protein
signal pathway, and activates different ion channels at
presynaptic and postsynaptic sites. The postsynaptic
GABAB receptor increases a K+ conductance; while
the presynaptic GABAB receptor reduces the release
of neurotransmitter GABA itself, possibly due to the

modulation of Ca2+ channels. The functional roles of
GABAB synaptic transmission remain not well under-
stood.

Recently, GABAB synaptic transmission in the thala-
mus has been a focus of attention in studies of spindle
waves that are observed during early stages of quiet
sleep (Steriade et al., 1990), as well asin vitro in a
ferret thalamic slice preparation (von Krosigk et al.,
1993; Kim et al., 1995). Detailed network models of
thalamic spindle waves have been developed (Wang
and Rinzel, 1992, 1993; Wang et al., 1995; Golomb et
al. 1994, 1996; Destehxe et al., 1993, 1994, 1996).
Golomb et al. (1996) simulated a thalamic model
with two neural populations, TC cells (thalamocorti-
cal excitatory neurons) and RE cells (reticularis tha-
lami inhibitory neurons), which are reciprocally con-
nected in a spatially structured architecture. In agree-
ment with the ferret slice experiment (Kim et al.,
1995), they found that there are complicated waves
that move across the network in a “lurching” (that
is, discontinuous) manner. Furthermore, the cells left



           P1: EHE/PCY P2: EHE

Journal of Computational Neuroscience KL523-04-Chen December 11, 1997 16:59

54 Chen, Ermentrout and Wang

in the wake of the front do not oscillate synchrously
but, instead, break into clusters. However, when
the GABAA receptor is blocked, the efficacy of the
GABAB synaptic inhibition is greatly enhanced and
produces a slow, smoothly traveling wave, in the wake
of which cells oscillate synchronously. This slow wave
propagation phenomenon is the subject of the present
study.

In order to carry out a quantitative analysis of the
phenomenon, we introduce a minimal version of the
thalamic model with only one population of cells. This
one-population model may be interpreted as a reduc-
tion from a two-population thalamic network to a single
population of TC cells. The idea is that, since the TC-
to-RE excitation is very rapid (via glutamate receptors
of the AMPA type), via the disynaptic TC-RE-TC loop
the excitation in a TC cell would result in a barrage
of slow GABAB IPSPs in the neighboring TC cells.
This can be mimicked by a single-cell population with
GABAB inhibitory interaction among themselves. In
a more general framework, the model presented in this
article can be considered as a generic network model
of inhibitorily coupled neurons endowed with postin-
hibitory rebound (PIR) excitation. In Wang and Rinzel
(1992, 1993), it has been shown that synchronous
∼10 Hz rhythmicity could result from slow mutual in-
hibition between PIR cells. Here, we show that with
a spatially structured network architecture, a popula-
tion of such neurons coupled by GABAB synapses, can
generate slow-wave propagation similar to the thalamic
system with GABAA receptor blockade.

A key feature of our model is that the synaptic cou-
pling of the cells induces a kind of bistability bet-
ween the resting state and the oscillatory state. A slow
wave can thus be regarded as a wavefront that switches
the tissue from rest to rhythmic activity. (Actually,
the spindle oscillation waxes and wanes, thus eventu-
ally relaxes back to rest; but this occurs at a very slow
time scale so we will ignore it.) Model simulations of
the RE-TC system attempt to capture the properties of
this wavefront, including velocity and the shape of the
waves. In this article, we present an analytical study in
order to provide a better understanding of the computer
simulation results. The slow timescale of GABAB sug-
gests that one might be able to reduce the biophysical
model to a simpler one using the method of averag-
ing. Here, we apply the techniques used in Ermen-
trout (1994) to reduce the conductance-based network
model to a single equation for the GABAB synapse.
This is feasible in the present case, where all the other

dynamical variables of the system, including the inac-
tivation of the low-threshold T-type calcium current,
are much faster than the GABAB kinetics. We show
that the reduced model we obtain is similar to models
that have been analyzed by Ermentrout and McLeod
(1993) and by Idiart and Abbott (1993). In these pa-
pers, traveling wavefronts are constructed for a bistable
scalar equation with coupling via a spatial convolution.
We then further approximate the reduced model by a
piecewise continuous one, for which we can explicitly
determine the shape and velocity of the wavefront.

The article is organized as follows. In Section 2, we
describe the conductance-based model and sketch the
reduction approach. Section 3 discusses the properties
of the reduced model and compares them to the origi-
nal conductance-based model. We find that the speed
curves for the various versions of the reduced model
match those computed from the full model. We end
with a brief discussion of how the addition of another
slow process could lead to a different reduced model
and thus to a better description of spindle waves.

2. Biophysical Model and the Reduction

2.1. Description and Simulations

We consider a population of model neurons endowed
with a low-threshold calcium current of the T-type,
so that these cells show PIR excitation in response
to long-lasting synaptic hyperpolarizations (Steriade
et al., 1990). The neurons interact with each other via
GABAB inhibitory synapses, as illustrated in Fig. 1.
The cells are arranged in a line and coupled via
synapses that either decay in strength with distance (ex-
ponentially) or are restricted in extent to cells within a
fixed distance. Rather than consider the model system
as a discrete chain of cells, we look at the continuum
analogue. The equations of the network model are

dV

dt
= −gTm3

∞(V)h(V − VT )− gL(V − VL)

− gsyn

∫ +∞
−∞

ω(y− y′)sp(y′, t) dy′(V − Vsyn),

dh

dt
= (h∞(V)− h)/τ∞(V),

dx

dt
= αx F(V)(1− x)− βxx,

ds

dt
= ε[αsx(1− s)− βss],
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Figure 1. Graphic representation of our inhibition network model, PIR model. All the currents are described in Section 2.1

where the variabley represents the spatial location of
the cell. Each neuron has three currents, a leak with
conductancegL , a T-type calcium current with max-
imal conductancegT , and the synaptic current with
maximal conductancegsyn. The activation variablem
for the T-type calcium current is assumed to be fast
so that it is set at its voltage-dependent steady state
m=m∞(V). The T-current is responsible for the PIR
response, which is a burst of spikes riding on top of
the depolarizing wave. In the spirit of a minimal
model, however, we did not include spike-generating
fast sodium and potassium currents. The effects of
an additional slow (for example, calcium-dependent
potassium) current will be discussed briefly in the Dis-
cussion. The GABAB synapse is modeled with a two-
step kinetics, reflecting the fact that GABAB inhibition
occurs through a G-protein pathway and with a slow
onset (Wang et al., 1995). The variablex represents the
initial binding and the variables is the actual synaptic
gating variable. The synaptic current is proportional
to sp, with p = 4, to take into account the coopera-
tivity of G-proteins in the activation of GABAB medi-
ated ion channel. The gating variables changes very
slowly as is indicated by the coefficientε ¿ 1. The in-
teraction of the cells is via the spatial summation with
weight,ω(y). This is symmetric and nonnegative and
is normalized so that its integral is 1. Golomb et al.
(1996) considered two different forms: (1) exponen-
tial, ω(y) = e−|y|/λ/(2λ) and (ii) step,ω(y) = 1/(2λ)
if |y| < λ andω(y) = 0 otherwise. The actual domain

of the model is finite over space. However, there can
be no constant profile traveling waves over a finite do-
main (the wave will run off eventually), so we have
embedded the network into the whole real line. Thus,
a traveling wave can be an asymptotic state. The sim-
ulations, of course, are carried out in a discrete and
finite space. The details of the functions used in the
simulation are given in the Appendix.

Figure 2 shows a typical simulation.The network is
initially at rest. A stimulus excites enough cells to pro-
duce a wave that travels across the medium at a constant
velocity. The front leaves the medium oscillating syn-
chronously in its wake (see Fig. 3). The slope of the
excited region in Fig. 2 gives the velocity of the wave.
One of the main goals in this article is to determine
how the velocity depends on various parameters in the
simulation. In particular, we want to understand how
the wavefront velocity depends on the synaptic con-
ductance,gsyn. Figure 4 shows this dependence for the
simulated equations. To calculate the speed accurately,
the simulation is run, and the time of the first burst for
each cell is recorded. This is then fit to a straight line,
and the slope of this line is the reciprocal of the velocity
(also see Golomb et al., 1996, p. 758).

2.2. Fast-Slow Processes

Since the model has a slow variables, we will use the
reduction approach (Rinzel, 1985; Wang and Rinzel,
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Figure 2. Space-time plot of the voltage for a simulation with parameters as in the appendix. Time increases from top to bottom, and space
increases from left to right. Black is 80 mV, and white is−80 mV. Grey is the rest state of about−57 mV. Total length of domain is 1 unit length
(say, 1 cm), and the total time of the simulation is 3000 msec.

Figure 3. Voltage traces as a function of time at two different spatial points in the simulation of Fig. 2. This shows that synchrony is achieved
within a few cycles.
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Figure 4. Wavefront velocity of the biophysical model. The velocity is plotted as function of the synaptic conductance, where thex-axis unit
is mS/cm2 and they-axis is unit-length per second.

1995; Ermentrout, 1994) to simplify the problem.
To be specific, consider the following general dy-
namic system describing an isopotential membrane
compartment:

d X

dt
= F(X, s),

ds

dt
= εG(X, s),

where X ∈ Rn are fast variables ands ∈ Rm slow
variables. The PIR model is within this framework;
V, h, x are fast ands is slow. The basic idea is that since
s varies slowly, we first holds fixed and solve the fast
subsystem by treating the slow variables as parameters.
Then, in a second step, the dynamical subsystem of the
slow variables can be solved in a self-consistent way.
For example, suppose that the fast system hasX0(t; s)
as a solution withs held fixed. If X0(t; s) is a steady
state—say,̄X0(s) (that is, it is independent of time)—
then we can directly substitute it into the slow system

and obtain

ds

dt
= εG(X̄0(s), s),

which is now just a differential equation ins. If, in-
stead,X0(t; s) is a periodic function oft with period
T(s), then we can substitute this into the slow equation
and average over the period. The averaged system is
then

ds

dt
= ε

T(s)

∫ T(s)

0
G(X0(t; s), s) dt,

which is also just a differential equation in the slow vari-
ables. The Averaging Theorem (Guckenheimer and
Holms, 1983) states that this is a reasonable approxi-
mation as long asεT(s) is sufficiently small. (Strictly
speaking these approximations are not valid for slow
parameters where the system switches between oscil-
latory and constant asymptotic behaviors. However, as
long as the model is not bistable, this does not present
a formal difficulty. Toprovevalidity around this point
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requires much more work. A recent effort in this di-
rection is given in Soto-Trevino et al., 1996.)

Thus, the averaged equation for the slow subsystem
is different depending on whether the fast subsystem
behaves as a steady state (fixed point) or an oscillator
(limit cycle). We emphasize at this point that we also
require that the stable behavior be unique for any given
value of the slow parameterss in some range. That is,
therecannotbe, for example, two stable fixed points,
or a stable fixed point and a stable limit cycle, for a par-
ticular value ofs. Having established that, depending
on parameters, the fast system either tends to a fixed
point or to an oscillation, we must “glue” the two parts
together. This requires that we determine the behavior
of the fast system as a function of the slow parameters.

We use bifurcation analysis to study the dependence
of the fast system on the slow parameters,s. The bifur-
cation diagram gives us the dependence of the voltage
on the parameters, as well as the dependence of the
time averages in case the stable behavior is an oscil-
latory state. Thus, we must solve for the steady state,
Xss which satisfiesF(Xss, s)= 0, and the oscillatory
stateXoss(t), which satisfiesX′oss(t)= F(Xoss(t), s).
These solutions (or their averages) are substituted into
the slows equations and the resultant slow subsystem
is analyzed. We can finally compare the solutions to
this reduced system to that of the full system. The re-
duced system often has the advantage of being either
analytically tractable or being much easier to numeri-
cally solve.

2.3. Reduction

We now return to the PIR model. Rather than treating
s as the control or bifurcation parameter in the fast
dynamics, we introduce the conductance

ḡ= gsyn

∫ +∞
−∞

ω(y− y′)s4(y′, t) dy′ (1)

and use this as the parameter. The fast voltage dynam-
ics satisfies

dV

dt
= −gTm3

∞(V)h(V − VT )− gL(V − VL)

− ḡ(V − Vsyn),

and the remaining fast dynamics,h andx, are as above.
Thus, for a fixed synaptic conductanceḡ we solve the
fast system. The only fast variable that appears in the
slow synaptic conductance isx, so we need only look
at the average ofx as a function of̄g. Figure 5 shows

the average ofx along the unique stable solution of the
fast dynamics as the synaptic conductance varies. We
call this average function

G(ḡ)=〈x(t; ḡ)〉.
Note that as the synaptic conductance increases,x ac-
tually decreases since the synaptic interaction is in-
hibitory. However, when hyperpolarized enough, the
rest state becomes unstable (due to the deinactivation
of the T-type calcium current), and the cell begins to
oscillate. The loss of stability is via a Hopf bifurcation,
and the resulting small amplitude oscillations are stable
for this model. This causes the average ofx to grow
continuously from the resting value. At higher synaptic
inhibition, the oscillation intersects with a fixed point at
a saddle-node bifurcation. Only steady-state behavior
is possible. In spite of the fact that the system switches
from a fixed point to an oscillation and back to a fixed
point, the average of the fast variablex remains con-
tinuous throughout the parameter range.

From the discussion above, the slow variable satis-
fies

ds

dt
= ε

T

∫ T

0
(αsx(t; ḡ)(1− s)− βss) dt.

But, conveniently enough, the variable over which we
are averaging,x(t), appears linearly in the slow equa-
tion, so we can rewrite this equation as

ds

dt
= ε[αsG(ḡ)(1− s)− βss].

Finally, we can substitute the total synaptic conduc-
tanceḡ into the slow equation and obtain the reduced
equation

ds

dt
= ε

{
αsG

(
gsyn

∫ +∞
−∞

ω(y− y′)s4(y′, t) dy′
)

× (1− s)− βss

}
. (2)

The functionG was determined numerically; to ac-
tually use the slow system of equations, we will approx-
imate the functionG by several, increasingly simple,
forms. Noting that for low values of̄g, G appears to
decrease exponentially, we first consider a sum of an
exponential and a “bump” function:

G(ḡ) ≈ 0.2e−145ḡ+ 0.855
1

1+ e−2000(ḡ−0.0115)

× 1

1+ e900(ḡ−0.0205)
. (3)
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Figure 5. The functionG: the average of the fast variable,x as a function of the total synaptic conductance,ḡ.

This function is shown in Fig. 6 along with the numer-
ically computed version.

Let us make some comments about the reduced
model and why one expects to see waves. Consider
the “space-clamped” version of Eq. (2):

ds

dt
= ε{αsG(gsyns

4)(1− s)− βss} ≡ H(s). (4)

Under reasonable assumptions on the functionG
(namely, that it has a “threshold” and rises quickly to
some value), the functionH(s) has three fixed points,
s1< s2< s3. The lower fixed point is the synaptic acti-
vation level when the cell is at rest, and the upper fixed
point,s3, is the synaptic activation level when the cell
is firing bursts repetitively. Both of these are stable
as solutions to (4). The middle fixed point,s2, is like
a threshold and is unstable. A bistable system with
spatial coupling often can give rise to wave fronts that
join the two stable fixed points (see, e.g., Ermentrout
and McLeod, 1993). That is, there exists a solution
to Eq. (2)s(x, t)= S(x − ct) whereS(−∞)= s3 and

S(+∞)= s1. This is a constant profile traveling wave
with velocity, c, traveling to the right (ifc> 0). In
front of the wave, the system is at rest and behind, it
is in the excited state. Recalling thats is large only
when the neuron is bursting repetitively, we see that
this wavefront corresponds to a wave that switches the
network from rest to repetitively bursting and travels
at a constant speed across the tissue. In (Chen et al.,
1997) we prove the existence of wavefronts for sys-
tems of the form (2) and show that the wavefronts are
unique and stable. Thus, for the reduced model, we
can understand the basic mechanisms responsible for
the propagation of activity across the tissue.

We next compute the speed of the reduced model as
a function ofgsyn by numerically solving the Eq. (2) to-
gether with Eq. (3). The velocity is estimated similarly
as for the biophysical model. The result of these com-
putations is shown in Fig. 7. The match is very good
over the range of parameters used in the full model.
(Higher values ofgsyn result in failure to propagate of
any waves; similarly, lower values also cause failure of
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Figure 6. Approximation of the functionG (see Eq. (3)).

Figure 7. Velocity as a function of the maximal synaptic conductancegsyn for the biophysical model.G is defined by Eq. (3).ω(·) is of
exponential typeλ, and other parameters are given in the appendix. The dots is the velocity for the PIR model. The unit is same as in Fig. 4.
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propagation. This is due to a breakdown of the bista-
bility properties of the reduced model at high values of
gsyn.)

For the range ofgsyn values used in the simulations
shown in Fig. 7, the total synaptic conductanceḡ stays
below the value'0.015 corresponding to the maximum
of the functionG in Fig. 5. This suggests that the
part of the functionG(ḡ) for ḡ> 0.015 is irrelevant
for our purposes. Thus, in our next simplification, we
approximate the functionG by a sigmoid nonlinearity:

G(ḡ) ≈ 0.875/(1+ exp(−3000(ḡ− 0.0115))). (5)

We used this expression ofG(ḡ) to numerically simu-
late the model Eq. (2). The computed wavefront veloc-
ity is nearly as good as the one using the more complex
form of the functionG(ḡ).

Buoyed by the goodness of the two approximations,
we finally turn to the simplest case: approximating
G(ḡ) by a step function. In that case, we can find
explicit form solutions to this problem and therefore
can calculate the wavefront velocity for all different
parameters, as we show in the next section.

3. Wavefronts and Speeds

3.1. Setup for the Analysis

The properties of wavefronts and quantitative informa-
tion about wavespeed as parameters vary is generally
impossible for continuous nonlinearities such as the
two approximations described in the previous section.
Idiart and Abbott (1993) studied a related problem by
linearizing about the threshold and making approxi-
mations based on this model. Ermentrout and McLeod
(1993) derived expressions for velocity for models sim-
ilar (but not identical) to Eq. (2) when the nonlinearity
is a step-function. Thus, we takeG to be the unit step
or Heaviside function. Let us define

Hr (y)= M

1+ exp
(− y

r

)
with M > 0. Then Eq. (5) can be written as

Gr (ḡ)= Hr (ḡ− θ),

whereθ is a threshold of the sigmoid functionHr , and
r is the steepness parameter for sigmoid function. In
Eq. (5),(θ = 0.0115 forr = 1/3000. Thus, we have

the approximate equation for the wavefront:

ds

dt
= ε

{
αsHr

(
gsyn

∫ +∞
−∞

ωλ(y− y′)sp(y′, t) dy′ − θ
)

× (1− s)− βss

}
, (6)

with exponentialωλ(y).
In Eq. (6), we used the positive numberp to replace

the exponent 4, since we are interested in the depen-
dence of the network behavior (such as the wavefront
velocity) on this exponent.

Let

τ = βsεt, 2 = θ

gsyn
, σ = r

gsyn
, h = αs

βs
M

and define

χσ (x) = 1

1+ exp(−x/σ)
.

Then Eq. (6) becomes the dimensionless equation,

∂s

∂τ
= −s+ h(1− s)χσ (ωλ ∗ sp −2). (7)

Here we use the notation for the convolution

ωλ ∗ sp|(y,τ )=
∫ +∞
−∞

ωλ(y− y′)sp(y′, τ )dy′.

The sigmoid functionχσ (x) is almost a step-function,
if σ is very small (for example, in Eq. (5),r = 1/3000
and if gsyn= 0.01, thenσ = 0.033). Whenσ → 0+,
the functionχσ (·) tends to a Heaviside function—that
is,

H(x)=
0, x < 0

H(0), x = 0
1 x > 0

whereH(0) is a value between 0 and 1. By rescaling the
space variable, we can assume that the space constant,
λ = 1. Later, we can rescale space to real coordinates
whenever needed. Thus, letω = ωλ=1, we have finally
that

∂s

∂τ
=−s+ h(1− s)H(ω ∗ sp −2). (8)

In the next subsections, we discuss the wavefront
solutions of Eq. (8).
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3.2. Traveling Wave Solutions

The space clamped steady-state equation of Eq. (8) is

F(s) ≡ −s+ h(1− s)H(sp −2) = 0.

If 2 ≥ 0, thens = 0 is a steady state for anyh.
Suppose that 0< 2 < κ p. Thens= κ, where

κ = h

1+ h
,

is another steady state sinceH(κ p − 2) = 1 when
κ p−2 > 0. (Note that this follows from our assertion
thatH(0) lies between 0 and 1; a commonly used value
is H(0) = 0.5.) There is a “virtual” middle steady state
given bysp = 2, but due to the discontinuity of the
Heaviside step function, this really does not occur (see
Fig. 8). As long as 0< 2 < κ p, there are two stable
steady states, 0 andκ. The “middle” state,21/p acts
as a separatrix for the two states. If2 > κ p, then the
only steady state iss= 0.

We now construct the traveling waves for this sim-
plified model by using a technique similar to that in
Ermentrout and McLeod (1993). Our goal is to look
for traveling wavefronts that join the two stable states,
0 andκ. We assume that the threshold is in the regime
where there are two stable steady states. Therefore, the
solution to Eq. (8) is of the form

s(y, τ ) = S(ξ),

whereSis an unknown function of the traveling coordi-
nate,ξ = y− cτ , andc is the velocity of the front. We
assume that the excited state is to the left (S(−∞) = κ)
and the resting state is to the right (S(+∞) = 0). Thus,
when the velocityc is positive, the wave switches the
system from resting to excitation, and when the velocity
is negative, it switches the network from excited to rest.
Recall that the excited regime corresponds to repetitive
bursting of the voltage. Thus, the fronts we construct
here correspond to waves that switch the system from

Figure 8. Graph of the steady-state functionF(s) showing the two
stable steady states 0 andκ separated by the threshold,s= 21/p.

resting potential to rhythmic behavior. By inserting the
solution forms(y, τ ) = S(ξ) into Eq. (8), we obtain
the traveling wave equation as

−cS′(ξ)=− S(ξ)+ h(1− S(ξ))H(ω ∗ Sp|ξ −2).
(9)

We seek monotonic fronts that join the two stable
steady states. Thus we assume thatSsatisfies

S(−∞) = κ S(+∞) = 0.

Let us define

Z(ξ) ≡
∫ +∞
−∞

ω(η)Sp(ξ − η) dη;
so

H(ω ∗ Sp|ξ −2) = H(Z(ξ)−2).
Sinceω(y) is positive and has a unit integral andS≥ 0,
we can find a pointξ0 such that

Z(ξ0) = 2.
(To see this, first note thatZ is a monotone function ofξ
sinceSis monotone. Then, for a large positiveξ0 value,
Sis nearly zero, so the integral is very small. For a very
negativeξ0 value, the integral is close toκ p which is
greater than2. Thus there is a unique value ofξ0.)

Since the wave is translation invariant, we can assume
that this point,ξ0, is the origin:ξ0 = 0. This allows us
to uniquely determine the wave. Considerξ > 0. Then
the integralZ(ξ) is less than2, H(Z(ξ) − 2) = 0,
and so Eq. (9) becomes simply

−cS′ = − S,

whose solution inS+(ξ) = S0eξ/c. We wantS to tend
to 0 asξ →∞, so if c > 0, we must takeS0 = 0, and
thusS(ξ) = 0 for ξ > 0. If c < 0 (that is, the wave
travels backward turning the medium off), thenS0 is
not determined. Now considerξ < 0.ThenZ(ξ) > 2,
H(Z(ξ)−2) = 1, and Eq. (9) is

−cS′ =−S+ h(1− S),

which has a solution:

S−(ξ) = κ + (S1− κ)eξ(1+h)/c.

Now, if c < 0, we must takeS1= κ, since we must
have thatS(−∞) = κ. On the other hand, ifc > 0,
thenS1 is arbitrary.
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We see that there are essentially two cases:c > 0 and
c < 0. Considerc > 0 first. We require the solution to
be continuous atξ = 0.Thus,S−(0)= 0, which implies
that S1 = 0. Thus, if c > 0, we haveS(ξ) = 0 for
ξ > 0 andS(ξ)= κ(1− exp(ξ(1+ h)/c)) for ξ < 0.
To determine the velocity, we must use the condition

Z(0) = 2.

By inserting the explicit expression forS(ξ) into this
equation, we obtain the following equation for the
wavefront velocity:

Q+p (c) ≡ κ p
∫ ∞

0
ω(η)(1− e−η(1+h)/c)p dη = 2.

It is easy to see thatQ+p (0)= κ p/2 and that
Q+p (∞)= 0. Furthermore, it is also easy to verify that
Q+p (c) is a monotonically decreasing function. Thus,

(a)

Figure 9. Exactly determined fronts for the Heaviside nonlinearity case. The synaptic variables is shown as a function of the traveling
coordinateξ. The speedc shown is a scaled speed. True speed can be obtained by multiplying a constant (see the Appendix). (a) Fronts with
different positive velocities; (b) fronts with several negative velocities. (Continue on next page.)

as long as2 lies between 0 andκ p/2, there will be
a unique positivec such thatQ+p (c)=2. Before ex-
plicitly evaluating this integral for specific forms of the
weight functionω, we make some observations. For
positive velocities—that is, fronts that switch the sys-
tem from rest to the excited state—we must have that
the threshold is less thanκ p/2. As this critical value
is approached, the velocity tends to zero, and we have
a “frozen” wavefront that does not travel. Note that
this occurs only for a particular value of2. A “pathol-
ogy” of using the Heaviside step function is that as the
threshold tends to 0, the velocity tends to infinity. In
a smoother approximation, there is a finite maximal
velocity found numerically. The velocity increases
monotonically as the threshold decreases. The shape
of the wavefront sharpens for smaller velocities, and at
zero velocity it approaches a step function. The wave
is continuous atξ = 0 but not differentiable there. The
wavefront is shown in Fig. 9(a) for several different
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(b)

Figure 9. (Continued).

positive velocities and Fig. 9(b) for several different
negative velocities.

Now suppose thatc< 0 (in which case the wave-
front moves from the resting state into the oscilla-
tory state and turns off the network activity). Then in
analogy to the above discussion, we find thatS0= κ,
S(ξ)= κ exp(ξ/c) for ξ > 0, andS(ξ)= κ for ξ < 0.
The wavefront velocity is given by solving

Q−p (c) ≡ κ p

(
1

2
+
∫ ∞

0
ω(η)epη/c dη

)
= 2.

The functionQ−p (c) is monotone,Q−p (0) = κ p/2, and
Q−p (−∞) = κ p. Thus, in order to have a negative
velocity, we needκ p/2 < 2 < κ p. As before, as
2 → κ p/2, the velocity tends to 0, and we have the
frozen wavefront, which is a step function. Similarly,
the velocity tends to−∞ as the threshold tends toκ p.

This is a “pathology” of the Heaviside step function.
Figure 9(b) shows negative velocity fronts for several

different velocities. Note that both positive and nega-
tive velocity fronts are constant on one side of the origin
and exponential on the other side. Another observation
is that the lower is the velocity, the steeper is the front.

3.3. Explicit Calculation of Velocities

To calculate the velocities, we must evaluate the inte-
grals,Q±p (c) for p andc. MAPLE makes this calcu-
lation easy ifp is an integer. We can thus express the
threshold in terms of the velocity rather than explicitly
solving for the velocity:

2 = Q+p (c)

= κ p

2

(1+ h)p p!

(1+ h+ c)(2+ 2h+ c) · · · (p+ ph+ c)

(10)

2 = Q−p (c) =
κ p

2

2c− p

c− p
. (11)
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Figure 10. The velocity as a function of the synaptic conductance and the exponentp. (The detailed calculation can be found in the last part
of appendix.)

Since2 = θ/gsyn we can now plot the velocity as a
function of the maximal synaptic conductance. Recall
that we scaled the space constant to beλ = 1 and
scaled the time to be dimensionless (viaεβs). Thus,
the velocity in physical unit is given byctrue= λεβsc,
wherec is the velocity calculated in the dimensionless
equation withλ = 1. In Fig. 10 we plot the velocity
as a function of the synaptic conductance for positive
velocities and forp = 1, 2, 3, 4 using the values of the
parametersκ, θ , andλ given in the Appendix.

Increasing the exponentp reduces the velocity of
the waves. For any given synaptic conductance, the
choice of p has a drastic effect on the velocity. For
example, ifgsyn= 0.08 mS/cm2, the velocity is about
1.80 (and then 0.0563 unitlength/s) forp = 4 and 12.01
(0.375 unitlength/s) forp = 1. In Fig. 11, the velocity
for the biophysical model and the solvable model are
compared.

As a final calculation, we compare the wave-
front velocity for several different weight functions,
ω(y): (1) exponential, (2) Gaussian, and (3) the step

function:

ωλ (y)=
{

0, |y| > λ
1
2λ , |y| ≤ λ.

The integrals are readily evaluated, the velocity is com-
puted, and the results are plotted in Fig. 12. The velocity
is lower by a factor of nearly two for the Gaussian and
the step function. The intuition behind this is that the
exponential weight function decays much more slowly
than the Gaussian or the step function at large distances.

4. Discussion

Nonlinear wave propagation has been observed in sev-
eral nerve systems, such as in the mammalian retina
during the development (Meister et al., 1991), in the
disinhibited hippocampalin vitro slices (Miles et al.,
1988), in the ferret thalamic slices (Kim et al., 1995),
and in the olfactory system of the terrestrial mollusk
(Delaney et al., 1994). In general, these waves are
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Figure 11. Velocity as a function of the synaptic conductance forp = 4 plotted with the velocities computed from the biophysical model.

generated by complex network dynamics involving
both synaptic interactions and voltage-dependent in-
trinsic (ionic) cellular properties. Hence, it is a chal-
lenge to develop theoretical tools for quantitatively de-
scribing the neuronal wave phenomena, which hope-
fully can lead to experimentally testable predictions.

In this article, we have focused on a thalamic model
of the sleep spindle rhythm and have demonstrated a
general approach (the averaging technique) to provide
a detailed analysis of the propagating waves. The basic
idea is to separate the fast and slow processes and, by
averaging over the fast subsystem, reduce the full sys-
tem to a self-consistent simpler slow subsystem. We
have shown how, using this method, one can construct
a simple (and in some cases analytically tractable) re-
duced model in order to understand the propagation
of rhythmic activity in the original biophsyical model
network. In our case of thalamic spindle oscillation,
we have exploited the slow time scale of the inhibitory
synapses and averaged over the bursts. The technique

is quantitatively accurate in that it fits the simulation
results of the full biophysical model very well. There
are several computational advantages. First, there are
fewer equations to solve. But, more importantly, the
simulation can be scaled to the time scale of the slow
process since the bursts are averaged out.

One of interesting findings reported here is analyt-
ically calculated expressions for the wavefront veloc-
ity c as function of the network parameters, such as
the connectivity footprintλ and the synaptic coupling
strengthgsyn (see the Appendix). In particular, we
found that the velocityc increases withgsyn accord-
ing to a power law,

c ' g1/p
syn ,

wherep is the exponent in the synaptic gating kinetics,
Isyn = gsynsp(V − Vsyn) (see Eq. (6)). Such a power-
law dependence could have been obtained only with the
reduced model, and the prediction compares well with
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Figure 12. Velocity as a function of the synaptic conductance whenλ = 0.0625 for the exponential weight, the step function weight, and the
Gaussian weight. The speeds are scaled. True speed can be obtained by multiplying a constant (see the appendix).

numerical simulations of the original conductance-
based model. This example illustrates how such model
reduction can yield new results that are capable of pre-
dicting the behaviors of the more detailed biophysical
network models. Moreover, such a prediction might
also be testable experimentally: if a selective GABAB

receptor antigonist could be applied to a ferret thalamic
slice that displays spindle waves, with carefully con-
trolled dosages, the spindle wavefront velocity could
be measured and plotted versus the drug concentra-
tion, and whether the dependence obeys a power law
could then be assessed.

In the thalamus, the spindle oscillations wax and
wane slowly in time (Steriade et al., 1990; von Krosigk
et al., 1993; Kim et al., 1995). In order to account
for burst termination as a spindle wanes, other slow
processes need to be taken into account (see Destexhe et
al., 1996). The analytical framework presented in this
article can readily be generalized to include additional
slow processes in the model. For example, suppose that
some slow conductance, denotedr , acts to terminate

the rhythmicity and thatr obeys a kinetic equation as

dr

dt
= αr (1− r )− βr r,

whereαr andβr depend on fast variables (such as the
membrane potential). Then the average synaptic func-
tion now also depends onr : G(ω ∗ s, r )=〈x(t;ω ∗
s, r )〉. Moreover, by averaging over the fast vari-
ables, the gating rates for ther -kinetics can be re-
placed byA(ω ∗ s, r ) = 〈αr (t;ω ∗ s, r )〉, andB(ω ∗
s, r )=〈βr (t;ω∗s, r )〉. Therefore, the reduced synapse
model (2) now becomes

ds

dτ
= εαsG(ω ∗ s, r )(1− s)− βss

dr

dτ
= A(ω ∗ s, r )(1− r )− B(ω ∗ s, r )r.

This system is similar to the model with slow excitation
(by s) and inhibition (byr ) that was analyzed in a gen-
eral context by Ermentrout (1994). A more detailed
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description of this type of reduced model is beyond the
scope of this article and will be addressed in a later
article.

Appendix

Here we present the details of the biophysical network
model. In the simulation, we consider the following
network:

dVi

dt
= −ICa−T (Vi , hi )− I L(Vi )

− I RR
GABAB

(
Vi ,

{
sBj

})
,

dhi

dt
= (h∞(Vi )− hi )/τh(Vi ),

dxBj

dt
= αx F(Vj )(1− xBj )− βxxBj ,

dsBj

dt
= ε[αsx j

(
1− sBj

)− βssBj

]
.

where

ICa−T (V, h) = −gCam
3
∞(V)h(V − VCa)

I L(V) = −gL(V − VL)

I RR
GABAB

(
Vi ,

{
sBj

}) = −gsyn(Vi − Vsyn)

×
N∑

j=1

ωRR(i − j )s4
Bj
.

and

m∞(x) = 1

1+ exp
(− x+65

7.8

) ,
h∞(x) = 1

1+ exp
(

x+79
5

) ,
τh(x) = 1

2

{
20+ h∞(x)exp

(
x + 162.3

17.8

)}
.

All other parameters are as follows:

gCa = 1.0 mS/cm2, gL = 0.04 mS/cm2,

gsyn= 0.1 mS/cm2.

VCa = 120.0 mV, VL = −75 mV,

Vsyn= − 100 mV,

αx = 5.0 ms−1, βx = 0.007 ms−1,

εαs = 0.03 ms−1, εβs = 0.005 ms−1,

and

F(V) = 1

1+ exp
(− x+40

2.0

) ,
ωRR(i − j ) = 1

2λ
exp

(
−|i − j |

λ

)
.

In the simulation, we takeN = 128 cells, and the
footprint isλ = 8 cells. Initially, 16 cells are hyperpo-
larized to the rebound level. The corresponding param-
eters in the reduced model are as follows:ε = 0.01,
andM = 0.875, which is the maximum height of the
functionG (see Fig. 6). Therefore,

h = 5.25, κ = 0.84, τ = 0.005t.

We findθ = 0.0115, so2 = 0.0115/gsyn. Moreover,
λ = 8/128= 0.0625.

Finally, we can easily find velocities forp= 1, 2,
3, 4 from Eq. (10) and Eq. (11). For example, we find
for p = 1 that

c = −(1+ h)
22− κ

22
= −6.25+ 228.26gsyn.

Back to the physical unit, since we have scaled the
space and time, the speeds drawn areλβsc. Notice
our time unit is second. Similarly, we see that for
p = 2, 3, 4, respectively,

c = −(1+ h)

{
3

2
−
√

1

4
+ κ

2

2

}
= −9.375+ 6.25

√
(0.25+ 61.356gsyn),

c = −(1+ h)

2−
[

3κ3

22
−
√
− 1

27
+ 9κ6

422

] 1
3

−
[

3κ3

22
+
√
− 1

27
+ 9κ6

422

] 1
3


= −12.5+ 6.25

(
77.30gsyn

−
√

0.037+ 5973.9g2
syn

)0.333

+ 6.25
(
77.30gsyn+

√
−0.037+ 5973.9g2

syn

)0.333

and

c = −(1+ h)

5

2
−
√

5

4
+
√

1+ 12κ4

2


= −15.625+ 6.25

√
1.25+√1+ 519.5gsyn.
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Finally, the negative speed is given uniformally by

c = p

2

κ p − 22

κ p −2 , ∀p.
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