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Abstract
Brain electric field potentials are dominated by an arrhythmic broadband signal, but the underlying mechanism is poorly
understood. Here we propose that broadband power spectra characterize recurrent neural networks of nodes (neurons or
clusters of neurons), endowed with an effective balance between excitation and inhibition tuned to keep the network on the
edge of dynamical instability. These networks show a fast mode reflecting local dynamics and a slow mode emerging from
distributed recurrent connections. Together, the 2 modes produce power spectra similar to those observed in human
intracranial EEG (i.e., electrocorticography, ECoG) recordings. Moreover, such networks convert spatial input correlations
across nodes into temporal autocorrelation of network activity. Consequently, increased independence between nodes
reduces low-frequency power, which may explain changes observed during behavioral tasks. Lastly, varying network
coupling causes activity changes that resemble those observed in human ECoG across different arousal states. The model
links macroscopic features of empirical ECoG power to a parsimonious underlying network structure, and suggests
mechanisms for changes observed across behavioral and arousal states. This work provides a computational framework to
generate and test hypotheses about cellular and network mechanisms underlying whole brain electrical dynamics, their
variations across states, and potential alterations in brain diseases.
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Introduction
The power spectrum of electric field potentials recorded from
the brain consists of oscillatory peaks, indicative of underlying
rhythmicity, riding on top of a broadband “ βf1/ ” slope (power

falls off with frequency, following ≈ βP A f/ , where β is the
power-law exponent), which constitutes the majority of signal
power (Freeman and Zhai 2009; Onton and Makeig 2009; Miller
et al. 2009a; He et al. 2010; Ray and Maunsell 2011; Manning
et al. 2012). Research over the past decades has significantly
advanced our understanding of the functional roles and
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generative mechanisms of brain oscillations at different fre-
quencies (Buzsáki 2006; Fries 2009; Wang 2010; Jensen et al. 2012;
Womelsdorf et al. 2014). However, the origins of the arrhythmic
signal contributing the βf1/ component of the spectrum remain
elusive (Bedard and Destexhe 2009; Roberts et al. 2015).

Recent research has shown that this arrhythmic, broadband
field potential cannot be explained as summation of many
oscillations (Miller et al. 2009b; He et al. 2010). By contrast, it
appears to be a distinct type of brain activity, potentially a mac-
roscopic manifestation of the irregular firing of cortical neurons
(Miller et al. 2009a; He 2014). In particular, broadband power in
the gamma-frequency (>30 Hz) range correlates with popula-
tion firing rate (Manning et al. 2009; Whittingstall and
Logothetis 2009; Ray and Maunsell 2011; Buzsáki and Wang
2012) and exhibits functional specificity across a variety of
tasks (Crone et al. 1998; Miller et al. 2009b; Ossandón et al. 2011;
Bouchard et al. 2013). In the very low-frequency range (<1Hz),
the slope of the power spectrum (i.e., the power-law exponent β)—
an index of the amount of long-time autocorrelation in the
signal—is reduced during a visual detection task (He et al.
2010). Despite these results demonstrating the functional sig-
nificance of arrhythmic, broadband activity, a mechanistic
account explaining the full frequency range of its signature
power spectrum remains lacking.

Multiple studies using local field potential (LFP) and ECoG
recordings have found that for frequencies greater than about
1 Hz, the power law exponent β is typically between 2 and 3
(Freeman and Zhai 2009; Manning et al. 2009; Milstein et al.
2009; Miller et al. 2009a; He et al. 2010) (though also see Bedard
et al. 2006, which finds slopes of −1 and −3 at low and high fre-
quencies, respectively). A study using DC-recording revealed
the shape of human ECoG power spectra across a wide range of
frequencies, from 0.01 to >100Hz (He et al. 2010). The power
spectra exhibit a distinctive shape: at very low frequencies
(<0.1 Hz) and above 1Hz, power scales approximately propor-
tional to the inverse-square of frequency ( ∼P f1/ 2), while power
spectra in the intermediate frequency range (0.1–1 Hz) are
much flatter. This tripartite shape was conserved across sub-
jects, albeit with differences in the locations of the transitions
between the decaying and flat regions of the spectrum.

Here, we use a network model to investigate the potential
neural-circuit-level origins of the broadband signal in field poten-
tial recordings. We find that the power spectrum is well fit as the
combination of 2 linear modes, which sum to produce the charac-
teristic tripartite shape of the empirically observed human ECoG
spectrum. We then show that such a power spectrum generically
emerges from the activity of a recurrent network model with
nodes randomly connected to each other, provided that the net
excitation (i.e., excess of excitation over inhibition) between nodes
roughly balances the intrinsic decay of activity. Thus, the network
is near a bifurcation point and in this sense is close to dynamical
criticality (Chialvo 2010; Beggs and Timme 2012; Deco and Jirsa
2012; Palva et al. 2013; Priesemann et al. 2014; Bellay et al. 2015;
Roberts et al. 2015). We characterize the dependence of the power
spectrum on network parameters and on input structure, and
show that such random recurrent networks naturally convert cor-
relations across neurons in the input into temporal correlations in
network activity. We then extend the architecture and investigate
networks with a distance-dependent connectivity profile and net-
works where the nodes are themselves clusters of sub-nodes. Our
analyses link empirically observed human ECoG power spectra to
plausible underlying neural network dynamics and suggest poten-
tial circuit-level explanations for changes in the low-frequency
power spectrum across behavioral and arousal states.

Materials and Methods
Empirical Human ECoG Data

All empirical data have been previously reported in He et al.
(2010) and further details are in SI, Section 1. Briefly, the study
included 8 patients undergoing surgical treatment for intracta-
ble epilepsy. In Patients #1–#5, artifact-free, interictal-spike-free
ECoG data were collected from both wakefulness and slow-
wave sleep (SWS, sleep stages 3/4). Awake, REM and SWS were
determined by standard sleep stage scoring based on the con-
junction of ECoG and video recordings. In Patient 4, REM sleep
was recorded and identified based on active eye movements in
the video record and the electrooculogram (EOG). SWS identifi-
cation primarily used ECoG delta power. The high-frequency
cutoffs of the power spectra are set by an anti-aliasing filter,
and this cutoff differs between patients. The recordings use a
Neuroscan Synamps2 RT amplifier. The noise spectrum of the
amplifier is reported in Figure S6 of He et al. (2010); this noise
spectrum is not flat but, in the range we consider, is 2 orders of
magnitude less than the signal, and the noise spectrum is addi-
tive with the brain signal so is negligible. We also note that the
amplifier is a DC amplifier and that the amplification response
is flat in the frequency range of physiological signals.

Lorentzian Fit to the Data

We fit the empirical power spectra with a function of the form
(see SI, Section 3 for details):
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Note that, except for a small region of the power spectrum,
this function is dominated by the larger of the 2 terms. This is
shown in Figure 1C, where the sum of the 2 terms is well-
approximated by the maximum. We fit this functional form by
minimizing the mean squared difference between the log of the
empirical and predicted power spectra using the fmincon func-
tion with an interior-point solver in Matlab 9.0.0 (Mathworks
Inc, Natick, MA). For all figures except Figure 8, we fit to the
region below 5Hz. For Figure 8 we fit a function that includes a
second timescale (see SI, Section 12), and fit up to 50Hz.

We test for spatial structure in the fitted frequencies ( ffast) in 2
ways. First, we calculate the correlation between the frequencies
of neighboring electrodes. Second, we linearly regress the fitted
frequencies for each electrode onto the electrode position (i.e., x
and y position in the electrode array) to look for a linear gradient.
In both cases we generate a null distribution by repeatedly shuf-
fling the assignment of frequencies to electrodes and recomputing
the correlations between neighbors and the regression onto elec-
trode position. We then compare the unshuffled correlation and r2

values to those from the shuffled frequencies to generate P-values.

Random Network Model

The assumptions underlying the network model are discussed in
SI, Sections 4 and 6. Briefly, we consider a population of nodes
(which may be neurons or clusters of neurons) with linear f–I
curves. We then assume that the ECoG signal is dominated by
the summed recurrent synaptic current into a fraction of neu-
rons in the network (along with the corresponding passive return
current). This yields Eqs. (1–3) in the main text. For the simula-
tions in Figure 3, we set =N 440, τ = 195 ms, γ = 0.1 Hz/pA,
μ = 49.881conn pA/Hz, σ = 4.988conn pA/Hz, =p 0.2, and α = 1/44
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(so that we average over clusters of 10 nodes). Here τ is deter-
mined by fitting the network knee frequency. N is arbitrary, and
α is chosen to match the ratio of the 2 terms in the Lorentzian
fit. μconn and p are required to satisfy γ μ ≈p 1conn , and thus either
can be varied provided the other is changed to keep this relation-
ship fixed. σconn yields the spread of eigenvalues in the cloud of
Figure 3C, and provides a corresponding spread of timescales
around τ. This variation gets partially averaged away in the
equation for the ECoG signal (Eq. 3), and multiple parameter val-
ues yield good fits to the empirical data.

Further details on the clustered network and the network with
distance-dependent connectivity are in SI, Sections 10 and 11.

Results
Two Modes in the Low-Frequency Power Spectrum

The power-law exponents seen in ECoG power spectra (Fig. 1A)
are characteristic of linear systems, which have an autocorrela-
tion function composed of a weighted sum of exponentials.
The power spectrum of an exponential function, −λe t , is propor-
tional to

+f f

1
2

0
2
, where f is the frequency and = λ πf /20 . As

shown in Figure 1B, when plotted on a log-log scale these func-
tions (often called Lorentzians) are approximately flat at low
frequencies and scale with slope −2 at high frequencies; the
transition between the 2 regimes happens at the frequency f0,
which we refer to as the “knee” frequency. Motivated by this
observation, we fit the power spectrum from the 5 subjects of

He et al. (2010) as the weighted sum of a fast and a slow linear
mode (Fig. 1C). The corresponding functional form is as follows:
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In the second equation we assume that fslow is small enough
to be outside the observational range and can be neglected.
Thus, the fit has a single knee frequency, located at ffast.

In Figure 1D we show this fit for the average power spec-
trum of each of the 5 subjects in the study of He et al. (2010).
The functional form accounts for the shape of the power spec-
trum across several orders of magnitude (with deviations at
high frequencies; see Fig. 8). The location of the transition from
the initial f1/ 2 behavior to the flat region is set by the relative
contributions of the 2 Lorentzians and hence is determined by
the parameter C2. As previously mentioned, the second trans-
ition to f1/ 2 has location set by ffast. For the 5 patients shown in
Figure 1C, the knee frequency ( ffast) is at 0.49, 0.55, 0.81, 1.10,
and 3.47 Hz, respectively.

In Figure 2, we show the knee frequency ( ffast) for individual
fits to each electrode in each patient. There is considerable var-
iation in the characteristic frequency across electrodes, with
the fastest frequency being 2–5 times the slowest one.
However, neighboring electrodes show similar values for the
knee frequency, with correlations of 0.35, 0.31, 0.28, 0.32, and
0.33, respectively (P < 0.002 for all patients; see Materials and
Methods for further details). Moreover, 4 of the 5 subjects (#1,

Figure 1. The low-frequency power spectra of human ECoG are well-fit by the sum of 2 Lorentzian functions. (A) Average power spectrum from 1 patient in the study

of He et al. (2010). The power spectrum resembles a power law with frequency dependence f1/ 2 at low and high frequencies, with a roughly flat intermediate region.

(B) The power spectrum of an exponential is a Lorentzian function, which is near-flat at low-frequencies and shows f1/ 2 scaling at high frequencies, with a transition

point set by the time-constant of the exponential. (C) The sum of 2 Lorentzian functions yields a shape resembling the power spectrum of Figure 1A, with the “knee”

frequency set by ffast . (D) Each plot is the power spectrum from 1 patient in He et al. (2010). The light grey traces correspond to recordings from each electrode while

the dark grey circles are the averages across all electrodes. Red traces are fits of a sum of 2 Lorentzian functions (corresponding to the functional form shown in

Fig. 1C). The functional form is fit to the frequencies below 5Hz and the data is shown up to 25Hz. The slope of the power spectrum is steeper for frequencies beyond

25Hz; see Discussion and Figure 8 for fits to the remainder of the spectrum.
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#2, #3, and #5) show evidence of a linear gradient in the fitted
frequencies, with =r 0.28712 , 0.2318, 0.1684, and 0.2988, respec-
tively (corresponding P-values of < −10 4, 0.035, 0.004, and < −10 4).
This suggests that the variation is not random and contains
spatial structure (see Discussion).

A Random Network Model for the Power Spectrum

We next construct a recurrent network model which repro-
duces the observed power spectrum. The model network has N
nodes, which could be neurons or networks of neurons. The jth
node has activity rj, which evolves in time according to the fol-
lowing equation:

⎡
⎣
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= +
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dt
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Each node receives input from other nodes in the network
(rk) with weight Wjk, along with external input Ij

ext, correspond-
ing to input that does not come from within the network. [⋅]+ is
a threshold linearity (i.e., [ ] = ( )+x xmax ,0 ) and γ is the slope of
the firing rate-current curve.

In the absence of input, the firing rate of the jth node decays
exponentially to 0 with time-constant τ. This time-constant is
taken to be the same across nodes, for convenience, but relax-
ing this assumption yields near-identical results. Grouping the
firing rates into a vector and the weights into a matrix, and
assuming that input is large enough that the network rarely
encounters the threshold, we can rewrite this equation as
follows:

r
r
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Here the matrix τ= (− + γ )A W / , where  is the identity
matrix.

We assume that the observed field potential recording
results from summing together the input current to a subset of
network nodes. If network connections are sparse and recur-
rent input dominates, then the field potential is approximately
a weighted sum of the activity of a fraction of network nodes
(see SI, Section 4). Thus, if ϕ( )t is this summed activity, we have

∑ϕ( ) ∝ ( ) ( )
=

α

t r t 3
j

N

j
1

Here, < α <0 1 is the fraction of the network we are summing
over, and we have written the sum over the first αN nodes for
convenience. We will refer to ϕ( )t as “network activity.” While
we consider an equally weighted sum of nodes contributing to
ϕ, our analysis can easily be extended to a differentially
weighted sum or spatial kernel applied to the nodes.

We choose the connections (the entries of matrix W ) to be
sparse and random: each entry is nonzero with probability p,
and nonzero entries are drawn from a normal distribution:

∼ (μ σ )w N ,ij N
1

conn conn
2 . In Figure 3B, we show the power spec-

trum of network activity. This reproduces the data for appropri-
ately chosen values of τ, μconn, and α. Note that μconn must be
set to almost balance the intrinsic decay of network activity
(which decays with time-constant τ at each node).

The activity of the multidimensional linear system in Eq. 2
can be thought of geometrically: the vector r lives in an
N-dimensional space with each dimension corresponding to
the activity at 1 node (i.e., rj is the activity along the jth node).
The system can be solved by changing the coordinate system
and rewriting r in a new coordinate system whose directions
are given by the eigenvectors of the matrix A. These eigenvec-
tors form the natural coordinate system in which to see the
activity of A: they provide a decomposition of the network
activity into a set of characteristic modes, each of which
evolves independently in time with its own characteristic time-
scale. This decouples an N-dimensional problem into a collec-
tion of N one-dimensional problems.

The eigenvectors are defined as vectors vn that satisfy the
equation = λAv vn n n, where λn is a constant, called the eigen-
value corresponding to the eigenvector vn. The characteristic
timescale of network activity corresponding to the eigenvector

Figure 2. The knee frequency ( ffast ) for individual electrodes across patients.

Left panel: Locations of electrodes for each of the 5 patients. Right panel: knee

frequency for individual electrodes, with location in the heat map corre-

sponding to the electrode locations shown on the left. Electrodes excluded in

the study of He et al. (2010) are shown in grey and, for Patient 5, electrodes

poorly fit as a sum of Lorentzians are shown in blue. Timescales shown are

the time-constants of a linear system with corresponding knee frequency

(i.e., τ = πf1/2 knee).
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vn is Re− (λ )1/ n . Thus, the eigenvalues tell us what timescales
the network will show, and the eigenvectors tell us how this
activity is distributed across nodes.

To understand how the network model is able to reproduce
the data, we consider the distribution of eigenvalues of the net-
work coupling matrix, A. These eigenvalues describe the char-
acteristic temporal modes of the network (see SI for more
details). For the randomly connected network we consider, the
eigenvalues take a particularly simple form, known from the
theory of random matrices (Rajan and Abbott 2006; Ganguli
et al. 2008; Tao 2011) and depicted in Figure 3C. The network
has 1 slow mode, here corresponding to a negative eigenvalue
near 0 (the red point in Fig. 3C), and −N 1 fast modes, which
are centered around − τ1/ (the cloud of blue points in Fig. 3C). If
the external input to each node is independent, then the power
spectrum of network activity can be approximately broken up
into contributions from each of these 2 sets of modes (Fig. 3D

and see SI, Sections 7 and 8 for derivation), and is given by the
following equation:
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If λslow is small (i.e., the corresponding mode is very slow),
the power spectrum is of the same form as the fit in Figure 1,
with the relative contribution of slow and fast modes deter-
mined by α (the fraction of the network averaged over), and the
location of the knee frequency given by −λ π/2fast .

The eigenvalue λslow emerges from internode recurrent inter-
actions: in response to an input, nodes of the network excite
each other, reverberating the signal around the network and
slowing its decay. λslow is approximately located at (γ μ − ) τp 1 /conn ,
and when recurrent excitation balances the intrinsic decay of
activity this is very close to 0. In this case signals reverberate in
the network for a long time, producing a slowly decaying autocor-
relation function.

On the other hand, λfast is set by the intrinsic properties of
each network node and is approximately located at − τ1/ . There
are −N 1 such fast modes, each with time-constant approxi-
mately equal to τ. Note that if each node is a cluster of neurons,
the time-constant τ itself emerges from underlying recurrent
interactions; we return to this issue later.

Since the slow mode emerges from internode interactions, it
corresponds to a globally distributed pattern of network activity.
This is given by the eigenvector, vslow, corresponding to the
eigenvalue λslow. vslow can be thought of as a slowly varying
background state of the network that all the nodes are coupled
to; in particular, for low variability in connection strengths, vslow

has approximately equal weight at each node. By contrast, the
fast modes are uncorrelated with each other and thus different
nodes participate in a particular fast mode to greatly varying
degrees. As a consequence of this global distribution of the slow
mode, the network model accounts for the common observation
that low-frequency activity (i.e., slow timescales) shows a wider
spatial correlation than activity at high frequencies (von Stein
and Sarnthein 2000; Leopold et al. 2003; Buzsáki 2006).

Moreover, because of the global distribution of the slow
mode, averaging activity across multiple nodes in a network
will emphasize the slow mode and increase its contribution to
the observed power spectrum. This can be seen in Eq. (4) above,
where the relative contributions of the slow and fast modes are
given by α, the fraction of the network averaged over to gener-
ate the network activity. In Figure 3E, we show the effect of
averaging over different fractions of the network. In particular,
averaging over a large fraction of nodes yields a power spec-
trum dominated by the f1/ 2 term. Note, however, that if there
exist multiple recurrent networks, each described by an
equation such as Eq. (2) but only weakly coupled to each other,
then averaging across nodes belonging to these different net-
works will not change the shape of the power spectrum,
because the weak coupling between these networks would not
generate another slow mode.

While the network model has purely excitatory connections
between the nodes (recall that these nodes may, in turn, be
clusters of neurons), similar results hold for a network with
inhibitory connections (Fig. 4A). As previously argued (Rajan
and Abbott 2006; Ganguli et al. 2008), and as depicted in
Figure 4B, a randomly connected network where a subset of
nodes make inhibitory connections onto their targets has an
eigenvalue spectrum that is similar to that of Figure 3. Here the
location of the slow network mode depends on the difference

Figure 3. The power spectrum of a random network reproduces observed ECoG

power spectra. (A) Schematic of a sparse randomly connected network. (B)

Power spectrum of network activity in a random network where mean connec-

tion strengths approximately balance the intrinsic decay of activity. The power

spectrum from Patient 3 is shown for comparison. Here =N 440, τ = 195 ms,

γ = 0.1 Hz/pA, μ = 49.881conn pA/Hz, σ = 4.988conn pA/Hz, =p 0.2, and α = 1/44.
(C) The eigenvalue spectrum of the network coupling matrix shows a cluster of

fast modes (in blue) and a single slow mode (in red). (D) The power spectrum of

the simulated network is the sum (purple) of Lorentzians contributed by the

fast modes (blue) and the slow mode (red). (E) Effect of spatial averaging on

power spectrum. Black: power spectrum from the network in panel (B) with the

same degree of averaging. Blue: network activity derived by summing over a

smaller fraction of the network (here, a single node). Red: network activity

derived by summing over a larger fraction of the network (here, all nodes in the

network). The slow mode is shared between nodes, while the fast modes are

uncorrelated; thus averaging over nodes boosts the contribution of the slow

mode. In particular, summing over the entire network yields a power spectrum

that shows pure power-law behavior.
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between excitation and inhibition. The slow eigenvalue is
located at (γμ − γμ − ) τp p 1 /E E I I , where μE and μI are the magni-
tudes of the coupling strengths for excitation and inhibition
respectively, pE and pI are the respective connection probabili-
ties, and, as before, τ is the intrinsic decay time-constant and γ
is the slope of the f–I curve (see SI, Section 9). If this difference
between excitation and inhibition closely balances the intrinsic
decay then the network will show long timescales. In Figure 4C
we show how the power spectrum of a network with 80% excit-
atory and 20% inhibitory connections can reproduce the
observed power spectra.

The low-frequency component of the ECoG power spectrum
has been shown to differ between arousal states (i.e., waking vs.
sleep) (He et al. 2010) and to change upon task initiation (He et al.
2010; He 2011; Ciuciu et al. 2012). We next investigate manipula-
tions of the model that may underlie such state-dependent
changes in the shape of the low-frequency power spectrum.

Correlations in the Input Preferentially Drive Slow
Timescales

The eigenvector corresponding to a timescale determines not
only the distribution of that mode across the network, but also
how much that mode is activated in response to a given profile
of input. Given a particular pattern of input across the network,
the correlation of this input pattern with an eigenvector deter-
mines how strongly the corresponding temporal mode is driven
(this is approximately true, but see SI, Section 5 for a more pre-
cise statement). This corresponds to the intuition that input
whose spatial distribution resembles a particular eigenvector
should preferentially activate the temporal mode correspond-
ing to that eigenvector.

The slow and fast modes have different distributions, and
thus are differently driven by various inputs (see SI, Eq. 18 for
the power spectrum). The slow mode is shared across the net-
work and is driven by the component of the input that is

common between nodes (see SI, Section 6). By contrast, input
that is uncorrelated between nodes drives the slow network
mode incoherently, with some nodes contributing positively and
others negatively, so that the net effect is small. As a conse-
quence, a random recurrent network architecture generically
transforms correlations in input across nodes into long temporal
correlations in network activity. In Figure 5B we show how the
power spectrum of node activity depends on the degree of corre-
lation in the input across the network (recall that the power
spectra in Figure 3 are for uncorrelated input). In particular, we
note that a decorrelation of input across neurons would lead to a
reduction in low-frequency power, as observed in ECoG power
upon task-initiation (He et al. 2010), and shown in Figure 5C.

Distance-Dependent Connection Probability Changes
the Slope of the Low-Frequency Power Spectrum

We have assumed that the nodes in the network are connected
to each other with equal probability and mean weight. However,
networks of neurons that are widely distributed in space typi-
cally have a distance-dependence in connection probability and
number: several studies have concluded that neural connectivity
is primarily local and, despite notable exceptions, tends to decay
with distance both within a cortical area and between cortical
areas (Destexhe et al. 1999; Ercsey-Ravasz et al. 2013; Markov
et al. 2014). We now consider model networks with nodes that
have some underlying spatial location and whose connection
strength decays exponentially with distance.

In Figure 6A, we show the eigenvalue distributions of 3 such
networks with progressively sharper connectivity profiles. In
contrast to the completely random network of Figure 3, these
networks contain a number of intermediate eigenvalues
between the slow shared mode and the cluster of modes
around the single-node timescale. As the decay of connections
with distance becomes sharper, the number of intermediate
eigenvalues increases; this can be understood by noting that
the positions of the eigenvalues are approximately given by the
Fourier transform of the connectivity profile (see SI, Section 10),
and hence networks with sharply localized connectivity will
have eigenvalues that are more spread out.

In Figure 6B we show the effect of distance-dependent con-
nectivity on the network power spectrum. Heuristically, the
intermediate eigenvalues contribute Lorentzian functions with
knee frequencies located in the low-frequency part of the
power spectrum. These combine to produce a shallower low-
frequency slope. As the distance-dependent decay of connec-
tivity becomes steeper there are more such intervening modes,
and the slope of the low-frequency network power spectrum
continues to become shallower, leading to a scaling of power
with frequency that is closer to f1/ (as seen in the light green
trace of Fig. 6B). Thus, networks with predominantly local con-
nectivity could underlie experimental observations of f1/ power
spectra in recordings (Bedard et al. 2006; Bedard and Destexhe
2009; Dehghani et al. 2010), and different distance-dependent
profiles of connectivity could explain differences in the slope of
low-frequency power spectra between subjects, regions of the
cortex or arousal states.

Clustered Network Architectures

Thus far we have treated nodes in our network as single enti-
ties with no internal structure. While it is possible that the
nodes correspond to single neurons, the node timescales we
observe are on the order of hundreds of milliseconds. This is

Figure 4. Power spectrum of a random network with both excitatory and inhibi-

tory connections. (A) Schematic of network, as in Figure 3A but with the incor-

poration of interneurons shown in red. (B) Eigenvalue spectrum of the network.

(C) Power spectrum of network activity (black) along with data from Patient 3

(grey filled circles).
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longer than membrane time constants and most synaptic
time constants; however, it is within the range of other long
cellular time constants (Carter and Wang 2007; Zhang and
Seguela 2010; Letzkus et al. 2011), and we consider these fur-
ther in the Discussion. Alternatively, the nodes could corre-
spond to cell assemblies or clusters of neurons. A number of
studies suggest that cortical connectivity is clustered at multi-
ple spatial scales (Mountcastle 2003; Song et al. 2005; Perin
et al. 2011), that these clusters may form functional units
(Yoshimura et al. 2005; Ko et al. 2011), and that model net-
works with clustering can show long timescales and high var-
iability (Rubinov et al. 2011; Litwin-Kumar and Doiron 2012).
We extend our model to a clustered network where individual
neurons in each cluster show faster timescales (on the order
of milliseconds) and the timescales of each cluster emerge
from recurrent interactions. The resulting architecture is thus
hierarchical: individual neurons form clusters via recurrent
interactions and the clusters further interact to produce the
very long network timescales.

The eigenvalue spectrum of a network with such a clustered
structure is shown in Figure 7B. For a network with N clusters,
the eigenvalue spectrum shows a single slow mode near 0 (red
circle) and −N 1 faster modes distributed around the time-
constant of a single cluster (blue circles). Thus, the long time-
scale behavior is the same as before. However, the eigenvalue
spectrum also shows a number of much faster modes clustered
around the intrinsic time-constant of a single neuron (black cir-
cles). In the lower panel of Figure 7B we highlight these 2
regions of the eigenvalue spectrum, revealing the signature of
the underlying hierarchical architecture.

In Figure 7C we show the power spectrum of the average
activity of a cluster in this network, after averaging across the

individual neurons. This power spectrum is dominated by the
emergent slow timescale and by the timescale of the clusters.
The contribution of the very fast neural timescales is small
(Supplementary Fig. 2). They originate locally and are only
weakly correlated with each other and thus their contribution
is strongly attenuated by averaging over the spatial scale of the
cluster. Moreover, these fast timescales are on the order of
milliseconds, and thus any contribution they do make is only
visible at high frequencies.

As shown in Figure 2, the knee frequencies we fit vary
across electrodes and between subjects. In the model, the knee
frequency corresponds to the timescale of a node or local clus-
ter, and a variation in knee frequency suggests that the net-
work nodes underlying each electrode show different
timescales. These differences could emerge from spatial varia-
tion in the cellular and synaptic time constants of individual
neurons, in the strength of recurrent interactions between the
neurons and in the characteristic size of a cluster. In Figure 7D,
we show how the location of the knee frequency (i.e., the time-
scale of a cluster) depends on these parameters.

Discussion
Human ECoG power spectra below ∼4 Hz show evidence of sim-
ple linear dynamics dominated by a slow and a fast mode. We
demonstrate how these can reflect an underlying recurrent net-
work with few assumptions on the connectivity: connections
are random and net excitatory so as to balance the intrinsic
decay of node activity.

Electric field potentials are thought to result from a linear
sum of transmembrane currents, weighted by their inverse
distance from the electrode (Nunez and Srinivasan 2006).

Figure 5. The network converts shared input into network activity with long temporal correlations. (A) Schematic of a random network with nodes that receive

both shared input (red) and uncorrelated input (blue). (B) Power spectra for network activity in response to different fractions of correlated input. Left panel shows

that correlated input leads to an increase in low-frequency power in the network, while right panel shows normalized power spectra. The average power spectrum

from Patient 3 is shown as dark gray circles, for comparison. To highlight the role of correlated input in driving the slow mode, we average over a smaller fraction

of network nodes. Thus, the blue trace (without input correlations) reflects the fast modes to a greater extent than the data, but this can be compensated for by

more correlation in the input. σshared
2 is the variance of the common input; the variance of the remaining input (uncorrelated across nodes) is chosen so that total

variance is constant (see SI, Section 8). Note that the power spectrum is still well-fit by the sum of 2 Lorentzians, with the amplitudes depending on the degree of

correlation (SI, Eq. 18). (C) Three electrodes showing strong task modulation along with Lorentzian fits. The same network is fit to both rest and task conditions,

and only σshared
2 is changed to move from rest to task power spectrum. For the 3 fits, α = 1/292, 1/1186, and 1/1483, respectively ( =N 292, 1186, 1483), and τ = 15.6,

25.3, and 26.1 ms, respectively.
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We assume that the electric field potentials are dominated by
synaptic currents (and the corresponding return currents)
((Buzsáki et al. 2012; Einevoll et al. 2013), but also see (Reimann
et al. 2013) for an opposing argument). For many neurons the
dependence of firing rate on input is approximately threshold-
linear over a wide range (Ahmed et al. 1998; Ermentrout 1998;
Wang 1998; Chance et al. 2002), and linear networks are com-
mon models for the dynamics of neural circuits (Dayan and
Abbott 2001; Shriki et al. 2003; Vogels et al. 2005; Rajan and
Abbott 2006; Ganguli et al. 2008; Murphy and Miller 2009). Thus,
we assume that neural firing rate is a linear function of input
current. This is a strong simplification, but we think it is justi-
fied both in terms of reproducing empirical power spectra with-
out many parameters and because it provides for theoretical
understanding, suggesting putative explanations for the differ-
ent regions of the power spectrum and how they change with
network structure and input.

Assuming that firing rate is a linear function of current pre-
dicts a relationship between firing rate and electric field poten-
tial, at least at low frequencies. This is supported by
observations that the slow cortical potential (SCP) (<5 Hz activ-
ity) reflects different states of cortical excitability, with surface-
recorded negative shifts indexing enhanced cortical excitability
(Rockstroh et al. 1989; Birbaumer et al. 1990; He and Raichle
2009). The negative shift of SCP is also correlated with higher
multiunit activity (Rebert 1973). Finally, the phase of SCP modu-
lates broadband gamma power (He 2014), which in turn is

correlated with firing rate (Manning et al. 2009). The relation-
ship between broadband power and firing rate also suggests
that the power spectrum of broadband power will reflect the
shape of the electric field potential, at least at low frequencies;
in particular, if the broadband power to firing rate relationship
is close to linear, then the broadband power should show knees
at the same locations as the field potential. Future work could
use simultaneous recordings of firing rate and ECoG to test the
f–I relationship we used here and extend the model. From the
ECoG data, both SCP and broadband power can be extracted,
and a more comprehensive model accounting for both could be
developed. Technically, this could be done by simultaneous
Utah array and ECoG (Hochberg et al. 2006; Truccolo et al. 2011),
or simultaneous Neurogrid and ECoG (Khodagholy et al. 2015)
in animal models or human patients.

Our model for the generation of the electric potential from
neural activity is simpler than models for LFP (Mazzoni et al.
2008, 2015; Lindén et al. 2011), but shares the same basic
assumptions. Most of these models assume that the field
potential is a distance-weighted sum of synaptic currents, but
consider spatially extended or spiking neuron models. Such
models are necessary to predict the spatial distribution of LFP
(e.g., across layers), and high-frequency activity, and our model
only seeks to predict the signal at the electrode, with a focus on
low-frequency activity. An interesting future direction is to
extend the model to simultaneously model multiple spatial
scales, such as both LFP and ECoG.

The data contain very long correlation times (seen in the
low-frequency power). In the model, this slow timescale
emerges when recurrent excitatory interactions closely balance
the intrinsic decay of activity at each node (or decay plus inhi-
bition). Thus, the fitted model is near a bifurcation point, such
as those seen at the appearance or disappearance of a fixed
point or attractor, and the behavior of the model is very sensi-
tive to the degree of this balance (i.e., the proximity to the
bifurcation point), which is determined by the parameter

μp conn. We find these long time-constants empirically and do
not propose how recurrent excitation (or the difference
between excitation and inhibition) can be driven to this point.
However, several mechanisms have been proposed (Levina
et al. 2007; Magnasco et al. 2009; Chialvo 2010; Millman et al.
2010; Rubinov et al. 2011; Moretti and Muñoz 2013). Long corre-
lation times are seen in systems near phase transitions
(Stanley 1999; Sethna 2006), leading to speculation that the
brain is perched at a critical point (Beggs and Plenz 2003; Plenz
and Thiagarajan 2007; Beggs and Timme 2012; Deco and Jirsa
2012; Priesemann et al. 2014; Bellay et al. 2015; Roberts et al.
2015), and to suggestions that proximity to criticality provides
desirable functional properties (Langton 1990; Mitchell et al.
1993; Kinouchi and Copelli 2006; Mora and Bialek 2011; Shew
and Plenz 2013). Interestingly, both long temporal correlations
and the amount of total fluctuations are suppressed upon task
initiation (He et al. 2010; He 2011, 2013; Ciuciu et al. 2012), sug-
gesting that task performance may shift the system away from
criticality (Deco and Jirsa 2012; Fagerholm et al. 2015).

A number of factors besides network activity could contrib-
ute to the low-frequency component of the power spectrum.
One possibility is global fluctuations in excitability (Scholvinck
et al. 2010), such as might arise from slow changes in brain
state or neuromodulation. Another is very slow cellular pro-
cesses, which may be linked to neuromodulation or emerge
locally. A third possibility is that neural networks inherit part
of their low-frequency structure from slow fluctuations in the
input. The model can be extended to explicitly incorporate

Figure 6. Network endowed with distance-dependent connectivity yields shal-

lower power spectra. (A) Connectivity profile of 3 networks with increasingly

sharp decay of connection strength with distance (top), and the corresponding

eigenvalue spectra (bottom). (B) Power spectra for the 3 networks shown in (A)

(in successively lighter shades of green) along with the power spectrum from

Figure 3, for comparison (shown in black).
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these possibilities. The contributions of various factors can be
constrained both by investigating the spatial and functional
specificity of low-frequency activity (He et al. 2008) and by
manipulations that differentially affect network-generated slow
fluctuations, such as by disrupting recurrent excitation or enhanc-
ing inhibition. These could include targeted activation or inhibi-
tion of neural sub-types. Note that interventions that disrupt
network activity may be unable to distinguish slow network time-
scales from those that are inherited from an input. If these long
correlation times are inherited from an external input, then whit-
ening the low-frequency structure of the input would remove
these timescales in the electric potential. On the other hand, if
these timescales reflect input from another set of neurons or brain
region, then resolving these mechanisms will require simulta-
neous recording of both sets of neurons.

Multiple model features can be understood from the link
between long timescales and recurrent excitatory interactions.
The long timescales that emerge from internode interactions
are spatially distributed and hence correlated across nodes,
while faster timescales are more local. This may explain why
correlations in low-frequency activity are more widely distrib-
uted than correlations in high-frequency activity (von Stein
and Sarnthein 2000; Buzsáki 2006). In general, network-level
activity is correlated across nodes and will become more visible
after spatial averaging, such as during field potential record-
ings, while activity that emerges more locally will be sup-
pressed. Thus, the model predicts that recordings that average
activity over large numbers of neurons will be dominated by
slower timescales (Fig. 3E). In particular, LFP should show com-
paratively less power at very low frequencies than ECoG, which
in turn should show less very low-frequency power than EEG.
These observations could be tested in DC-coupled LFP (Kahn

et al. 2013; Pan et al. 2013) and EEG (Birbaumer et al. 1990)
recordings.

Our model suggests potential mechanisms for the decrease
in autocorrelation (as captured by the low-frequency power-
law exponent β) in ECoG and fMRI recordings upon task initia-
tion (He et al. 2010; He 2011; Ciuciu et al. 2012). As shown in
Figure 5, a reduction of shared inputs among nodes leads to a
decrease of low-frequency power of network fluctuations, sup-
porting a suggestion (He 2011) that task-induced changes may
result from neurons in the local network becoming more inde-
pendent (Poulet and Petersen 2008). This decorrelation could
result from nodes receiving more heterogeneous input or from
an active top-down process, such as attentional decorrelation
(Cohen and Maunsell 2009; Mitchell et al. 2009). However, the
studies just mentioned involve tasks that do not require much
integration of input, and a task that involved integrating infor-
mation over multiple modalities or long periods of time may
lead to an increase in correlated task-related input.

Adding a decay of connection strength with distance caused
the low-frequency power spectrum slope to become shallower.
Thus, differences in connectivity structure within the same
model can account for observed divergences in low-frequency
power spectra, such as in the studies of Destexhe et al., 1999
and Dehghani et al., 2010 which found slopes of −1 in the low-
frequency power spectra of cat cortical LFP and human EEG,
respectively. Given observations of reduced long-range effec-
tive connectivity in the human brain during slow-wave sleep
(Massimini et al. 2005), differences in long-range connectivity
might also provide a mechanistic explanation for shallower
power spectra in the <0.1 Hz range during slow-wave sleep
compared with the awake state (He et al. 2010). Furthermore,
while a power spectrum that scales as f1/ is often taken to

Figure 7. Power spectrum of a network with nodes which are themselves clusters of sub-nodes. (A) Schematic of the network, with 4 clusters shown. (B) Eigenvalue

spectrum of the network. Top panel shows the full eigenvalue spectrum while the 2 bottom panels highlight the eigenvalues in the 2 gray regions. Note the hierarchi-

cal organization of the eigenvalue spectrum: the black eigenvalues reflect the timescales of individual nodes; the blue eigenvalues reflect within-cluster recurrent

connections; and the red eigenvalue emerges from connections between clusters. (C) Power spectrum of network activity (black) along with data from Patient 3 (grey

filled circles). (D) Dependence of the knee frequency on intrinsic time-constant of sub-node (top panel) and on the recurrent connection strength for within-cluster

connections (bottom panel). The recurrent input within a cluster is the product of connection probability, recurrent connection strength and the number of sub-

nodes (i.e., size of a cluster). Increasing the intrinsic time-constant or the recurrent strength makes the network dynamics slower and thus the knee in the power

spectrum shifts to lower frequencies.
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signify self-organization (Bak et al. 1987; Turcotte 1999), we find
that sharply decaying connectivity produces a spread of expo-
nential modes; as previously shown, summing such dispersed
modes can produce a spectrum that scales as f1/ without
invoking additional physical processes (Bell 1960; Milotti 1995;
Wagenmakers et al. 2004; Erland and Greenwood 2007). More
generally, our model suggests that the low-frequency power
spectrum is sensitive to features of network organization (such
as degree of averaging, connectivity decay length, ratio of exci-
tation to inhibition, and correlations in the input) and could be
a probe of network reconfiguration.

The knee frequencies in the average empirical power spec-
tra (Fig. 1D) are located at 0.49, 0.55, 0.81, 1.10, and 3.47 Hz,
respectively, corresponding to timescales of 325, 289, 196, 145,
and 46ms (timescale is πf1/2 fast). This frequency varies dramati-
cally between subjects and electrodes, but contains spatial
structure: 4 out of 5 patients show evidence of a gradient across
electrodes and, at least in Patients #1 and #3, frontal areas tend
to exhibit slower timescales. This may reflect a hierarchy of
cortical timescales, with sensory areas processing information
rapidly, whereas cognitive areas integrate information over
time (Honey et al. 2012). Indeed the timescales of the knee fre-
quencies are similar to those observed in small fluctuations
across cortical areas in the macaque, perhaps suggesting a
common origin, and those timescales were found to be hierar-
chically structured (Murray et al. 2014). We also note that while
4 patients show knee frequencies near 1 Hz, Patient #5 shows a
faster frequency near 3.5 Hz. While our sample size is small,
Patient #5 is older and the difference may reflect an age-related
shift in electrophysiological activity towards higher frequencies
(McIntosh et al. 2010).

In the model, the knee frequency is determined by the time-
scales of individual nodes, and the model predicts that this
should be a relatively stable property of the local circuit, unaf-
fected by task or network reorganization. If the nodes correspond
to neurons then these might be the timescales of a slow synaptic
or cellular process such as the NMDA pathway (Wang 1999),
metabotropic glutamate receptors (Zhang and Seguela 2010), cho-
linergic modulation (Letzkus et al. 2011), or endocannabinoid sig-
naling (Carter and Wang 2007), which may vary across electrodes
and subjects. For instance, time constants for synaptic transmis-
sion and single neuron dynamics may differ between sensory
and association areas (Wang et al. 2008; Pereira and Wang 2015).
Alternately, the nodes might correspond to neural assemblies or
clusters and the knee frequency would correspond to the time-
scales of these clusters, determined by local timescales and recur-
rent interaction within a cluster (Fig. 7). Modeling work suggests
that a gradient of recurrent connection strengths across cortical
areas could produce differences in these timescales (Chaudhuri
et al. 2015). Manipulations that disrupt local excitation could help
distinguish these possibilities.

Above ∼80 Hz, ECoG power spectra have a slope steeper
than 2 (Miller et al. 2009a; He et al. 2010). As observed in Miller
et al. (2009a), this transition points to an even faster timescale
in the data and suggests fitting the high-frequency data with a
product of 2 Lorentzians. This produces a power spectrum that
transitions from f1/ 2 scaling to f1/ 4 (Fig. 8). The very short time-
scale (values in Fig. 8) could emerge from fast timescales in
neural input possibly imposed by synaptic time constants
(Miller et al. 2009a), from a fast timescale in the output (perhaps
reflecting a neuronal membrane time constant, especially in
the high-conductance state (Destexhe et al. 2003; Koch et al.
1996)), or from dendritic filtering (Linden et al. 2010; Einevoll
et al. 2013). Extracellular tissue filtering might also play a role

(Bedard et al. 2006; Dehghani et al. 2010), although this effect
remains controversial (Logothetis et al. 2007). Modeling these
effects by assuming that the input to or activity from our model
is correlated with a timescale on the order of milliseconds
extends the fits into the high-frequency range. The model pre-
dicts that the slope below this high-frequency transition should
be correlated with the slope above it: if the exponent of the
slope below is −β then the exponent of the higher frequency
slope should be −( + β)2 . However, it suggests no relationship
between the locations of the 2 knees in the power spectrum.

In summary, our model provides a parsimonious framework
for interpreting broadband, arrhythmic field potentials
recorded by ECoG and LFP. The model links macroscopic
arrhythmic field potentials with underlying neural network
dynamics, and shows that features of the broadband power
spectrum may be diagnostic of the underlying network archi-
tecture. This framework may contribute to a unified under-
standing of previous studies and to generating and testing new
hypotheses about the relationship between broadband power
spectra and network organization.
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Figure 8. Adding a fast filtering timescale accounts for the high-frequency

structure of observed power spectra. The light grey traces are recordings from

each electrode while the dark grey circles are the averages across all electrodes.

Red traces are the original fits with a sum of 2 Lorentzian functions, while blue

traces are fits using a fourth free parameter, corresponding to a timescale on

the order of milliseconds. The data is fit to the frequencies below 50Hz. The

high transition frequencies are 13.03, 40.68, 40.50, 37.42, and 21.89 Hz, respec-

tively, corresponding to timescales of 12.21, 3.91, 3.93, 4.25, and 7.27ms. Note

that the study of He et al. (2010) was intended to examine the low-frequency

range, and thus the high-frequency cutoff is comparatively low; however, a

similar shape for the high-frequency power spectrum was observed up to

∼500 Hz by Miller et al. (2009a).
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