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Recurrent excitation is believed to underlie persistent neural
activity observed in the prefrontal cortex and elsewhere during
working memory. However, other positive and negative feedback
mechanisms, operating on disparate timescales, may also play
significant roles in determining the behavior of a working memory
circuit. In this study, we examined dynamical interactions of
multiple feedback mechanisms in a biophysically based neural
model of spatial working memory. In such continuous attractor
networks, a self-sustained activity pattern tends to drift randomly,
resulting in a decreased accuracy of memory over time. Moreover,
attractor states become unstable when spike-frequency adaptation
reduces the excitability of persistently firing pyramidal neurons.
Here, we show that a slow activity-dependent local disinhibition,
namely cannabinoid-dependent depolarization-induced suppression
of inhibition (DSI), can counteract these destabilizing effects,
rendering working memory function more robust. In addition, the
slow DSI effect gives rise to trial-to-trial correlations of memory-
guided behavioral responses. On the other hand, computer simu-
lations revealed that a global cannabinoid agonist (mimicking the
effect of drug intake) yields the opposite effect. Thus, this work
suggests a circuit scenario according to which endogenous DSI is
beneficial for, whereas an exogenous drug such as marijuana is detri-
mental to, working memory and possibly other prefrontal functions.
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Introduction

Working memory, the ability to actively hold information ‘‘on-

line’’ in the absence of direct external inputs, enables the brain

to delay responses to sensory stimuli so that information can be

integrated and complex behaviors can be organized flexibly

across time. The prefrontal and parietal cortices play a critical

role in working memory, as demonstrated by electrophysiolog-

ical experiments with nonhuman primates (Fuster 1973; Niki

and Watanabe 1976; Gnadt and Andersen 1988; Funahashi et al.

1989; Chafee and Goldman-Rakic 1998; Rainer et al. 1998; Romo

et al. 1999; Sawaguchi and Yamane 1999; Kikuchi-Yorioka and

Sawaguchi 2000; Sawaguchi and Iba 2001; Takeda and Funahashi

2002), brain imaging (McCarthy et al. 1994; Courtney et al.

1998; Zarahn et al. 1999), and transcranial magnetic stimulation

studies (Müri et al. 1996; Oliveri et al. 2001; Koch et al. 2005). An

elegant and widely used spatial working memory paradigm is

the oculomotor delayed-response (ODR) task, in which the

subject is required to remember the spatial location of a visual

cue across a delay period (typically of a few seconds) in order to

perform a memory-guided saccadic response. Funahashi et al.

(1989) found that single neurons in the dorsolateral prefrontal

cortex (PFC) and frontal eye field exhibited elevated persistent

activity during the delay period, even though the stimulus was

no longer present. This mnemonic activity was spatially

selective according to a Gaussian-shaped tuning curve and,

therefore, could be used to guide a delayed saccadic response.

To investigate the neural circuit mechanism of stimulus-

selective persistent activity underlying working memory, we

have developed a biophysically constrained network model of

spiking neurons for the ODR experiment (Camperi and Wang

1998; Compte et al. 2000; Renart et al. 2003). This model is

endowed with a Mexican-hat architecture (Amari 1977; Ben-

Yishai et al. 1995), with local excitation between pyramidal cells

with similar spatial preference and broad synaptic inhibition

from c-aminobutyric acidergic (GABAergic) cells. When the

strength of recurrent excitatory synapses is sufficiently strong,

the network exhibits bell-shaped persistent activity patterns (or

bump attractors) that can store the memory of a spatial location

as an analog quantity. These mnemonic states coexist with

a spontaneously active baseline state, so that the network can be

switched on and off by brief external inputs, as required for

a working memory system. We found that in this model,

working memory function depends on the slow N-methyl-D-

aspartate receptors at the recurrent synapses and the balance

between synaptic excitation and inhibition (Wang 2001, 2006;

Constantinidis and Wang 2004). Furthermore, heterogeneity in

cellular properties was shown to destroy the continuous family

of bump attractors, but the latter could be restored with the

introduction of a compensatory, homeostatic synaptic scaling

mechanism (Renart et al. 2003).

The continuous nature of an attractor network generally

gives rise to random drifts of a persistent activity pattern

(Camperi and Wang 1998; Compte et al. 2000). This implies

that the remembered spatial cue, hence the memory-guided

saccade, becomes less precise with a longer delay. Moreover, it

has been shown previously that spike-rate adaptation (SRA),

a common property of cortical pyramidal neurons, weakens the

excitability of those cells that fire in a sustained manner, leading

a bump attractor to either move across the network as a pro-

pagating wave or disappear quickly (Hansel and Sompolinsky

1998; Laing and Longtin 2001; Pinto and Ermentrout 2001a,

2001b). Consequently, memory storage can no longer be main-

tained. SRA-induced negative feedback in single cells cannot be

simply compensated by an increased strength of fast synaptic

excitation because the interplay between the 2 processes often

gives rise to oscillatory instabilities (Wang 1999; van Vreeswijk

and Hansel 2001), as can be intuitively expected for a strongly

nonlinear dynamical system with a fast positive feedback and

a slower negative feedback. In the present study, we tested the

hypothesis that persistent activity can be stably maintained in

spite of certain amount of SRA, if the latter is counteracted by an
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activity-dependent excitation or disinhibition that operates on

a slower timescale. Specifically, we examined such a mechanism

in our spatial working memory model, namely the cannabinoid-

mediated depolarization-induced suppression of inhibition

(DSI).

DSI was first discovered in Purkinje cells in the cerebellum by

Llano et al. (1991) and pyramidal cells in the hippocampus by

Pitler and Alger (1992). Pitler and Alger evoked action poten-

tials at 20 Hz for 2 s in CA1 pyramidal cells and found that the

size and frequency of subsequent spontaneous inhibitory events

were reduced for 10--20 s. This phenomenon has been observed

in pyramidal cells of the PFC (Trettel and Levine 2003; Fortin

et al. 2004; Bodor et al. 2005) and hippocampus (Pitler and Alger

1992) as well as the Purkinje cells of the cerebellum (Llano et al.

1991; Brenowitz and Regehr 2003). DSI has been found to be

mediated, at least in part, by endogenous cannabinoids (Ohno-

Shosaku et al. 2001; Wilson and Nicoll 2001; Wilson et al. 2001).

In the brain, endocannabinoid signaling is primarily mediated by

G-protein--coupled CB1 receptor. CB1 receptors appear to be

predominantly located on the axon terminals of a subtype of

GABAergic cells that contain the neuropeptide cholecystokinin

(CCK) (Katona et al. 1999; Marsicano and Lutz 1999; Bodor et al.

2005; Eggan and Lewis 2007) and target the perisomatic region

of pyramidal cells (Katona et al. 1999; Klausberger et al. 2005).

Physiological experiments (Hajos et al. 2000; Hoffman and

Lupica 2000; Kreitzer and Regehr 2001; Ohno-Shosaku et al.

2001; Wilson and Nicoll 2001; Wilson et al. 2001) show that DSI

is triggered by calcium influx in a pyramidal neuron, leading

to the release of endogenous cannabinoids which, through a

retrograde signal, activate CB1 receptors at the presynaptic

terminal from CCK neurons. The activation of CB1 causes

a reduction in the release probability of transmitter GABA. As

a result, the pyramidal cell is disinhibited. Wilson and Nicoll

tested the effective radius of DSI and found that the spatial

spread is not more than 20 l from the depolarized neuron

(Wilson et al. 2001).

There is a large body of literature documenting that canna-

binoid has a significant effect on a range of cognitive behaviors.

The primary psychoactive constituent of the hemp plant

Cannabis sativa, 9-D-tetrahydrocannabinol (THC), has been

found to impair working and episodic memories (Ameri 1999;

Hampson and Deadwyler 2000; Ploner et al. 2002; Ilan et al.

2004). Of particular interest here is the study by Ploner et al.

(2002), in which human subjects performed an ODR task. It was

found that when subjects take an exogenous cannabinoid

(THC), the accuracy of memory-guided saccade decreases com-

pared with the control condition. CB1 receptor is highly ex-

pressed in the PFC (Glass et al. 1997; Ong and Mackie 1999;

Dean et al. 2001; Eggan and Lewis 2007), especially in layer 2/3

(Eggan and Lewis 2007), which is endowed with an abundance

of recurrent connections and has been hypothesized to be a

neural substrate for working memory (Goldman-Rakic 1995).

Therefore, endocannabinoid signaling is well positioned to

modulate prefrontal processes. In this study, we incorporated

the DSI effect into our spatial working memory model to in-

vestigate precisely how cannabinoid signaling affects cognition.

Methods

A Simple Model of the DSI Phenomenon
The current understanding of the mechanism of DSI has been reviewed

in Alger and Pitler (1995), Wilson and Nicoll (2002), and Freund et al.

(2003). Briefly, depolarization secondary to action potentials or voltage

clamping causes influx of calcium (Llano et al. 1991; Pitler and Alger

1992; Lenz and Alger 1999). The increase in intracellular calcium in turn

causes the production of endocannabinoid (Di Marzo et al. 1994; Stella

et al. 1997; Piomelli 2003). Once produced, endocannabinoids mediate

a retrograde signaling at the presynaptic terminals from CCK neurons

onto the depolarized pyramidal cell, but the detailed mechanism of

retrograde transport is still unclear. At the presynaptic side, endo-

cannabinoids bind to the CB1 receptor, which causes a reduction in

presynaptic release probability (Hajos et al. 2000; Hoffman and Lupica

2000; Kreitzer and Regehr 2001; Ohno-Shosaku et al. 2001; Wilson and

Nicoll 2001; Wilson et al. 2001). The mechanism for endocannabinoid

clearance is yet to be worked out, but cannabinoids appear to undergo

either facilitated transport or passive diffusion to reenter the cells

where they are then hydrolyzed (Freund et al. 2003; Piomelli 2003).

Our phenomenological model of DSI was designed to capture

quantitatively 2 most salient observations: the dependence on intracel-

lular calcium and the slow decay time course (which appears to

correspond to the deactivation process [Heinbockel et al. 2005]). We

assumed that the inhibitory synaptic conductance gGABA on a pyramidal

cell is multiplied by a factor D, which is proportional to the fraction of

inhibitory synapses that are sensitive to cannabinoid and their pre-

synaptic release probability (D is between 0 and 1; D = 1 when there is

no DSI effect). In most studies, DSI is reported as the percent reduction

in inhibitory event size (or frequency). Thus, the relationship between

DSI and D is DSI = 100 3 (1 – D).

The dynamics of D is described by the following equation:

dD

dt
= /D3

1 –D

sD
–bD3½Ca

2 + �n3ðD –DminÞ
� �

; ð1Þ

where [Ca2
+
] represents the intracellular calcium concentration in

the pyramidal cell. When [Ca2
+
] accumulates, D decreases with a rate

controlled by bD, causing disinhibition. The parameter n is the

cooperativity factor which was used to fit the model with physiological

data (see below), and was set to one for all the model simulations. D is

bounded below at Dmin, which determines the maximum disinhibition

and biophysically corresponds to the maximum number of synapses that

are cannabinoid sensitive multiplied by themaximal reduction in release

probability at each synapse due to DSI. When the pyramidal cell ceases

to be active, D recovers back to maximal value one with a time constant

sD . The factor /D represents temperature sensitivity.

Based on the observation that calcium entry is through high-threshold

calcium channels (Lenz and Alger 1999; but see Isokawa and Alger

2006), we assumed that [Ca2
+
] influx is triggered by spikes and obeys

a first-order kinetics as follows (Liu and Wang 2001):

d½Ca2 + �
dt

= –
½Ca2 + �
sCa

+aCa3+dðt – tiÞ:

When an action potential fires (at time ti), [Ca
2+] is incremented by

aCa. The calcium concentration decays back to zero exponentially with

a time constant sCa. The values for aCa and sCa were chosen to model

calcium behavior in the soma as the axon terminals expressing CB1

appear to be concentrated in the perisomatic region (see Introduction).

The values for aCa (0.2 lM) and sCa (240 ms) are the same as in Liu and

Wang (2001) and Wang et al. (2003) and calibrated by experimental

measurements (Schiller et al. 1995; Helmchen et al. 1996).

We constrained the parameter values of our model by data published

in Wang and Zucker (2001). Their experiments were conducted at

24 �C on CA1 pyramidal cells from rat (11--22 postnatal day) hippocam-

pal slices. Calcium influx was generated by voltage clamping the cells to

0 mV and was monitored via the calcium-sensitive dye benzothiazole

coumarin (BTC). DSI was calculated from the amplitude of evoked

inhibitory postsynaptic currents (IPSCs) before and after depolarization.

The magnitude of DSI generated was varied by using different lengths of

depolarizations. Once DSI was initiated, they directly measured sD,
which yielded 16.7 s. Moreover, they calculated the relationship

between peak DSI and peak calcium concentration, which we used to

Cerebral Cortex 2007, V 17 Supplement 1 i17



estimate the parameter bD. Solving the steady state of equation (1), one

obtains

DSIss =
DSIMAX3½Ca2 + �n

K50 + ½Ca2 + �n
;

where

K50 =
1

bD3sD

n and K50 were measured to be 1.36 and 3.9 lM (Wang and Zucker

2001). Using sD = 16.7 s, we deduce bD = 1.66 10
–5 (lM ms)

–1. This way,

the model parameters have been well constrained by experimental

measurements. We did not attempt to capture the slow time course of

[Ca2
+
] measured by Wang and Zucker (2000), which could be partly

caused by calcium-inducedcalcium release from internal stores (Isokawa

and Alger 2006) and possibly partly due to the buffering effect of the

calcium-sensitive dye BTC.

Our [Ca2
+
] model is spike based and does not automatically

describe calcium influx by constant membrane potential depolariza-

tion. To mimic the experiment with the voltage clamped at 0 mV, we

implemented calcium as having a constant rate (v) of influx during

depolarization, consistent with the experimental data of Thayer and

Miller (1990) and Brenowitz and Regehr (2003). With v taken to be

0.00125 lM/s, this model captures well the experimentally observed

relationship between DSI and calcium (Fig. 1B) and the raw time course

data from one cell (Fig. 1C). Note that to fit data from a single cell, the

model parameters used differed from the ‘‘average’’ values given above.

The experimental data we used to fit the model were collected at

24 �C. On the other hand, the working memory model simulations are

meant to represent physiological process occurring at monkey’s body

temperature. It has been reported that DSI signaling is temperature

dependent (Kreitzer et al. 2002; Heinbockel et al. 2005). Kreitzer et al.

(2002) examined the temperature dependence of DSI at climbing and

parallel fibers in the cerebellum. Using the more conservative of the

values measured at the 2 types of fibers, we calculated Q10 to be 3.0. We

used this value as /D (representing 34 �C) so that sD is effectively 5.57 s.

This value is consistent with Heinbockel et al. (2005), who performed

measurements at 30 �C on hippocampal slices.

Spike-Rate Adaptation
We investigated the interaction between DSI and SRA (McCormick et al.

1985; Mason and Larkman 1990; Foehring et al. 1991) in our spatial

working memory model. In our studies, adaptation was modeled as

a potassium current due to calcium concentration (Liu andWang 2001):

IAHP = gAHP 3 [Ca2
+
] 3 (V – EK). The gAHP controls the amount of

adaptation and is varied as a parameter. EK is the potassium equilibrium

potential and is set to –80mV. We quantified the amount of SRA by Fadapt,

which was calculated as 100 3 (initial rate – steady state rate)/initial rate.

In order to convert gAHP into Fadapt, we ran single-cell simulations with

a fixed gAHP and a range of injected current intensity. We calculated

Fadapt from the simulation where the final rate was ~35 Hz.

Recurrent Network Model of Spiking Neurons
The network model in this study has been previously described in

detail (Compte et al. 2000), and unless stated otherwise, we used the

same parameters as in Compte et al. (2000). The model consists of 2

populations of leaky-integrate-and-fire model neurons (Tuckwell 1988).

The excitatory population consists of 2048 neurons, whereas the

inhibitory population has 512 neurons. A schematic of the network

structure is shown in Figure 2A. Pyramidal cells are labeled by their

preferred saccade direction from 0 to 360 degrees. The excitatory-to-

excitatory connections have a Gaussian weight profile, so that neurons

with similar stimulus preference are strongly connected with each

other. All the other recurrent connections are unstructured, for the sake

of simplicity. All the model neurons receive strong, random background

fluctuations as well as full recurrent connections. The network

reproduces the salient features of the electrophysiological observations

from primates performing the ODR (Funahashi et al. 1989) spatial

working memory task (Compte et al. 2000). To this model, we added the

features of DSI and SRA as described above. In the original model, for

each pyramidal cell i, the inhibitory current is calculated as

Iinh;i = gGABA;i3 +
Inhpool

sGABA3ðVi –EClÞ:

In this study, gGABA,i is multiplied by a factor Di for each pyramidal cell

i. Di is determined by the postsynaptic activity and applies only to the

inhibitory input in the same pyramidal neuron.

All the model parameters are the same as the ‘‘modulated parameter

set’’ used in Compte et al. (2000). In simulations of the effect of a global

cannabinoid agonist (Fig. 6), the inhibitory-to-excitatory synaptic

conductance gGABA was increased by 0.5%.

Model Implementation
The model was integrated with the Runge--Kutta second order

algorithm with the firing time interpolation scheme (Hansel et al.

1998) using a time step of 0.02 ms. The code was written in C and run on

AMD opteron processors.

Analysis of Simulation Data
To facilitate visualization, in a single-trial simulation, we created

spatiotemporal maps of firing rate and D. To compute the firing rate

map, we sorted the spike trains by cell label and time. We then con-

volved that result with a boxcar filter (generally of 10 cells by 50 ms).

The values produced were then mapped onto a color scale and

plotted as a spatiotemporal pattern. In order to determine the peak

location of a bell-shaped persistent firing pattern, we utilized the

population vector method (Georgopoulos et al. 1982). The value for D

was recorded for every cell averaged over 50-ms time bins. These values

were converted to a map in the same manner as the firing rate map

though without the convolution step. The population vector method

was again used to compute the peak location of the DSI disinhibition.

To assess the accuracy of memory-guided saccade in the model, we

used the method described in Renart et al. (2003) for calculating the 2-

dimensional saccade endpoint.

Figure 1. A phenomenological model of depolarization-induced suppression of
inhibition. (A) Model simulated IPSCs from a 100-Hz Poisson spike train before and
after DSI induction by a 5 s depolarization (open bar). Note the reduction in IPSC
amplitude and slow recovery. (B) Dependence of minimum D (maximum DSI) on peak
calcium concentration. Calcium influx was triggered by depolarization to 0 mV.
Experimentally, DSI was measured by comparing the amplitudes of evoked IPSCs
before and after depolarization. Triangles: experimental data from (Wang and Zucker
2001) Figure 4 (converted to D). Dashed line: data fitting to a Hill equation; filled
circles: model simulations; solid line: the Hill equation from our model. (C) Sample time
course of DSI after a 5-s depolarization (open bar). Triangles: experimental data from
Figure 3 of Wang and Zucker (2001), after conversion to D; solid line: model simulation
results.
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Results

DSI Creates a Footprint of Disinhibition

Network simulations were carried out according to the ODR

protocol of Funahashi et al. (1989), with each trial consisting of

a cue period (C) when the stimulus is presented and encoded,

a delay period (D) when the cue location must be remembered,

and a response period (R) when the memory is retrieved to

produce a behavioral response. In the simulations shown below,

the network activity is displayed in the form of a color-coded

spatiotemporal firing rate map. Figure 2B shows the model

behavior without DSI. The network is initiated in a spontane-

ously active baseline state. A brief (250 ms) external input

localized at 180 degrees triggers elevated activity in a group of

neurons at the center of the network. This activity pattern is

self-sustained by virtue of recurrent excitation during the delay

period. At the end of the delay period, a 250-ms current

injection in the inhibitory population turns off the persistent

activity and switches the network back to the baseline state.

During the delay period, the remembered cue is given by the

peak location,measuredby thepopulation vector (Georgopoulos

et al. 1982), of the network activity profile as a function of time

(white line in Fig. 2B). On the right of the spatiotemporal

pattern is shown the network activity profile, averaged over the

last half second of the delay period, which exhibits a bell-shaped

persistent activity pattern.

Figure 2C shows a network simulation when DSI is turned on,

as shown by a spatiotemporal map of D at the bottom of the

panel C (recall that physiologically measured DSI is related to D

by DSI = (1 – D) 3 100%). When the trial starts, pyramidal cell

firing rate is low and D is essentially 1. During the cue period,

D does not change significantly due to the latency of DSI.

The elevated firing activity in the activated cells slowly causes

a reduction in D during the delay period, creating a footprint

of disinhibition. D decreases through the delay period of 8 s.

After the termination of firing rate activity in the response

period, D lingers on as its decay time constant is 5.57 s. This

leaves a ‘‘memory trace’’ in the network for several seconds after

firing rate activity has ceased. The population profile of D takes

the shape of a shallow well (Fig. 2C, bottom panel on the right).

The depth of the well slowly increases during the delay period.

The white line plotted during the delay period represents the

location of the minimum D (maximum DSI) as calculated from

the population vector (see Methods). Comparing the firing rate

and D maps in Figure 2C, it can be seen that the location of the

firing rate bump coincides with the location of maximal DSI.

The variation of D is small (a few percent), but this modest

DSI affects the network behavior quite significantly, as can be

Figure 2. Network model of spatial working memory endowed with DSI. (A) Schematic network architecture. Excitatory cells are labeled and arranged by their preferred cues (0--
360 degrees). Excitatory-to-excitatory connections are structured such that pyramidal cells with similar preference are more strongly connected to each other. The connections from
the inhibitory population to itself as well as to the excitatory population are unstructured. DSI is implemented as a cell-specific reduction in inhibitory input conductance. (B) Model
simulation of the ODR task without DSI. The spatiotemporal network activity pattern is shown with a color-coded firing rate map (see color bar); the abscissa is time and the
ordinate is neuron label. The white line represents the stored cue location as the peak location of a bell-shaped persistent activity pattern, measured by the population vector. The
network activity profile averaged over the last half second of the delay period is shown on the right. (C) Spatiotemporal network activity with DSI. Top: firing rate activity; Bottom:
DSI activity (Dmin 5 0.97). The white line represents the dip location of the D population pattern. The D profile (on right) was calculated by averaging D over the last half-second of
the delay period. Note the slow buildup and decay of the DSI effect at the same location as the neural spiking activity.
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seen by comparing Figure 2B,C. Without DSI, the network

activity profile’s shape stays approximately the same throughout

the delay period but the remembered location drifts randomly

(the population vector is not a perfectly horizontal line in panel

B). Adding DSI causes the network activity profile to change,

increasing in amplitude and widening, over time. The peak of

the activity profile in Figure 2B is 32 Hz, with a width of 28

degrees as measured by fitting with a Gaussian. With DSI (Fig.

2C), the peak is 49 Hz, with a width of 39 degrees. The shape of

the network activity profile with DSI becomes more square-like

as the delay period progresses (the network eventually reaches

a steady state that generally occurs after 20 s). The increase in

amplitude and width takes place in parallel with the gradual

development of DSI: firing activity causes a slow disinhibition;

disinhibition increases the excitability, which in turn enhances

neural activity. Comparing the firing rate activity map with the

D map, it can be seen that the population vectors for the firing

and D patterns occur at the same location. Even though the

shape of the bump attractor changes over time, the location of

the peak does not, suggesting that encoded memories are more

stable and accurate in our model with DSI.

Random Drifts and Memory Accuracy

The quality of memory maintenance over time is measured by

plotting the population vector (remembered location) over

time for a number of trials with the same stimulus. This is shown

in Figure 3A without DSI (left panel), as reported previously

(Compte et al. 2000; Renart et al. 2003). It can be seen that the

population vector deviates from the stimulus cue as in a random

walk so that the trial average is zero and the variance grows

approximately linearly with time during a delay period of 6 s

(Fig. 3B, gray trace). Random drifts occur because the cue-

triggered bump attractor is one of many in a continuous family.

During a delay period there is no external bias, synaptic noise

and irregular neural activity induce stochastic shifts among this

continuum of persistent activity patterns.

We found that the addition of DSI greatly reduced random

drifts of persistent activity during the delay. This is shown in

Figure 3, where it can be seen that with DSI the population

vector time courses remain confined in a narrow band (panel A,

right) and the variance of the remembered location remains

limited over time (panel B, black trace). Note that the variance

is similar with or without DSI for the first 2 s because of the

slow onset of the disinhibition well (Fig. 2C). DSI suppresses

random drifts by producing a ‘‘privileged’’ network location

to ‘‘trap’’ a persistent firing pattern. The crucial requirement

for this mechanism to work is that DSI is activity dependent

and spatially localized. In our spatial working memory model,

a bump of neural activity causes disinhibition for those neurons

selective for the presented cue. The increased activity of

pyramidal cells also generates, via interneurons, an increased

(lateral) inhibition to the network as a whole, which forms

a barrier that resists the movement of the bump from network

locus of low inhibition to elsewhere. Thus, by reducing random

drifts of mnemonic activity, DSI increases the accuracy of

memory-guided saccadic responses.

Working Memory Function in the Presence of Spike-Rate
Adaptation

Previous work has shown that a continuous attractor network

can be destabilized if persistently active cells become less

excitable over time, for instance, due to SRA (Hansel and

Sompolinsky 1998; Laing and Longtin 2001). SRA refers to

a gradual decrease of a single neuron’s firing rate in response to

a constant input current. It is a feature of pyramidal cells

commonly observed in cortical slices (Connors et al. 1982;

McCormick et al. 1985; Mason and Larkman 1990; Foehring et al.

1991; Lorenzon and Foehring 1992). We implemented SRA in

single pyramidal cells of our model, as in Liu and Wang (2001),

where spiking activity induces influx of calcium, which acti-

vates a slow potassium conductance (see Methods). Consistent

with previous studies (Laing and Longtin 2001), reduction in

excitability due to SRA abolishes persistent activity (Fig. 4A).

This happens with very small SRA (quantified by Fadapt = 100 3

(initial rate – steady state rate)/initial rate ~4%). We reasoned

that DSI represents a well-suited mechanism to counteract SRA

as SRA is a cellular process of activity-dependent reduction in

excitability, whereas DSI is an activity-dependent disinhibition

(with a longer time constant). This is indeed the case: we found

that persistent activity was restored with the addition of the DSI

effect, as can be seen in Figure 4B with Fadapt ~10% and Dmin =
0.96. Smaller values of Dmin can compensate for a larger amount

of adaptation, but too much DSI could make the baseline state

unstable, leading to spontaneous emergence of persistent

activity without any stimulus. Interestingly, in the presence of

both DSI and adaptation in the network, the network activity

profile is more Gaussian-like in shape than with DSI alone (Fig.

4B, with a height of 35 Hz and a width of 30 degrees).

Moreover, it has been reported (Hansel and Sompolinsky

1998; Laing and Longtin 2001) that in a bump attractor network

Figure 3. DSI enhances the accuracy of memory-guided responses by reducing
random drifts of persistent activity. (A) Time course of remembered cue location
(determined by the population vector) throughout a delay period of 6 s, for 50 trials.
Left: without DSI. Right: with DSI (Dmin 5 0.97). (B) Variability of remembered cue
location as a function of time, calculated as the variance of the population vector
across 50 trials in (A). Without DSI the variance of the population vector grows in time
(gray line). DSI creates a privileged locus to stabilize a mnemonic activity pattern, so
that after an initial increase in the first 2 s, the variance plateaus and remains constant
(black line).
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with low noise, adaptation induces a persistent firing pattern to

propagate across the network as a wave. This was confirmed in

our study when we doubled the strength of recurrent synapses

(see Fig. 4C). What happens is that the hyperpolarizing effect of

SRA reduces activity of neurons in a bump state, and at the same

time, recurrent activity spreads the activity to neighboring

neurons less encumbered by SRA. Noise breaks the symmetry

so the network activity shifts to either the left or right. Because

the neurons from which the activity pattern has just shifted

way are less excitable, the bump will continue to travel in

one direction. Again, as expected, the persistent activity was

rescued by the addition of the DSI effect. This is shown in

Figure 4D with Dmin = 0.95, where one sees that the bump

attractor is stabilized at the location of the disinhibition foot-

print (a smaller value for Dmin was utilized to compensate for

the destabilizing effect of SRA).

Intertrial Interval Effects

Although the slow time constant of DSI contributes to the

stabilization of memories, it also creates a footprint of disinhi-

bition that lingers after the network firing activity has been

terminated at the end of a trial. If intertrial intervals are not too

long, the lingering spatially localized disinhibition from the

previous trial would influence persistent activity in the current

trial, leading to correlated behavioral responses from one trial

to the next. To examine this possibility we simulated two

consecutive trials, using a fixed cue (h1) at 180 degrees in the

first trial and a delay period of 3 s. The persistent activity was

switched off at the end of the first trial, as described earlier.

After an intertrial interval of variable length, in the next trial

a second cue was presented to the network at h2. To assess the

cross-trial effect, we looked at the remembered cue location

hpop at the end of the delay period in the second trial. The

spatiotemporal firing rate map of a sample simulation is shown

in Figure 5 (top panel). Clearly, in the second trial, the encoded

location by persistent activity shifts back toward h1, the cue

location in the previous trial. This is because when in the

second trial the persistent activity is initiated, there is already

a network region of weak disinhibition inherited from the

previous trial. If neurons in this more excitable location are near

the bump attractor, the latter will be biased toward the well of

disinhibition, leading to a systematic shift (unlike random drift

by noise) of the bump attractor. We examined the dependence

of this effect on the distance h1 – h2. Figure 5 (middle panel)

shows that the systematical shift (measured by h2 – hpop) is at
maximum when the distance between the first and second cues

are neither too small nor too large (when the interaction is

weak between second firing rate bump and the previously

generated well of disinhibition). This is also shown in Figure 5

(bottom panel), where we plotted h2 – hpop as a function of the

intertrial interval duration. The systematic shift is larger with h2
– h1 = 90 degrees than 45 degrees or 135 degrees. Furthermore,

as expected, the trial-to-trial effect is smaller with a longer

intertrial interval when the DSI has more time to decay away

between the 2 trials.

Global Agonist

Our finding that DSI enhances spatial working memory is in

contrast to Ploner et al. (2002), who reported that human

subjects show less accurate memory-guided saccades when

exposed to THC (the main psychoactive constituent of mari-

juana) compared with the control condition. We reasoned that

the discrepancy could be explained by the difference between

endogenous cannabinoid signaling, which is local and activity

dependent and an exogenous cannabinoid mediating a global

and activity-independent action. Therefore, we set out to

Figure 4. SRA destabilizes working memory function, which is restored by DSI. (A) Spatiotemporal activity pattern without DSI. The addition of a small amount of SRA (gAHP 5
0.0006) causes a cue-triggered activity pattern to decay within 1 s so the memory is lost. (B) Disinhibition by DSI (Dmin 5 0.96) counteracts SRA and rescues the self-sustained
persistent activity. Spatiotemporal activity pattern (top) and spatiotemporal DSI (bottom) are shown in gray scales. (C) Spatiotemporal network activity without DSI and with a high
signal to noise ratio. A significant amount of SRA (gAHP5 0.005 that yields Fadapt5 50%) causes the delay activity to move as a propagating wave, so the memory can no longer be
retrieved. (D) Spatiotemporal activity (top) and spatiotemporal DSI (bottom) with the same parameters as (C), but with the addition of DSI (Dmin 5 0.95). Activity-induced well of
disinhibition compensates for SRA and prevents the activity pattern from traveling away from the initial cue location.
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examine how global application of exogenous cannabinoid

might alter network performance. This was done by assuming

that a drug-like marijuana saturates the DSI effect, so that D is

clamped toDmin for all pyramidal cells. We found that ifD =Dmin

is below a critical value, the network became too excitable and

spontaneously generates a bump state without an external

input. To increase the stability of the baseline state, in this set of

simulations, we slightly increased the strength of synaptic

connections from the inhibitory population to the excitatory

population (see Methods). With this parameter change and

a modest DSI effect (Dmin = 0.985), we simulated the application

of a bulk agonist by globally setting D = Dmin. Figure 6A shows

a mnemonic persistent activity pattern at the end of a delay

period, which is broader with agonist application (red), than

in control (black). To assess the effect of a global agonist

on behavioral performance, we calculated the endpoints of 50

memory-guided saccades for each of 8 cues (Fig. 6B). In the

plot, correct responses are defined as those inside the large thin

circles. It is clear that saccade endpoints are much more varied

when DSI is saturated. This is because with a global agonist,

activity pattern in the network no longer creates a privileged

position, so the noise moves the bump around randomly as in

the model without DSI. As a result, the variance of the memory-

guided saccades is significantly larger (Fig. 6C), similar to the

observation of Ploner et al. (2002) with exposure to THC by

human subjects.

Discussion

In this work, we developed a phenomenological model of

cannabinoid-mediated DSI and explored its consequences in

a network model of spatial working memory. DSI resulted in an

activity-dependent, localized, and slowly recovering well of

disinhibition for those neurons actively engaged in maintaining

working memory. This privileged locus in the network limits

random drifts of a persistent activity pattern and enhances

memory robustness in the face of deleterious effects of

adaptation. It also yields a lingering trace of disinhibition even

after a mnemonic spiking activity is terminated, leading to trial-

to-trial correlations in the behavioral responses. Finally, we

found that simulated application of an exogenous agonist

resulted in an increased variation of the memory-guided

saccades, consistent with the observations from a human study

(Ploner et al. 2002). Although we explored the DSI effect using

a network model of spatial working memory, insights thus

gained are relevant generally to any strongly recurrent neural

Figure 5. Trial-to-trial effects by stimulus-specific and long-lasting DSI. Top panel:
spatiotemporal activity pattern illustrating the simulation protocol. Two cues were
presented; the first (h1) cue was presented for 0.25 s, followed by a 3 s delay period,
and then a 0.25 s termination period. After a 1-s intertrial interval, another cue (h2)
was presented. Arrows indicate cue locations. The white lines are the remembered
locations measured by population vector. The hpop denotes the remembered location
at the end of the second delay. Middle panel: population vector over time for various
values of h2. Bottom panel: systematic drift of population vector versus intertrial
interval, for 3 different values of h2 so that |h1 � h2| 5 45, 90, and 135 degrees,
respectively. Note larger drifts when the 2 cues in the consecutive trials are separated
by 90 degrees than when they are 45 degrees apart because in the latter case there is
less space for the activity pattern in the second trial to travel toward the cue location in
the first trial. When 135 degrees or more separates the cues, there is no interaction
between consecutive cues. In all simulations Dmin is 0.97.

Figure 6. Application of an exogenous global agonist impairs working memory
function. (A) Network profile of persistent activity averaged over 150 trials, 6 s into the
delay period. A global agonist broadens the mnemonic activity pattern (red) compared
with control (black). (B) Endpoints of memory-guided saccades, at the end of a 12-s
delay period (see Methods). Saccades that fall outside of the large circles surrounding
the sensory cue locations are considered as erroneous responses. Saccade endpoints
are color coded by the cue location. (C) Variance of the remembered location during
delay period, calculated from 50 trials, with (red) and without (black) a global agonist.
In the presence of an exogenous activity-independent agonist, there is no DSI effect to
stabilize random drifts, so the accuracy of memory-guided saccades deteriorates.
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circuits, for which the collective dynamics critically depends on

the interplay between multiple activity--dependent positive and

negative feedback processes (synaptic excitation and inhibition,

spike-frequency adaptation, DSI, etc.) with time constants

ranging from milliseconds to seconds.

Cannabinoid-Mediated DSI

We introduced in this paper, a phenomenological model of the

cannabinoid-mediated DSI with parameters calibrated by phys-

iological data (Wang and Zucker 2001). We found that the

overall maximum DSI effect should be small, roughly below 5%,

otherwise the network tends to be unstable. This conclusion

seems plausible, given that endocannabinoid signaling is pri-

marily mediated by CCK interneurons, which constitute only

a small fraction of all interneurons projecting to pyramidal cells.

Currently, it is still a matter of debate as to the size of

endocannabinoid-mediated disinhibition that can be produced

under physiological conditions. Many studies were done with

membrane potential depolarization as induction protocol,

rather than spike trains. However, Pitler and Alger (1992)

showed, in hippocampal CA1, that disinhibition effect could

be triggered using a spike train at 20 Hz for 2 s, which is quite

comparable to the kind of sustained neural activity relevant to

working memory function. A related question concerns the

intracellular calcium concentration that is required for DSI

induction (Brenowitz et al. 2006). Wang and Zucker (2001)

reported a calcium concentration of 4 lM for half-maximum

synaptic suppression (see Fig. 1B). Assuming a linear relation-

ship between the firing rate and the resulting calcium accumu-

lation, with a slope of 16 nM/Hz (Helmchen et al. 1996) and

a persistent activity at 40 Hz, the expected calcium level is 0.64

lM, implying only a small disinhibition effect. This estimate does

not consider other factors such as calcium release from internal

stores (Isokawa and Alger 2006) or cholinergic modulation

(Pitler and Alger 1992; Trettel and Levine 2003; Fortin et al.

2004) that could enhance the DSI effect. Regardless, our work

suggests that even a few percent suppression of synaptic

inhibition, provided it is spatially local and long lasting, could

have a significant functional impact in a highly recurrent neural

circuit of working memory.

Random Drifts in Continuous Attractor Networks

In our model, the main driving force that sustains a persistent

activity pattern is the recurrent synaptic excitation. The

elevated and long-lasting spike discharges in pyramidal neurons

are the prerequisite for the induction of disinhibition. More-

over, activity dependence of this effect is crucial for dynamically

creating, on the fly, a privileged locus in an a priori perfectly

homogeneous network. This well of disinhibition ‘‘traps’’ and

stabilizes a mnemonic activity pattern. This effect is especially

interesting for continuous attractor networks, which typically

exhibit random drifts of a persistent activity pattern. One

possible solution is to increase the number of synaptic

connections per neuron in the network: when there are more

converging inputs onto a neuron, synaptic noise is averaged out,

so that random drifts are reduced (Compte et al. 2000; Renart

et al. 2003). However, this scenario does not seem to be

compatible with the observation that mnemonic persistent

activity of PFC neurons is indeed highly irregular (Compte

et al. 2003). Therefore, other mechanisms for limiting random

drifts seem required.

We showed that the inclusion of DSI prevents such drifts

from growing after the initial 2 s during a mnemonic delay

period. Interestingly, one study with behaving monkeys found

that the variance of memory-guided saccades indeed plateaus

for delays longer than 2--3 s (White et al. 1994), as predicted by

our model. On the other hand, the original study of Funahashi

(1989) appears to show a larger variability of saccade endpoints

after a delay of 6 s than after 3 s. Also, Ploner et al. (1998)

indicate that variability of memory-guided saccades in human

subjects stops increasing only for delays longer than 20 s. The

neuronal origin of the observed decrease of memory accuracy

over time is unknown. We suggest that this gradual forgetting of

working memory at the behavioral level is caused by random

drifts of persistent activity, a model prediction that remains to

be tested experimentally.

Random drifts are expected to be a characteristic of other

types of continuous attractors, including memory circuits in

which neural tuning curves are monotonic rather than Gaussian

with respect to the encoded stimulus feature (Seung 1996;

Romo et al. 1999; Koulakov et al. 2002; Miller et al. 2003;

Machens et al. 2005; Miller and Wang 2006a). We have shown

previously that neural activity in such a model network exhibits

random walk and power-law fluctuations (Miller and Wang

2006b). It will be interesting to see, in future work, whether DSI

reduces random-walk-type variability and improves memory-

guided behavior in such circuits as well.

Slow DSI Dynamics

Another desirable feature of DSI effect is its slow time course.

In a highly recurrent neural network, the relative speeds of

positive and negative feedbacks are of the ultimate importance

to functional stability. An example to the point is SRA with

a time constant of ~100 ms. As a negative feedback mechanism

SRA could, in principle, help control the firing rate of persistent

activity in spite of exuberant recurrent excitation in a working

memory network. However, modeling studies showed that SRA

in interaction with fast (tens of milliseconds) recurrent excita-

tion readily leads to oscillatory instability, as is intuitively

expected for a highly nonlinear dynamical system with a fast-

positive feedback followed by a slower negative feedback

(Wang 1999, 2001). Better suited for counterbalancing SRA is

a slower positive feedback process, such as DSI or short-term

facilitation of excitatory synapses which has a time constant up

to seconds and appears to be prominent in the PFC (Hempel

et al. 2000; Wang et al. 2006).

The slow onset of DSI also provides a cellular mechanism for

a ramping neural activity that builds up for seconds during

a delay period (data not shown). Such ramping activity is

commonly observed in prefrontal neurons in ODR experiments

(Funahashi et al. 1989; Chafee and Goldman-Rakic 1998;

Constantinidis et al. 2001; Takeda and Funahashi 2002),

constituting ~38% of recorded neurons in one study (Chafee

and Goldman-Rakic 1998). Ramping activity is also common in

neurons with monotonic tuning of a remembered stimulus cue

(Romo et al. 1999; Brody et al. 2003; Miller et al. 2003; Singh and

Eliasmith 2006). Such ramping activity may be useful for specific

computations like anticipation of the direction of an impending

saccade, rather than retrospective memory of a previously

presented cue (Takeda and Funahashi 2002) or timing of an

anticipated behavioral response (Brody et al. 2003).

Furthermore, we showed that DSI in the network leaves

a subthreshold memory trace across trials. This is interesting
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because in laboratory experiments, neural activity recorded

from behaving monkeys typically decays away at the end of each

behavioral trial, yet behavioral responses often exhibit trial-to-

trial correlations (Fecteau and Munoz 2003). It has not yet been

examined whether such cross-trial--correlated behavior also

holds true for the ODR task. In a study using a decision-making

paradigm, both activity of prefrontal neurons and behavioral

response in a given trial often exhibits a dependence on what

happened in a previous trial (Barraclough et al. 2004). Two

scenarios are conceivable: either neurons in certain brain

regions exhibit persistent activity across intertrial intervals

or the memory trace is not observable at the level of spiking

discharges. We suggest that a subthreshold mechanism of the

latter type may be instantiated by endocannabinoid signaling. If

so, the size of cross-trial correlation should depend on the

intertrial interval length relative to the time constant of DSI,

a prediction that can be evaluated in monkey experiments. Our

model can also be directly tested by pharmacological manipu-

lation of CB1 receptors or CCK neurons in a spatial working

memory circuit.

Exogenous Global Agonist

When we simulated application of an exogenous CB1 agonist,

we found that the network lost resistance to random drift, and

the variance of remembered location grows linearly during the

entire delay period. Therefore, our model sheds insight into the

observed THC effects on delayed oculomotor behavior (Ploner

et al. 2002). A model prediction at the physiological level is an

increase in the width of the network activity profile during the

delay period, with global agonist application. Because both an

antagonist and agonist would eliminate the primary DSI effect

(localized disinhibition), we need to identify ways to tell them

apart. When an agonist is administered, the tuning curves of the

cells broaden and the variance in the memory-guided saccades

is expected to increase. However, the saccade endpoints would

still be scattered around the cue location. On the other hand, in

the case of a systemically administered antagonist, our model

predicts that spike-frequency adaptation, if significantly present

in memory neurons, would render persistent activity unstable

and would cause more failures in the delay period. Conse-

quently, the saccade endpoints would be random and essentially

uncorrelated with the cue location. These specific predictions

are experimentally testable.

Concluding Remarks

In summary, because endocannabinoid-mediated DSI has a slow

onset and requires long-lasting neural activity, it is ideally suited

for influencing working memory, and perhaps decision-making,

processes subserved by persistent neural activity. This is in

contrast to rapid and brief neural activity in early sensory areas,

which is likely not sufficient to induce DSI. This may, at least

in part, explain why CB1 receptors are densely expressed in

association cortices like the PFC, but not in early sensory areas.

Furthermore, we showed that persistent neural activity in

a model of spatial working memory is prone to random drifts,

which can be dynamically contained by DSI. This is true not just

for working memory of analog quantities but for continuous

attractor networks in general. In particular, spatial navigation is

believed to be subserved by continuous attractor dynamics in

the entorhinal cortex and hippocampus (see McNaughton et al.

[2006] and references therein), but the issue of random drifts

remains a serious challenge to this theoretical framework (Song

andWang 2005; Burak and Fiete 2006). Because hippocampus is

another brain region with a high expression of CB1 receptors,

endocannabinoid may contribute to hippocampal functions by

limiting random drifts of neural activity in the hippocampus

system. This, however, may be only one of multiple CB1 actions.

It is known that CCK neurons and CB1 receptors, play an

important role in sculpturing rhythmic neural activity in the

hippocampus (Klausberger et al. 2005; Robbe et al. 2006). The

modulatory effects of endocannabinoid signaling on temporal

aspects of neural firing patterns remains to be explored in

computational models.
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