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György Buzsáki1,2 and Xiao-Jing Wang3

1Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New
Jersey, Newark, New Jersey 07102
2The Neuroscience Institute, New York University, School of Medicine, New York,
NY 10016; email: Gyorgy.Buzsaki@nyumc.org
3Department of Neurobiology and Kavli Institute of Neuroscience, Yale University School
of Medicine, New Haven, Connecticut 06520; email: xjwang@yale.edu

Annu. Rev. Neurosci. 2012. 35:203–25

First published online as a Review in Advance on
March 20, 2012

The Annual Review of Neuroscience is online at
neuro.annualreviews.org

This article’s doi:
10.1146/annurev-neuro-062111-150444

Copyright c© 2012 by Annual Reviews.
All rights reserved

0147-006X/12/0721-0203$20.00

Keywords

inhibitory interneurons, interneuronal network, excitatory-inhibitory
loop, spike timing, dynamical cell assembly, irregular spiking,
cross-frequency coupling, long-distance communication

Abstract

Gamma rhythms are commonly observed in many brain regions during
both waking and sleep states, yet their functions and mechanisms remain
a matter of debate. Here we review the cellular and synaptic mechanisms
underlying gamma oscillations and outline empirical questions and
controversial conceptual issues. Our main points are as follows: First,
gamma-band rhythmogenesis is inextricably tied to perisomatic inhibi-
tion. Second, gamma oscillations are short-lived and typically emerge
from the coordinated interaction of excitation and inhibition, which can
be detected as local field potentials. Third, gamma rhythm typically con-
curs with irregular firing of single neurons, and the network frequency
of gamma oscillations varies extensively depending on the underlying
mechanism. To document gamma oscillations, efforts should be made
to distinguish them from mere increases of gamma-band power and/or
increased spiking activity. Fourth, the magnitude of gamma oscillation
is modulated by slower rhythms. Such cross-frequency coupling may
serve to couple active patches of cortical circuits. Because of their ubiq-
uitous nature and strong correlation with the “operational modes” of
local circuits, gamma oscillations continue to provide important clues
about neuronal population dynamics in health and disease.
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Gamma oscillations:
synchronous network
rhythm in 30–90 Hz
that is minimally
defined by an
autocorrelation
function and/or
continuous Gabor
transform

LFP: local field
potential

GABA: gamma-
aminobutyric acid
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INTRODUCTION

The precise timing of neuronal-spike dis-
charges is believed to be important for coding
of information (O’Keefe & Recce 1993, Buzsáki
& Chrobak 1995, Singer & Gray 1995, Singer
1999). The ability of various neuron types to
time their action potentials with millisecond
precision depends largely on the presence of fast
membrane potential fluctuations (Mainen &
Sejnowski 1995, Haider & McCormick 2009).
In the intact brain, such high-frequency pat-
terns are often brought about by various en-
dogenous oscillations, the most ubiquitous of
which are rhythms in the gamma-frequency
range (30–90 Hz) (see Origin and Definition
of Gamma Oscillation, sidebar below).

Numerous excellent reviews have discussed
the biological processes underlying gamma os-

cillations (Gray 1994, Whittington et al. 2000,
Laurent 2002, Traub et al. 2002, Bartos et al.
2007, Tiesinga & Sejnowski 2009, Wang 2010)
as well as their role in cognitive operations
(Singer & Gray 1995; Engel et al. 2001; Varela
et al. 2001; Fries 2005, 2009; Wang 2010) and
disease (Llinás et al. 1999, Lewis et al. 2005,
Uhlhaas & Singer 2006). The present review
focuses on the cellular-synaptic mechanisms
of gamma oscillations, their cell-assembly-
forming ability in the intact brain, and the
subtypes of gamma rhythms. It also examines
how gamma-reflected local-circuit operations
are temporally coordinated by slower rhythms.

ARE CELL ASSEMBLIES
DYNAMICALLY ORGANIZED
IN GAMMA CYCLES?

To appreciate the physiological function of the
gamma cycle in neural networks, we need to
examine the spiking patterns of neurons at this
timescale. The exact timing of neuronal spikes
can be related to environmental stimuli, overt
behavior, local field potential (LFP), or spiking
activity of other neurons. Each of these com-
parisons provides a different “optimum” time
window. The best prediction is obtained when
information about the spike times of partner
neurons are available in the 10- and 30-ms
window (Figure 1) ( Jensen & Lisman 1996,
Borgers & Kopell 2003, Harris et al. 2003,
Lisman 2005), i.e., the time window corre-
sponding approximately to a gamma cycle.
Neuronal assemblies, i.e., transient neuronal
partnerships, can be active repeatedly in suc-
cessive gamma cycles, or different assemblies
can alternate in a rapid sequence.

The gamma-cycle-related lifetime of the
cell assembly is closely related to several
biophysical properties of neurons, including
the time constant of gamma-aminobutyric acid
(GABA)A and α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptors
( Johnston & Wu 1994), the membrane time
constant of cortical pyramidal cells (Destexhe
& Paré 1999, Leger et al. 2005), and the critical
time window of spike-timing-dependent
plasticity (Magee & Johnston 1997, Markram
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I-I model:
synchronization by
mutual inhibition
between interneurons

et al. 1997). Because these parameters deter-
mine the neuron’s ability to integrate inputs
from multiple upstream sources, a hypothesized
functional role of the cell assembly is to bring
together sufficient numbers of peer neurons so
that their collective spiking can discharge the
postsynaptic neuron (Harris et al. 2003). Con-
sequently, from the point of view of the down-
stream (“reader” or “integrator”) cell, ensemble
activity of upstream neurons whose spikes occur
within the gamma-cycle window is classified as
a single event (Buzsaki 2010). Upstream neu-
rons whose spikes fall outside this time window
become part of another transient assembly.

MODELS OF GAMMA
OSCILLATIONS

The similar kinetics of gamma-frequency
oscillations in a variety of different brain
regions and species have provided clues and
constraints about the requirements of their
supporting mechanisms. Gamma oscillations
have been described in several areas of the
neocortex (Gray et al. 1989, Murthy & Fetz
1992, Fries et al. 2001, Sirota et al. 2008),
entorhinal cortex (Chrobak & Buzsáki 1998),
amygdala (Halgren et al. 1977, Popescu et al.
2009), hippocampus (Buzsáki et al. 1983,
Bragin et al. 1995, Whittington et al. 1995,
Mann et al. 2005), striatum (Berke et al.
2004, Tort et al. 2008), olfactory bulb (Adrian
1942, Freeman 1975), and thalamus (Pinault
& Deschénes 1992) as well as other areas.
Common denominators of these brain regions
are the presence of inhibitory interneurons and
their actions through GABAA synapses. Syn-
chronization of neurons is substantially more
effective by perisomatic inhibitory postsynaptic
potentials (IPSPs) than dendritic excitatory
(E)PSPs (Lytton & Sejnowski 1991). From
these considerations, it is reasonable to assume
that a key ingredient of gamma oscillations is
GABAA receptor–mediated inhibition.

I-I Model

Only three requirements are needed for
gamma oscillations to emerge, as illustrated by

ORIGIN AND DEFINITION
OF GAMMA OSCILLATION

Berger (1929) introduced the Greek letters alpha and beta to
refer to the larger amplitude rhythmic patterns below 12 Hz and
the lower amplitude faster than 12-Hz patterns, respectively.
Jasper & Andrews (1938) first used the term gamma waves to
designate low-amplitude beta-like waves at 35–45 Hz. Other
synonyms referring to this band are the 40-Hz oscillation or
cognitive rhythm, both introduced by Das & Gastaut (1955).
The phrase gamma oscillation became popular in the 1980s,
mostly through papers by Walter Freeman (Bressler & Freeman
1980). Proper taxonomy of brain rhythms should eventually
be based on mechanisms. Because mechanisms are not fully
understood in most cases, the names of the brain rhythms respect
historical traditions. We refer to periodic events in the 30–90-Hz
band as gamma oscillations and the band above this frequency
as epsilon (ε) (Freeman 2007) (also see the Supplemental Text:
follow the Supplemental Material link in the online version of
this article at http://www.annualreviews.org.).

a “stripped-down” network model consisting
of only inhibitory interneurons (Figure 2a)
(Wang & Rinzel 1992, Whittington et al. 1995,
Wang & Buzsáki 1996, Traub et al. 1996b):
mutually connected inhibitory interneurons,
a time constant provided by GABAA recep-
tors, and sufficient drive to induce spiking
in the interneurons. Gamma oscillations in
inhibitory-inhibitory (I-I) neuron models can
emerge in two different ways (see Irregular
Activity of Single Neurons and Gamma Oscilla-
tions of Neuron Groups, sidebar below). When
the input drive is relatively tonic, neurons can
fire spikes with a well-defined periodicity
(Figure 2a) (Kopell & Ermentrout 2002).
By contrast, when neurons receive stochastic
inputs and fire spikes irregularly, sufficiently
strong recurrent synaptic interactions will
make the asynchronous state unstable against
random fluctuations, and oscillations emerge
(Figure 2b) (Brunel & Hakim 1999, Brunel
2000, Brunel & Wang 2003, Geisler et al.
2005, Ardid et al. 2010, Economo & White
2012). In both cases, the emerging synchrony
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Figure 1
Dynamical cell assemblies are organized in gamma waves. (a) Raster plot of a subset of hippocampal pyramidal cells that were active
during a 1-s period of spatial exploration on an open field out of a larger set of simultaneously recorded neurons, ordered by stochastic
search over all possible orderings to highlight the temporal relationship between anatomically distributed neurons. Color-coded ticks
(spikes) refer to recording locations shown in panel b. Vertical lines indicate troughs of theta waves (bottom trace). Cell-assembly
organization is visible, with repeatedly synchronous firing of some subpopulations (circled ). (c) Spike timing is predictable from peer
activity. Distribution of timescales at which peer activity optimally improved spike-time prediction of a given cell, shown for all cells.
The median optimal timescale is 23 ms (red line). Based on Harris et al. (2003).

is caused when a subset of the interneurons
begins to discharge together and generates
synchronous IPSPs in the partner neu-
rons. In turn, the inhibited neurons will
spike again with increased probability when
GABAA receptor–mediated hyperpolariza-
tion has decayed, and the cycle repeats
(Figure 2a,b). Because the duration of IPSCs
(inhibitory postsynaptic current) is determined
by the subunit composition of the GABAA

receptor (cf. Farrant & Nusser 2005), the fre-
quency of gamma oscillations in the I-I model
is determined mainly by the kinetics of the
IPSPs and the net excitation of interneurons
(Whittington et al. 1995, Wang & Buzsáki
1996).

In vitro experiments provided support
for the sufficient role of mutual inhibition
among interneurons for the generation of
gamma rhythm, for instance sustained by
activation of metabotropic glutamate receptors
(Whittington et al. 1995). Gamma oscillations
can be induced by other means as well, such as
activation of muscarinic-cholinergic receptors
(Fisahn et al. 1998) or kainate receptors (Fisahn
et al. 2004, Hájos & Paulsen 2009). Common
to all these conditions is the increased firing
of synaptically coupled interneurons. When
pyramidal cells and other interneuron types are
added to the I-I model network, the entire net-
work can become phase-locked to the gamma
oscillations.
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E-I model:
synchronization by an
excitatory-inhibitory
loop, primarily
realized by the
reciprocal interaction
between pyramidal
neurons and
interneurons

E-I Model

The earliest model of gamma oscillations is
based on the reciprocal connections between
pools of excitatory pyramidal (E) and inhibitory
(I) neurons (Wilson & Cowan 1972, Freeman
1975, Leung 1982, Ermentrout & Kopell
1998, Borgers & Kopell 2003, Brunel & Wang
2003, Geisler et al. 2005). In such two-neuron
pool models (Figure 2c), fast excitation and
the delayed feedback inhibition alternate,
and with appropriate strength of excitation and
inhibition, cyclic behavior may persist for a
while. E-I models can also exhibit two distinct
regimes, depending on whether single neurons
behave periodically or highly stochastically.
In the model, axon conduction and synaptic
delays lead to a phase shift (∼5 ms or up to 90o)
between the pyramidal and interneuron spikes,
and these delays determine the frequency of
the gamma rhythm (Freeman 1975, Leung
1982). An appeal of the E-I model is that the
delay between the timing of pyramidal cell
and interneuron spikes is a prominent feature
of gamma oscillations both in vivo and in
vitro (Figure 3) (Bragin et al. 1995, Csicsvari
et al. 2003, Hasenstaub et al. 2005, Mann
et al. 2005, Hájos & Paulsen 2009, Tiesinga
& Sejnowski 2009). In further support of
the model, weakening the E-I connection by
genetic knock down of AMPA receptors on fast
spiking interneurons reduces the amplitude of
gamma oscillations (Fuchs et al. 2007). The
mainstream I-I and E-I models have been
developed to explain gamma oscillations in the
cortex but other gamma frequency oscillations
may possibly arise from other mechanisms as
well (Wang 1993, Gray & McCormick 1996,
Wang 1999, Minlebaev et al. 2011).

CELLULAR-NETWORK
MECHANISMS OF GAMMA
OSCILLATIONS

Perisomatic Inhibition Is Critical for
Gamma Oscillations

The first support for the involvement of fast-
spiking interneurons in gamma oscillations

IRREGULAR ACTIVITY OF SINGLE NEURONS
AND GAMMA OSCILLATIONS OF NEURON
GROUPS

A fruitful debate persists between researchers who study pop-
ulation gamma oscillations and ponder their functions, and
researchers who study single-neuron data and observe that
neuronal-spike trains are often irregular and by some measures
approximate a Poisson process (Softky & Koch 1993). Recent
work has offered a novel theoretical framework in which popu-
lation rhythms can arise from irregularly firing neurons, thereby
bridging these contrasting dynamical aspects of cortical dynamics
(c.f., Wang 2010).

came from the correlation (spike-field coher-
ence) between their spikes and locally recorded
LFP gamma oscillations in the hippocam-
pus of behaving rats (Figure 3) (Buzsáki
et al. 1983). Putative fast-spiking interneurons
and histologically verified parvalbumin (PV)-
immunoreactive basket cells often show a broad
peak in their autocorrelograms and spectro-
grams at gamma frequency (Figure 3b), and
the occurrence of their spikes follows those
of the surrounding pyramidal neurons by a
few milliseconds (Figure 3d, f ) (Bragin et al.
1995, Csicsvari et al. 2003, Mann et al. 2005,
Hájos & Paulsen 2009), as in E-I models.
As expected from the spike-LFP relationship
(Figure 3a,c) postsynaptic potentials phase-
locked to the LFP gamma rhythm are present in
pyramidal neurons. These gamma-correlated
postsynaptic potentials in pyramidal cells re-
verse their polarity close to the equilibrium
potential of Cl− (Figure 3e,g), indicating that
the gamma-rhythm-related inhibition is medi-
ated by GABAA receptors (Soltesz & Deschênes
1993, Whittington et al. 1995, Penttonen et al.
1998, Hasenstaub et al. 2005, Mann et al. 2005).
The IPSPs paced by the PV basket cells pro-
duce coherent transmembrane fluctuations in
the target pyramidal cell population (Penttonen
et al. 1998, Gloveli et al. 2005, Hasenstaub et al.
2005, Mann et al. 2005, Quilichini et al. 2010)
and can be detected as a strong current source
in the cell-body layer (Figure 3d ) (Csicsvari

www.annualreviews.org • Mechanisms of Gamma Oscillations 207

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
12

.3
5:

20
3-

22
5.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 Y
al

e 
U

ni
ve

rs
ity

 -
 S

O
C

IA
L

 S
C

IE
N

C
E

 L
IB

R
A

R
Y

 o
n 

09
/2

6/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



NE35CH10-Buzsaki ARI 22 May 2012 13:18

2

1

3

2

1

3

I I P

100

50

0

N
eu

ro
n 

la
be

l
a

10
 c

el
ls

I

b c

–80

–40

0

40 Pyramidal cell

0 100 200

Time (ms)

0

50

100

150

200

Ra
te

 (H
z)

0 100 200 300 400 500

Time (ms)

0

10

20

30

Ra
te

 (H
z)

40

0

–40

–80
0 100 200

Time (ms)

V m
 (m

V
)

300

–80

–40

0

40

Po
te

nt
ia

l (
m

V
)

–80

–40

0

40

Po
te

nt
ia

l (
m

V
)

Interneuron

Figure 2
I-I and E-I models of gamma oscillations. (a) Clock-like rhythm of coupled oscillators in an interneuronal (I-I) population. (Upper
panel ) Single interneurons fire spikes periodically at ∼40 Hz. Mutual inhibition via GABAA receptors quickly brings them to
zero-phase synchrony; (lower panel ) two example neurons. Adapted from Wang & Buzsáki (1996). (b,c) Sparsely synchronous
oscillations in a neural circuit where single neuronal spiking is stochastic. Adapted from Geisler et al. (2005). (b) Interneuronal
population in noise-dominated regime typically exhibits gamma power in the higher frequency range, in contrast to (a) the clock-like
rhythmic case. (c) Reciprocally connected E-I network where pyramidal cells send fast excitation via AMPA receptors to interneurons,
which in turn provide inhibition via GABAA receptors, leading to coherent oscillations in the gamma-frequency range.

Resonance:
phenomenon
describing a neuron or
a neural circuit that is
maximally responsive
to an oscillatory input
at a preferred
frequency

et al. 2003, Mann et al. 2005). The intercon-
nected PV-basket interneuron network with its
divergent output to pyramidal cells provides
an anatomical substrate for coherent timing
of the pyramidal cells (Figure 3d) (Kisvárday
et al. 1993, Buhl et al. 1994, Sik et al. 1995).
Altogether, these findings support the hypoth-
esis that extracellularly recorded gamma waves
largely correspond to synchronous IPSPs in
pyramidal cells, brought about by fast-spiking
interneurons (Buzsáki et al. 1983, Bragin et al.
1995, Hasenstaub et al. 2005, Freund & Katona
2007, Hájos & Paulsen 2009).

Several other findings support the critical
role of fast-spiking basket neurons in gamma
oscillations. Basket cells have several distinctive
features among the interneuron family, includ-
ing (a) low spike threshold (Gulyás et al. 1993),
(b) ability to fire rapidly without fatigue (Buzsáki
et al. 1983, McCormick et al. 1985, Kawaguchi

& Kubota 1997), (c) narrow spikes conferred
by a large density of KV3.1/3.2 channels (Lien
& Jonas 2003), (d ) a unique spike-conductance
trajectory (Tateno & Robinson 2009), and
(e) resonance at gamma frequency in response
to stochastic excitatory conductance inputs
(Figure 4) (Pike et al. 2000, Cardin et al.
2009, Sohal et al. 2009). Overall, these findings
support the hypothesis that gamma oscillations
can be induced by activation of interconnected
PV interneurons by multiple means.

The involvement of other interneuron types
(Freund & Buzsáki 1996, Klausberger & Som-
ogyi 2008) in gamma generation is understood
less well. Chandelier cells are likely not critical
in I-I models, because they innervate only
principal cells. The somatostatin-containing
O-LM interneurons and Martinotti cells
mainly target distal dendrites, establish few
connections among themselves (Gibson et al.
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Figure 3
A critical role of parvalbumin (PV) basket cells in gamma oscillations. (a) Local field potential (LFP) recording from the CA1 pyramidal
layer (top) and dentate hilus (bottom) and unit recording from a fast-spiking putative interneuron in the hilus (middle trace). Note the
trains of spikes at gamma frequency, repeating periodically at theta frequency. (b) Power spectrum of the unit shown in panel a. Note
the peak at theta and a broader peak at 50–80 Hz (gamma). (c) Spike-triggered average of the LFP in the hilus. Note the prominent
phase locking of the interneuron to gamma wave phase and the cross-frequency coupling between gamma and theta waves.
(a–c) Recordings from a behaving rat. (d ) Camera-lucida reconstruction of the axon arbor of an immunocytochemically identified CA1
basket cell in vivo. The axon arbor outlines the CA1 pyramidal layer, showing (circles) putative contacts with other PV-positive neurons,
(inset) averages of the intracellularly recorded Vm (membrane potential) and the LFP, (triangle) peak of the mean preferred discharge of
the surrounding pyramidal cells, and (arrow) peak of the mean preferred discharge of the basket cell. Note the short delay between the
spikes of pyramidal cells and the basket neuron. Current source density (CSD) map is superimposed on the pyramidal layer. Arrow
points to current source of gamma wave (red). (e) Continuous display (110) of integrated and rectified gamma activity of the LFP and
the fast intracellularly recorded Vm fluctuation (20–80 Hz; after digital removal of spikes) in a CA1 pyramidal neuron. Vm was biased by
the intracellular current injection: (dashed line) resting membrane potential. Note the increase of the intracellular Vm gamma during
both depolarization (inset) and hyperpolarization as well as the smallest Vm gamma power at resting membrane potential (asterisks)
against the steady background of LFP gamma power. (d, e) In vivo recordings under urethane anesthesia. ( f ) Excitatory (E) and
inhibitory (I) postsynaptic currents (PSCs) in a pyramidal cell, triggered by LFP gamma (top) and the spike timing of a pyramidal cell
(P) and a basket interneuron (B) during carbachol-induced gamma oscillation in a hippocampal slice in vitro. Note that maximum
discharge of the basket cell precedes the hyperpolarization of the pyramidal cell. ( g) Intracellular recordings in a ferret prefrontal
pyramidal cell in vivo illustrating the large amplitude, inhibition-dominated barrages recorded at 0 mV (brown) and smaller amplitude,
excitation-dominated, synaptic barrages recorded at −80 mV (tan ) for two representative UP states. Membrane potentials are expanded
further (inset). EPSP, excitatory postsynaptic potential; IPSP, inhibitory postsynaptic potential. Reproduced with permission from
(a–c) Buzsáki et al. (1983), (d–e) after Penttonen et al. (1998), ( f ) after from Mann et al. (2005), and ( g) after Hasenstaub et al. (2005).
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Figure 4
“Synthetic” gamma rhythm in vivo. (a) Local field potential (LFP) recordings
in anesthetized mouse, expressing ChR2 selectively in either parvalbumin (PV)
neurons (ChR2-PV-Cre) or pyramidal cells (ChR2-αCamKII-Cre).
Stimulation at 8 Hz evoked rhythmic activity in the αCamKII-Cre but not the
PV-Cre mouse. Conversely, stimulation at 40 Hz induced gamma oscillation in
the PV-Cre but not in αCamKII-Cre mouse. (b) Mean LFP power ratio
measured in multiple frequency bands in response to rhythmic light activation
of ChR2-PV-Cre expressing neurons ( blue) or ChR2-αCamKII-Cre expressing
neurons (purple) at various frequencies. Reprinted from Cardin et al. (2009).

1999), and have resonance at theta, rather than
gamma, frequencies (Pike et al. 2000, Gloveli
et al. 2005). The postsynaptic receptor targets
of CCK basket cells contain slower α2 subunits
(Glickfield & Scanziani 2006, Freund & Katona
2007), and CCK interneurons are not effective
in maintaining gamma oscillations (Hájos et al.
2004, Tukker et al. 2007). Hippocampal CA1
bistratified neurons showed stronger phase
locking of spikes to gamma waves than did PV
basket cells (Tukker et al. 2007). Their phase
locking may be “inherited” from the CA3

output (Csicsvari et al. 2003), but the IPSPs
they produce in the dendrites of pyramidal
cells may not be faithfully transferred to the
soma (Lytton & Sejnowski 1991). These other
types of interneurons appear better suited
to contribute to slower oscillations and, by
controlling basket cells, are likely critical in
establishing cross-frequency coupling (see
below) between gamma and slower rhythms.

Do I-I and E-I Mechanisms Compete
or Cooperate in the Brain?

Both I-I and E-I models have merits and dis-
advantages (Whittington et al. 2000, Tiesinga
& Sejnowski 2009, Wang 2010). Because the
oscillation frequency of individual neurons in
the I-I model is at least partially determined
by the amount of excitation, a heterogeneous
input can result in a wide range of oscillation
frequencies. In the face of such frequency dis-
persion, the population synchrony inevitably
decreases. This shortcoming can be effectively
compensated for by gap-junction-enhanced
synchrony (Gibson et al. 1999, Hormuzdi
et al. 2001, Buhl et al. 2003, Traub et al.
2004), resonant properties of basket cells, and
fast and strong shunting inhibition between
interneurons (Bartos et al. 2007). However,
heterogeneity of neuronal firing rates may be
beneficial. In networks consisting of neurons
with different firing patterns and rates, gamma
oscillation may function as a selection mech-
anism, because transient synchrony would
emerge only among those neurons that are
activated to approximately the same level.

In most E-I models, there is no need for
I-I connections (Wilson & Cowan 1972,
Whittington et al. 2000, Borgers & Kopell
2003, Brunel & Wang 2003, Geisler et al.
2005). In support of this prediction, experimen-
tally disconnecting many I-I links in knockout
mice did not strongly affect gamma power
in the hippocampal CA1 region (Wulff et al.
2009). In the E-I models, the driving force of
the oscillation is the activity of pyramidal cells.
Note that gamma rhythms are also promi-
nent in structures, which lack dense local E-I
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Cross-frequency
phase-amplitude
(CFPA) coupling:
phenomenon in which
the amplitude of a
faster oscillation is
modulated by the
phase of a slower
rhythm

Cross-frequency
phase-phase
coupling (CFPP):
phenomenon in which
the phase of a faster
oscillation is coupled
to multiple phases of a
slower rhythm

connections, such as the basal ganglia or ventral
tegmental area (Brown et al. 2002, Berke et al.
2004, Tort et al. 2008, Fujisawa & Buzsáki
2011). E-I models require a time delay between
E spikes and I spikes, since timing of the
interneurons is “inherited” from the pyramidal
cells. In contrast, in I-I models the spike phase
of pyramidal cells largely reflects the intensity
of their tonic drive. In the hippocampal CA1
region, interneurons show both phase delay or
advance relative to the spikes of pyramidal cells
(Bragin et al. 1995, Csicsvari et al. 2003, Tukker
et al. 2007, Senior et al. 2008, Mizuseki et al.
2011). These results suggest that E-I and I-I
hybrid gamma networks may work together to
generate gamma frequency oscillations (Brunel
& Wang 2003, Geisler et al. 2005, Tiesinga &
Sejnowski 2009, Belluscio et al. 2012).

The role of recurrent excitatory (E-E) con-
nections between principal cells in gamma
models are not well-understood (Kopell et al.
2000, Whittington et al. 2000, Brunel & Wang
2003, Geisler et al. 2005). In the cortex, gamma
oscillations are more prominent in the superfi-
cial, rather than the deep, layers where local
recurrent connections are abundant (Chrobak
& Buzsáki 1998, Quilichini et al. 2010, Buffalo
et al. 2011). By contrast, the largest-amplitude
gamma rhythm in the hippocampus is observed
in the dentate gyrus (Buzsáki et al. 1983), even
though granule cells lack recurrent excitation
onto themselves. Decreasing recurrent excita-
tory synaptic currents in dynamic clamp studies
had little effect on gamma power (Morita et al.
2008). The less critical role of E-E recurrent ex-
citation may liberate the pyramidal cells from
the timing constraints of the rhythm; therefore,
they could fire spikes stochastically at various
cycle phases in an input drive–dependent man-
ner without interrupting rhythm.

LONG-RANGE
SYNCHRONIZATION
OF GAMMA OSCILLATIONS

Although gamma oscillations typically arise
locally, patches of gamma networks can
interact with each other. Synchronization of

transient gamma bursts has multiple meanings,
including phase-phase, phase-amplitude, and
amplitude-amplitude coupling (Figure 5) (see
Cross-Frequency Phase Coupling, sidebar be-
low). Phase-phase synchrony between identical
frequency oscillators that emerges at two (or
multiple) locations can occur by phase locking
(Figure 5b). The magnitude of such synchrony
is typically measured by phase coherence. A
second form of synchrony refers to the co-
variation of gamma power at two (or multiple)
locations, also known as amplitude or power
comodulation (Figure 5c). In this latter case,
phase constancy between the gamma waves may
or may not be present (Figure 5c,d ). Instead,
the power (amplitude) envelopes of the gamma
bursts are correlated (comodulation of power).
Power-power synchrony of gamma rhythms
can be effectively brought about by joint phase
biasing of the power of gamma oscillations by
a slower rhythm, known as cross-frequency
phase-amplitude (CFPA) coupling or nested
oscillations (Figure 5c,d,e) (Bragin et al. 1995,
Schroeder & Lakatos 2009, Canolty & Knight
2010, Fell & Axmacher 2011). The third type
of synchrony occurs when there is a relatively
constant relationship between the gamma
phase and the phase of a modulating slower
rhythm (Figure 6e), known as cross-frequency
phase-phase (CFPP), or n:m, coupling (Tass
et al. 1998). Cross-frequency coupling can
take place within or across structures. In prac-
tice, each relationship should be investigated
with care because even stochastic signals can
occasionally yield spurious coupling.

Phase Coherence of Gamma Rhythms
in Distant Networks

If multiple cell assemblies in disparate brain
areas need to be synchronized, how can they be
engaged in coherent gamma oscillations given
the long axon conduction delays of pyramidal
cells? Solid evidence for coherent gamma os-
cillations in distant networks is scarce; perhaps
the best-established case is interhemispheric
synchronization. Multiple units with similar
receptive fields in the left and right primary
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Figure 5
Oscillatory coupling mechanisms. (a) Schematic view of the human brain showing hot spots of transient gamma oscillations (i–iv) and
theta oscillation in the hippocampus (HI); entorhinal cortex (EC). Oscillators of the same and different kind (e.g., theta, gamma) can
influence each other in the same and different structures, thereby modulating the phase, amplitude, or both. (b) Phase-phase coupling of
gamma oscillations between two areas. Synthetic data used for illustration purposes. Coherence spectrum (or other, more specific,
phase-specific measures) between the two signals can determine the strength of phase coupling. (c) Cross-frequency phase-amplitude
coupling. Although phase coupling between gamma waves is absent, the envelope of gamma waves at the two cortical sites is modulated
by the common theta rhythm. This can be revealed by the power-power correlation (comodugram; right). (d ) Gamma phase-phase
coupling between two cortical sites, whose powers are modulated by the common theta rhythm. Both gamma coherence and gamma
power-power coupling are high. (e) Cross-frequency phase-phase coupling. Phases of theta and gamma oscillations are correlated, as
shown by the phase-phase plot of the two frequencies. ( f ) Hippocampal theta oscillation can modulate gamma power by its duty cycle
at multiple neocortical areas so that the results of the local computations are returned to the hippocampus during the accrual
(‘‘readiness’’) phase of the oscillation. a and f, after Buzsáki (2010); b–e, after Belluscio et al. (2012).
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Figure 6
Long-range synchrony of gamma oscillations. (a) Neurons sharing receptive fields in left (LH) and right (RH) primary visual cortex of
the anesthetized cat fire coherently with zero time lag at gamma frequency. (b) Local field potential (LFP) traces from the left (L) and
right (R) hippocampal CA1 pyramidal layer of the mouse during running and coherence spectra between the traces during running
(orange ) and REM sleep (blue). (c) LFP coherence map of gamma (30–90 Hz) in the rat hippocampus during running. Coherence was
calculated between the reference site (star) and the remaining 96 recording sites. Note the high coherence values within the same layers
(outlined by white lines) and rapid decrease of coherence across layers. (d ) Distribution of distances between the unit and LFP recording
sites with maximum spike-LFP coherence in the gamma band. Note that, in a fraction of cases, maximum coherence is stronger at large
distances between the recorded unit and the LFP. (e) Spike-LFP coherence in the human motor cortex. The probability of spiking
correlates with frequency-specific LFP phase of the ipsilateral (blue) and contralateral ( green) motor area and contralateral dorsal
premotor area (red ). ( f ) The phase-coupling-based spike rate (generated from the preferred LFP–LFP phase-coupling pattern)
predicts the measured spike rate. Panels reproduced after (a) Engel et al. (1991), (b) Buzsáki et al. (2003), (c) Montgomery & Buzsáki
(2007), (d ) Sirota et al. (2008), and (e,f ) Canolty et al. (2010).
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visual cortex can display coherent gamma-range
oscillations (Figure 6a). Similarly, gamma
oscillations in homologous hippocampal layers
in the two hemispheres display high coherence
(Figure 6b). In both cases, phase synchrony
is mediated by interhemispheric axon tracts,
given that severing these conduits abolishes the
synchrony. The high interhemispheric coher-
ence and task-dependent inter-regional gamma
synchrony (Engel et al. 1991, Roelfsema et al.
1997, Chrobak & Buzsáki 1998, Rodriguez
et al. 1999, Tallon-Baudry et al. 2001,
Montgomery et al. 2008) can be contrasted
with the fast decrease of gamma coherence
across different layers (Figure 6c), owing to the
noncoherent relationships among the inputs.
The importance of anatomical connectivity, as
opposed to physical distance, can explain the
occasionally high gamma coherence between
spikes and LFP at distant sites (Figure 6d )
and the gamma timescale covariations of firing
rates of spatially distant neurons (Figure 6e, f ).

Temporal coordination between spatially
separated oscillators can be established by
axon collaterals of pyramidal cells (Traub et al.
1996a, Whittington et al. 2000, Bibbig et al.
2002), interleaving assemblies (Vicente et al.
2008), or long-range interneurons (Buzsáki
et al. 2004). In each case, conduction delays
are the primary problem because the differing
delays between the different gamma inputs can
destabilize the rhythm (Ermentrout & Kopell
1998), and the extra interneuron spikes brought
about by the excitatory collaterals from the os-
cillating regions can decelerate the oscillation
frequency in the target network. Recipro-
cal coupling between oscillators in the two
hemispheres (Figure 6b) can alleviate the

phase-shift problem and result in 0 phase-lag
synchrony, provided that the conduction
delays are short enough (<4–8 ms) and that
synchrony is assessed over multiple cycles
(Traub et al. 2002).

Long-range interneurons may be another
candidate substrate for establishing gamma
synchrony (Figure 7) (Buzsáki et al. 2004).
These interneurons distribute their axon
terminals over multiple regions and layers of
the cortex and even across the hemispheres (Sik
et al. 1994, Gulyás et al. 2003, Tomioka et al.
2005, Jinno et al. 2006). Importantly, distally
projecting axons of long-range interneurons
have several-fold thicker axons and larger
diameter myelin sheaths than do pyramidal
cells (Figure 7c,d ), allowing for considerably
faster axon conduction velocity ( Jinno et al.
2006). In the I-I gamma model, replacing just
10–20% of the basket synapses with synapses of
fast-conducting long-range interneurons could
achieve global-phase synchrony (Figure 7a,b)
(Buzsáki et al. 2004). An obvious advantage
of the hybrid basket, long-range interneuron
network is that synchrony among local and
distributed cell assemblies can be tuned se-
lectively by differentially targeting the two
interneuron types.

Brain-Wide Synchronization
of Gamma Oscillations by
Slower Rhythms

Slower temporal coordination among gamma
oscillators may be achieved by modulating the
gamma power by the phase of slower rhythms
(Figure 6). Compared with faster oscillators,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 7
Coupling of gamma oscillators by long-range interneurons. (a) Oscillations in a network with locally
connected interneurons. The network is essentially asynchronous. (Upper panel ) Spike raster of 4000
neurons; (lower panel ) the population firing rate. (b) Oscillations in a network with local interneurons (B) and
long-range interneurons (LR; power-law connectivity). Note clear oscillatory rhythm. (c) Cross-section of
the axon of a long-range CA1 GABAergic interneuron projecting toward the subiculum/entorhinal cortex.
In comparison, neighboring axons of pyramidal cells are also shown (d ). Reproduced from Buzsáki et al.
(2004) (a,b) and from Jinno et al. (2006) (b,c).
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slower oscillators involve more neurons in a
larger volume (Von Stein & Sarnthein 2000)
and are associated with larger membrane po-
tential changes because in longer time windows
spikes of many more upstream neurons can be
integrated (Hasenstaub et al. 2005, Quilichini
et al. 2010).

CFPA coupling between gamma and other
rhythms within the same and different brain
regions has been well documented, including
modulation by theta (Figure 3c) (Buzsáki et al.
1983; Soltesz & Deschênes 1993; Bragin et al.
1995; Chrobak & Buzsáki 1998; Wang 2002;
Mormann et al. 2005; Canolty et al. 2006;
Demiralp et al. 2007; Tort et al. 2008, 2010;
Colgin et al. 2009; Griesmayr et al. 2010), al-
pha (Palva et al. 2005, Cohen et al. 2009),
spindle (Peyrache et al. 2011), delta (Lakatos
et al. 2005), slow (Hasenstaub et al. 2005,
Isomura et al. 2006), and ultraslow (Leopold
et al. 2003) oscillations (Buzsáki 2006, Jensen &
Colgin 2007, Schroeder & Lakatos 2009,
Canolty & Knight 2010, Fell & Axmacher
2011). Because perisomatic basket cells con-
tribute to both gamma and theta rhythms by
firing theta-rhythm-paced bursts of spikes at
gamma frequency, it has been hypothesized
that fast-firing basket cells may play a key
role in cross-frequency coupling (Buzsáki et al.
1983, Bragin et al. 1995). This is plausible
because several other types of interneurons
are often entrained by slower oscillations and
they inhibit basket cells (Freund & Buzsáki
1996, Klausberger & Somogyi 2008). A pre-
diction of this hypothesis is that temporal co-
ordination by the basket cells also introduces a
CFPP (i.e., phase-phase or n:m) coupling rela-
tionship between theta and gamma oscillations
(Figure 5e). It may well be that CFPP mech-
anisms underlie CFPA coupling in most situ-
ations, but convincing demonstration of clear
phase-phase coupling is hampered by the lack of
adequate methods to quantify cross-frequency
interactions and reliably track the true phase
of nonharmonic oscillators (Tort et al. 2010,
Belluscio et al. 2012).

The cross-frequency coupling of rhythms
forms a multiscale timing mechanism (Buzsáki

& Draguhn 2004, Jensen & Colgin 2007,
Schroeder & Lakatos 2009, Canolty & Knight
2010, Fell & Axmacher 2011). Computational
models have explored the potential theoret-
ical advantages of such cross-frequency cou-
pling (Lisman & Idiart 1995, Varela et al. 2001,
Lisman 2005, Neymotin et al. 2011). The hier-
archy of phase-amplitude-coupled rhythms is
an effective mechanism for segmentation and
linking of spike trains into cell assemblies (“let-
ters”) and assembly sequences (neural “words”)
(Buzsáki 2010).

Several studies have examined the rela-
tionship between cross-frequency coupling of
gamma oscillations and cognitive processes.
The magnitude of theta-gamma coupling in the
hippocampal region varied with working mem-
ory load in patients implanted with depth elec-
trodes (Axmacher et al. 2010). The strength
of theta-gamma coupling in the hippocampus
and striatum of the rat was affected by task
demands (Tort et al. 2008, 2009). Similarly,
the magnitude of CFPA coupling between a
4-Hz oscillation and gamma power in the pre-
frontal cortex increased in the working mem-
ory phase of a choice task (Fujisawa & Buzsáki
2011). In an auditory task, gamma power in
the frontal and temporal sites was phase-locked
mainly to theta oscillations, whereas over oc-
cipital areas phase modulation was strongest
by the alpha rhythm in a visual task (Voytek
et al. 2010). Increased CFPP coupling between
alpha and beta/gamma oscillations correlates
with the difficulty of arithmetic mental tasks
in the human magnetoencephalogram (Palva
et al. 2005), whereas in another study work-
ing memory was correlated with theta-gamma
synchrony (Griesmayr et al. 2010).

Cross-frequency coupling between slow
rhythms and gamma oscillations can support a
“reader-initiated” mechanism for information
exchange (Sirota et al. 2008). For example, the
hippocampal theta rhythm can entrain local
gamma oscillations in multiple cortical areas.
During its duty cycle, the theta output can
phase align gamma oscillations that emerge in
numerous activated neocortical local circuits
(Figure 5f ). In turn, the cell assemblies

216 Buzsáki ·Wang
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Figure 8
Multiple gamma sub-bands. Wavelet power
between 30 and 150 Hz as a function of waveform-
based theta cycle phases. Note the different
theta-phase preference of mid-frequency (M)
(gammaM, 50–90 Hz, near theta peak) and slow (S)
(gammaS, 30–50 Hz on the descending phase of
theta) gamma oscillations. Note also the dominance
of fast (F) (gammaF, or epsilon band, 90–150 Hz) at
the trough of theta. After Belluscio et al. (2012).

associated with the transient gamma bursts can
address hippocampal networks in the accrual
phase of the theta cycle, corresponding to
the most sensitive, plastic state (Huerta &
Lisman 1995), and can combine neocortical
information into a condensed hippocampal
representation.

MULTIPLE GAMMA RHYTHMS

Cross-frequency coupling can assist with the
separation of gamma sub-bands (Tort et al.
2008, Colgin et al. 2009). In the hippocam-
pal CA1 region, wavelet analysis identified
three distinct gamma bands: (a) slow gamma
(gammaS, 30–50 Hz) on the descending
phase, (b) mid-frequency gamma (gammaM,
50–90 Hz) near the peak, and (c) fast gamma
(gammaF, or epsilon band, 90–140 Hz) near the
trough of the theta cycle (Figure 8) (Tort et al.
2010, Belluscio et al. 2012). Support for the dif-
ferent origins of gamma sub-bands is provided
by their differential distribution in the different
depths of the CA1 pyramidal layer and in

WHEN GAMMA POWER IS NOT A RHYTHM

A caveat in many studies is the lack of a disciplined and quan-
tified analysis of gamma oscillations. To identify true gamma
oscillations, appropriate statistics should be applied to demon-
strate periodicity (Muresan et al. 2008, Burns et al. 2011, Ray &
Maunsell 2011), and additional experiments are needed to dis-
tinguish between a power increase resulting from genuine os-
cillations and an increase resulting from greater spiking activ-
ity ( Jarvis & Mitra 2001, Crone et al. 2006, Montgomery et al.
2008, Whittingstall & Logothetis 2009, Quilichini et al. 2010,
Belluscio et al. 2012, Ray & Maunsell 2011). This is espe-
cially important for higher frequencies, such as the epsilon
band, but spike-afterdepolarization and -hyperpolarization com-
ponents can also contribute to the gamma band power. Although
spike contamination to oscillatory power can be a nuisance, by
using proper analytical methods, spike power can be exploited as
a proxy for the assessment of neuronal outputs even in recordings
of subdural local field potentials. Studying the temporal features
of such high-frequency events may provide clues about oscilla-
tory events that modulate them, even in situations when invasive
unit recordings are not an option.

different segments of the subiculum (Belluscio
et al. 2012, Jackson et al. 2011). It is likely that
the slow and mid-gamma band distinction ap-
plies to other brain regions as well (Kay 2003).

Previous works have distinguished only low
and high gamma sub-bands (Csicsvari et al.
1999, Ray & Maunsell 2011) with the high sub-
band defined as 60–140 Hz (Canolty et al. 2006,
Colgin et al. 2009). Because power in the mid-
gamma (50–90 Hz) and epsilon (90–150 Hz)
bands is associated with different phases of theta
oscillation (Figure 8) and is likely generated
by different mechanisms (Belluscio et al. 2012),
lumping these bands together is not justified on
physiological grounds. Future studies, there-
fore, should distinguish sub-bands of gamma
oscillations and carefully separate true and
spurious gamma rhythms (see When Gamma
Power is Not a Rhythm, sidebar above).

To conclude, although the word “rhythm”
readily conjures up the picture of a clock,
gamma rhythms occur in relatively short bursts
and are quite variable in frequency, typically

www.annualreviews.org • Mechanisms of Gamma Oscillations 217

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
12

.3
5:

20
3-

22
5.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 Y
al

e 
U

ni
ve

rs
ity

 -
 S

O
C

IA
L

 S
C

IE
N

C
E

 L
IB

R
A

R
Y

 o
n 

09
/2

6/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



NE35CH10-Buzsaki ARI 22 May 2012 13:18

associated with stochastic firing of single
neurons. The LFP gamma reflects largely the
balancing act of excitation and inhibition, i.e.,

the active mode of a local circuit. Future studies
on gamma oscillations will continue to inform
us about the complex dynamics of brain circuits.

SUMMARY POINTS

1. Transient cell assemblies may be organized into gamma-wave cycles.

2. Perisomatic inhibition by PV basket cells is essential for gamma oscillations.

3. Gamma oscillations are short-lived and emerge from the coordinated interactions of
excitation and inhibition. Thus, LFP gamma can be used to identify active operations of
local circuits.

4. Network gamma oscillations may coexist with highly irregular firing of pyramidal
neurons.

5. Different sub-bands of gamma oscillations can coexist or occur in isolation.

6. Long-range interneurons may be critical for gamma-phase synchrony in different brain
regions

7. Cross-frequency coupling is an effective mechanism for functionally linking active cor-
tical circuits.

8. Genuine gamma oscillations should be distinguished from mere increases of gamma-band
power and/or increased spiking activity.
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Destexhe A, Paré D. 1999. Impact of network activity on the integrative properties of neocortical pyramidal
neurons in vivo. J. Neurophysiol. 81(4):1531–47

Economo MN, White JA. 2011. Membrane properties and the balance between excitation and inhibition
control gamma-frequency oscillations arising from feedback inhibition. PLoS Comp. Biol. 8(1):e1002354

Engel A, Fries P, Singer W. 2001. Dynamic predictions: oscillations and synchrony in top-down processing.
Nat. Rev. Neurosci. 2:704–16

Engel AK, König P, Kreiter AK, Singer W. 1991. Interhemispheric synchronization of oscillatory neuronal
responses in cat visual cortex. Science 252:1177–79

Ermentrout G, Kopell N. 1998. Fine structure of neural spiking and synchronization in the presence of
conduction delays. Proc. Natl. Acad. Sci. USA 95:1259–64

Farrant M, Nusser Z. 2005. Variations on an inhibitory theme: phasic and tonic activation of GABA(A)
receptors. Nat. Rev. Neurosci. 6(3):215–29

Fell J, Axmacher N. 2011. The role of phase synchronization in memory processes. Nat. Rev. Neurosci.
12(2):105–18

Fisahn A, Contractor A, Traub RD, Buhl EH, Heinemann SF, McBain CJ. 2004. Distinct roles for the kainate
receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations. J. Neurosci.
24(43):9658–68

Fisahn A, Pike FG, Buhl EH, Paulsen O. 1998. Cholinergic induction of network oscillations at 40 Hz in the
hippocampus in vitro. Nature 394:186–89

Freeman WJ. 1975. Mass Action in the Nervous System. New York: Academic
Freeman WJ. 2007. Definitions of state variables and state space for brain-computer interface: Part 1. Multiple

hierarchical levels of brain function. Cogn. Neurodyn. 1:3–14
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