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Brunel, Nicolas and Xiao-Jing Wang. What determines the fre-
quency of fast network oscillations with irregular neural discharges?
I. Synaptic dynamics and excitation-inhibition balance. J Neuro-
physiol 90: 415-430, 2003. First published February 26, 2003;
10.1152/jn.01095.2002. When the local field potential of a cortical
network displays coherent fast oscillations (~40-Hz gamma or
~200-Hz sharp-wave ripples), the spike trains of constituent neurons
are typicaly irregular and sparse. The dichotomy between rhythmic
local field and stochastic spike trains presents a challenge to the theory
of brain rhythms in the framework of coupled oscillators. Previous
studies have shown that when noise is large and recurrent inhibition is
strong, a coherent network rhythm can be generated while single
neurons fire intermittently at low rates compared to the frequency of
the oscillation. However, these studies used too simplified synaptic
kinetics to alow quantitative predictions of the population rhythmic
frequency. Here we show how to derive quantitatively the coherent
oscillation frequency for a randomly connected network of leaky
integrate-and-fire neurons with realistic synaptic parameters. In a
noise-dominated interneuronal network, the oscillation frequency de-
pends much more on the shortest synaptic time constants (delay and
rise time) than on the longer synaptic decay time, and ~200-Hz
frequency can be realized with synaptic time constants taken from
slice data. In a network composed of both interneurons and excitatory
cells, the rhythmogenesis is a compromise between two scenarios: the
fast purely interneuronal mechanism, and the slower feedback mech-
anism (relying on the excitatory-inhibitory loop). The properties of the
rhythm are determined essentially by the ratio of time scales of
excitatory and inhibitory currents and by the balance between the
mean recurrent excitation and inhibition. Faster excitation than inhi-
bition, or a higher excitation/inhibition ratio, favors the feedback 1oop
and a much slower oscillation (typicaly in the gamma range).

INTRODUCTION

Fast network oscillations (from 40 to 200 Hz) have been
recorded in vivo in several brain areas. In particular, the rat
hippocampus displays prominent gamma (40—80 Hz) rhythm
during animal’s free movement and rapid-eye movement
(REM) dsleep, and 200-Hz sharp-wave ripples during quiet
sleep and immobility as measured by local field potential (LFP)
(Bragin et al. 1995; Buzsaki et a. 1992; Csicsvari et al. 1999b;
Siapas and Wilson 1998). Single-cell discharge rates is typi-
cally much lower than the LFP oscillation frequency, espe-
cialy in pyramida cells but aso in interneurons (Csicsvari et
al. 1998, 1999h). Indeed rhythmicity is usually not apparent in

the raw spike trains of individual cells and becomes visible
only after data processing of spike trains from multiple single
units. Thus single-cell behavior differs markedly from the
population activity during fast network oscillations. Similarly,
physiological studies of primates indicate that even when the
LFP signa contains a clear rhythmic component, simulta-
neously recorded single-unit spike trains usually appear irreg-
ular and devoid of a clear-cut oscillation (Fries et al. 2001,
Logothetis et al. 2001).

Recently, oscillations have been observed in vitro (Buhl et
al. 1998; Fellous and Sejnowski 2000; Fisahn et al. 1998) that
resemble these characteristics: strong gamma (30—40 Hz) os-
cillation of the LFP, together with low (<2 Hz) and irregular
firing in pyramidal cells. This means that a single pyramidal
cell fires only once in every 15-20 cycles of the population
rhythm. Fast rhythmic ripples at 100200 Hz have also been
produced in hippocampal slices, again with intermittent prin-
cipal cell firing (Draguhn et al. 1998). The observations in the
slices of rhythmic activity patterns at high frequencies have
opened a promising venue to study the underlying cellular and
circuit mechanisms.

Computational models of networks of spiking neurons have
shown how synchrony could emerge in recurrent networks of
interneurons. However, in models with weak synaptic disorder
and weak noise, neurons behave typically as oscillators and fire
at network frequency (see e.g., Abbott and van Vreeswijk
1993; Gerstner 1995; Gerstner et a. 1996; Hansel et al. 1995;
Kopell and Ermentrout 1986; Kuramoto 1984; Marder 1998;
Traub et a. 1996; Treves 1993; Wang and Buzsaki 1996). In
some cases, modes of synchrony called “clustering” occur in
which the network breaks in a small number of fixed clusters
of neurons. In these cases, the network frequency is higher than
the frequency of single cells, being equal to the number of
clusters times the frequency of single cells, but single cells still
firein aregular fashion (Golomb and Rinzel 1994; Kopell and
LeMasson 1994; Wang et al. 1995). Heterogeneities tend to
disrupt synchrony; but in parameter ranges for which syn-
chrony is present, the network oscillation is not qualitatively
affected by heterogeneity: neurons keep firing in a regular
fashion and the network frequency is close to the average
frequency of the cells of the network (or an integer multiple in
case of clustering) (Bartos et al. 2001; Golomb and Hansel
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2000; Hansel and Mato 2001; Wang and Buzsaki 1996; White
et a. 1998). In contrast to the framework of coupled oscilla-
tors, several studies (Brunel and Hakim 1999; Brunel 2000;
Tiesinga and Jose 2000) have shown that a network oscillation
can be produced with low and intermittent spike dischargesin
pyramidal cells and interneurons under conditions of strong
noise (in externa inputs and/or due to disorder in recurrent
connectivity) and strong recurrent inhibition. However, Brunel
and Hakim (1999) and Brunel (2000) used too-simplified syn-
aptic currents to draw quantitative conclusions about oscilla-
tion frequenciesin real networks, and Tiesinga and Jose (2000)
used a purely numerical approach, making it difficult to iden-
tify the crucial parameters controlling network frequency.
More recently, several studies (Lewis and Rinzel 2000;
Schmitz et al. 2001; Traub et al. 1999; Traub and Bibbig 2000)
have suggested that 200-Hz oscillations with sparse pyramidal
firing could be realized by gap junctions between axons of
pyramidal cells. However, 200-Hz oscillations in a slice prep-
aration are not affected in transgenetic mice with knockout of
the gap-junction protein connexin 36 (Buhl et al 2003; Hor-
muzdi et al. 2001). The possibility remains that other subtypes
of gap-junction proteins different from connexin 36 play the
hypothesized role in rhythmogenesis (Schmitz et al. 2001).
Connexin 36-deficient mice shows gamma oscillations at the
same frequency as the control but with a reduced level of
population synchrony (Buhl et al 2003; Hormuzdi et al. 2001).
Therefore it is still unclear whether the frequency of fast
network oscillations in hippocampus critically depends on the
gap junctions.

When single neurons do not fire in a periodic fashion but
rather fire stochastically at low rates, several questions remain
unanswered: what determines the frequency of fast oscillations
with sparsely firing neuronsin networks with realistic neuronal
and synaptic properties? Can such high frequencies as are
observed in vivo be generated by chemical synapses and in the
absence of gap junctions? To shed light onto these questions,
we have analyzed coherent population oscillations, character-
ized by sparse and irregular firing of single cells, in arecurrent
network model with realistic synaptic time courses. In this
paper, we present an analytical approach to predict the popu-
lation oscillation frequency from synaptic and network param-
eters in such a recurrent neural network. This approach allows
to identify the requirements on the synaptic circuitry under
which fast gamma and ripple rhythmicities occur in the
sparsely firing regime.

METHODS
Neurons

Both interneurons and pyramidal cells are described as leaky inte-
grate-and-fire (LIF) neurons (see e.g., Tuckwell 1988), with mem-
brane time constants ,,, = 20 ms (pyramids) and 10 ms (interneu-
rons). The leak (resting) membrane potential is —70 mV, the spike
threshold is —52 mV, and the reset potential is —59 mV. The absolute
refractory period is 2 ms (pyramids) and 1 ms (interneurons).

Networks

The network architecture is random and sparse, with a given con-
nection probability. We used three types of networks: networks of N,
interneurons only, with random interneuron-interneuron connections;
networks of N, interneurons and N pyramidal cells, with random
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interneuron-interneuron, interneuron-pyramid, and pyramid-interneu-
ron connections (i.e., without pyramid-pyramid connections); and
networks of N, interneurons and Ng pyramidal cells, with al four
possible connections, drawn randomly with the same connection
probability. In simulations, we used typically N, = 1,000, Ng = 4,000.
The connection probability p between any pair of cells was typicaly
20%. Thus each cell in the network received ~200 synaptic contacts
from other interneurons and ~800 from pyramidal cells.

Synaptic currents

Three types of synaptic currents were used, modelling GABAergic
(inhibitory), AMPA-type (fast excitatory) and N-methyl-p-aspartate
(NMDA)-type (slow excitatory) synaptic inputs. The synaptic currents
were described as I ,(t) = gyn(V — Vgn)S(t) where g, is the
synaptic conductance, Vg, the corresponding reversal potential, and
S(t) is a function describing the time course of synaptic currents. We
used a delayed difference of exponentials: if a presynaptic spike
occurs at time 0, then after a latency 7, S(t) is updated as

o) o)

Td r
where the normalization constant is chosen so that the timeintegral of
S(t) is equa to the membrane time constant 7,,,. This normalization
was chosen so that varying the synaptic time constant does not affect
the time integral of a postsynaptic current (PSC). The peak of the
function sis

Tm t—m7

s(t) =

T

.

T
T\
Td

Therefore the synaptic kinetics is defined with three parameters:
latency T, rise time 1,, and decay time 7, The reversal potentia of
excitatory (inhibitory) synaptic currentsis 0 mV (—70 mV). Synaptic
conductances were calibrated such as the amplitude of PSCs was in
therange of 0.2-2 mV at holding potential of —55mV, i.e., just below
threshold, in accordance with slice data (Buhl et al. 1997; Markram et
al. 1997; Tamas et a. 1997, 1998; Vida et al. 1998). They yielded
peak conductances, for AMPA receptors, ~1 nS; for NMDA recep-
tors, ~0.01 nS; for GABA receptors, ~6 nS, compatible with exper-
imentally inferred values (Bartos et al. 2001, 2002; Gupta et al. 2000;
Markram et al. 1997). See Table 1 for more details on parameters.

All synaptic time scales were systematically varied, but typical
“reference” parameters were, for GABAergic currents, 7, = 1 ms,
7. = 05 ms, and 7, = 5 ms (Bartos et al. 2001; Gupta et a. 2000;
Kraushaar and Jonas 2000; Xiang et a. 1998); for AMPA currents,
7,=1ms, 7, = 0.5ms, and 7, = 2ms (Angulo et d. 1999; Zhou and
Hablitz 1998); for NMDA currents, 7, = 1 ms, 7, = 2ms, and 74 =
100 ms (Hestrin et a. 1990). NMDA conductances could be removed
from all simulations without affecting any of the results.

The equivalence between g parameters, peak conductances, ampli-

Tm

Spesk =

Td

TABLE 1. Synaptic model parameters

Peak PSC PSP
Oyn  COnductance =  amplitude, amplitude,
nS OsynSpeas NS pA mV
AMPA on pyramids 0.19 118 65 0.32
AMPA on interneurons 0.3 0.95 52 0.54
GABA on pyramids 25 7.75 116 0.9
GABA on interneurons 4 6.2 93 14
NMDA on pyramids 0.06 0.012 0.6 0.02
NMDA on interneurons 0.1 0.009 0.5 0.02

Sum of svariables over all excitatory (inhibitory) synapsesis denoted in the
following by s<(s;). PSC and PSP, postsynaptic current and potential; NMDA,
N-methyl-p-aspartate.
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tude of PSCsat —55 mV, and amplitude of PSPsat —55 mV are given
(for the reference synaptic time scales) in the table.

External inputs

External inputs were assumed to arise from 800 external synapses
of the AMPA type, with conductance 0.25 nS (on pyramids), 0.4 nS
(oninterneurons), and the same kinetics as recurrent AMPA synapses.
The synapses are activated by random Poisson spike trains, with a
given rate. In RESULTS, we mention the total input Poisson rate for each
simulation shown.

Numerical methods

Simulations were done using a finite difference integration scheme

based on the second-order Runge Kutta algorithm (Hansel et al. 1998;
Press et al. 1992; Shelley and Tao 2001) with time step dt = 0.05 ms.
Shorter time steps did not change the results in any significant way.
Typical simulation times were carried out for 10 s of rea time.
Simulations were run on workstations with alpha architecture and
lasted of the order of one hour. We used two types of synchrony
indices.
SPIKE TRAIN SYNCHRONY (STS) INDEX. We compute the autocor-
relation of total network activity, computed in bins of 1 ms. The
autocorrelation is normalized by the square of the average firing rate
of cellsin the network. The spike train synchrony index is defined as
the autocorrelation at zero time. Its intuitive interpretation is the
following: if the index is one, it means the chance that two randomly
selected neurons fire together in a 1-ms bin is 100% higher than if
these neurons werefiring in an uncorrelated way. The frequency of the
oscillation was determined from the peak of the power spectrum of the
global activity.

MEMBRANE POTENTIAL SYNCHRONY (MPS) INDEX. Average cor-
relation between the membrane potentials of two neurons in the
network, normalized to 1 when all membrane potentials have the same
time course (Hansel and Sompolinsky 1996).

The advantage of the first index is that it is directly related to
measurable quantities in vivo such as cross-correl ations between spike
trains (it is equa to the CC at O time, averaged over pairs). The
advantage of the second is that it is bounded between 0 and 1. In all
simulations series, we found, unsurprisingly, that both indices behave
qualitatively in a very similar way.

Synchrony indices are always nonzero in simulated networks due to
finite size effects (Brunel and Hakim 1999; Hansel and Sompolinsky
1996; Wang and Buzsaki 1996). To determine whether the network is
in an asynchronous or synchronous state, we performed simulations
with varying network sizes, keeping the number of connections and
the synaptic conductance fixed so as to keep unchanged the temporal
average and fluctuations of the synaptic currents as network size was
varied. In an asynchronous state, the synchrony indices strongly
decrease and go to zero with increasing N. In a synchronous state, the
synchrony index decreases only mildly and tends to a finite value in
the large N limit. An aternative strategy for finite size scaling has
been proposed by Golomb and Hansel (2000). Both approaches are
expected to give the same results in the limit in which connection
probability becomes small.

RESULTS
Oscillations in a network of purely inhibitory neurons

Figure 1 shows the behavior of a simulated interneuronal
network. A pronounced population activity oscillation is
clearly visible at a frequency of ~180 Hz. On the other hand,
the single cell activity reveals a much lower activity (average

~20 spikes/s), with a wide range of individua firing rates
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Fic. 1. Synchronous network oscillation (at 180 Hz), where single neurons
fire spikes sparsely and irregularly, in anetwork of inhibitory integrate-and-fire
neurons. A: membrane potential of a single neuron. The average total currents
are subthreshold, and the neuron fires only due to occasiona fluctuations that
bring it above threshold. Weak subthreshold membrane oscillations can be
seen in correspondence with global activity fluctuations. B: rastergram shows
low-rate and irregular spike trains from individual neurons. The neuronin Ais
the neuron shown at the bottom of the rastergram. C: distribution of single
neuron’s firing rate across the population shows a wide range of rates from 0
to 100 Hz. D: instantaneous population firing rate displays pronounced rhyth-
micity at ~180 Hz, as clearly seen in its power spectrum (E). The network has
1,000 cells, the architecture is random with connection probability of 0.2.
External input rate 12 kHz; GABAergic synapses with latency 1 ms, rise time
0.5 ms, decay time 5 ms.

(from O to 100), and the spiking process is highly irregular.
Thus in any cycle of the oscillation, only ~10% of the inter-
neurons actually fire. The intuitive explanation for the oscilla-
tory phenomenon is the following: single neurons receive a
strong inhibitory drive due to powerful recurrent inhibition.
Thus they fire at low rates, even though they receive strong
external excitatory inputs. The firing is irregular because the
average total (external excitatory plus recurrent inhibitory)
current is subthreshold, and firing is triggered by fluctuations
dueto noisein external and recurrent inputs. On the other hand,
the oscillation is stable because of the repetitive succession of
the following events. at the peak of a cycle, there is strong
inhibitory firing. After atime lag of ~2.5 ms due to synaptic
filtering, every neuron in the network feels amassive inhibitory
input and activity goes down, hence the trough in global
activity. Subsequently, ~2.5 ms later, the synaptic currents
decay away, thetotal input becomes high due to strong external
stimulation, and there is another surge of activity. The period
of the oscillation is therefore about two times the synaptic lag,
i.e, 5 ms in this case. Qualitatively, the oscillation is as
described by Brunel and Hakim (1999). In the following text,
we present an approximate analytical approach to quantite-
tively predict the population oscillation frequency.

Without recurrent inhibitory interactions, neurons would
show asynchronous spike discharges due to external excitatory
drive. Thisasynchronous state is destabilized, and synchronous
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oscillation emerges, when inhibitory recurrent feedback be-
comes sufficiently strong. The inhibitory feedback can be
enhanced in different ways: by increasing either the coupling
strength (the number of connections per neurons, the synaptic
conductance) or the average inhibitory firing rate through an
increase in external excitatory currents. Figure 2 shows how
synchrony depends on the magnitude of the external excitatory
input. In the “thermodynamical” (large N) limit, synchrony
appears above some critical level of external stimulation (~10
kHz). Firing rates of interneurons increase quasi-linearly with
the external input as expected in strongly coupled networks
(Brunel 2000; van Vreeswijk and Sompolinsky 1996). On the
other hand, the frequency of the population oscillation stays
relatively constant, between 150 and 200 Hz. Therefore the
network frequency is independent of single cell firing rate and
depends only weakly on the magnitude of external drive. This
dissociation between network oscillation frequency and single
neuron firing rate will be confirmed below by analytical cal-
culations.

Analytical approach for predicting the network frequency

In this section, we outline our approach for one population
of inhibitory neurons. Later, we will extend the method to two
populations of excitatory and inhibitory cells. The instanta-
neous firing rate of the interneuronal population »,(t) is defined
as the fraction of neurons firing in a short interval [t, t + dt]
where dt is small, divided by dt. In an asynchronous state, the
firing rate is stationary (independent of time) apart from finite
size effects. The population firing rate v, is determined by the
sum of two synaptic currents, the excitatory external drive | o,
and the feedback inhibition Igaga- lcaga iN turn depends on
the population activity, hence is afunction of v, itself. Given a
presynaptic firing rate v, one can caculate the synaptic
current Igapa(vpre)- Then the postsynaptic firing rate as a
function F of the sum Ig\(vye) = lext = loapa(Vore) CanN be
evaluated, vyoq = Fllon(vrol. Finaly, because both the pre-
and postsynaptic firing rates are of the same neural population,
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Fic. 2. Dependence of population oscillation on the externa drive. A:
network coherence measured by the spike synchrony index STS (square) and
membrane synchrony index MPS (circle; see METHODS). Small symbols: 500
neurons, connection probability 0.4; medium symbols: 1,000 neurons, connec-
tion probability 0.2; large symbols: 2,000 neurons, connection probability 0.1.
Other parameters as in Fig. 1. Below a critical external drive (~10 kHz), the
synchrony indices decrease to zero with increased network size and the
network is asynchronous. Above this critical external drive, the synchrony
indices converge to a level that is independent of the network size. The
network becomes oscillatory and coherent. B: the average firing rate of single
cellsincreases linearly with the external drive (diamond), whereas the network
oscillation frequency (X with 3 different population sizes) is relatively con-
stant and independent of the external drive or single cell firing rate.
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they must be the same and equal to »;. Hence, v, = Fllg ()]
yields a self-consistent equation for .

To understand whether asynchrony or synchrony is present
in the network, a linear stability analysis of the asynchronous
state is performed (Abbott and van Vreeswijk 1993; Brunel and
Hakim 1999; Treves 1993). Small deviations around the sta-
tionary state, in which the instantaneous firing rate is a sum of
a stationary firing rate v, plus a small exponential component
Vo€ eXp(ut + iwt), where ¢, << 1, are considered. When p <
0, this corresponds to a damped oscillation with frequency w;
when w = 0, this corresponds to a sinusoidal wave around the
stationary state; when w > 0, this corresponds to an oscillation
that amplifies with time. Thus self-consistent solutions of net-
work activity with w > 0 signal an oscillatory instability: an
oscillation with afinite amplitude devel ops from the asynchro-
nous state. The onset of synchrony is therefore signaled by the
appearance of solutions with u = 0. Here, we investigate the
conditions under which the network activity has a sinusoidal
component with w = 0. In such away we obtain the population
frequency close to the onset of oscillations.

Specifically, the procedure can be decomposed in the fol-
lowing four steps.

STEP 1. ASSUME A PRESYNAPTIC RHYTHMIC FIRING RATE. The
instantaneous population firing rate is assumed to have the
form

y(t) = m[1 + € expliot)] 1)

where v, isthe averagefiring rate, ¢, isthe relative modulation
of the oscillatory deviation to the stationary firing rate, and o
is the frequency of the network oscillation.

STEP 2. OBTAIN THE POST-SYNAPTIC CURRENT FROM THE
PRESYNAPTIC FIRING RATE. We next calculate the synaptic
conductance produced by presynaptic cells firing at the rate
y,(t). The sum of al inhibitory synaptic variablesin agiven cell
S, is given by the sum of two exponentials (see METHODS) Or
equivaently by

Tr%:Tmza(t*t”*T\)*X %)

dt i

ds

Td dt*X*S (3)

where X ;8(t — t;;) is the compound spike train of al presyn-
aptic neurons connected to the cell. In average, a postsynaptic
cell receives inputs from C, = pN, presynaptic cells, where p
is the connection probability and N, is the total number of
interneurons in the network. The variables s, and x obey the
equations

dx .

7 — = 1.Cy(t — 1) + fluctuations 4)

dt

ds,

g TS

®)
in which the spike train has been replaced by the sum of the
instantaneous firing rate v(t — 7;) and random fluctuations.
Solving these two equations, we obtain the average synaptic
variable s(t), which has the same form as the firing rate v,(t)
but with an amplitude attenuation factor S(w) and a phase shift
®,(w). More precisely
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s =51+ €S(w) expliot — iP|(w))] + fluctuations (6)

where s , is the average synaptic variable

1

S() = J1+ 22)(1 + o)

™)

and

D (w) = 0T, + atan(wT,) + atan (w7y)

®)

Note that the phase lag is the sum of three terms corresponding
to the three distinct phases of the synaptic current: the lag due
to latency islinear in w; the lag due to the rise time; and the lag
due to the decay time. The latter two lags arelinear in w at low
frequencies and saturate at #/2 at high frequencies.

Neglecting tempora variations in the driving force, the
GABAergic synaptic current is ssimply s, multiplied by a con-
stant factor

lcaga = loasadl + €S exp(iot — iP(w))] + fluctuations 9)

where lgapa o iS the average GABAergic current. It is propor-
tional to the maximum synaptic conductance ggapa and the
average number of synaptic contacts C,, lgaga0 ~ JeasaCi-

The GABAergic current experienced by the neuron is there-
fore the sum of three terms: an average drive I gaga o dueto the
average firing rate v,q of inhibitory cells; an oscillatory com-
ponent due to the global oscillation; and a noisy component
due to the random arrival of spikes, after filtering by the
synaptic kinetics. The total synaptic current is

Iyn=lex — loasadl + €S(w) expliot — i®(w, ®)] + lnise

lgaga0
- &X

= Imo[l + €S | pliwt + i — i(I)|(a)))] + loise (10)

tot,0
where | o isthetotal average synaptic current, and | ;. isthe
random component. The factor 7 in the phase appears because
of the minus sign introduced by inhibitory interactions.

STEP 3. OBTAIN THE POSTSYNAPTIC FIRING RATE FROM THE
POSTSYNAPTIC CURRENT. We now calculate the postsynaptic
firing rate v,(t) in response to the synaptic current | on (Eq. 10).
For a synaptic input I,(t) that varies periodically in time, the
response v,(t) is expected in genera to depend on the fre-
guency w of the oscillatory input. For example, one might
expect both amplitude change and phase shift between the
oscillatory components of 1, and v, at high frequencies w.
Therefore, in general, the input-output relationship between
lyn(t) and v (t) is expected to depend explicitly on w. This
subject has been analytically investigated in (Brunel et a.
2001; Fourcaud and Brunel 2002) for the L1F neuron model. It
was found that when synaptic time constants are very fast
compared to the membrane time constant, »,(t) shows a phase
lag with respect to | ,(t) and the amplitude of the modulation
is attenuated at high frequencies. On the other hand, with a
sufficient amount of noise filtered by synaptic time constants
that are of the order of the membrane time constant, the
postsynaptic firing rate follows instantaneously the variations
in input currents. In other words, the response of the neuron to
oscillatory currents at frequency o has an amplitude that is
nearly independent of the frequency and has no phase lag. The
specific conditions for this to be true are: single neurons are
described by the LIF model; synaptic noise is of large ampli-
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tude and with a decay times are comparable to the membrane
time constant; and the variations in input currents are such that
the firing rate remains strictly positive.

Under these conditions, the dynamics of our network can be
described by firing rate dynamicsthat are purely determined by
the synaptic time constants. Specifically, the firing rate is
simply a function of the total synaptic current

Vl(t) = F(Isyn(t))

where F is the current-frequency function. Because the oscil-
lation amplitude ¢, is small, we can expand this function as
F(Isyn(t)) = F(Itot,o) + F,(Itot,O)(I n(t) - Itot,O)' where F' isthe
derivative of F with respect to tsﬁe input current. Combining
Eqg. 10 with Eq. 11, the firing rate of a cell is approximately
given by

(11)

GABAO A expliot + i — idy())

IGA BAO
ItOt,O

y(t) = VI,O|:1 + €S(w) :| (12)
where v, o = F(lio0) and Ay = F'(lio 0)lior.o/ V1 o IS the relative
variation in firing rate due to a relative variation in input
current. A, is proportional to the slope of the f-I curve F,
normalized in such away asto be dimensionless. For example,
if the firing rate increases by 10% when the input current is
increased by 10%, then A, = 1.

STEP 4. SELF-CONSISTENT EQUATION FOR THE FIRING RATE. The
last step is to equate the postsynaptic firing rate (Eq. 12) with
the presynaptic firing rate (Eq. 1), yielding a self-consistent
equation for the firing rate of neurons in the network

GABAO

1= S(0) %A explim - id)(0)

Ilol,O

For the left- and right-hand sides to be equal, two relations
have to be satisfied, one for the amplitude

(13

1= 5(0) 220

tot,0

(14

and one for the phase

7=®(w) = o7 + atan (o1,) + atan (o7y) (15)

The phase condition, Eg. 15, allows to determine the fre-
guency of the network oscillation « in terms of the synaptic
temporal parameters. Using the frequency given by Eq. 15, Eq.
14 can be solved to determine the value of a particular network
parameter for which the onset of the oscillation occurs. For
example, an increase in the synaptic connection strength in-
creases the ratio lgagad/lioo- The value of the synaptic con-
nection strength beyond which synchronized oscillations occur
can therefore be obtained from Eq. 14 once § and A, are
known.

How network frequency depends on the synaptic time
constants

The phase Eqg. 15 indicates that the frequency w of the
population oscillation at the onset of oscillations is purely
determined by the synaptic parameters 7, 7,,, and 7. Thisis
illustrated graphically in Fig. 3B, for the same model param-
eters as the network simulation of Fig. 1. The function ®,(w =
27f) is plotted against the frequency f, the intersection of this
curve with the horizontal line @ = 7r occurs at the population
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FIG. 3. Theoretical prediction of the network oscillation frequency. A:
When the firing rate has an oscillatory component, the fraction of open
channels at inhibitory synapses is also oscillatory but with a phase shift ®,(w)
due to the temporal characteristics of the synaptic processing. The total
synaptic current Iy, = loq — lgapa iS phase-reversed compared to s(t). Due
to the characteristics of noise, the firing rate is proportiond to I, with no
phase shift. B: @, is plotted against the frequency f = w/27 (black). The
intersection with the horizontal line at 180 degrees gives the network fre-
quency f,,, = 180 Hz. See text for discussion. Same parameters as in Fig. 1.

frequency f,,,, according to Eq. 15. For the parameters of Fig.
1, the theoretically predicted frequency of f,,, = 180 Hz is
very closeto that of the simulated network oscillation (Fig. 1).

The dependency of the network frequency on the synaptic
parameters is shown in Fig. 4. It is apparent that the network
frequency is more sensitive to relative variations of the shortest
time scales (the latency and the rise time) than to variations in
the longest time scale (the decay time). To understand these
observations theoretically, let us re-write Eq. 15 with o = 27f

1
atan (2nfry)

1 1
- =fn + —atan 2nfr,) + —
2 27

2 (16)
Because the atan function is bounded from above by /2, the
right-hand side of Eq. 16 can be equal to ¥2 only with a strictly
positive latency 7,,. Therefore the latency of synaptic transmis-
sioniscritical for the emergence of coherent oscillationsin this
model. Furthermore, simple bounds for the population fre-
quency can be obtained using the inequalities atan(x) < X,
atan (x) < m/2 and atan (X) > @/2 — 1/x

1 i < 1 1 1
A(r + 1) PP 2

TiTa TuTa

Thus the period of the oscillation must be shorter than four
times the sum of the latency and the rise time. The upper bound
of the frequency has a more complicated form, but can be
simplified when 7, is much shorter than the decay time 7.
Indeed, voltage-clamp measurements of GABA , receptor-me-
diated IPSCs show that the latency and rise time are of the
order of =1 ms, while the decay time is longer, of order 5-10
ms (Bartos et a. 2001, 2002; Gupta et al. 2000; Kraushaar and
Jonas 2000; Salin and Prince 1996; Xiang et al. 1998). When
the decay time is much slower than therisetime, 7, > 7, the
bound becomes

1 < foop < !
Ary+ 1) F

—
2T\ T
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Thus the period of the oscillation must be longer than about six
times the geometrical mean of latency and rise times. These
bounds indicate that the frequency is mostly controlled by the
shorter time scales (7, and ;) because the bounds are inde-
pendent of 7. They provide asimple way to estimate the order
of magnitude of the network frequency. For example, if 7, =
T = 1 ms, we obtain 125 Hz < f,,, < 159 Hz. For the
parameters of Fig. 1 (7, = 1 ms, 7, = 0.5 ms), 167 Hz <
foop < 225 Hz in agreement of the observed frequency of
180 Hz.

Figure 4 shows how the degree of network synchronization,
or the oscillation amplitude, depends on the three synaptic time
constants. The simulation results can be qualitatively under-
stood with the help of our theoretical analysis. The synaptic
time constants affect the degree of synchrony in two ways.
through the dependency of S(w), as described by Eq. 7, and
through a change of oscillation frequency, as governed by Eq.
15. The attenuation factor § does not depend on the latency 7,
explicitly. An increase in 7, affects the degree of synchrony
only indirectly through a decrease in the population frequency.
The attenuation due to synaptic filtering is smaller at lower
frequencies, hence the network oscillation is amplified with a

29 A1 2] A2 2] A3
x i i i
)
E 1.5 1.5 1.5
> T T - T
c — — L] n —
_(CQ) ! . I. ! - f- "= ! -~.-
€ 0.5 0.5 - Y 0.5 —
5051 o e, 07 0

0 0 — 0

0 05 115 2 0 05 115 2 0 5 10 15 20

5 B1 ] B2 |\ B3
351
£ 0.2 4 0.2 — 0.2 -
c
] i A i
g -
2014 0.1 0.1
o
= i i i

0 OT7 717711 OTTT1T 71T
= 0 05 115 2 0 05 115 2 0 5 10 15 20
£ 4007 07 c2 C3
& 300 — 300 — 300
@ i i
=)
g 200 200 - " 200 Ragh g X%
£ 100 - ., 100 T 100
= _ Xxx i
B 600000000000000004% 0000000000000000000 $0000000000000
% Ot T1Tr171m OtT1rT171 " 0

0 05 115 2 0 05 115 2 0 5 10 15 20

Decay time (ms)

Latency (ms)

Rise time (ms)

FIG. 4. Freguency of population oscillation as a function of synaptic tem-
poral parameters. The control parameter setis7, = 1 ms, 7, = 0.5ms, 74 =
5 ms. A: synchrony indices as synaptic parameters are varied (Al: latency, A2:
rise time, A3: decay time). ®, membrane synchrony index. =, spike synchrony
index. B: synaptic attenuation factor at the network frequency predicted by the
theory, given by S(w = 2f,,;) (BL: latency, B2: rise time, B3: decay time).
This factor gives the amplitude of the modulation of the synaptic currents by
a sinusoidal presynaptic input at frequency o, divided by the amplitude of a
modulation at 0 frequency. The smaller this factor, the more asynchronous the
network. Here, transition to synchrony occurs when this factor is ~0.15. C:
network frequency vs latency (C1), rise time (C2), and decay time (C3). Note
that the network frequency decreases dramatically with the latency (A) and rise
time (B), but not significantly with the decay time (C). Full line: solution of Eq.
15. X: network frequency in the simulations. e, single cell frequency in the
simulations. Parameters as in Fig. 1.
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longer latency 7,,. Changesin therise time 7, have two effects:
an increase of 1,, decreases § through the 1/V'1 + w?73 factor
in Eq. 7; but it also reduces the population frequency o, for the
same reason as for the latency. These two opposing effects tend
to counterbalance each other. Aslong astherisetimeis of the
same order as the latency and shorter than the decay time, the
decreased w dominates over the increased 1, so that the
product wT,, is smaller, and the network synchrony is higher
with a larger 7,,. For longer rise times, the attenuation factor
has a stronger influence and becomes predominant, thus the
oscillation amplitude decreases. Finally, a longer decay time
decreases the amplitude of the oscillation. This is because the
decay time has little effect on the frequency, but on the other
hand, it increases the attenuation by synaptic filtering due to
the factor 1/V1 + w?73 in Eq. 7.

In summary, recurrent synaptic inhibition with a large la-
tency and very short rise and decay times, i.e., close to a
delayed delta function, lead to pronounced oscillations. On the
contrary, IPSCs with negligible latency lead to asynchrony in
a network of leaky integrate-and-fire neurons. This feature is
crucially dependent on the fact that the neuronal firing rate
follows instantaneously (i.e., without phase lag) inputs at any
frequency. If a neuronal phase lag is present, as expected for
Hodgkin-Huxley conductance-based neurons, then network
synchrony can be obtained even in absence of a latency.
However, in general we expect that large synaptic latency
tends to facilitate synchrony.

Above the onset of oscillations, the oscillation amplitude
becomes large, and our theoretical analysisis no longer valid.
Numerical simulations show that the network frequency de-
creases and network coherence increases, similar to what hap-
pens in the simplified network of Brunel and Hakim (1999).
For very high external inputs, the firing rate of single neurons
becomes comparable to the network frequency. The network
reaches an almost fully synchronized state with regularly firing
neurons and therefore enters the regime of coupled oscillators.

Two population networks

OSCILLATIONS DUE TO PYRAMIDAL-INTERNEURON FEEDBACK
Loop. An alternative to the interneuronal network model of
fast oscillations is the feedback inhibition model: pyramidal
neurons excite interneurons, which in turn send inhibition back
onto pyramidal cells (Freeman 1975; Jefferys et al. 1996;
Leung 1982). In arecent slice experiment (Fisahn et al. 1998),
spontaneously occuring 40-Hz oscillations have been shown to
depend both on the excitatory and inhibitory synaptic trans-
missions. Both types of loops (pyr — int — pyr and int — int)
are present in acortical network. The two preceding mentioned
mechanisms are not necessarily mutually exclusive and may
cooperate in the generation of a coherent network rhythm.

To understand how the pyramidal-interneuron loop is in-
volved in the generation of population synchrony, it is useful to
consider first the feedback inhibition scenario in isolation, in
which only pyramidal-to-interneuron and interneuron-to-pyra-
midal connections are present (no pyramidal-to-pyramidal and
no interneuron-to-interneuron connections).

In this scenario, it is straightforward to repeat the analysis of
the previous section (see aprenpix 1 for details). The popula-
tion frequency is now given by

= O)(0) + Pg(w) an
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= o7 + aan (wt,) + aan (w1y) + wre + aan (wte) + atan (w7  (18)

Thus the population frequency is now determined by the sum
of excitatory and inhibitory synaptic phase lags. This leads to
a decrease of the population frequency compared to the purely
interneuronal scenario due to the additional excitatory synaptic
phase lag. Furthermore, in this scenario, the inhibitory neurons
lag behind the excitatory neurons by ®c(w) (see Eg. A9 in
apPENDIX 1). In particular, if synaptic time scales of excitation
and inhibition are identical, then ®¢(w) = ®,(w) = #/2, hence
interneurons lag pyramidal cells by 90°, and the population
frequency will be more than halved compared to the frequency
of the purely interneuronal network.

As an example, we take GABA synapses with latency 7, =
0.5 ms, rise time 7, = 0.5 ms, decay time 7, = 5 ms, and
AMPA synapses with latency 7, = 1 ms, risetime 7, = 0.4
ms, and decay time 74, = 2 ms. In the purely interneuronal
scenario, f,q, is equa to 296 Hz, whilein the E-I loop scenario,
the frequency goes down to 79 Hz, with interneurons lagging
behind pyramidal cells by 104°—a drastic reduction in popu-
lation frequency.

In the presence of both types of feedback loops (E-I loop and
I-1 loop), a network tends to settle in an oscillation that is a
compromise between the two scenarios with a frequency and
phase lag that are intermediate between these two extremes.
The frequency and phase lag are then determined by the
relative strength of the E-I and I-I connections through Egs. B9
and B10 of aprenpix 2. As an example, Fig. 5 shows a simu-
lation of a two-population network without pyramid-to-pyra-
mid connections. Note that such a network could represent a
simplified model for a CA1 network where pyramid to pyramid
connections are rare. The synaptic conductances are as indi-
cated in metHops. With a small external drive, the network is
essentially asynchronous, and the power spectrum of the pop-
ulation firing rate is flat (Fig. 5A). When the external drive is
sufficiently strong, coherent 200-Hz oscillations emerge in the
network. In this oscillation, the interneurons lag behind py-
ramidal cells by ~90°. Note that for the synaptic parameters
chosen here, a one-population interneuronal network would
oscillate at ~300 Hz (see Fig. 4C1). Thus the pyramidal-
interneuron loop slows down the oscillation significantly from
300 to 200 Hz. Both pyramidal cells and interneurons fire
intermittently at much lower rates than the population rhythm,
and there is abroad distribution of firing rates across individual
cells (3-150 Hz, average: 50 Hz) for interneurons, 1-20 Hz,
average: 7 Hz) for pyramidal cells. Neurons in CA1 show
similar intermittent spike activity during sharp wave ripplesin
vivo (Buzsaki et al. 1992; Csicsvari et al. 1998, 1999b).

Effect of pyramidal-to-pyramidal connections on oscillations

To understand the effect of pyramidal-to-pyramidal connec-
tions on oscillations, it is useful to consider first a network in
which only these connections are present. In such networks, it
is straightforward to show that instabilities can only occur with
f = 0 Hz (arate instability). Adding pyramidal-to-pyramidal
connections to a network with al other types of connections
tends again to decrease network frequency because these con-
nections tend to prolong the positive phases of each cycle of
the oscillation. The observed frequency and phase lags be-
tween the two populations is now a compromise between the
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FIG. 5. Two-hundred-Hz oscillationsin a network with pyramidal cells and
interneurons, but without pyramid-to-pyramid connections. A—-C: low external
input (6 kHz for both populations). A: pyramidal population rastergram (left)
and distribution of firing rates across pyramida cells (right). B: interneuron
population rastergram (left) and distribution of firing rates across interneurons
(right). C: instantaneous population firing rate (black: interneuron, red: pyra-
mid) (left) and its power spectrum (right). The neural spike discharges are very
sparse and asynchronous, the power spectrum of the population firing rate is
virtually flat. D—F: high external input (24 kHz for pyramidal cells and 22 kHz
for interneurons). Same conventions as A-C. Thereis aprominent synchronous
oscillation of the population activity (F, left) and a sharp peak in the power
spectrum (F, right). At the same time, single neurons, that collectively pro-
duces this population oscillation, show stochastic and intermittent spike trains,
with a wide distribution of firing rates (D and E). The simulated network has
4,000 pyramidal cellsand 1,000 interneurons; the connection probability is 0.2.
Time constants for the GABA synapses: latency 7, = 0.5 ms, risetime 7,, =
0.5ms, decay time 7, = 5 ms. Time constants for the AMPA synapses: latency
7, = 1 ms, risetime 7, = 0.4 ms, decay time 7, = 2 ms.

strength of the all the feedback loops (E-E, E-I, and I-I), see
Eqg. C3 of aprenDIX 3.

An exampleisshown in Fig. 6 of anetwork oscillation when
the pyramid-to-pyramid excitatory connections are included
into the model. The network architecture is now closer to that
of the CA3 hippocampus, with extensive recurrent collaterals
between pyramidal cells. The oscillation frequency is dramat-
ically reduced by the insertion of such connections, from 200
to ~110 Hz (Fig. 6).

The two-population network, with al four (E-to-E, E-to-l,
I-to-E and I-to-1) types of connections, displays fast oscilla-
tions which are typically in the frequency range of 30—110 Hz,
depending on the synaptic time constants and on the balance
between the loops. In Fig. 7 is shown asimulation with slightly
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FIG. 6. Recurrent excitation between pyramidal cells decreases the popu-
lation frequency. The inclusion of collatoral connections between pyramidal
cells reduces the population frequency from 200 to 110 Hz. Conventions asin
Fig. 5. Pyramidal cells (A) and interneurons (B) show intermittent and irregular
firing, while generating a coherent network rhythm as evident in the population
firing rate and its power spectrum (C). Externa input rate is 4 kHz. Time
constants: for the | — E and | — | synapses, latency 7, = 0.5, ms, rise time
7, = 0.5 ms, decay time 74, = 5 ms. For the E — E synapses: latency 7, =
0.5 ms, risetime 7, = 0.4 ms, decay time 74z = 2 ms. For the E — | synapses:
latency mg = 0.5 ms, rise time 7, = 0.2 ms, decay time 74e = 1 ms.

longer (latency and decay) time constants of synaptic inhibi-
tion, compared to Fig. 6. With slower inhibition, the network
oscillation frequency is lower (50 instead of 110 Hz). In this
case, the model reproduces the salient characteristics of 40-Hz
oscillations in CA3 (Fisahn et al. 1998) and neocortical (Buhl
et al. 1998) slices. During 40-Hz population rhythm, single-cell
firing rates are low, ~10 Hz in interneurons and 2 Hz in
pyramidal cells, in average. Spike trains of individual neurons
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FIc. 7. Gammaoscillations in a two-population network. Same parameters
as in Fig. 6 except that some synaptic time constants are slightly longer.
Conventions as in Fig. 5. Pyramida cells (A) and interneurons (B) show
intermittent and irregular firing, while generating a coherent rhythm at 40 Hz
in the population firing rate (C). External input rate is 2.6 kHz. Time constants:
for the I-to-E and I-to-1 synapses, latency 7, = 1.5 ms, risetime 7,, = 1.5 ms,
decay time 7y, = 8 ms. For the E-to-E synapses: latency 7, = 1.5 ms, risetime
Tz = 0.4 ms, decay time T, = 2 ms. For the E-to-| synapses: latency 7z =
15 ms, risetime 7,z = 0.2 ms, decay time 7, = 1 ms.
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areirregular and intermittent. It would be difficult to detect the
oscillation from such analysis as autocorrelation function and
power spectrum of spike trains. However, a subthreshold os-
cillation is apparent in the membrane potential traces. The
membrane potential hovers below and near the firing threshold.
Spikes are triggered randomly by noise fluctuations, leading to
sparse and irregular spike trains. As in the experiments, net-
work oscillation was abolished in the model by blockade of
either AMPA-mediated excitation or GABA-mediated inhibi-
tion but not NMDA-mediated excitation. Thus the salient ob-
servations of these experiments (Fisahn et al. 1998; Buhl et al.
1998) can be reproduced and understood in this simple setting.

Phase shift between two populations

Recurrent excitation also tends to decrease the phase shift
between excitatory and inhibitory populations. In the absence
of pyramidal-to-pyramidal connections, interneurons can lag
excitatory cells by >90° as shown in the preceding text. When
pyramidal-to-pyramidal connections are present and the bal-
ance between inhibition and excitation is egual in pyramidal
cells and interneurons, the analysis predicts that the phase shift
becomes essentially zero (see aprenbix 3 for details). Figure 8
shows that the zero phase shift is indeed observed in simula-
tions where these conditions hold. In hippocampa dlices,
where gamma oscillation appears to depend on the pyramid-
interneuron connections, Fisahn et al. (1998) found no signif-
icant phase shift between spike activities of pyramidal and
interneuronal populations. Significant phase lag was seen only
between pyramidal cell firing and EPSCs and IPSCs. This
observation is reproduced by our model, where pyramidal and
interneuronal spiking activities are synchronized with zero
phase difference. EPSCs and 1PSCs lag behind the pyramidal
spiking by 2 and 5 ms, respectively (Fig. 8). These phase lags
can be simply accounted for by the time-to-peak of the exci-
tatory and inhibitory synaptic currents. Therefore gamma os-
cillation in a pyramid-interneuron network is compatible with
zero phase difference between pyramidal cells and interneu-
rons like in the experiment of Fisahn et al. (1998). The simple
intuitive reason for this phenomenon is that if the balance of
excitation and inhibition is the same in pyramida cells and
interneurons, the inputs to both cell types must bein phase, and
hence the firing rates of both cell types must also be in phase.

Dependence of oscillation frequency on the balance and
relative speeds of excitation and inhibition

To understand better the two-population network with all
four (E-to-E, E-to-l, I-to-E, and I-to-l) connections, we ana-
lyzed the oscillatory behavior under the assumption that the
ratio of AMPA to GABA conductances is equal in pyramidal
cells and interneurons, as a reasonable working hypothesis for
neocortical and CA3 networks. Hencetheratio | sppa/lgaga iS
the same for both pyramidal cells and interneurons.

In such a network, the analysis predicts that the frequency
strongly depends on the balance between AMPA and GABA
synaptic currents (Eg. C6 of aprenpix 3). Thisis a manifesta-
tion of the fact that both pyramidal-to-interneuron connections
(viathe E-I loop) and the pyramidal-to-pyramidal connections
tend to decrease population frequency. In the simulations
shown in Fig. 9, we varied systematically the balance between

J Neurophysiol « VoL 90 «

423

E spike - E spike

1
—h

E spike - | spike

CC
o LN
%

'1 I I I I I I I I I I I I
3 ] 1 spike - | spike
2]
3 1
U
'1 1 I 1 I 1 I 1 I 1 I 1 I
0— .
_ ] E spike - AMPA EPSCs
<(§_ -100 —
Z)’ -200 —
O -300 —
'400 I I 1 I 1 I LI | I 1 I 1 I
-45 — , |
— 1 E spike - NMDA EPSCs

o
o

E spike - IPS

400 I I I I I I
-30 -20 -10 0 10 20 30
Lag (ms)

FIG. 8. Tempora correlations during gamma oscillation. There is 0 phase
shift between pyramidal cells and interneurons in the population spiking
cross-correlation. With respect to spiking activity, there is a phase lag of 2, 10,
and 5 ms, for AMPA-, NMDA-, and GABA-mediated synaptic currents,
respectively. These phase delays are due to the time-to-peak of the synaptic
currents. The cross-correlation functions between pyramidal firing and excita-
tory and inhibitory postsynaptic currents (EPSCs and |PSCs) are similar to the
experimental observations (Fisahn et al. 1998) with comparable phase lags.
Our model predicts that the O phase difference between spiking activities of
pyramidal and interneuronal populations is a manifestation of the same exci-
tation-inhibition balance in pyramidal cells and interneurons. See text for
further discussion.
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FIG. 9. Population oscillation frequency decreases with the recurrent exci-
tation/inhibition balance. The ratio | oppa/lcasa IS the same for both pyrami-
dal cells and interneurons. The ratio is changed by varying the AMPA
conductance on both pyramidal cells and interneurons from 0 to 100% of the
“control” value indicated in METHODS. The population frequency decreases
from ~180 to 40 Hz. ——, analytical prediction (obtained by solving Eq. C6);
symbols: network simulation data (e, 12-kHz external inputs; ¢, 6-kHz exter-
nal inputs; =, 4-kHz external inputs). Simulations with a too high synchrony
(STS larger than 2.5) were discarded. The network has 4,000 pyramidal cells
and 1,000 interneurons, with the connection probability of 0.2. Time constants
for the GABA synapses: latency 7, = 1 ms, risetime 7,, = 0.5 ms, decay time
Tq = 5 ms. Time constants for the AMPA synapses on both pyramidal cells
and interneurons: latency 7, = 1 ms, rise time 7,, = 0.2 ms, decay time 7y =
2ms.

lcaga @Nd | appa by Varying the AMPA conductances on both
pyramidal cells and interneurons were varied from 0 to 100%
of their “control” value (indicated in meTHoDS). When | oppa/
lcaga iS increased from zero (without recurrent excitation,
purely 1-1 oscillation) to 0.5 (strong recurrent excitation), the
population frequency decreases from ~180 to 70 Hz (Fig. 9).
The theoretical prediction (Eq. C6, ——) fits well with direct
network simulations (@, ¢, m). For these parameters, the ratio
could not be increased beyond 0.5 in the simulation, because
the network became very strongly synchronized, and hence the
synchrony regime fell outside of the scope of the present study.

Unlike the one-population model where the network oscil-
lation frequency depends only weakly on the synaptic decay
time constant, the behavior of the two-population network also
critically depends on the relative time constants of synaptic
excitation and inhibition. As shown in Fig. 10, the parameter
plane of the decay times Taypa aNd Tgapa IS Separated into
two regions for the asynchronous and synchronous dynamics.
The boundary between the two regionsiis the locus of the onset
of synchronized oscillation (a bifurcation in the language of
dynamical systems). Figure 10 shows that different values of
the synaptic temporal parameters can favor one of the two
competing kinds of oscillatory instabilities, the purely inter-
neuronal mechanism or the pyramidal-interneuronal loop
mechanism. This can be seen clearly along a horizontal linein
Fig. 10A (say at fixed Tgaga = 5 mMS). The asynchronous
behavior is realized only in an intermediate range of TAmpa
values. With very short 7, pa, 0Scillation occurs, as expected
when excitation is faster than feedback inhibition (Tegnér et al.
2002; Tsodyks et a. 1997; Wang 1999; Wilson and Cowan
1973). With these short excitatory time constants, the E-I loop
strongly influences the network oscillation, the population fre-
guency is relatively low. On the other hand, with sufficiently
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long Tampa, the excitatory synaptic current strongly attenuates
the network oscillation. Driven by tonic excitation, the inter-
neuronal network aone is able to generate a synchronous
oscillation, which now has the characteristics of oscillation in
the one-population model (with a very high population fre-
guency). The population frequency is much higher when the
oscillation is dominated by the interneuronal network (with
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FIG. 10. Dependence of coherent fast oscillations on the relative time
constants and balance of synaptic excitation and inhibition. A: network dy-
namical behavior on the parameter plane of 7y pa @8d Tgaga. The asynchro-
nous state is separated from the synchronous oscillation state by a “bifurca-
tion” curve, obtained by Eq. C5 of ApreNDIX 3. The asynchronous state is stable
on the top right corner of the figure. The strength of the |-l loop is set to X, =
10 (see apPeNDIX 3), and the balance between the AMPA and GABA currents
islampallcaga = O (full), 0.2 (---), 0.5 (- - -), 0.8 (- - -). Qualitatively, there
are 2 kinds of instability from asynchronous state to coherent oscillation. For
afixed Tgaga (S8Y @ 5 ms), the asynchronous dynamics is destabilized and
oscillation develops, when 7, pa becomes much smaller than 7gaga, 8S @
result of delayed negative feedback in a strongly recurrent network. On the
other hand, when T,\pa 1S sufficiently large, the excitatory drive is roughly
tonic and the interneuronal network by itself generates synchronous oscillation,
similar to the 1-population model. B: population frequency as function of the
excitatory synaptic decay time constant 7,y,pa With fixed Tgaga = 5 ms. The
oscillation frequency is much lower with shorter 7o\pa (the pyramid-inter-
neuron loop regime) than with longer 7oypa (the interneuronal network
regime). ——, theoretical predictions. e, direct network simulations. Param-
etersasin Fig. 9 and meTHODS. C: network state diagram for different strengths
of recurrent connections again obtained from Eq. C5. Both gappa @nd ggasa
are varied while preserving the balance | xppa/lcasa = 0.5, X, = 20 (top
curve), 10 (middle curve), 5 (bottom curve). Coherent oscillations become
more prevalent with stronger recurrence of the network. Synaptic parameters
asin Fig. 9.
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long Tampa) than when it largely depends on the pyramid-to-
interneuron loop (with short 75y pa; Fig. 10B).

The locus of the onset of synchrony is also greatly influ-
enced by the strength and balance of excitation and inhibition,
according to Eq. C5 of aprenpix 3. For the parameters of Fig.
10, without excitation (the ratio | spmpa/lcaga = 0), Synchrony
appearsat Tgaga = 7.5 ms, independent of 75y pa- AN iNcreas-
ingly large excitation/inhibition ratio shifts the bifurcation
curve close to the diagonal line, and enlarges the oscillatory
regime (at small 7, ps) dominated by the pyramid-interneuron
loop (Fig. 10A). The population frequency is lower with a
larger excitation/inhibition ratio (Fig. 10B), consistent with
Fig. 9. Finaly, with a fixed | sppa/lcaga bUt enhancing the
absolute connection strength (both gappa @Nd ggaga &€ in-
creased while their ratio is preserved), the parameter region for
the asynchronous dynamics shrinks dramatically, and coherent
oscillation becomes prevalent (Fig. 10C). Therefore powerful
feedback synaptic interactions generally are destabilizing and
favor large-amplitude coherent oscillations.

DISCUSSION
Summary of results

In this paper, we have extended a theoretical framework for
understanding the mechanisms of fast network oscillations that
are characterized by noisy and intermittent spike firing of
constituent single cells. Brunel and Hakim (1999), using sim-
ple (instantaneous) synaptic interactions, showed that when the
network is dominated by noise, coherent oscillation with irreg-
ular and sparse neurona firing can be produced with strong
recurrent inhibition and strong external excitation. In this pa-
per, we extended this approach to a network of LIF neurons
coupled by realistic synapses. Our analysis predicts the popu-
lation frequency for noise-dominated network rhythms, given
synaptic temporal parameters, and the balance between the
different types of (I-1, E-l, E-E) feedback loops present in the
network. This analysis based on a phase condition bears some
similarity with a recent study of the emergence of rhythmic
activity in a network of excitatory cells with spike frequency
adaptation (Fuhrmann et al. 2002).

In an interneuron network, ultrafast oscillations (~200 Hz)
with the phenomenology of hippocampal ripples during sharp
waves can be realized with synaptic time constants similar to
those observed in dice studies. The oscillation frequency de-
pends much more on the shortest synaptic time constants
(synaptic delay and rise time) than on the synaptic decay time.

In a network composed of both interneurons and excitatory
cells, the oscillation is a compromise between two rhythmo-
genesis scenarios, the purely interneuronal scenario and the
pyramidal-to-interneuron loop scenario. The pyramidal-to-in-
terneuron loop scenario involves a much lower frequency (in
the gamma range) than the purely interneuronal scenario. Re-
current excitation (both in the E-I and E-E loops) reduces
network frequency. The type of oscillation that is generated
depends on the relative time scales (¢ and 7;) of excitatory and
inhibitory synaptic currents and on the balance between the E-|
and I-1 loops. Networks without pyramidal-to-pyramidal con-
nections can sustain ~200-Hz oscillations when receiving
strong external inputs. Interneurons typically lag behind pyra-
midal cells by ~90° in such networks. Networks with pyrami-
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dal-to-pyramidal connections are able to sustain oscillations
that are typically in the gamma range (30—100 Hz, depending
on the time constants of synapses). When the excitation-inhi-
bition balance is roughly the same in pyramida cells and
interneurons, we predict that there is zero phase difference
between the spike discharges of pyramidal and interneuron
populations.

Firing-rate synchrony versus spike-to-spike synchrony

The regime of synchronous activity studied in this paper
should be contrasted with “spike-to-spike synchrony,” which
occurs usually without or with weak noise. In networks with
spike-to-spike synchrony, the network rhythm arises from syn-
chronization of spikes among neurons that behave as periodic
oscillators. Single cells fire a spike at each population cycle or
once every few cycles. This kind of synchronization has been
studied extensively in the theoretical framework of coupled
oscillators (Kopell and Ermentrout 1986; Kuramoto 1984).
Many studies have focused on an inhibitory neural network
because experimental and theoretical evidence implicates in-
terneurons in the emergence of oscillatory synchrony patterns.
In particular, it was found that synchronization depends criti-
cally on the synaptic decay time constant (Hansel et al. 1995;
Traub et al. 1996; van Vreeswijk et a. 1994; Wang and
Buzsaki 1996; Wang and Rinzel 1992; White et al. 1998).
Terman et al. (1998) showed that the synaptic rise time also
plays a significant role in the synchronization of two mutually
inhibitory neurons. There have been some analysis of how
synchronization between coupled oscillators depends on the
heterogeneity of neuronal properties (Bartos et al. 2001; Han-
sel and Mato 2003; Neltner et a. 2000; Tiesinga and Jose
2000; Wang and Buzsaki 1996; White et al. 1998) or the sparse
random network connectivity (Golomb and Hansel 2000;
Wang and Buzsaki 1996). More recently, Hansel and Mato
(2001, 2003) considered a two-population model of excitatory
and inhibitory neurons as coupled oscillators, where the net-
work is fully connected and without noise. This kind of syn-
chrony is likely to be applicable to networks of pacemaker
neurons (regular oscillators), such as in the central pattern
generator systems (Marder 1998).

The second type of network synchrony is “firing rate syn-
chrony,” which occurs when strong noise and strong inhibitory
feedback is present (Brunel 2000; Brunel and Hakim 1999).
Here, when a network displays prominent coherent oscillation,
spike discharges of single neurons tend to be extremely irreg-
ular and intermittent, like a Poisson process with the firing rate
much lower than the population oscillation frequency. Fast
oscillations in the cortex appears to belong to this category of
synchronous activity because spike trains of single cells are
usually random and sparse even though the local field potential
isrhythmic (Csicsvari et al. 1998; Frieset al 2001). In fact, this
type of synchrony is already present in the firing rate models,
which were derived under the assumption that single neurons
fire spikes stochastically (Wilson and Cowan 1972, 1973).

In a purely interneuronal network, the two types of syn-
chrony produces very different frequency ranges. Networks
with spike-to-spike synchrony are typically in the gamma
range (Traub et al. 1996; Wang and Buzsaki 1996). We have
shown here that networks with firing rate synchrony oscillate at
much higher frequencies. Dependency on different synaptic
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time scales is another major feature that distinguishes between
the two classes of synchronization in an interneuronal network:
for spike-to-spike synchrony in oscillator networks, synchrony
can appear without any synaptic latency, and the frequency
strongly depends on synaptic decay time. For firing-rate syn-
chrony, synchrony depends on a non-zero latency and depends
much more weakly on the synaptic decay time. For IPSCs with
very short latency and rise times (~1 ms) and longer decay
times (~5-10 ms), we find that an interneuronal network is
able to oscillate at a frequency determined by the fastest time
scales (latency and rise times). In this type of oscillation, the
decay time affect only weakly the frequency because it is
longer than the period of the oscillation.

In a two-population network, the differences between both
types of synchrony areless clear cut. Networkstend to oscillate
in both cases at frequencies in the gamma range. Phase lags
between pyramidal cells and interneurons occur in similar
conditions for both types of synchrony (Hansel and Mato
2003). At gamma freguencies, the oscillation becomes sensi-
tively dependent on decay times of both AMPA and GABA
currents. Hence, all synaptic time constants potentially play a
role in the determination of network frequency.

Comparison with hippocampal oscillations data

In vivo observations indicate that 200 Hz ripples during
sharp waves are most prominent in CA1 area, and lessreliable
in CA3 (Buzsaki et al. 1992; Csicsvari et al. 1999a). Presum-
ably, during sharp waves, CA3 network provides a large exci-
tatory drive, which induces 200-Hz ripples in CA1. On the
other hand, 40-Hz (gamma) oscillations appear to be generated
within CA3 and propagate to CA1 (Fisahn et al. 1998). Inter-
estingly, CA3 is endowed with an abundance of strong recur-
rent excitatory connections (Miles and Wong 1986), whereas
local collaterals between pyramidal cells arerelatively rare and
weak in CA1 (Deuchars and Thomson 1996). These observa
tions raise the possibility that the network oscillation frequency
(200 vs. 40 Hz) could depend on the strength of intrinsic
pyramid-to-pyramid connections. The results shown in this
paper are consistent with such a possibility. Interestingly, dur-
ing sharp wave ripples, CA3 area typicaly shows variable
100-Hz oscillations (Csicsvari et a. 1999a). The difference in
the ripple frequency (100 vs. 200 Hz) between CA3 and CA1
may again be related to the preponderance in CA3, and paucity
in CA1, of recurrent excitatory connections.

We have shown that the same network can exhibit different
population frequencies, depending on the balance between
GABA and AMPA currents. In principle, this balance between
excitation and inhibition in the hippocampus can be modulated
depending on the behaviora states, for example, by varying
differentialy the external inputs targetting excitatory and in-
hibitory cells.

Comparison with neocortical data

Very fast oscillations (from 80 to 600 Hz) have been re-
cently observed in neocortex of anesthetized rats (Jones et al.
2000; Jones and Barth 2002; Kandel and Buzsaki 1997) and
cats (Grenier et a. 2001). In these oscillations, single cells
typicaly fire at much lower rates, as in fast oscillations in the
hippocampus. Oscillations with frequency <200 Hz, as ob-
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served in the anesthetized cat (Grenier et a. 2001), seem to be
compatible with the scenario discussed in the present paper, in
which synaptic inhibition plays a major role. A further indica-
tion in favor of the role of inhibition is that neurons recorded
with chloride-filled pipettes change their phase relationship
with the ripple. On the other hand, the faster (300-500 Hz)
oscillations seen by Kandel and Buzsaki (1997) and Joneset al.
(2000) seem difficult to reconcile with the present scenario,
unless inhibitory time courses are extremely short, and in
particular latencies of IPSCs on interneurons are much less
than 1 ms (see Fig. 4). Furthermore, Jones and Barth (2002)
showed that application of bicuculline does not result in a
change of oscillation amplitude or frequency, suggesting a
different mechanism is at work in such ultra-fast oscillations.

Model predictions

Our theory has a number of predictions that can be tested
experimentally. First, in a noise-dominated inhibitory neural
network, the emergence and nature of stochastic fast oscilla-
tions depend critically on the synaptic delay of GABAergic
connections on interneurons, and in contrast to the coupled
oscillator regime, the oscillation frequency is only weakly
sensitive to the decay time constant of synaptic inhibition.
Second, fast oscillations can be produced either by the inter-
neuronal network or the feedback inhibition in a pyramid-
interneuron reciprocal loop. Synchrony in networks with exci-
tatory-inhibitory loops does not necessarily imply alarge phase
difference in the neural activities of the two cell populations.
Pyramidal cells and interneurons can have zero phase differ-
ence if recurrent excitatory and inhibitory inputs are balanced
in the same way in both cell types. This prediction can be
checked in the dlice preparation of Fisahn et al. (1998) by
measuring the mean excitatory and inhibitory currents in both
pyramidal cells and interneurons and comparing the ratios in
the two cell types. Third, somewhat contrarily to intuition,
inhibition tends to favor very-high-frequency oscillatory pat-
terns, while excitation tends to favor slower oscillatory pat-
terns. Manipulations that ater the balance between recurrent
excitation and inhibition can therefore drastically affect net-
work frequency.

Can very fast (~200 Hz) oscillations be produced by
chemical synapses?

Our modeling results suggest that, in principle, very fast
oscillations are possible with purely chemical synaptic cou-
plings and no gap junctions. We would like to caution that the
present study focused on the effect of synaptic parameters on
network frequency and used a simplified (the integrate-and-
fire) model of single neurons. This approach allowed us to
explore systematically the network behavior in the parameter
space. Integrate-and-fire neurons are characterized by a zero
neuronal phase lag, for realistic noise models, as was shown by
Brunel et a. (2001). Thisfact allows the network to oscillate at
frequencies that are limited only by the speed of synaptic
transmission. However, real neurons are endowed with a vari-
ety of voltaged-gated ion channels and might differ signifi-
cantly from the integrate-and-fire model. At least two features
of real neurons are not present in integrate-and-fire neurons:
subthreshold resonance (see e.g., Hutcheon and Y arom 2000)
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and dynamics of ionic channels leading to spike generation.
Subthreshold resonances recorded in most neurons appear at
rather low frequencies (typically theta), so they should not
affect the network dynamics at the high frequencies considered
here. On the other hand, dynamics of ionic channels leading to
spike generation could in principle affect the high-frequency
neuronal response. In a companion paper (C. Geisler, N.
Brunel, and X.-J. Wang, unpublished observations), the con-
tribution of intrinsic cellular dynamics to the oscillation fre-
guency and network synchronization is investigated exten-
sively. In particular, we find that with Hodgkin-Huxley-type
conductance-based neurons, instead of the integrate-and-fire
neurons, very-high-frequency (200 Hz) oscillations can be
achieved (Geidler, et a., unpublished observations) provided
that certain assumptions are satisfied, for example, when the
effective membrane time constants of the neurons are small
enough.

Furthermore, even if the chemical synapse mechanism is
sufficient to produce 200-Hz oscillations under some condi-
tions, it does not rule out other scenarios for the generation of
very fast oscillations, such as axo-axonic gap junctions be-
tween pyramidal cells (Lewis and Rinzel 2000; Schmitz et al.
2001; Traub et a. 1999; Traub and Bibbig 2000). In some
systems, very fast oscillations are not suppressed by GABAer-
gic antagonists (Draguhn et al. 1998; Jones and Barth 2002),
leaving gap junctions as the leading alternative mechanism. In
other systems, such that the hippocampus of a freely moving
rat, whether chemical, electrical, or both, connections are
needed remains an open question.

Further experimental and theoretical work will be necessary
to obtain a general framework for understanding synchronous
network rhythms characterized by irregular neuronal spike
discharges and help to resolve the well-known dichotomy
between oscillatory local field potential of a cortical circuit and
the highly stochastic spike trains of its constituent neurons
(Engel et al. 1992; Fries et a. 2001).

APPENDIX 1.
ONLY

NETWORKS WITH E-1 CONNECTION

Here, we repeat the analysis of the purely interneuronal network
(steps 1-4 in resuLTs) for a network with connections between
pyramidal cells and interneurons but no connections between pyra-
midal cells, or between interneurons.

Sep 1

In the excitatory-inhibitory network, we look for solutions of net-

work activity of the form
ve(t) = ve 1 + e expliot)] (A1)
y(t) = nl+ € expliot)] (A2)

where vz, and v, o are the average firing rates, ez and ¢, are the
relative strengths of the deviations to the stationary firing rates (in-
cluding a possible phase lag between the two populations).

Sep 2

The GABAergic synaptic variable is given by Eq. 6. The AMPA
synapses are described by

Se = Seol 1 + &S(w) expliot — iPg(w))] + noise (A3)
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where s: , is the average fraction of open channels at AMPA syn-
apses, summed over all synapses,

Se(w) =

1
VA + o)L+ o’7)

is the attenuation in the amplitude of the oscillation induced by
AMPA current dynamics, and

Oc(w) = wre + atan (o1,e) + atan (wTge)

is the phase lag introduced by AMPA current filtering.
The recurrent synaptic currents are

Lampast = lampaiol1 + €S expliot — idg(w))] + noise (A4)

lcasa—e = leapasedl + €S expliot — i®(w))] + noise (A5)

The total synaptic currents on pyramidal cells and interneurons are

AMPA—I1,0

Iyt = Isl/n—>|,0|:l + eE&I exp(iot — iCDE(w))] + noise  (A6)

syn—1,0

I GABA—E,0

lynoe = Is/n_m[l + €S exp(iot + im — id>|(w))] +noise (A7)

syn—E,0
Sep 3
The firing rate of pyramidal cells and interneurons are

I GABA—E0

Ac expliowt + i7m — i<I>|(cu)):|

)

where Az measures the relative change in firing rate induced by a
relative change in average input current, Ag

VE,Oa VE,O(' syn— E,O)/a I syn—E,O*

ve(t) = VE,0|:1 + &S

IwnﬁE,D

I’?W’ﬂ)A{ exp(iot — iPg(w))

syn—l,0

y(t) = V|,o[1 + &S
lwn—>E,O/

Sep 4

Steps 3 and 1 imply that the oscillatory components in pyramidal
cell activity and interneuron oscillatory activity are related by

IGABA—>E0 . .
€S Acexplim — iD|(w))

€g =
I syn—E,0

(A8)

€eSe PO p (b))

I syn—1,0

(A9)

€ =

Solving these two equations yields the phase condition

7= ®w) + O (w)
which determines the oscillation frequency w (or f = w/(2m)). Note
that, by our convention, interneurons lag excitatory cells by ®g(w).

APPENDIX 2.
LOOPS

NETWORKS WITH E-1 AND I-1

When the I-1 connections are added, we can still use Egs. A1 and A2
for the firing rates of the two cell types, but now the interneurons
receive an additional (inhibitory) synaptic current. Therefore the total
synaptic currents on pyramidal cells and interneurons become

GABA—E,0

lynoe = Isyn~>E,0|:l + €S ! expliot + im— i<1>|(w))] +noise (B1)

syn—E,0

AMPA—I,0

lops = Iwne.,o[l e M ot — ibg(w)  (B2)

syn—1,0
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IGABA—)I,O

+ ¢S exp(iot + i7m — i®(w)) + noise (B3)

Isynel 0

The firing rate of pyramidal cells and interneurons are
ve(t) = vedl + €Xg expliot + im — i®(w)]
vi(t) = v o[1 + eeXie expliot — iPe(w)) + X expliot + i7 — iP|(w))]

where the parameters Xg,, X,z and X, measure the relative attenuation
introduced by the corresponding types of connections,

I GABA—E,0

Xe =9 Ii Ae (B4)
syn—E,0
I ampa
Xie =S 0 A (85)
syn—l,0
lcapa—i
X =850 (86)
syn—l,0

The parameters Xg,, X, and X, are proportional to the strengths of
the corresponding types of connections (inhibitory synapses on pyra-
midal cells, excitatory and inhibitory synapses on inhibitory cells,
respectively) through their dependency on the mean currents
lGABA—)E,Ov IAMPA—)I,O! and IGABA*)I,O'

Equalizing the rates in Eq. B4 and in Eq. Al, it is clear that the
oscillatory components in pyramidal cell activity and interneuron
oscillatory activity are related by

€e = €Xg expliT — iP(w) (B7)
€ = eeXig exp(—iPe(w)) + X, explim — iP(w)) (B8)
Solving Egs. (B8) yields the phase condition
_ (XieXa/Xy) sin (Pe(w))
7= D) + atan <(XIEXEI/XII) cos (Pe(w)) + 1) (89)

which determines the oscillation frequency. Thus the additional phase

lag due to the E-I loop is weighted by the relative weight between the

E-1 loop and the I-I loop, as measured by the parameter (X,zXg /X,)-
The phase lag between interneurons and pyramidal cellsis

atan ( (XieXa/ X)) sin(Pe(w)) )
(XieXe/Xy) cos (Pe(w)) + 1

(B10)

APPENDIX 3.
LOOPS

NETWORKS WITH E-E, E-I, AND I-1

It is straightforward to repeat the analysis with the addition of E-E
connections. The resulting relationships between excitatory and in-
hibitory activities are

€e = eeXee XP(—i1Pe(w)) + 6Xg explim — iDy(w)) (C1)
€ = eeXig eXp(—iPe(w)) + X explim — iP|(w)) (C2)
with
Xee = & % Ac
SnE0
yielding

1 = Xee exp(—i®g(w) + X, explim — id(w))
+ (XeXie — XeeXy) exp(im — i®(w) — idg(w)) (C3)

from which the phase condition can be deduced. Note that when only
E-E connections are present, the phase condition becomes ®(w) = 0
whose solution is w = 0.

N. BRUNEL AND X.-J. WANG

When the balance between excitation and inhibition is the same in
pyramidal cells and interneurons
Xee _ Xie _ Selawea
Xe X

Under this condition, the last term in Eq. C3 is zero, and the equation
simplifies to

SIGABA

1 = Xee exp(—i®g(w)) + X, exp(im — iP(w)) (C4)

If we further assume Az = A, Eq. C4 givesthe set of two equations

1= X..(—cos D (w) + St@)lawea cos <1>E(w)> (C5)
S(w)lgaga
g _ S@)lawen
0=sin ¥(w) S()loxan sin (Pg(w) (Co)

where the second equation C6 is the phase condition that determines
the oscillation frequency, while the first equation C5 determines the
location of the onset of the oscillations in parameter space. Eq. C6
shows that the frequency depends both on the synaptic time constants,
through the synaptic variables @, ®,, S, and § and on the balance
between recurrent excitation and inhibition, | s\ pa/l gasa- COMbining
Eq. C4 with Eq. C2, wefind that ez = ¢,. In other words, there is zero
phase lag between pyramidal cells and interneurons.

Solving numerically Eq. C6, we find that when excitatory time
constants are shorter or equal to inhibitory time constants, excitation
decreases monotonically the oscillation frequency. The condition for
this to happen is sin(®g(w,)) > 0, where w, is the network frequency
for a purely inhibitory network. When excitation time constants are
long enough, resulting in sin(®g(w,)) < 0, excitation increases the
oscillation frequency for small values of the ratio | \pmpa/l gaga- ThiS
phenomenon is investigated in more detail in Geisler (unpublished
observations).
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