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Abstract. Experimental evidence suggests that the maintenance of an item in working memory is achieved through
persistent activity in selective neural assemblies of the cortex. To understand the mechanisms underlying this
phenomenon, it is essential to investigate how persistent activity is affected by external inputs or neuromodulation.
We have addressed these questions using a recurrent network model of object working memory. Recurrence is
dominated by inhibition, although persistent activity is generated through recurrent excitation in small subsets of
excitatory neurons.

Our main findings are as follows. (1) Because of the strong feedback inhibition, persistent activity shows an
inverted U shape as a function of increased external drive to the network. (2) A transient external excitation can
switch off a network from a selective persistent state to its spontaneous state. (3) The maintenance of the sample
stimulus in working memory is not affected by intervening stimuli (distractors) during the delay period, provided
the stimulation intensity is not large. On the other hand, if stimulation intensity is large enough, distractors disrupt
sample-related persistent activity, and the network is able to maintain a memory only of the last shown stimulus.
(4) A concerted modulation of GABAA and NMDA conductances leads to a decrease of spontaneous activity but an
increase of persistent activity; the enhanced signal-to-noise ratio is shown to increase the resistance of the network to
distractors. (5) Two mechanisms are identified that produce an inverted U shaped dependence of persistent activity
on modulation. The present study therefore points to several mechanisms that enhance the signal-to-noise ratio
in working memory states. These mechanisms could be implemented in the prefrontal cortex by dopaminergic
projections from the midbrain.

Keywords: working memory, network model, prefrontal cortex, inferotemporal cortex, spontaneous activity,
persistent activity, NMDA, GABA, AMPA, dopamine

1. Introduction

Neurophysiological studies of working memory have
revealed that, when an animal must retain the memory

of the identity of a visual object during a delay period
between the stimulus and behavioral response, neurons
show a selectively enhanced activity throughout the
delay period, in prefrontal cortex (PFC) (Fuster and
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Alexander, 1971; Kubota and Niki, 1971; Wilson et al.,
1993), in inferotemporal cortex (ITC) (Fuster and
Jervey, 1981; Miyashita, 1988; Miyashita and Chang,
1988) as well as in other areas of the temporal lobe
(Nakamura and Kubota, 1995). More recent experi-
ments have shown an important difference in delay
activity between the PFC and ITC. Mnemonic activity
is resistant to distractors in PFC but not in ITC (Miller
et al., 1996).

It has long been hypothesized (Lorente de Nó, 1933;
Hebb, 1949; Amit, 1995; Goldman-Rakic, 1995) that
excitatory synaptic loops could sustain persistent neu-
ral activity, after a transient stimulus. Reverberatory
excitations, however, presumably must be counter-
acted by feedback inhibition mediated by GABAergic
interneurons (Condé et al., 1994; Kawaguchi, 1997;
Gabbott and Bacon, 1996), for the control of network
excitability. Synaptic inhibition is also likely to be crit-
ical for shaping the selectivity of mnemonic neural ac-
tivity in a working memory circuit (Goldman-Rakic,
1995; Camperi and Wang, 1998; Rao et al., 1999;
Compte et al., 2000), similarly to the tuning of neural
responses in sensory cortices. In the context of working
memory models, Amit and Brunel (1997) showed that,
in order to reproduce experimental observations from
the physiological studies of behaving monkeys, the net-
work model should be dominated by inhibition, in the
sense that recurrent excitatory-inhibitory synaptic in-
teractions are overall balanced toward inhibition. How-
ever, little is known about the functional consequences
of inhibition dominance, other than the regulation of
network excitability.

Mnemonic neuronal activity is also believed to be
controlled and dynamically modulated by neurotrans-
mitters. In particular, dopamine has received in recent
years a lot of attention due to its important role in work-
ing memory function (see Arnsten, 1998, for a recent
review). Experiments with behaving monkeys have
found that iontophoresis of a D1 dopamine receptor ag-
onist in PFC produces an increase in persistent activity,
while a D1 receptor antagonist has the reverse effect
(Sawaguchi et al., 1990). Behavioral studies demon-
strated that depletion of dopamine within the PFC
(Brozoski et al., 1979), or infusions of D1 antagonists
into the PFC (Sawaguchi and Goldman-Rakic, 1991),
severely impairs working memory performance. There
appears to be an optimal level of dopamine modula-
tion, since high doses of D1 receptor agonists impaired
working memory performance of aged monkeys (Cai
and Anrsten, 1997) and rodents (Zahrt et al., 1997);

and low doses of D1 receptor antagonists have been re-
ported to increase delay-period activity in PFC neurons
of behaving monkeys (Williams and Goldman-Rakic,
1995). Elucidating the neuronal basis of such modu-
latory processes is important to our understanding of
cortical mechanisms of working memory, as well as
working memory deficits associated with schizophre-
nia (Daniel et al., 1991; Goldman-Rakic, 1994; Okubo
et al., 1997). Recent experiments have began to iden-
tify cellular and synaptic sites of dopaminergic action,
but the exact effects of dopamine remain controversial.
Dopamine D1 receptor activation was found to affect
NMDA receptor mediated EPSPs in the PFC (Cepeda
et al., 1992; Zheng et al., 1999; Law-Tho et al., 1994),
as well as inhibitory synaptic transmission (Penit-Soria
et al., 1987; Gellman and Aghajanian, 1993; Law-Tho
et al., 1994). Moreover, DA reduces the amplitude of
isolated dendritic Ca2+ spikes generated by a dendritic
high-voltage-activated Ca2+ current (Yang et al., 1996),
which might effectively reduce the amplitude of distal
synaptic inputs. It is unclear how these in vitro obser-
vations may be related to the PFC function at the net-
work level and thus to working memory of the behaving
animals. The question is of clinical importance, since
dysfunction of D1 receptor signaling is implicated in
working memory deficits associated with schizophre-
nia (Goldman-Rakic, 1994; Okubo et al., 1997; Egan
and Weinberger, 1997) and increase in dopamine levels
by amphetamine improves working memory ability of
schizophrenic patients (Daniel et al., 1991). It is there-
fore a major challenge to identify the mechanisms of
dopaminergic action in prefrontal cortical networks.
To this end, we need to understand how dopamine
modulation of cellular and synaptic processes af-
fects the collective behavior of a recurent cortical
network.

Recently, Durstewitz and collaborators (1999, 2000)
have investigated dopamine modulation of working
memory in a network model of prefrontal cortex,
using either simplified firing-rate models or models
composed of a small number of biophysically detailed
neurons. We have taken a similar approach, using com-
putational modeling as a tool to help bridge the gap
between slice data and neural mnemonic activity of
behaving animals. In the present study, we focus on
a model of a large cortical network of object work-
ing memory that is dominated by feedback inhibition,
and we study the interplay between external inputs,
neuromodulation, and recurrent inhibition. Similarly
to Durstewitz et al., we find that a concomitant
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enhancement of the NMDA receptor-mediated re-
current excitation and recurrent inhibition increases
the delay-to-spontaneous activity (signal-to-noise) ra-
tio and that this effect dramatically enhances the
resistance of the network to distractors. However,
we find two other mechanisms that lead to such an
enhancement but only in a limited range of mod-
ulation: a reduction in background external inputs
and a differential modulation of NMDA conduc-
tances on excitatory and inhibitory cells. In con-
trast to the NMDA/GABA modulation, these types
of modulation lead to an inverted-U shape for
the dependence of persistent activity on modulation
strength, as is found in both electrophysiological
and behavioral studies (Williams and Goldman-
Rakic, 1995; Arnsten, 1998). We discuss possible
implications of these results for dopaminergic mod-
ulation of working memory function.

2. Methods

2.1. The Cortical Module

The model combines a network architecture taken from
Amit and Brunel (1997) and descriptions of synaptic
currents from Wang (1999). The main features of the
model are that (a) persistent activity is generated within
a local cortical circuit, (b) recurrent synaptic excitation
is largely mediated by NMDA receptors, and (c) recur-
rent network interactions are dominated by synaptic
inhibition.

The network is composed of NE pyramidal cells
(80%) and NI interneurons (20%) (Braitenberg and
Schütz, 1991; Abeles, 1991). It represents a corti-
cal module of an area receiving information about
the identity of objects—inferotemporal cortex or ven-
tral prefrontal cortex. Each neuron receives CE ex-
citatory synaptic contacts from pyramidal cells and
CI inhibitory contacts from interneurons. For sim-
plicity, most simulations performed in this article are
done using NE = CE = 800, NI = CI = 200 (fully con-
nected network). Some simulations were performed
with NE = CE = 2000, NI = CI = 500. Both pyrami-
dal cells and interneurons also receive Cext = 800 ex-
citatory connections from outside the network. These
connections send to the network all the information
(stimuli) received from the outside world, as well as
background noise due to spontaneous activity outside
the module, that arrive at each external synapse with
a rate of 3 Hz, which correspond to a typical value

for spontaneous activity in the cerebral cortex (Burns
and Webb, 1976; Koch and Fuster, 1989; Wilson et al.,
1994). Since there are 800 external synapses, the total
background external input to any cell of the network
has a rate of νext = 2.4 kHz.

2.2. Neurons

Both pyramidal cells and interneurons are described by
leaky integrate-and-fire neurons (see, e.g., Tuckwell,
1988) and are characterized by a resting potential
VL = −70 mV, a firing threshold Vthr = −50 mV, a re-
set potential Vreset = −55 mV, a membrane capacitance
Cm = 0.5 nF for pyramidal cells, 0.2 nF for interneu-
rons, a membrane leak conductance gm = 25 nS for
pyramidal cells, 20 nS for interneurons, and a refrac-
tory period τrp = 2 ms for pyramidal cells, 1 ms for
interneurons. The corresponding membrane time con-
stants are τm = Cm/gm = 20 ms for excitatory cells
and 10 ms for interneurons (McCormick et al., 1985).
Below threshold, the membrane potential V (t) of a cell

Cm
dV (t)

dt
= −gm(V (t) − VL) − Isyn(t),

where Isyn(t) represents the total synaptic current flow-
ing into the cell.

2.3. Synapses

There are four families of synapses: excitatory (glu-
tamatergic) synapses on pyramidal cells and interneu-
rons; inhibitory (GABAergic) synapses on pyramidal
cells and interneurons. Recurrent excitatory postsy-
naptic currents (EPSCs) have two components, me-
diated by AMPA and NMDA receptors, respectively.
In most simulations, external EPSCs were mediated
exclusively by AMPA receptors. In a few simulations,
we introduced NMDA receptors in external inputs. The
total synaptic currents are given by

Isyn(t) = IAMPA,ext(t) + IAMPA,rec(t) + INMDA,rec(t)

+ IGABA,rec(t)

in which

IAMPA,ext(t) = gAMPA,ext (V (t) − VE)

Cext∑
j=1

sAMPA,ext
j (t)

IAMPA,rec(t) = gAMPA,rec (V (t) − VE)

×
CE∑
j=1

w j s
AMPA,rec
j (t)
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INMDA,rec(t) = gNMDA (V (t) − VE)

(1 + [Mg2+] exp(−0.062V (t))/3.57)

×
CE∑
j=1

w j s
NMDA
j (t)

IGABA,rec(t) = gGABA (V (t) − VI)

CI∑
j=1

sGABA
j (t),

where VE = 0 mV, VI = −70 mV. The dimensionless
weights wj represent the structured excitatory recurrent
connections (see below); the sum over j represents
a sum over the synapses formed by presynaptic neu-
rons j . The NMDA currents have a voltage dependence
that is controlled by the extracellular magnesium con-
centration (Jahr and Stevens, 1990), [Mg2+] = 1 mM.
The gating variables or fraction of open channels s are
described as follows. The AMPA (external and recur-
rent) channels are described by

dsAMPA
j (t)

dt
= − sAMPA

j (t)

τAMPA
+

∑
k

δ
(
t − t k

j

)
,

where the decay time of AMPA currents is taken to be
τAMPA = 2 ms (Hestrin et al., 1990; Spruston et al.,
1995), and the sum over k represents a sum over spikes
emitted by presynaptic neuron j . In the case of external
AMPA currents, the spikes are emitted according to a
Poisson process with rate νext, independently from cell
to cell. The NMDA channels are described by

dsNMDA
j (t)

dt
= − sNMDA

j (t)

τNMDA,decay
+ αx j (t)

(
1 − sNMDA

j (t)
)

dx j (t)

dt
= − x j (t)

τNMDA,rise
+

∑
k

δ
(
t − t k

j

)
,

where the decay time of NMDA currents is taken
to be τNMDA,decay = 100 ms, α = 0.5 ms−1, and
τNMDA,rise = 2 ms (Hestrin et al., 1990; Spruston et al.,
1995). Last, the GABA synaptic variable obeys to

dsGABA
j (t)

dt
= − sGABA

j (t)

τGABA
+

∑
k

δ
(
t − t k

j

)
,

where the decay time constant of GABA currents is
taken to be τGABA = 10 ms (Salin and Prince, 1996;
Xiang et al., 1998). Note that we neglect the rise time of
both AMPA and GABA currents, which are typically
extremely short (<1 ms). All synapses have a latency
0.5 ms.

The synaptic coupling strengths were calibrated us-
ing the mean field analysis (see below and Appendix),
such as to obtain desired levels of spontaneous activity.
We used the following values for the recurrent synaptic
conductances (in nS) in the 1000 neurons network: for
pyramidal cells, gAMPA,ext = 2.08, gAMPA,rec = 0.104,
gNMDA = 0.327 and gGABA = 1.25; for interneurons,
gAMPA,ext = 1.62, gAMPA,rec = 0.081, gNMDA = 0.258,
and gGABA = 0.973. Note that these synaptic conduc-
tances are about 1 nS in magnitude and therefore
correspond roughly to experimentally measured con-
ductances (see, e.g., Destexhe et al., 1998 and ref-
erences therein). In the 2500 neurons network, all
recurrent conductances were multiplied by 0.4. Two
other points are noteworthy. First, recurrent excitation
is assumed to be largely mediated by the NMDA recep-
tors, since the network mnemonic activity is expected
to be more stable when sustained by the slow NMDA-
activated synapses (Wang, 1999). With our standard
parameter set, the ratio of the NMDA over AMPA com-
ponent of the unitary EPSC is about 0.08 in peak cur-
rent but about 4.5 in terms of the charge entry at the
resting membrane potential of −70 mV because of the
much longer time course of the NMDA component.
When the cell is near the firing threshold of around
−55 mV, the ratio of NMDA:AMPA components be-
comes 10 in terms of charge entry, due to the partial
relief of NMDA receptor channels from [Mg2+] block-
ade. Second, the amplitude of recurrent excitation is
smaller than that of inhibition (Amit and Brunel, 1997).
The net recurrent input to a cell is therefore hyper-
polarizing during spontaneous activity. This assump-
tion has dramatic network implications (see Section 3,
Results).

2.4. External Stimuli

The network is assumed to encode the identities of
p object stimuli. Each of them activates a distinct
and small subpopulation of fN E excitatory cells, with
f p < 1. Thus, external stimuli define p functional as-
semblies of fN neurons, each labelled by its preferred
stimulus, and one population of (1 − f p)N neurons
that do not respond to any of the stimuli. This classifi-
cation of cells according to their selectivity properties is
based on neurophysiological data from ITC or PFC of
the monkey during delayed-response tasks. In these ex-
periments, cells that are visually responsive to at least
one of the shown pictures can be classified accord-
ing to their best stimulus. Cells that do not show any
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significant activation for any of the shown pictures can
be classified in the nonselective group. In the following
we use p = 5, f = 0.1.

2.5. Structure of Recurrent Excitatory Connections
Between Pyramidal Cells

The coupling strength between a pair of neurons is
prescribed according to a Hebbian rule: the synapse
is strong (weak) if in the past the two cells tended
to be active in a correlated (anticorrelated) manner.
Hence, inside a selective population w j = w+, where
w+ > 1 is a dimensionless parameter that is equal to the
relative strength of potentiated synapses with respect
to the baseline. Unless specified otherwise, we used
w+ = 2.1. Between two different selective popula-
tions, and from the nonselective population to selective
ones, w j = w−, where w− < 1 measures the strength of
synaptic depression. Other connections have w j = 1.
It is assumed that the spontaneous activity of neu-
rons is largely unaffected by synaptic modifications
because synaptic depression compensates the effect of
potentiation at the network level. More specifically, by
choosing w− = 1 − f (w+ − 1)/(1 − f ), the overall
recurrent excitatory synaptic drive in the spontaneous

Figure 1. The cortical network model. Pyramidal cells (E cells) send connections to other pyramidal cells through AMPA and NMDA synapses.
Interneurons (I cells) send GABAergic connections to pyramidal cells and other interneurons. Both receive excitatory connections from other
cortical areas. Pyramidal cells can be functionally divided in several groups according to their selectivity properties. Group #1 is selective to
object #1, etc. Cells within a group have relatively stronger connections (modulated by w+ > 1), while connections between different groups
are relatively weaker (modulated by w− < 1). See Methods for more details.

state remains constant as w+ is varied (Amit and
Brunel, 1997). Synaptic efficacies remain fixed through
the simulation.

Note that two possible scenarios would lead to such
a connectivity structure in real cortical networks. In
the first scenario, cells that are selective to a particu-
lar object would have no spatial relationship. In that
scenario, the connectivity structure would be due to
Hebbian learning (see, e.g., Brunel et al., 1998). Two
cells firing together during the stimulus presenta-
tion would increase the strength of their connections,
while long-term depression mechanisms would lead to
weaker connections between cells selective to different
stimuli. In the second scenario, the cells that are selec-
tive to the same stimulus would be close together, as
perhaps in the same column. The connectivity structure
would reflect the fact that the average distance between
two cells selective for different objects is larger than be-
tween two cells selective for the same object, and thus
the connection probability is smaller. Of course, the
situation in the real cortex might be an intermediate
one, with cells selective to a particular object tending
to cluster in space, and connectivity structure is sharp-
ened by learning processes. More experimental data
are needed to distinguish between these scenarios. The
cortical network is illustrated in Fig. 1.
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2.6. Investigations of the Behavior of the Network

The model has been studied using both computer sim-
ulations and analytical techniques. We describe shortly
in the following how both methods have been imple-
mented. The Appendix gives all the details of the ana-
lytical techniques.

2.7. Simulations

Explicit simulations of the network of 1000 or 2500
neurons have been run on a Linux workstation, using a
modified RK2 routine (Press et al., 1992; Hansel et al.,
1998) for the numerical integration of the coupled equa-
tions describing the dynamics of all cells and synapses,
with integration time step dt = 0.1 ms. External spike
timings were generated randomly and independently
inside each dt interval, and the sext variables at each cell
were calculated exactly using these spike times, both
at midstep and at the end of the step. Thes estimates
were then used in the RK2 routine for updating other
variables. The results of the simulations were shown to
be independent of dt in the range 0.01 to 0.1 ms. We
thus used dt = 0.1 ms in most simulations.

2.8. Analysis

In parallel, we have performed explicit mathematical
calculations of the average discharge rates in each of
the populations that define the network, as a function
of neuronal, synaptic, and network parameters, using
a generalization of analytical techniques introduced in
Amit and Brunel (1997). The analysis allows us to de-
termine in a self-consistent way the firing frequencies
of each of the populations in stationary (asynchronous)
states of the network, as a function of the model pa-
rameters. The situation of interest here corresponds to
the delay period following the presentation of a stim-
ulus that has been previously shown to the network.
In this situation there are four functionally different
populations of cells: cells belonging to the population
that is selectively activated by the shown stimulus (this
population is denoted by act); cells belonging to pop-
ulations that are tuned to other stimuli (+); excitatory
cells that are activated by none of the stimuli (0); and
interneurons (I). Again, this classification in four popu-
lations corresponds to the phenomenology of neuronal
mnemonic activity of behaving monkeys. Indeed, in
delayed-response tasks, a recorded pyramidal cell can

fall in one of three categories: either its best stimulus
is the shown stimulus (population act); or its best stim-
ulus is a different stimulus (population +); or the cell
has no best stimulus (population 0). The mean-field
analysis is described in detail in the Appendix.

3. Results

3.1. Network Behavior During a Delayed
Match-to-Sample Simulation

The network was simulated using the following
delayed-response protocol: (1) The simulation starts
with a pre-cue time interval of 1 s, in which the network
exhibits spontaneous activity. (2) Stimulus presenta-
tion (sample) consists of a transient input (lasting for
500 ms) to those cells selective to the shown stimu-
lus. It is implemented by an increase in the input fre-
quency from νext to νext + λ, where λ represents the
intensity of visual stimuli, and is typically a few tens
of Hz. Other cells are unaffected. (3) After the exter-
nal stimulus is removed, there is a delay period of 4 s.
(4) Finally, a match stimulus is presented during 500
ms, using the same intensity λ. In the last 400 ms of the
match presentation, the external frequency to all cells
νext is multiplied by 1.5 to account for an increase in
afferent inputs due to the behavioral response/reward
signal.

Figure 2A shows the basic behavior of the network
during a particular simulated trial. The top panel shows
the spike trains of 50 selected cells of the network:
4 selective to the shown stimulus (red); 4 × 4 selective
to other stimuli (green, blue, yellow, and brown); 20
selective to none of the stimuli (cyan); and 10 inter-
neurons (black). The bottom panel shows the average
activity in each of these populations. Before sample
presentation, all cells in the network are spontaneously
active at rates of a few hertz. Pyramidal cells have an
average spontaneous rate of 3 Hz, while interneurons
have an average spontaneous rate of 9 Hz. These values
are on the order of magnitude of average spontaneous
rates as recorded extracellularly in prefrontal cortex
(Wilson et al., 1994). The shown stimulus (red) elicits
a strong transient response in the corresponding cells.
Note that this strong response occurs even though the
stimulus amplitude is relatively small (about 5% above
background inputs). The sensitivity of the system to
such small transient inputs is due to the fact that the net-
work is not silent before stimulus presentation. Neurons
are in a state of spontaneous activity, their membrane
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Figure 2. Selective persistent activity in a delayed match-to-sample
simulation. A: Average activity of different populations and raster-
grams of randomly selected cells. Red: cells selective for the shown
stimulus. Green, yellow, blue, and brown: cells selective for other
stimuli. Cyan: cells nonselective to any of the stimuli. Black: In-
hibitory cells. The stimulus triggers persistent activity in a selec-
tive cell population (red) at about 25 Hz. Delay period activity is
switched off by a transient excitatory input generating a brief surge
of activity in all neurons. B: Interspike interval histograms of sample-
selective cells in spontaneous and persistent activity. Note different
time scales. Network of 1000 neurons, w+ = 2.1.

potentials are just below threshold for action potential
firing, due to a balancing of excitatory and inhibitory
inputs (see below). These cells sustain their activity at
about 25 Hz during the delay, while other cells remain

at low levels of activity. Cells selective for other stimuli
actually slightly decrease their activity compared to the
spontaneous state. During the first 100 ms of the match
presentation, the cells selective to the shown stimulus
show a surge of activity. After that, a nonselective input
is applied to all cells in the network (see the increase
in the activity of all cells during the response period),
which effectively wipes out the persistent activity of
the red cells.

Figure 2B shows the interspike interval (ISI) his-
tograms of cue-selective cells, in the spontaneous activ-
ity state (left) and in the working memory state (right).
In the spontaneous activity state, the histogram is nearly
perfectly exponential, with a coefficient of variation
(CV) of the ISIs close to one. This means that the fir-
ing process of cells in the spontaneous activity state
is close to a Poisson process. In the working memory
state, the CV is slightly lower (about 0.7) but remains
at a rather high value. Cells indeed keep firing very ir-
regularly in that state, as can be seen by inspection of
the rastergram shown in the upper panel.

3.2. Inhibition Dominance of Recurrent Circuit

The synaptic currents of various types received by a sin-
gle cell are plotted in Fig. 3. Let us emphasize that those
are the time-averaged currents during persistent neural
discharges, not unitary postsynaptic currents elicited by
a single spike. During spontaneous activity (top panel),
cells receive a large amount of external current—that
is, above the deterministic current threshold of spike
discharges (>0.45 nA). However, since the sum of
the recurrent AMPA and NMDA synaptic currents is
smaller in amplitude than the GABA synaptic current
(see the top panel), the feedback input is predominantly
inhibitory. Therefore, the total (external plus recur-
rent) synaptic input is actually slightly subthreshold
(<0.45 nA), and firing is primarily triggered by fluctu-
ations in the input around the firing threshold. During
the delay period (middle and bottom panels), cells that
are tuned to the sample stimulus show a large increase
of all the recurrent components (AMPA, NMDA, and
GABA) due to an increase of activity in the selec-
tive population and in interneurons that are excited to
fire at higher rates (middle panel). The total recurrent
component becomes slightly excitatory due to strong
recurrent synapses within the selected subpopulation,
and the resulting total synaptic input turns out to be
now slightly superthreshold. On the other hand, cells
that have not been activated by the sample stimulus
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Figure 3. Synaptic mechanisms of working memory. Various com-
ponents of synaptic current in a single cell during spontaneous activ-
ity (top), during delay activity following presentation of a preferred
stimulus (middle), and during delay activity following presentation
of a nonpreferred stimulus (bottom). The dotted line indicates the
magnitude of excitatory synaptic currents needed to reach the deter-
ministic threshold. In the two lower panels, the dotted boxes indicate
the magnitude of the corresponding component during spontaneous
activity, to emphasize the differences between delay and spontaneous
activity. External inputs (AMPA ext) are superthreshold. The three
components of recurrent connectivity (AMPA rec, NMDA rec, and
GABA rec) indicate the relative strengths of each. Their sum gives
the total recurrent inputs (total rec). Finally, the sum of external and
total recurrent gives total. Note that the total recurrent inputs are hy-
perpolarizing during spontaneous activity, while they are slightly de-
polarizing in a memory state following presentation of the preferred
stimulus. They are slightly decreased compared to spontaneous ac-
tivity after presentation of a nonpreferred stimulus, due to enhanced
inhibition.

show a relatively smaller recurrent AMPA and NMDA
components, since the connections they receive from
the selectively active cells are weak in strength. The
resulting total recurrent input thus remains inhibitory,

which results in a firing level close to spontaneous
activity.

Note that the reverberation mechanism for sustaining
selective persistent activity operates locally, within a
cell subpopulation. It is thus compatible with inhibition
dominance at the global network level.

Another feature of Fig. 3 is that the NMDA compo-
nent is several fold larger than the AMPA component of
the recurrent excitatory synaptic current. Contribution
by the NMDA receptors is important to stably main-
tain persistent activity in a strongly recurrent circuit,
as was shown previously with an unstructured net-
work model (Wang, 1999) and with a spatial working
memory model (Compte et al., 2000). This conclusion
also holds with our structured network model of object
working memory. In the opposite situation, if recurrent
excitation is not dominated by the slow NMDA re-
ceptors, and AMPA-mediated excitation is much faster
than feedback inhibition, the recurrent network dynam-
ics tends to develop oscillatory instabilities (data not
shown).

3.3. Selective Persistent Activity
by Structured Connectivity

The network stores the memory of an object by
persistent activity of a selective subpopulation of
neurons. The network shows a multistable behavior:
coexistence between a uniform spontaneous activity
state and several persistent activity states (one for each
stimulus stored in the synaptic structure). Transient in-
puts to the network can induce a transition between
the spontaneous state and one of the persistent activity
states.

This multistability emerges due to the structured
strengthening of the excitatory connections and is
present only for a finite range of the synaptic pa-
rameter w+. In Fig. 4 are shown the firing rates of
the spontaneous and persistent activities as a func-
tion of w+, both for computer simulations and an-
alytical calculations. The middle branch connecting
the two represents an unstable state and thus is not
directly observable. One sees that the coexistence
between spontaneous activity and persistent activity
states is present only in a finite range of w+. With
a too small w+ value, recurrent synapses are not
strong enough to generate and sustain elevated per-
sistent activity in a neuronal assembly. On the other
hand, if w+ is too large, recurrent excitation becomes
too strong and the low spontaneous state becomes
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Figure 4. Dependence of network activity on the strength of poten-
tiated synaptic connections. Bifurcation diagram showing firing rates
in the stable states of the network versusw+, measuring the structured
potentiation of the recurrent excitatory connectivity: spontaneous ac-
tivity and persistent memory activity. Unstable states are shown with
dashed line. Filled circles: simulation results (2500 neurons); lines:
analytical results from the mean-field equations (see Appendix).

unstable and disappears. Below w+ ∼ 2.25, sponta-
neous activity remains constant as w+ is varied. This
is due to the fact that the average excitatory synaptic
efficacy remains constant, as we choose w− to balance
the potentiated synapses. Moreover, persistent activ-
ity increases with w+ because the excitatory feedback
within a selective population is directly proportional
to w+. The spontaneous and persistent states are sep-
arated by the unstable state (middle branch, dashed
line in Fig. 4). The network is expected to converge
to the spontaneous state (resp. persistent state) if it
is initially below (resp. above) the unstable state. As
w+ increases, the difference in firing rate between the
unstable state and persistent state (resp. spontaneous
state) increases (resp. decreases). The persistent state
becomes more stable at the expense of the spontaneous
state, until spontaneous activity destabilizes when
w+ ∼ 2.25.

Note that the spontaneous firing rates predicted by
the mean-field analysis agree well with the simula-
tion results. For persistent activity, although the general
trend is correctly predicted, the mean-field calculation
gives a consistently higher firing rate than the com-
puter simulation. This discrepancy may be due to the
approximations made for the mean-field analysis (see
the Appendix).

In a finite network, both spontaneous and persistent
activity states are not truly stable, in the sense that after
a very long time external noise might provoke transi-
tions towards different states. For example, if one waits

for long enough, random fluctuations might provoke
transitions from the spontaneous activity state to one of
the memory states, and vice versa. When w+ is not very
close to the boundaries of the multistability range, the
lifetimes of both states are typically very long (larger
than several seconds).

3.4. Effect of Nonspecific External Drive:
A Mechanism to Switch Off Persistent Activity

In Fig. 2, a transient excitatory, rather than inhibitory,
input was used at the end of the delay period to
switch the network from an elevated persistent state
back to the baseline spontaneous state. Neuronal re-
sponse to the match stimulus corresponds to a tran-
sient increase in neuronal firing, in agreement with ex-
perimental observations in PFC (see, e.g., Funahashi
et al., 1989). Intuitively, this is possible because the
recurrent network is dominated by inhibition. A strong
transient and nonspecific excitation leads to the recruit-
ment of sufficiently powerful recurrent inhibition that
eventually brings the network back to the spontaneous
state, thereby providing a mechanism for memory
erasure.

In the absence of this component, persistent activity
correlated with the sample presentation would survive
the match and response periods, and memory activ-
ity could persist for long time, until an unusually high
fluctuation brings the network back to spontaneous
activity.

To understand more precisely the nature of this phe-
nomenon, we show in Fig. 5 how spontaneous and per-
sistent activity vary when the magnitude of the external
drive (to both pyramidal neurons and interneurons) is
varied. It shows again a finite range of multistability.
Not surprisingly, spontaneous activity increases as the
external input is increased. On the other hand, persistent
activity is present only in a finite range of external drive.
Unlike Fig. 4, in Fig. 5 the persistent state and unstable
state branches form a closed curve. Depending on the
value of w+, the shape of the closed curve is either a
mushroom or an isola according to the mathematical
theory of dynamical systems (Murray, 1993). In either
case, with increasing external drive, there is initially a
slight increase in persistent activity level in a narrow
external drive range where spontaneous activity is very
low. Then, and in most of the range, persistent activity
decreases as external drive increases. This seemingly
paradoxical effect is due to the contradictory effects
of external excitatory inputs and recurrent inhibition.
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Figure 5. Modulation of network activity by external drive. Bifurcation diagram showing firing rates in the stable states of the network vs
external drive to all cells of the network: Spontaneous activity and persistent memory activity. A: Bifurcation diagrams from mean-field equations.
Thin line: spontaneous activity. Thick line: stable branch of the persistent activity curve, for three values of w+ = 1.96, 2, 2.05. Increasing w+
increases persistent activity, as in Fig. 4. Dotted line: unstable branch of the persistent activity. The branch of persistent state shows a mushroom
for large w+ (2.05) and an isola for small w+ (1.96,2). B: w+ = 2.05. The mean-field predictions are compared with the results of simulations
of the network of 2500 neurons. Filled circles: spontaneous activity. Filled squares: persistent activity. Note that for most of the range in which
persistent activity exists, decreasing the external drive decreases spontaneous activity, while the persistent activity level increases, so that the
signal-to-noise ratio is enhanced. The two panels on top of the bifurcation diagrams show simulations performed at two levels of external drive,
indicated by the arrows.

For small external inputs, spontaneous activity in both
pyramids and interneurons is small, and therefore
the effects of external inputs dominates. Thus, ini-
tially, persistent activity increases with the increase in
external inputs. However, as activity in interneurons
increases, inhibitory feedback inputs increase. In par-
ticular, the increase in shunting inhibition effectively
act as a reduction of the feedback excitation. Above a
critical value of external bombardment, this effect be-
comes larger than the increase in external excitation.
Thus, after persistent activity reaches a maximum, it
decreases with increasing external inputs. Thus, per-
sistent activity destabilizes if the external inputs are
sufficiently increased, as shown in Fig. 5. It can also be
destabilized by a sufficient decrease in external inputs,
leading to an almost completely silent network. Sur-
prisingly, a decrease in the external inputs increases the
delay-to-spontaneous activity (signal-to-noise) ratio in

a wide range of input intensity, due to the combined de-
crease in spontaneous activity and increase in selective
persistent activity.

3.5. Memory Retention in the Presence
of Distractors

In order to investigate whether the network can pre-
serve the memory of the sample stimulus in spite of
interfering disturbances, model simulations were per-
formed with distraction stimuli. We chose a simulation
protocol similar to the distractor experiments of Miller
et al. (1996). The set of used distractors was identical
to that of sample stimuli, a stimulus used as distractor
in one simulation could be the sample stimulus in an-
other run. A distractor is a nonmatch stimulus different
from the initial sample, applied to the subpopulation of
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Figure 6. Delayed match-to-sample simulation with distractor stimuli. The sample stimulus (item 1) elicits selective persistent activity in the
first neural subpopulation. Distraction stimuli (items 2 and 3) are sequentially presented during delay period. A: Sample-specific persistent
activity is resistant to distractors at intermediate stimulus intensities (λ = 60 Hz) even though distractor stimuli provoke visual response.
The memory storage for the sample-stimulus is preserved throughout the delay period. B: Sample-specific persistent activity is disrupted by
distractors when stimulus intensity is high enough (λ = 120 Hz). Each distractor is strong enough to reset the network to a new persistent
activity state corresponding to the latest shown stimulus. Network of 1000 neurons, w+ = 2.1.

neurons selective to the distractor. Typically, in a sim-
ulation two distractors are shown consecutively during
the delay period. The selective inputs due to distractors
have the same amplitude as the sample and match stim-
uli (Fig. 6). We found that the effect of distractors on
network activity depends mainly on the stimulus ampli-
tude. At very weak stimulus intensity (λ less than about
40 Hz), presentation of the sample stimulus was unable
to elicit any elevated delay activity. For intermediate
values of stimulus amplitude (λ between 40 and
60 Hz) the sample stimulus elicited persistent activ-
ity that was then resistant to distractors (Fig. 6). This
is due to the fact that inhibitory inputs to all cells of
the network are higher during the delay than during
spontaneous state, and the firing rates of cells not se-
lective to the sample stimulus are lower than in the
spontaneous state. It is therefore harder for external

inputs to bring these neurons to their high activity
state during the delay period than during the spon-
taneous state. For high values of stimulus amplitude
(λ more than 60 Hz), cue-related persistent activity
(short-term memory) is disrupted by the nonmatch
stimuli and the network is distracted (Fig. 6). In this
case, a nonmatch stimulus is sufficiently powerful to
bring its corresponding neuronal assembly (whose best
stimulus is the distractor) from a low firing state to
its high firing state. Note that during the distraction
stimulus there is no input directly applied to the initial
neuronal subpopulation whose persistent activity is dis-
rupted. These cells are turned off as a dynamical conse-
quence of the rise of the new neuronal subpopulation,
which leads to a transient surge of feedback inhibition
to the rest of the network (see inhibitory population’s
firing rate during the distraction stimuli in Fig. 6).
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Therefore, our simulations show that the network’s
ability of preserving short-term memory storage
against distractors depends on two major factors:
its inhibitory synaptic circuit and the amplitude of
information-specific inputs.

3.6. Modulation by Neurotransmitters

We have shown above that the working memory net-
work operation critically depends on the interplay
between recurrent synaptic excitation mediated by
NMDA receptors and inhibition mediated by GABAA

receptors. We next examine how modulation of the
NMDA and GABAA conductances affects the collec-
tive behavior of the network.

As expected, an increase in gGABA leads to a decrease
of the activity levels of both memory and spontaneous
states, until the memory states disappear (Fig. 7A).
Conversely, if gGABA is decreased, memory and spon-
taneous rates increase, up to a point where the sponta-
neous activity state destabilizes. On the other hand, an
increase in gNMDA leads to an increase in both spon-
taneous and memory activity, until spontaneous activ-
ity destabilizes; and a decrease in gNMDA reduces both
rates, until memory activity disappears (Fig. 7B).

Figure 7C shows what happens when NMDA and
GABA conductances are modulated together, with the
same proportional change. An increase in both con-
ductances leads to an increase in memory activity but
to a decrease in spontaneous activity, leading to an in-
crease in the signal-to-noise ratio. This is because, in
the working memory state, elevated persistent activity
induces a high recurrent excitatory drive in the selective
neural subpopulation, so that the increase in inhibition
is more than compensated by that in NMDA receptor
mediated excitation. Therefore, the modulation of the
GABA conductance predominates in the spontaneous
activity state, while the modulation of the NMDA con-
ductance predominates in the working memory state.
Note also that the memory and spontaneous activity
states now coexist in a much wider range than in the
case of modulation of NMDA or GABA conductance
alone (compare Fig. 7C with 7A and 7B). This effect
also holds when NMDA receptors are included in the
external inputs.

If modulatory manipulation is done locally on a sin-
gle cell rather than globally to the network, an in-
crease of both NMDA and GABA conductances leads
to a decreased rather than increased persistent activ-
ity (Fig. 8). This is because, at the single-neuron level,

Figure 7. Modulation of MNDA receptor and GABAA receptor
mediated synaptic transmissions. A: An increase in the GABA con-
ductance of recurrent inhibition reduces both the spontaneous and
persistent activities. B: An increase in the NMDA conductance of
recurrent excitation increases both the spontaneous and persistent
activities. C: A concomitant modulation of NMDA and GABA con-
ductances, with the same dosage dependence, leads to a decrease of
spontaneous activity and an increase of persistent activity, thereby
enhancing the delay-to-spontaneous activity (‘signal-to-noise’) ra-
tio. Unstable states are shown with a dashed line. Simulation results
obtained with 2500 neurons. w+ = 2.05.

the average synaptic current is somewhat larger in am-
plitude for the GABAA receptor-mediated inhibition
than for the NMDA receptor mediated excitation (see
Fig. 3). Thus, for a same proportional increase the ef-
fect of the GABA conductance is typically larger than
that of the NMDA conductance, which results in a
decrease of recurrent inputs to the cell. Hence, the
effect of modulation of both the NMDA and GABA
conductances on working memory activity is sensitive
to how the modulation is done: a local increase leads
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Figure 8. Local versus global modulation of the MNDA and GABAA synaptic conductances. Upper panel: A 50% increase in the GABA
and NMDA conductances locally in a single cell reduces its persistent activity level. Lower panel: A 10% increase in the GABA and NMDA
conductances globally for the entire network increases the persistent activity level of the same neuron. Network of 1000 neurons, w+ = 2.1.

to a deterioration of working memory activity, while a
global increase leads to an enhancement.

We have shown that a concerted increase in both
NMDA and GABA conductances increases the signal-
to-noise by increasing the difference between persistent
activity and spontaneous activity. We then asked the
question whether this modulation could enhance the
network’s resistance to distractors in a working mem-
ory state. To quantitatively address this issue, we varied
systematically the level of simultaneous modulation of
the NMDA and GABA conductances (like in Fig. 7C).
For each level, we performed simulations with several
values of the stimulus amplitude to determine the two
amplitude thresholds separating the three regions of the
stimulus amplitude: (1) weak stimulus that is incapable
of switching on the network, (2) moderate stimulus
that leads to the cue-related persistent activity robust
against distractors, and (3) strong stimulus for which
the memory of the cue can be disrupted by distractors.

Figure 9. Robustness of cue-related persistent activity with re-
spect to distractors, as a function of modulation of both NMDA
and GABA conductances. Increasing the delay-to-spontaneous ratio
expands greatly the range of cue stimulus intensity for which the cue-
related persistent activity is resistant against distractors. Network of
1000 neurons, w+ = 2.1.
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The results are summarized in Fig. 9, where the
x-axis corresponds to the modulation level of synaptic
conductances, while the y-axis corresponds to stimulus
amplitude. As one can see, the range of stimulus am-
plitude for which the network is resistant to distractors
is very sensitive to the synaptic modulations (the range
can increase almost fourfold when both conductances
are increased by only 10%). This finding shows that
the network’s ability of robust memory storage against
distractors can be greatly enhanced by moderate and
concomitant modulation of recurrent NMDA receptor-
mediated excitation and GABAA receptor-mediated
inhibition.

We also examined the hypothesis that dopamine
D1 receptor modulation could differentially affect
pyramidal cells and interneurons because of the differ-

Figure 10. Differential dopamine D1 modulation of NMDA conductances in pyramidal neurons and interneurons following Muly et al. (1998).
The bifurcation diagram shows that persistent activity is the highest in an intermediate range of D1 modulation. NMDA conductances on
pyramidal cells are multiplied by a factor cE (1 + 0.2/(1 + exp((0.8 − D1)/0.25))), and those on interneurons are multiplied by cI (1 + 0.2/(1 +
exp((1.2 − D1)/0.25))), where D1 is the relative change of simulated D1 activation (compared to normal D1 = 1 corresponding to the control
parameter set, x-axis), and the constants cE and cI are chosen so that both factors are equal to 1 when D1 = 1 (corresponding to the control
parameter set). These two sigmoid curves are shown in the interest (lower right). Three simulations at different levels of D1 modulation indicated
by filled circles are shown in the upper panels, showing that too high (right panel) or too low (left panel) D1 activation would be suboptimal or
detrimental to working memory behavior. Compare with Williams and Goldman-Rakic (1995). w+ = 2.1. Simulation results: network of 1000
cells.

ent sensitivities to dopamine levels of NMDAR chan-
nels in the two cell types (Muly et al., 1998). This was
implemented by assuming that the NMDA conduc-
tances on pyramidal cells and those on interneurons are
modulated by different levels of D1 activation. Specifi-
cally, we multiplied gNMDA by a sigmoid function with a
different threshold for pyramidal cells and interneurons
(Fig. 10). As can be seen on the figure, at intermedi-
ate modulation levels, NMDA conductances in pyrami-
dal cells are more affected than those in interneurons,
giving a window of opportunity for delay activity to
be enhanced. At higher activation levels, modulation
of NMDA conductances on pyramidal cells saturates,
a further increase in modulatory action now results
in an increase of NMDA conductances on interneu-
rons, and delay activity decreases and then disappears.
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Figure 10 shows that this scenario indeed gives rise to a
bell-shaped curve for persistent activity. Spontaneous
activity is less affected than delay activity but also
shows a peak at moderate activation levels. There-
fore, a differential modulation of NMDA receptor-
mediated synaptic transmissions in pyramidal cells and
interneurons naturally give rise to the inverted-U shape
dependence on D1 activation of the working memory
behavior (Arnsten, 1998).

The shape of the bifurcation diagrams remains qual-
itatively the same, when the modulation was done with
the inclusion of NMDA receptors at external inputs.

4. Discussion

The balance between recurrent excitation and recur-
rent inhibition in cortical networks has been recently
the subject of several theoretical studies (see, e.g.,
Shadlen and Newsome, 1994; Tsodyks and Sejnowski,
1995; van Vreeswijk and Sompolinsky, 1996; Amit
and Brunel, 1997). In sensory cortices, some models
of information processing emphasize the role of recur-
rent excitation (Somers et al., 1995; Douglas et al.,
1995), while others suggest a predominant role for
feedback inhibition (Pinto et al., 1996; Troyer et al.,
1998). Here, we examined the operation of recurrent
inhibition in a mnemonic network, using an object
working memory model of spiking neurons coupled
with realistic synapses. In this model, even though
persistent activity in a subpopulation of neurons is
sustained by excitatory reverberations, the recurrent
circuit is overall dominated by feedback inhibition (see
Fig. 3). In the inhibition dominance regime, the net-
work model is capable of reproducing both sponta-
neous and stimulus-selective persistent activity with
firing rates within physiological ranges in a delayed
match-to-sample paradigm, as had been found in a sim-
pler model (Amit and Brunel, 1997). Strong synaptic
inhibition provides mechanisms for both memory era-
sure by transient excitatory inputs and robust resistance
of the network to distractors.

4.1. Switch-Off of Persistent Activity by Transient
Increase of External Inputs

Our study suggests a simple way of switching the net-
work from a selective persistent activity state back to
the spontaneous state: a brief increase in nonspecific af-
ferents to all cells in the network, possibly due to reward

or motor signals. Thus, our model predicts that the aver-
age firing rate of pyramidal cells during or just after the
reward or motor response should increase transiently.
Note that in this study we did not address the specific
neuronal substrate of the switch-off signal. Moreover,
whether memory is refreshed at the end of each de-
lay period may depend on the behavior demand. In a
study of delay activity in inferotemporal cortex (ITC),
Yakovlev et al. (1998) showed that delay activity sur-
vives the test stimulus and persists until the next sample
stimulus is presented.

4.2. Effects of Intervening Stimuli
on Persistent Activity

Experimental studies show that cue-selective delay ac-
tivity is disrupted by distractors in ITC, while it is pre-
served in PFC (Miller et al., 1996). Our network model
has been shown to be resistant to distractors, provided
that selective external inputs are not too strong to over-
ride recurrent synaptic actions. Note that our model
does not require an additional mechanism to preserve
the memory of the cue during distractor presentation,
in contrast to Durstewitz et al. (1999), who assumed
that the cue stimulus triggers a dopamine signal, which
effectively shuts down external inputs, and thus dis-
tractors, during the delay period.

Our study raises the question whether the qualita-
tive difference between ITC and PFC might be ex-
plained by the relative proximity to primary sensory
areas. ITC, being closer to primary visual cortex, could
be likely to receive a stronger intensity of selective
input during cue presentation than PFC. It would be
therefore natural to expect a stronger resistance to dis-
tractors in PFC. However, PFC responses during cue
presentation are not smaller than those in IT cells
(Miller et al., 1996). Alternatively, regional differences
might originate from the differences in the synap-
tic circuitry and its dopaminergic modulations (see
below).

4.3. Mechanisms to Enhance the Signal-to-Noise
Ratio and Possible Relationships
with Dopamine

It has been suggested that catecholamines, dopamine
in particular, enhances the signal-to-noise ratio of
mnemonic neuronal activity in the PFC (Servan-
Schreiber et al., 1990; Sawaguchi et al., 1990). Delay
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activity was found to have a bell-shaped curve in re-
sponse to activation of D1 receptors (Williams and
Goldman-Rakic, 1995). Behavioral data on both rats
(Zahrt et al., 1997) and aged monkeys (Cai and Anrsten,
1997) have also demonstrated that there is an optimal
level of D1 modulation for working memory perfor-
mance. Durstewitz et al. (1999) explored dopamine
modulation of the signal-to-noise ratio in a model
where the dopamine system interacts with the pre-
frontal network in a reciprocal loop, and dopamine
cells display elevated persistent activity during delay
period. In a later paper, Durstewitz et al. (2000) con-
sidered tonic dopamine modulation of various synaptic
currents and intrinsic ionic channels, in a Hodgkin-
Huxley-type model of working memory. They showed
that dopamine action could indeed increase the signal-
to-noise ratio of a working memory circuit, therby
enhancing the robustness of memory storage against
distractors.

The present study differs from that of Durstewitz
et al. (2000) in several respects. First, our network
model is dominated by feedback inhibition, which
leads to unique properties of network responsive-
ness to neuromodulation. Moreover, we have identified
three distinct mechanisms that effectively enhance the
signal-to-noise ratio and resistance to distractors. Fi-
nally, two of these mechanisms lead to an inverted U
(bell-shaped) curve for the dependence of mnemonic
activity on dopamine modulation.

The first mechanism leading to an increase in the
delay-to-spontaneous activity ratio involves a decrease
in external inputs (Fig. 5). There is evidence that
dopamine reduces a dendritic high voltage-activated
Ca2+ current that amplifies EPSPs in the distal den-
drites (Yang et al., 1996). Since there is also evidence
that afferent fibers from other cortical areas termi-
nate in the upper PF cortex layers (Goldman-Rakic,
1987), it is reasonable to expect that external inputs
will be the primary targets of such an effect. In that
view, dopamine would reduce the external inputs re-
ceived by the neuron (Durstewitz et al., 1999, 2000).
We have shown, quite unexpectedly, that such a reduc-
tion would typically lead to a decrease in the sponta-
neous activity but an increase in the persistent activity.
This happens because the intrinsic network is overall
dominated by synaptic inhibition. Consequently, the
delay-to-spontaneous activity ratio is increased in a
wide range of modulation, and that delay activity would
have an inverted U, or bell-shaped, curve in response
to such a modulation. Such an effect could therefore

be a candidate for an explanation to the role of
dopamine in working memory processes.

The second mechanism found here involves an
increase in both NMDA and GABA conductances
(Fig. 7). Such a combined modulation leads to a de-
crease in spontaneous activity and an increase in delay
activity, thereby increasing the signal-to-noise ratio.
We found that if the recurrent network is dominated
by inhibition, the effect is the opposite (a reduction
of the persistent activity) if the modulation is done
locally in a single cell (Fig. 8). If this is true, then
local iontophoresis of drugs (Williams and Goldman-
Rakic, 1995) that presumably affects only a few cells
might not be adequate to probe dopamine modulation at
the network level. Some in vitro experiments indicate
that dopamine increases, at least in some concentra-
tion range, NMDA conductances in the PFC (Cepeda
et al., 1992; Zheng et al., 1999) and that this effect
is mediated by D1 receptors. A similar effect was
found in the striatum (Umemiya and Raymond, 1997;
Cepeda and Levine, 1998; but see Nicola et al., 2000).
Law-Tho et al. (1994), however, found a decrease in
NMDA conductance mediated by D1. The effects of
dopamine on GABA are also a matter of debate. Sev-
eral studies suggest that dopamine enhances the mem-
brane excitability of GABAergic interneurons (Penit-
Soria et al., 1987; Zhou and Hablitz, 1999), while
Law-Tho et al. (1994) report a decrease of GABA con-
ductances due to dopamine. Further studies are clearly
needed to resolve the debate. Our modeling study indi-
cates that a combined increase in NMDA and GABA
conductances could lead to a considerable increase in
signal-to-noise ratio, but the effect in delay activity
would be monotonous, instead of the bell-shaped curve
obtained with modulation of external inputs.

A third possible scenario that involves only the ef-
fect of dopamine D1 activation on NMDA receptors
has been proposed recently. Muly et al. (1998) pro-
posed that dopamine is effective on pyramidal cells at
lower DA concentrations than on interneurons, rais-
ing the possibility that there is a concentration range
in which NMDA conductances are substantially more
enhanced on pyramidal cells than on interneurons.
If D1 activation is too small, NMDA receptor medi-
ated excitation would be too weak to sustain persis-
tent activity; if it is too large, its action on pyramidal
cells receptors saturates and the net effect is an en-
hanced inhibition. Thus, there is an optimal range of D1
modulation, leading to bell-shaped curve for the de-
pendence of mnemonic activity on D1 modulation.
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Our model confirmed that a differential modulation of
NMDA conductances can indeed lead to an inverted-U
shaped dose-dependent curve for persistent activity. An
increase in the delay-to-spontaneous activity ratio, as
could be accomplished by D1 receptor activation, leads
to an dramatic enhancement of the network ability to
sustain working memory in the advent of intervening
stimuli (distractors). In light of this result, D1 mod-
ulation, though not strictly necessary to preserve the
memory of a cue signal, might be helpful to increase the
range of stability of the working memory states against
distractors.

Appendix: Mean-Field Analysis of a Cortical
Network Model for Object Working Memory

Mean-field analysis of networks of neurons with sim-
plified synaptic inputs have been performed by Amit
and Brunel (1997); Brunel and Sergi (1998); Brunel
(2000). In this appendix, we generalize the analysis
to networks of neurons that have conductance-based
synaptic inputs. Along the way, several difficulties will
be encountered. In some cases, these difficulties can
be solved analytically. To do this, we need to perform
some approximations whose logic and accuracy are de-
scribed in the following.

Spontaneous Activity

The starting point of the analysis is the equation for the
dynamics of a single pyramidal cell,

Cm
dV (t)

dt
= −gm(V (t) − VL)

−gAMPA,ext(V (t) − VE)

Cext∑
j=1

sAMPA,ext
j (t)

−gAMPA,rec(V (t) − VE)

×
CE∑
j=1

w j s
AMPA,rec
j (t)

− gNMDA(V (t) − VE)

1 + γ exp(−βV (t))

CE∑
j=1

wj s
NMDA
j (t)

−gGABA(V (t) − VI)

CI∑
j=1

sGABA
j (t) (1)

where most variables are defined in the Methods
section, except γ = [Mg2+]/3.57 and β = 0.062. We

assume in the following that the network is in a sta-
tionary state in which population-averaged quanti-
ties, such as population frequencies and population-
averaged synaptic currents, are constant.

In the diffusion approximation (see, e.g., Tuckwell,
1988), the sums of the synaptic variable s appearing
in the right-hand-side of Eq. (1) can be replaced by
an average DC component and a fluctuation term. In a
spontaneous activity state, the network can be reduced
functionally to two populations only, one of pyrami-
dal cells, with discharge rate νE, one of interneurons,
with discharge rate νI. The total synaptic variables of a
pyramidal cell can therefore be written

SAMPA,ext(t) ≡
Cext∑
j=1

sAMPA,ext
j (t)

= CextτAMPAνext + �SAMPA,ext(t) (2)

SAMPA,rec(t) ≡
CE∑
j=1

wj s
AMPA,rec
j (t)

= CEτAMPAνE + �SAMPA,rec(t) (3)

SNMDA(t) ≡
CE∑
j=1

wj s
NMDA
j (t)

= CEψ(νE) + �SNMDA(t) (4)

SGABA(t) ≡
CI∑
j=1

sGABA
j (t)

= CEτGABAνI + �SGABA(t), (5)

where the first term in the right-hand side of Eqs. (2) to
(5) represent the DC component of the synaptic bom-
bardment, while the second term represent the fluctua-
tions around that DC component due to random arrival
of spikes. Note that all DC components depend linearly
on the presynaptic population discharge rate, except the
NMDA component, which, due to nonlinear summa-
tion, has a nonlinear dependency in the pyramidal cell
discharge rate, described by the function ψ(ν).

Approximation 1: Fluctuations Around the Mean
Current. An approximation can be done consider-
ing the different noise terms �S in Eqs. (2) to (5).
These noise terms are complicated to treat because
each term has different temporal correlations, due to
the different synaptic time constants of the synaptic re-
ceptors. However, a simple approximation can be made
by noting that the time constant of AMPA receptors is
much smaller than that of GABA and NMDA receptors.
This means that the amplitude of the fluctuations of
the AMPA synaptic variables will be much larger than
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the fluctuations due to GABA or NMDA receptors.
Thus, we can neglect the fluctuations due to GABA and
NMDA receptors and consider only those correspond-
ing to AMPA receptors. We also neglect �SAMPA,rec(t)
since recurrent imputs are dominated by NMDA and
thus gAMPA,rec is much smaller than gAMPA,ext in all situ-
ations considered here. Thus, the only fluctuating term
remaining is �SAMPA,ext(t). This term can be consid-
ered Gaussian, with zero mean and correlation function

〈�SAMPA,ext(t)�SAMPA,ext(t
′)〉

= CextνextτAMPAexp

(
−|t − t ′|

τAMPA

)
.

With these approximations, Eq. (1) becomes

Cm
dV (t)

dt
= −gm(V (t) − VL)

− gAMPA,ext(V (t) − VE)CextτAMPAνext

− gAMPA,rec(V (t) − VE)CEτAMPAνE

− gNMDA(V (t) − VE)

1 + γ exp(−βV (t))
CEψ(νE)

− gGABA(V (t) − VI)CEτGABAνI

− gAMPA,ext(V (t) − VE)�SAMPA,ext(t).

(6)

As an additional simplification, we approximate the
voltage term by its average 〈V 〉 in the fluctuation term.

Approximation 2: Gating Variable of NMDA Chan-
nels as a Function of Presynaptic Rates. The cal-
culation of this function can be done exactly when the
input spike train is Poissonian (details can be obtained
from the authors on request). The result is

ψ(ν) = ντNMDA

1 + ντNMDA

(
1 + 1

1 + ντNMDA

×
∞∑

n=1

(−ατNMDA,rise)
nTn

(n + 1)!

)

in which ν is the presynaptic rate, τNMDA = ατNMDA,rise

τNMDA,decay, and

Tn =
n∑

k=0

(−1)k

(
n

k

)

× τNMDA,rise(1 + ντNMDA)

τNMDA,rise(1 + ντNMDA) + kτNMDA,decay
.

Figure 11. A: Time-averaged gating variable of NMDA channels
ψ(ν) as a function of presynaptic spike rate ν. B: Current-voltage
relationship of NMDA channels and linearization around mean mem-
brane potential (taken here to be −52.5 mV). The box indicates the
area where membrane potential spends most of the time. The lin-
ear current-voltage relationship is a very good approximation of the
Jahr-Stevens formula in that voltage range.

This function is plotted in Fig. 11A. This relation-
ship between the presynaptic rate and the gating vari-
able of NMDA channels is valid strictly speaking for
Poissonian input spike trains. We use nonetheless that
relationship as a first approximation in the mean-field
analysis. We expect it to be very accurate in the sponta-
neous activity state, where spike trains are very close to
Poisson, and slighlty less accurate in persistent activity
states, where variability of ISIs is smaller.

Approximation 3: Linearizing the Voltage Depen-
dence of the NMDA Conductance. The NMDA con-
ductance versus voltage relationship can be linearized
around the mean value of the voltage 〈V 〉 that will
be calculated self-consistently in the following. This
is justified if the voltage stays most of the time in a
restricted interval around the mean voltage, which is
the case in the situations considered in this article.
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Indeed, the mean voltage is typically somewhere be-
tween the reset potential at −55 mV and the thresh-
old at −50 mV, and the potential stays most of
the time between these two values. The linearization
gives

V (t) − VE

1 + γ exp(−βV (t)))
≈ V (t) − VE

J

+ β
(V (t) − 〈V 〉)(〈V 〉 − VE)(J − 1)

J 2
, (7)

where we have neglected the quadratic terms in V (t)−
〈V 〉 and defined J = 1 + γ exp(−β〈V 〉). We show in
Fig. 11B the voltage dependence of the NMDA current
together with the linearization close to the average po-
tential. It shows that the linearized form gives a good
approximation in the region of interest.

With this second set of approximations, Eq. (6) can
be simplified to

τE
dV (t)

dt
= −(V (t)−VL)+µE +σE

√
τEη(t), (8)

where

τE = Cm

gm SE
(9)

SE = 1 + TE,extνext + TE,AMPAνE

+ (ρ1 + ρ 2)ψ(νE) + TEIνI (10)

µE = (TE,extνext + TE,AMPAνE + ρ1ψ(νE))(VE − VL)

SE

+ ρ 2ψ(νE)(〈V 〉 − VL) + TEIνI(VI − VL)

SE (11)

σ 2
E = g2

AMPA,ext(〈V 〉 − VE)2Cextνextτ
2
AMPAτE

g2
mτ 2

m

(12)

〈η(t)〉 = 0 (13)

〈η(t)η(t ′)〉 = 1

τAMPA
exp

(
−|t − t ′|

τAMPA

)
(14)

TE,ext = gAMPA,extCextτAMPA

gm
(15)

TE,AMPA = gAMPA,recCEτAMPA

gm
(16)

ρ1 = gNMDACE

gm J
(17)

ρ2 = β
gNMDACE(〈V 〉 − VE)(J − 1)

gm J 2
(18)

TEI = gGABACIτGABA

gm
. (19)

τE is the effective membrane time constant. It is de-
creased compared to the bare membrane time constant
Cm/gm by the shunting factor SE due to the conductance
increase due to the various types of synaptic bombard-
ments. µE is the asymptotic value the membrane po-
tential would have in the absence of fluctuations and
in the absence of spiking. Last, σE measures the mag-
nitude of the fluctuations in the synaptic inputs. η is a
Gaussian process with an exponentially decaying cor-
relation function with time constant τAMPA. The other
factors describe the impact of the firing of the different
population to both shunting factor and µE.

The discharge rate of a cell whose potential is de-
scribed by Eq. (8) with a noise term with correlation
time τAMPA has been obtained in the limit τAMPA � τE

by Brunel and Sergi (1998). The result is

νE = φ(µE, σE), (20)

where

φ(µE, σE) =
(

τrp + τE

∫ α(µE,σE)

β(µE,σE)

× du
√

π exp(u2)[1 + erf(u)]

)−1

(21)

α(µE, σE) = (Vthr − VL − µE)

σE

(
1 + 0.5

τAMPA

τE

)

+ 1.03

√
τAMPA

τE
− 0.5

τAMPA

τE
(22)

β(µE, σE) = Vreset − VL − µE

σE
. (23)

φ describes how the discharge rate varies as a function
of parameters defining the statistical properties of the
membrane potential in presence of synptic inputs. It
can be considered as a f-I curve generalized to a noisy
situation, where µ plays the role of the average current.

The average membrane potential can be calculated
from the distribution of potentials obtained in Brunel
and Hakim, (1999). The result is

〈V 〉 = µE − (Vthr − Vreset)νEτE. (24)

Interneurons are described by similar equations, re-
placing index e by i everywhere and using the appro-
priate single-cell parameters.
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Structured Activity

In the event of persistent activity, the network of pyra-
midal cells breaks in three subpopulations: neurons se-
lective for the shown stimulus, described by an index
act; cells activated by other stimuli (+); cells activated
by none of the stimuli (0).

These populations are now described by

Sact = 1 + TE,extνext + TE,AMPAnact + (ρ1 + ρ 2)Nact + TEIνI (25)

µact = (TE,extνext + TE,AMPAnact + ρ1 Nact)VE + ρ 2 Nact〈V 〉 + TEIνIVI

Sact
(26)

S+ = 1 + TE,extνext + TE,AMPAn+ + (ρ1 + ρ 2)N+ + TEIνI (27)

µ+ = (TE,extνext + TE,AMPAn+ + ρ1 N+)VE + ρ 2 N+〈V 〉 + TEIνIVI

S+
(28)

S0 = 1 + TE,extνext + TE,AMPAνE + (ρ1 + ρ 2)NE + TEIνI (29)

µ0 = (TE,extνext + TE,AMPAνE + ρ1 NE)VE + ρ 2ψ(νE)〈V 〉 + TEIνIVI

S0
,

(30)

where

nact = f w+νact + f (p − 1)w−ν+ + (1 − f p)w−ν0
(31)

Nact = f w+ψ(νact) + f (p − 1)w−ψ(ν+)

+ (1 − f p)w−ψ(ν0) (32)

n+ = f w−νact + f (w+ + (p − 2)w−)ν+
+ (1 − f p)w−ν0 (33)

N+ = f w−ψ(νact) + f (w+ + (p − 2)w−)ψ(ν+)

+ (1 − f p)w−ψ(ν0) (34)

νE = f νact + f (p − 1)ν+ + (1 − f p)ν0 (35)

NE = f ψ(νact) + f (p − 1)ψ(ν+) + (1 − f p)ψ(ν0).

(36)

The mean frequencies in each of these three popula-
tions are given by Eqs. (20) to (23) in which the above
equations have to be inserted. As a result we get a sys-
tem of four coupled nonlinear equations to be solved
to obtain νact, ν+, ν0, and νI.

Solving Numerically the Mean-Field Equations

Firing Rates as a Function of Network Parameters.
The mean-field equations giving the firing rates in the
four neuronal populations are of the form of Eq. (20)

for each population—that is,

νact = φ(µact, σE) (37)

ν+ = φ(µ+, σE) (38)

ν0 = φ(µ0, σE) (39)

νI = φ(µI, σI), (40)

where φ, the f-I curve, is given by Eqs. (21) to (23),
the mean voltages due to synaptic inputs µ are given
by Eqs. (25) to (30), and the amplitude of the synap-
tic noise by Eq. (12). Note that the µ’s depend on all
discharge rates ν’s through Eqs. (25) to (30), while the
σ ’s also depend on the discharge rates through the mean
voltages given by Eq. (24). Thus, Eqs. (37) to (40) form
a close system of nonlinear equations to be solved to
obtain discharge rates of all populations in a stationary
state of the network.

To solve these equations, we use first-order differen-
tial equations whose fixed point solutions correspond
to the solutions of Eqs. (37) to (40):

τE
dνact

dt
= −νact + φ(µact, σE) (41)

τE
dν+
dt

= −ν+ + φ(µ+, σE) (42)

τE
dν0

dt
= −ν0 + φ(µ0, σE) (43)

τI
dνI

dt
= −νI + φ(µI, σI). (44)

Similar equations are often used in neural network
modeling for describing the dynamics of firing-rate
neurons (e.g., Wilson and Cowan, 1973).

These equations are solved by standard numerical in-
tegration techniques (Press et al., 1992), using different
initial conditions. To obtain spontaneous activity solu-
tions (νact = ν+ = ν0) we start with νact = ν+ = ν0.
To obtain working memory solutions (νact > ν+) we
start with an initial condition νact � ν+. Finally, to ob-
tain the boundaries of the basins of attraction of spon-
taneous and working memory solutions, we proceed
iteratively with νact between its spontaneous and persis-
tent activity values. For a given νact, we run the dynam-
ics of the remaining populations at fixed νact until an
equilibrium is reached (for similar considerations, see
Mascaro and Amit, 1999). Then we observe whether
the dynamics flows toward the spontaneous or persis-
tent activity fixed points. Then we find iteratively the
value of νact that limits the basins of attraction of both
states.
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Network Parameters as a Function of Firing Rates.
In the simulations, we have chosen to determine synap-
tic conductances in order for the network to have a pre-
scribed level of spontaneous activity, νE for pyramidal
cells and νI for interneurons. For example, we have cal-
culated the values of the synaptic conductances given
in the Methods section such that the network has, in its
spontaneous activity state, νE = 3 Hz and νI = 9 Hz.
Of course, there are more synaptic conductances than
spontaneous rates (8 versus 2). Thus, we need to pro-
vide additional constraints. The constraints we choose
are the following: (1) the average external excitatory
inputs are taken to be equal to the average recurrent ex-
citatory inputs; (2) the fraction of NMDA receptors in
recurrent excitatory synaptic inputs in terms of charge
entry per spike at mean voltage is fixed to 0.95; (3) the
ratio of the mean recurrent inhibition to mean recurrent
excitation is fixed, in terms of charge entry per spike
at mean voltage, to R = 3. Since there are three con-
straints for both pyramidal cells and interneurons, this
gives the needed six constraints that allows to deter-
mine the synaptic conductances. As a result of solving
the mean-field equations in this way, we obtain the pa-
rameters given in the Methods section.
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Durstewitz D, Kelc M, Güntürkun O (1999) A neurocomputational
theory of the dopaminergic modulation of working memory func-
tions. J. Neurosci. 19:2807–2822.

Durstewitz D, Seamans JK, Sejnowski TJ (2000) Dopamine-
mediated stabilization of delay-period activity in a network model
of prefrontal cortex. J. Neurophysiol. 83:1733–1750.

Egan MF, Weinberger DR (1997) Neurobiology of schizophrenia.
Curr. Opin. Neurobiol. 7:701–707.

Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding
of visual space in the monkey’s dorsolateral prefrontal cortex.
J. Neurophysiol. 61:331–349.

Fuster JM, Alexander G (1971) Neuron activity related to short-term
memory. Science 173:652–654.

Fuster JM, Jervey JP (1981) Inferotemporal neurons distinguish and
retain behaviourally relevant features of visual stimuli. Science
212:952–955.

Gabbott PLA, Bacon SJ (1996) Local circuit neurons in the medial
prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey. J. Comp.
Neurol. 364:567–636.



84 Brunel and Wang

Gellman RL, Aghajanian GK (1993) Pyramidal cells in piriform
cortex receive a convergence of inputs from monoamine activated
GABAergic interneurons. Brain Res. 600:63–73.

Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and
regulation of behavior by representational memory. In: Handbook
of Physiology: The Nervous System V. American Physiological
Society, Bethesda, MD. Chapter 9, pp. 373–417.

Goldman-Rakic PS (1994) Working memory dysfunction in schizo-
phrenia. J. Neuropsych. and Clin. Neurosci. 6:348–357.

Goldman-Rakic PS (1995) Cellular basis of working memory.
Neuron 14:477–485.

Hansel D, Mato G, Meunier C, Neltner L (1998) On numerical sim-
ulations of integrate-and-fire neural networks. Neural Comput.
10:467–483.

Hebb DO (1949) Organization of Behavior. Wiley, New York.
Hestrin S, Sah P, Nicoll R (1990) Mechanisms generating the time

course of dual component excitatory synaptic currents recorded in
hippocampal slices. Neuron 5:247–253.

Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated
macroscopic conductances predicted by single-channel kinetics.
J. Neurosci. 10:3178–3182.

Kawaguchi Y (1997) Selective cholinergic modulation of cortical
GABAergic cell subtypes. J. Neurophysiol. 78:1743–1747.

Koch KW, Fuster JM (1989) Unit activity in monkey parietal cortex
related to haptic perception and temporary memory. Exp. Brain
Res. 76:292–306.

Kubota K, Niki H (1971) Prefrontal cortical unit activity and delayed
alternation performance in monkeys. J. Neurophysiol. 34:337–
347.

Law-Tho D, Hirsch JC, Crepel F (1994) Dopamine modulation of
synaptic transmission in rat prefrontal cortex: An in vitro electro-
physiological study. Neurosci. Res. 21:151–160.
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