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The activity of neurons is correlated, and this correlation affects how the
brain processes information. We study the neural circuit mechanisms of
correlations by analyzing a network model characterized by strong and
heterogeneous interactions: excitatory input drives the fluctuations of
neural activity, which are counterbalanced by inhibitory feedback. In par-
ticular, excitatory input tends to correlate neurons, while inhibitory feed-
back reduces correlations. We demonstrate that heterogeneity of synaptic
connections is necessary for this inhibition of correlations. We calculate
statistical averages over the disordered synaptic interactions and apply
our findings to both a simple linear model and a more realistic spiking
network model. We find that correlations at zero time lag are positive and
of magnitude K− 1

2 , where K is the number of connections to a neuron.
Correlations at longer timescales are of smaller magnitude, of order K−1,
implying that inhibition of correlations occurs quickly, on a timescale of
K− 1

2 . The small magnitude of correlations agrees qualitatively with phys-
iological measurements in the cerebral cortex and basal ganglia. The
model could be used to study correlations in brain regions dominated by
recurrent inhibition, such as the striatum and globus pallidus.

1 Introduction

Simultaneous measurements of the activity of multiple neurons have shown
significant correlations, and this observation has stimulated the debate on
whether and how correlations contribute to neural computation. In prin-
ciple, correlations allow robust signal processing, because redundancies
across neurons can be exploited to separate the signal from the noise (Abbott
& Dayan, 1999; Panzeri, Schultz, Treves, & Rolls, 1999). Experimental
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studies of the cerebral cortex suggest that correlations improve decoding
of stimuli (Graf, Kohn, Jazayeri, & Movshon, 2011), but it remains unclear
whether a parsimonious decoder should rely on correlations (Averbeck &
Lee, 2003). A challenge to this hypothesis is the observation that correlations
are reduced when animal subjects are actively engaged in discrimination
(Cohen & Newsome, 2008; Cohen & Maunsell, 2009), and even when they
simply start a movement (Poulet & Petersen, 2008). In addition, neurons
with similar responses to stimuli show higher correlations (Zohary, Shadlen,
& Newsome, 1994; Lee, Port, Kruse, & Georgopoulos, 1998; Maynard et al.,
1999; Bair, Zohary, & Newsome, 2001; Constantinidis & Goldman-Rakic,
2002; Averbeck & Lee, 2003; Romo, Hernandez, Zainos, & Salinas, 2003;
Kohn & Smith, 2005; Smith & Kohn, 2008; Huang & Lisberger, 2009; Ecker
et al., 2010; Komiyama et al., 2010), implying that coding of stimuli should
be worsened by correlations (Abbott & Dayan, 1999; Panzeri et al., 1999;
Sompolinsky, Yoon, Kang, & Shamir, 2001; Wilke & Eurich, 2002; Averbeck,
Latham, & Pouget, 2006; Gutniski & Dragoi, 2008). Another caveat is that
the neural code is largely unknown, and if the noise measured in physio-
logical studies encodes some signal, then any correlation would decrease
the available information (Nadal & Parga, 1994).

Besides the possible function of correlations in signal and information
processing, their physiological causes remain unclear. It has been shown
that the correlation between nearby neurons is driven by their correlated
synaptic input (Lampl, Reichova, & Ferster, 1999; Poulet & Petersen, 2008).
However, a quantitative understanding of the circuit mechanisms regulat-
ing correlations between cortical cells is still missing, and the goal of this
study is to determine the dependence of correlations on different prop-
erties of the neural circuitry. The measured correlation between neurons
depends on different factors and varies across studies (Cohen & Kohn,
2011): it increases with the proximity of neuron pairs (Maynard et al., 1999;
Constantinidis & Goldman-Rakic, 2002; Smith & Kohn, 2008; Ecker et al.,
2010; Komiyama et al., 2010), their activity (de la Rocha, Doiron, Shea-
Brown, Josic, & Reyes, 2007), and the temporal window on which action
potentials are counted (Bair et al., 2001; Reich, Mechler, & Victor, 2001; Con-
stantinidis & Goldman-Rakic, 2002; Averbeck & Lee, 2003; Kohn & Smith,
2005; Smith & Kohn, 2008; Huang & Lisberger, 2009; Mitchell, Sundberg,
& Reynolds, 2010). Figure 1 shows the correlation measured in eight dif-
ferent studies as a function of temporal window for spike counts. Results
vary, although correlations are generally found positive and of small mag-
nitude in both the cortex and the basal ganglia (Raz, Vaadia, & Bergman,
2000).

Previous modeling studies of neural circuits have found that the mean
correlation between neurons is small, of the order of N−1, where N is
the number of neurons in the network. Small correlations have been ob-
served, not surprising, in networks characterized by weak connection
strengths (Ginzburg & Sompolinski, 1994; Bernacchia & Amit, 2007). More
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Figure 1: Mean correlation across neuron pairs plotted versus the length of
the time window used to count action potentials. Replotted from eight experi-
mental studies of the cortex (legend). Two studies provided not only the mean
correlation but also the standard deviation (inset).

surprising, the same result has been obtained in the case of strong connec-
tions, such as the high-conductance state (Destexhe, Rudolph, & Paré, 2003;
van Vreesvijk & Sompolinski, 1996), provided that the network includes a
strong inhibitory feedback (Renart et al., 2010; Hertz, 2010; Tetzlaff, Helias,
Einevoll, & Diesmann, 2012). Here we provide an analytical study of cor-
relations in a simple linear model, and we apply our findings to predict
correlations in a more realistic spiking network model. We confirm both
the observed small correlation and the crucial effect of the inhibitory feed-
back in reducing it. In addition, we study the effect of the heterogeneity of
connection strengths by using random matrix theory and a diagrammatic
formalism, and we show that inhibition of correlations crucially depends on
such heterogeneity. The model can be compared to brain regions dominated
by recurrent inhibition, such as the striatum and globus pallidus.

We find that correlations at zero time lag are of magnitude K− 1
2 , where

K is number of connections received by a neuron, while correlations of the
activity integrated across time are of order K−1, suggesting that inhibition
of correlations operates on a timescale of K− 1

2 . These results are consistent
with previous modeling studies, suggesting that a linear approximation is
adequate to predict correlations in more realistic spiking models (Renart
et al., 2010). In addition, our findings highlight the difference between the
effect of the number of neurons N versus the number of connections K on
correlations. The small correlations predicted by this and previous modeling
studies qualitatively match the small correlations observed in neurons of
the cerebral cortex and basal ganglia.
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2 Methods

We consider both a linear model and a more realistic spiking network model.
In both models, we consider a neural circuit of N neurons, receiving input
from Next external neurons, where each neuron integrates the signal from
other neurons weighted by the synaptic connection strength.

The dynamics of the linear model is described by

τ
dxi(t)

dt
= −xi(t) +

N∑
j=1

Gi jx j(t) +
Next∑
j=1

Gext
i j xext

j (t), (2.1)

where xi is the activity of neuron i in the local circuit and Gij is the strength
of the synaptic connection from neuron j to neuron i. The external (feedfor-
ward) input to the circuit is provided by the activities xext

j , and the synaptic
connection from the jth external neuron to the ith local neuron is given by
the strength Gext

i j . All neuronal activities evolve in time, while the connec-
tivity matrices G and Gext are fixed.

We define the average number of local connections received by a neuron
as K and the external connections as Kext. We assume that the connectivity
matrices are random, which makes the network akin to a disordered system,
characterized by a random but fixed substrate. We consider two scenarios,
represented schematically in Figures 2a and 2b:

1. The network is fully connected (K = N, Kext = Next) with random
connection strengths (all-to-all; see Figure 2a), characterized by a
gaussian distribution. The mean and variance of matrix elements are
determined by the parameters g and λ for the local connections and
gext and λext for the external connections:

〈
Gi j

〉 = −g/
√

N
〈
�G2

i j

〉 = λ2/N, (2.2)〈
Gext

i j

〉 = gext/
√

Next

〈
�Gext

i j
2〉 = λ2

ext/Next . (2.3)

2. The network is sparse; only a fraction of connections exists (k = K/N,
kext = Kext/Next), and the others are set to zero (sparse; see Figure
2b). Connections are selected at random but of constant strength,
equal to −g/

√
K for recurrent connections and gext/

√
Kext for external

connections. The distribution is Bernouillian. The mean and variance
of matrix elements are

〈Gi j〉 = −kg/
√

K
〈
�G2

i j

〉 = k(1 − k)g2/K (2.4)〈
Gext

i j

〉 = kextgext/
√

Kext

〈
�Gext

i j
2〉 = kext (1 − kext )g

2
ext/Kext . (2.5)
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Figure 2: Scheme of the network and distribution of activity and correlations.
We study two network architectures: (a) all-to-all connectivity with random
strengths and (b) sparse random connections of fixed strength. Connection
strength is illustrated by the thickness of edges. The distribution of activity
across neurons (c, d) and the distribution of correlations across neuron pairs
(e, f) are gaussian for both types of networks (c,e for the all-to-all network and d,f
for the sparse network). The parameters used are g = gext = 1, xext = �x2

ext = 1,
Kext = K. For the all-to-all network, K = 1000, λext = 1, λ = 1/

√
2. For the sparse

network, K = 880 and kext = k = 1/2, which correspond to λ = λext = 1/
√

2.

Angular brackets denote average over the matrix distribution, and �

indicates variation around the mean. We adopt a single notation for either
case, all-to-all or sparse network, by defining the mean and variance of
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matrix elements and their scaling with K, N:

〈Gi j〉 = −kg/
√

K
〈
�G2

i j

〉 = λ2/N (2.6)

〈
Gext

i j

〉 = kextgext/
√

Kext

〈
�Gext

i j
2〉 = λ2

ext/Next . (2.7)

In the all-to-all network, k = 1 and K = N. In the sparse network, for
convenience of notation, we use the parameters λ2 = g2(1 − k) and λ2

ext =
g2

ext (1 − kext ). The mean connection is negative for G (inhibitory) and positive
for Gext (excitatory), since g and gext are positive. Note that the connections
are strong in the sense that the magnitude of the excitatory and inhibitory
input to each neuron, which is of order

√
K, is much larger than their sum

(which is of order one; see section 3).
Theoretical analysis also considers the case in which local connections

can be either excitatory or inhibitory, with two separate populations of
excitatory and inhibitory neurons. In general, the analysis considers the
case in which the mean and variance of the synaptic strength depend on
the presynaptic neuron. We discuss in appendix B that all theoretical results
hold provided that the parameters g and λ2 are substituted by the means
across presynaptic neurons. However, we do not show results of simulations
for that case since that is outside the scope of this letter.

We assume that the external activity xext (t) is a stochastic process un-
correlated in both space and time, that is, a white noise characterized by
mean xext

i (t) = xext and covariance �xext
i (t)�xext

j (t′) = �x2
extδi jδ(t − t′) (the

overbar denotes the average over different realizations of the noise, and δ

denotes either the discrete Kronecker or continuous Dirac function). There-
fore, equation 2.1 corresponds to a Ornstein-Uhlenbeck stochastic process
(Gardiner, 1985).

We test theoretical results by running numerical computer simulations
of the linear model. We simulate the dynamics of equation 2.1 with a sim-
ple Euler integration method, where each simulation runs for 200,000 time
steps and each time step is 0.002 τ . For each set of parameter values, we
use a single realization of the external input noise and a single realization
of the random connectivity matrix. Since a simulation runs for a long time
and the network is composed of a large number of neurons, we do not
expect those specific realizations to affect the results significantly (in other
words, we expect the system to be ergodic and self-averaging). We calculate
sample mean and covariance by averaging across all time steps of a sim-
ulation. The correlation is calculated for each neuron pair by the standard
Pearson’s formula. Finally, we calculate the spatial mean and variance of
those quantities across neurons (for the temporal mean) or across neuron
pairs (for the covariance and correlation). We also use a semianalytic control
by applying the spatial mean and variance on, instead of the full simula-
tion, the theoretical results following the average over temporal noise but
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preceding the average over spatial noise, namely, equations A.3 and A.9.
The corresponding results are represented by filled symbols in the figures,
while results of the full simulations are represented by open symbols.

The spiking network is defined by a current-based integrate-and-fire
model. Its dynamics is described by the equations

τ
dIi(t)

dt
= −Ii(t) +

N∑
j=1

Gi jS j(t) +
Next∑
j=1

Gext
i j Sext

j (t), (2.8)

Cm
dVi(t)

dt
= −gm(Vi(t) − VL) + Ii(t). (2.9)

These equations are integrated using a simple Euler method with a time
step dt = 0.02 ms. Equation 2.8 is similar to equation 2.1 of the linear model
and describes the dynamics of the total current Ii received by neuron i—
both the external excitatory and the recurrent inhibitory input (both types
of input are integrated according to the same time constant τ ). The matrices
describing the synaptic strengths, G and Gext, are defined in the same way
as in the case of the linear model, in the fully connected case (see equations
2.2 and 2.3), although in the spiking model, those matrices are given in
units of 8 nA·ms. In those units, the parameters are g = 1, λ = 0.5, gext = 1,
λext = 0.58. The variable Si(t) describes whether neuron i emits an action
potential at time t or not, respectively, Si(t) = 1/dt or Si(t) = 0. Equation
2.9 describes the dynamics of the membrane potential Vi of neuron i, which
integrates linearly the total current according to the capacitance Cm and
conductance gm of the membrane, where VL is the resting potential. If the
membrane potential Vi exceeds the threshold potential Vth at time t, it is set
to the reset potential Vrs and an action potential is emitted (Si(t) = 1/dt).
The variable Sext

j (t) describes the action potentials emitted by the external
neurons. Their activity is modeled by a Poisson process characterized by
an emission rate φext , which is constant in time and equal for all external
neurons. Parameters used in simulations are τ = 10 ms, Vth = −50 mV,
Vrs = −70 mV, VL = −70 mV, φext = 50 Hz, Cm = 0.4 nF, and gm = 20 nS (the
time constant of the membrane potential is Cm/gm = 20 ms).

We run 20 s simulations for different values of the network size, from
N = 50 to N = 1000, with all other parameters fixed, each simulating 20 s of
network activity (106 time steps). For a given network size, N = 200, we run
additional five simulations at different values of the external input, from
φext = 45 Hz to φext = 55 Hz. We use those five simulations to determine the
change of the total current as a function to the change in φext . This change is
approximately linear and is quantified in terms of the four statistics studied
in this work; the mean, the spatial variance, the temporal variance, and the
covariance (see equations 3.1, 3.2, 3.4, and 3.5). All statistics are calculated
with respect to the currents measured at the reference external input, φext =
50 Hz. For example, the spatial variance is calculated by recording the
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steady current for each neuron at the reference value and looking at the
distribution across neurons of the difference between the reference current
and the steady currents measured for the other values of the external input.
Linear regression is applied to fit the linear change of the four statistics as
a function of the external input, and the effective parameters (g, λ, gext, λext)
are determined by inverting the equations of the four statistics given by
the linear model—equations 3.1, 3.2, 3.4, and 3.5—where xext and �x2

ext
are the mean and variance of the change in external rate (xext = (φext −
50 Hz) and �x2

ext = (φext − 50 Hz)/τ ). The effective parameters are used in
equation 3.6 to predict correlations in the spiking model at variable network
size.

3 Results

We study neural activity and correlations among neurons in a heteroge-
neous neural circuit model. Local recurrent connections are dominated by
inhibition, while external feedforward projections are excitatory. Results
are shown for a simple linear model, and at the end of the section, we
also include simulations of a more realistic spiking network model. For the
linear model we show the results of both theory and simulations, and we
conclude by showing that the theory developed for the simple linear model
can be used to predict correlations in the spiking network.

We consider two types of circuits: all-to-all connectivity with random
strengths (see Figure 2a) and sparse random connections of fixed strengths
(see Figure 2b). Results are displayed in a single notation for either case
(see section 2). Figures 2c and 2d show the distribution of activity across
neurons, and Figures 2e and 2f shows the distribution of correlations across
neuron pairs. The purpose of this work is to describe how the mean and
variance of those distributions depend on the parameters of the neural
circuit. The activity values x are interpreted as deviations from a steady state
of the input currents to each neuron, around which the neural dynamics
is approximately linear. If we denote the steady current as I0, the input
current is equal to I = I0 + x. As long as the linear approximation is valid,
the correlations observed in the model are insensitive to the nature of the
steady state (i.e., to the value of I0).

Due to the linearity of the model, all quantities of interests can be simply
calculated. The novel contribution of this work is averaging those quantities
over the randomness of the connectivity matrix. Because connections are
heterogeneous, different neurons have a different activity, and we compute
the sample mean across neurons in order to obtain the spatial average. If the
number of neurons N is large, this is independent of the specific realization
of the connectivity; therefore we perform its average over the distribution
of connections, and we obtain (see equation A.5 in appendix A; angular
brackets denote averaging over the random connectivity, overline denotes



1740 A. Bernacchia and X.-J. Wang

temporal average)

〈x〉 =
〈

1
N

N∑
i=1

xi

〉
= gext

√
Kext

1 + g
√

K
xext . (3.1)

The numerator of this expression is equal to the mean excitatory input
received by a neuron, gext

√
Kext xext , while the denominator expresses the

recurrent inhibition, whose total postsynaptic strength is g
√

K. Therefore,
the strong recurrent inhibition counterbalances the large excitatory input
and determines a relatively low activity, regardless of the network size.
Note that the numbers of local and external connections, K and Kext, are
both large, but they tend to balance in the expression above. Figure 3a
shows an example of mean activity as a function of the number of connec-
tions. The mean activity is rather insensitive to the number of connections,
which are taken equal to the external ones in each simulation (K = Kext).
The analytical result, equation 3.1, agrees with numerical simulations of the
linear dynamics in both the all-to-all and the sparse networks.

Different neurons have different connections and therefore different ac-
tivity, and the extent to which the activity varies from neuron to neuron
is determined by the spatial variance. We calculate this quantity by tak-
ing the sample variance across neurons and averaging over the random
connectivity, and we obtain (see equation A.8)

〈�x2〉 =
〈

1
N

N∑
i=1

�xi
2

〉
= 1

1 − λ2

[〈x〉2λ2 + x2
extλ

2
ext

]
. (3.2)

The spatial variance of neural activity increases with the network hetero-
geneity, expressed by λ and λext for, respectively, the recurrent and external
connections. Increasing the heterogeneity of connections increases the dif-
ferences in the total input between neurons and therefore in their activities.
The spatial variance is also proportional to the mean activity, local 〈x〉 and
external xext . Furthermore, increasing the heterogeneity of recurrent connec-
tions leads to a divergence of the spatial variance, when λ2 approaches one.
In this case the state x = 0 destabilizes, and the linear approximation fails
(see appendix A). Figure 3b shows an example of the spatial variance as a
function of the variability of the recurrent connections. The analytical result,
equation 3.2, agrees with numerical simulations of the linear dynamics in
both the all-to-all and the sparse networks.

After looking at the mean and spatial variability of neural activity, we
turn to the main theme of our work, the analysis of temporal variability
and correlations. The activity of each neuron fluctuates in time due to the
fluctuating input, and those temporal fluctuations may be correlated since
different neurons receive shared input. We study temporal variability and
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Figure 3: The mean activity has a mild dependence on the number of connec-
tions K (a). Its standard deviation (SD) strongly depends on the heterogeneity
of connections λ (b). Analytical results (lines) are obtained from equation 3.1 in
panel a and equation 3.2 in panel b. Simulation results are shown for the all-
to-all (circles) and sparse (triangles) network. Open symbols show simulations
of the neural dynamics, equation 2.1. Filled symbols show numerical evalu-
ation of equation A.3. The parameters used are, in both panels, g = gext = 1,
xext = �x2

ext = 1. In panel b, Kext = K = 500. For the all-to-all network, λext = 1
and λ = 1/

√
2 in panel a. For the sparse network: kext = k = 1/2 in panel a (which

correspond to λ = λext = 1/
√

2), while kext = k is varied in panel b according to
the value of λ (see section 2).

correlated fluctuations by calculating the covariance matrix, in particular
the instantaneous covariance, at zero time lag. This is defined as

Qi j = �xi�x j. (3.3)
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First, we look at the on-diagonal elements of this matrix, which are the
temporal variances of different neurons. To determine the average temporal
variance, we take the sample mean across neurons and we average over the
random connectivity, obtaining (see equation A.12)

〈�x2〉 =
〈

1
N

N∑
i=1

Qii

〉
= �x2

ext

2

[
kextg

2
ext

1 + g
√

K
ξ + λ2

ext√
1 − λ2

]
. (3.4)

The temporal variance of neural activity is the sum of two pieces: the first
term decreases with the number of connections as K−1/2, while the second
term remains finite (the factor ξ is close to one; see equation A.13). The
first term indicates that recurrent inhibition (g) reduces temporal fluctua-
tions. In fact, the inhibitory feedback not only reduces the mean activity
(see equation 3.1), but also cuts down fluctuations by quickly counterbal-
ancing the external excitatory input. This can be verified by calculating the
instantaneous covariance between the external excitatory and the local in-
hibitory input, which is found large and negative, equal to −kextg

2
extg

√
K.

The second term implies that nonzero fluctuations arise even in large net-
works (large K), and inhibition cannot exert an instantaneous and exact
balance for each neuron. However, fluctuations nearly vanish if the exter-
nal input is homogeneous (λext = 0), in which case the inhibitory feedback
would definitively counterbalance the homogeneous drive. Furthermore,
as in the case of spatial fluctuations, temporal fluctuations increase with
the heterogeneity of connections, recurrent (λ) and external (λext). Tempo-
ral fluctuations diverge when the network approaches the instability point,
when the linear approximation fails (λ → 1).

How much of the total variance, expressed in equation 3.4, is indepen-
dent rather than shared between neurons? To answer this question, we
calculate the average covariance, by looking at the off-diagonal elements of
the covariance matrix, the pairwise covariances. We take the sample mean
across neuron pairs and average over the random connectivity to obtain the
average covariance (see equation A.14),

〈�x′�x′′〉 =
〈

1
N(N − 1)

1,N∑
i �= j

Qi j

〉
= �x2

ext

2
kextg

2
ext

1 + g
√

K
. (3.5)

Notably, this is proportional to the first term in the total variance,
equation 3.4, by a factor close to one (ξ 	 1; see equation A.13), implying
that the two terms in the total variance express, respectively, the correlated
and uncorrelated fluctuations. Therefore, while the uncorrelated variance
remains finite for large K, the correlated variance vanishes. The activities of
neuron pairs tend to covary due to their shared external input, but the re-
current inhibition makes the covariance small, of order K−1/2. In the sparse
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network, the covariance vanishes if the probability of external connections
is small (kext → 0), since the shared external input between neurons tends
to zero in that case. In the all-to-all network, the mean covariance vanishes
if the mean input connection is zero (gext = 0). In that case, even if neurons
receive a shared external input, neuron pairs may weight different inputs
with the same or opposite signs, leading to, respectively, positive or nega-
tive covariance. Therefore, while the mean covariance across neuron pairs
is zero, the covariance of single pairs may be positive or negative.

The mean correlation is obtained by dividing the covariance,
equation 3.5, by the variance, equation 3.4 (we assume that variance and
covariance are independent):

〈R〉 = 〈�x′�x′′〉
〈�x2〉

= 1

ξ + λ2
ext√

1−λ2

(1+g
√

K)

kext g
2
ext

. (3.6)

This expression is positive and never exceeds one. It indicates that the mean
correlation is small, of order K−1/2, despite the strong and shared excitatory
input between neurons. However, this result holds only in presence of the
local recurrent inhibition (g > 0) and provided that external connections
are heterogeneous (λ2

ext �= 0). Heterogeneity of local connections (λ) also
contributes in decreasing the correlation.

Therefore, the inhibitory feedback and the random connectivity are re-
sponsible for the small correlation. If the inhibitory feedback is removed,
g = 0, the correlation becomes large. If the network heterogeneity is re-
moved, λ = λext = 0, the correlation is equal to one, because the network
is homogeneous and all neurons get the same input (ξ = 1 when λ = 0;
see equation A.13). Figure 4 shows an example of the mean correlation as
a function of the number of connections and the heterogeneity of the net-
work. The analytical result, equation 3.6, agrees with numerical simulations
of the linear dynamics in both the all-to-all and the sparse network. Insets
in Figure 4 show the standard deviation of correlations, which appear to
decrease with the number of connections as K−1/2 and to increase with the
heterogeneity of the network.

The final issue that we address is the timescale of correlations. Neural ac-
tivity integrates the input on multiple timescales because of the large num-
ber of neurons and the heterogeneity of their connections. Which timescales
are responsible for correlations? What correlations characterize the activity
integrated in time? Note that the mean correlation in equation 3.6 and Fig-
ure 4 is the correlation at zero lag; the instantaneous correlation. We inves-
tigate the timescale of correlations in Figure 5, where the cross-correlation
of neural activity is shown at different time lags. The correlation has a peak
at zero lag and shows an exponential decay in time. As we have shown in
Figure 4, the correlation at zero lag decreases with the number of connec-
tions as K−1/2. Figure 5 shows that the timescale of correlation, determining



1744 A. Bernacchia and X.-J. Wang

Figure 4: The mean correlation in the activity between neuron pairs decreases
with the number of connections K (a) and their heterogeneity λ (b); standard
deviation (SD) is shown in the insets. Analytical results (lines) are obtained from
equation 3.6. Simulation results are shown for the all-to-all (circles) and sparse
(triangles) network. Open symbols show simulations of the neural dynamics,
equation 2.1. Filled symbols show the numerical evaluation of equation A.9.
The parameters used are, in both panels, g = gext = 1, xext = �x2

ext = 1. In panel
b, Kext = K = 500. For the all-to-all network, λext = 1, and λ = 1/

√
2 in panel a.

For the sparse network, kext = k = 1/2 in panel a, which correspond to λ = λext =
1/

√
2, while kext = k is varied in panel b according to the value of λ (see section 2).

its rate of decay, also decreases with the number of connections. In fact,
we show in appendix A that the integrated correlation across all time lags,
namely, the total area of the cross-correlation, is of magnitude K−1. Since the
total area is approximately equal to correlation peak times temporal width,
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Figure 5: Both peak and width of the mean cross-correlation decrease with
the number of connections K. The plot shows the cross-correlation as a
function of time lag. Different curves, from top to bottom, correspond to
K = 100, 156, 278, 625 in the all-to-all network. Consistent with Figure 4, the
correlation at zero lag decreases with K. This plot shows that the temporal
width of the cross-correlation also decreases with K. Red lines: Simulations of
neural dynamics. Blue lines: Numerical evaluation of equation A.16. Parame-
ters: g = 0.5, gext = 1, xext = �x2

ext = 1, λext = 1, λ = 1/
√

2.

the temporal width is of order K−1/2. Therefore, inhibition decorrelates on
a fast timescale, and integrating neural activity, even for a relatively short
time, has the effect of further decreasing the magnitude of correlations (see
equation A.22).

It is worth noting that while in other studies, the results are often de-
scribed in terms of the number of neurons N, here both N and the number
of connections K play a role. For the sparse network, it is interesting to
note that all the above results depend on the number of neurons N only
through the parameter λ2 = g2(1 − K/N), because N affects the sparsity of
connections and therefore also their variance. The order of magnitude of
correlations K− 1

2 holds regardless of the number of neurons, which may
be taken even infinite for any fixed value of K. However, the dependence
of correlations on the heterogeneity λ, and therefore N, may be quite sub-
stantial. Figure 6 shows how the mean correlation varies as a function of
either K or N: for a relatively weak inhibition, the mean correlation depends
mostly on the number of connections K, while for stronger inhibition, the
mean correlation depends mostly on the number of neurons N.

3.1 Spiking Network Simulations. We tested the predictions of the
linear model in a more realistic spiking network, described by a current-
based integrate-and-fire model (see section 2). The spiking network is
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Figure 6: The mean correlation depends primarily on the number of connec-
tions K (a) or the number of neurons N (b) depending on the strength of inhi-
bition. If inhibition is weak (g = 0.5), correlations depend mostly on K, while
if inhibition is stronger (g = 1), correlations depend mostly on N. Analytical
results (lines) are obtained from equation 3.6. Filled symbols show the numer-
ical evaluation of equation A.9 for the sparse network. (a) N = 1000. (b) K =
100. Other parameter values are: gext = g = value in figure, xext = �x2

ext = 1,
Next = 1000, Kext = 500, kext = 0.5. The values of λ and λext vary according to the
values of k, ρ, and ρext (see section 2).

characterized by the nonlinear dynamics inherent in the generation of action
potentials. However, we tested the hypothesis that this nonlinear system,
when displaying small fluctuations around a steady state, may be approx-
imated by a linear system and therefore by the equations derived in the
previous section. Figure 7 shows the dynamics of an example neuron’s
input current and membrane potential, and spike times (rasters) of that
neuron and other neurons from the spiking network. Simulation results re-
produce qualitatively the phenomenology observed in the cerebral cortex.
Since the input current puts neurons close to the firing threshold, neurons
are susceptible to noise and fire irregularly, with noisy spike emission times
(Shadlen & Newsome, 1998). The distribution of firing rates across neurons
is broad, with a higher proportion of neurons displaying low firing rates
(Baddeley et al., 1997; Hromadka, DeWeese, & Zador, 2008).

Our goal is not to provide a formal theory for the linear approximation of
a spiking model. Instead, we show the results of a quantitative comparison
of the two models, and we briefly summarize the theoretical arguments
underlying this comparison. Since all results of the linear model are stated
in terms of the mean and variance of the synaptic matrix, we hypothesize
that the linear response of the spiking network can be described by an
effective set of synaptic parameters g, λ, gext, λext . For a given network size
(N = 200), we probed the response of the spiking network to small changes
in the external input, and we used these linear responses to fit the effective
parameters of the connectivity. Then we used these parameters to predict
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Figure 7: Example of dynamics in the spiking network simulation. (Top) Dy-
namics of the total input current (excitatory and inhibitory) to one neuron, in
a time span of 1 second. (Middle) Dynamics of the membrane potential in the
same neuron and temporal window. In the integrate-and-fire model, action po-
tentials are instantaneous and of arbitrary size. (Bottom) Spike times (rasters)
of 20 example neurons. Each row represents one neuron, and each tick rep-
resents one action potential for the corresponding neuron. The neuron in the
top row corresponds to the neuron depicted in the top and middle part of the
figure. Parameters used in simulations are τ = 10 ms, Vth = −50 mV, Vrs = −70
mV, VL = −70 mV, φext = 50 Hz, C = 0.4 nF, g = 20 nS. Synaptic parameters are
g = 1, λ = 0.5, gext = 1, λext = 0.58 (in units of 8 nA·ms).

the mean correlation across a wide range of network sizes (from N = 50 to
N = 1000), without fitting any additional parameter.

Figures 8a to 8d shows the change in the total current (excitatory and in-
hibitory) as a consequence of the change in the external input rate. This
change is approximately linear. The figure shows four statistics of the
current: the change in mean current (see Figure 8a), spatial variance (see
Figure 8b), temporal variance (see Figure 8c), and covariance (see Figure 8d).
In the linear model, those quantities are calculated, respectively, in
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Figure 8: Linear response of the spiking network to external input at fixed
N = 200 and correlations predicted from the linear response at variable net-
work sizes from N = 50 to 1000. Four statistics of the current are presented:
mean current (top left), spatial variance (top right), temporal variance (middle
left), and covariance (middle right). Linear regression is used in the panels
in the top and middle rows to fit effective parameters and predict correla-
tions at variable network sizes in the panel in the bottom row. Circles: spiking
network simulations; lines: linear regression fit and analytical prediction of
correlation.

equations 3.1, 3.2, 3.4, and 3.5, where xext corresponds to the change in
external input rate. We use linear regression to fit the slopes in Figures 8a to
8d and invert the equations of the linear model to obtain the effective values
of the parameters of the connectivity (see section 2). The fitted values are
g = 2.44, λ = 0.54, gext = 1.99, λext = 0.55, to be compared with those used
to generate the synaptic matrices in the spiking model (see section 2; g = 1,
λ = 0.5, gext = 1, λext = 0.58 in units of 8 nA·ms). Then we use these values
to predict the mean correlation across a wide range of network sizes by
using the formula for the linear model, equation 3.6. The result is plotted in
Figure 8e, showing a remarkable agreement with theory. The fact that the
theory provides a good fit for N = 200 is obvious, since parameters are fit
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at that specific network size (although in a different simulation). However,
the good fit across a wide range of network sizes suggests that equations of
the linear model provide a good instrument to probe spiking networks.

The theoretical arguments underlying the above analysis are based on
the dynamics of the total current integrated by the membrane potential of
a neuron—both the inhibitory recurrent and the excitatory external current
(see Figure 7 top). This dynamics is described by equation 2.8 in section 2,
which is similar to the equation describing the linear system, equation 2.1.
In the spiking network, the external stimulus is characterized by a sum
over Next independent Poisson spike trains weighted by the matrix Gext. If
Next is large enough, this is approximately equal to a gaussian white noise
process (Amit & Tsodyks, 1991) and therefore is equivalent to the external
input of the linear model. The main difference between the linear and spik-
ing model is the input from neurons in the recurrent network, determined
by the spike trains Si(t). Those spike trains are nonlinear and noninstanta-
neous functions of the input currents and also provide an additional source
of noise due to the discrete spike times. Nevertheless, we found that the
parameters of an effective linear system, determined by the linear response
of the spiking network, are able to well predict the correlations.

4 Discussion

We found that inhibitory feedback and heterogeneous connections have im-
portant effects on the dynamics of the activity in a neural circuit. The strong
excitatory input, shared between neurons, tends to drive the network to a
highly active and correlated state. The inhibitory feedback is responsible for
balancing the network activity and also for reducing temporal fluctuations,
in particular, the correlated fluctuations across neurons. The heterogeneity
of couplings plays a crucial role in reducing correlations, since homoge-
neous connections would determine homogeneous and therefore highly
correlated activity. As a consequence, the observed mean correlation is pos-
itive and of small magnitude. The fact that mean correlation is positive
is obvious, since neurons in a large population cannot be anticorrelated
on average.1 What is not obvious is that the mean correlation is of small
magnitude.

1The mean correlation must be larger than − 1
N−1 ; therefore, it must be nonnega-

tive in infinitely large populations. Proof: Any covariance matrix Q is positive definite;
therefore h†Qh > 0 for any vector h. If we choose hi = 1/

√
Qii and define the correlation

matrix Ri j = Qi j/
√

QiiQ j j , we have that
∑

i j Ri j = N + N(N − 1)〈R〉 > 0. Therefore the

mean correlation must be 〈R〉 > − 1
N−1 . Tighter bounds on the mean correlation can be

obtained by using λmin ≤ h†Qh/|h|2 ≤ λmax, where λmin and λmax are, respectively, the
minimum and maximum eigenvalue of Q. This implies (λmin/λmax − 1)/(N − 1) ≤ 〈R〉 ≤
(λmax/λmin − 1)/(N − 1).
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The main contribution of our work is an analytical calculation of the
effect of heterogeneity on correlations in terms of random connectivity or
random synaptic strengths. In the presence of heterogeneous connections
and inhibitory feedback, the mean correlation at zero time lag is small, and
it decreases with the number of connections as K− 1

2 . The mean correlation
integrated on large timescales is even smaller, of order K−1, indicating that
inhibition downsizes correlations on a timescale of K− 1

2 . Other modeling
studies have addressed the issue of correlations in neural circuits. In previ-
ous studies (Ginzburg & Sompolinski, 1994; Hertz, 2010; Renart et al., 2010;
Tetzlaff et al., 2012), the mean correlation was found to decrease with the
number of neurons as N−1. Ginzburg and Sompolinski (1994) and Hertz
(2010) studied a network in which connections strengths are of order N−1,
which implies a weak interaction between neurons and therefore a weak
correlation. More surprisingly, Renart et al. (2010) and Tetzlaff et al. (2012)
found weak correlations even in the case of strong interactions, with con-
nection strengths of order N−1/2. Both studies found a mean correlation
of magnitude N−1, provided that the correlation is integrated across large
temporal windows. However, Renart et al. (2010) show that the mean cor-
relation at zero time lag of membrane currents is of magnitude N−1/2. These
results are consistent with our findings (compare Figure 5 with Figure 2E
of Renart et al., 2010, and Figure 3D of Tetzlaff et al., 2012). However, we
highlight a potential difference by noting that the main parameter affecting
correlations may be the number of connections K rather than the number
of neurons N. The exclusive contribution of these two parameters has not
been studied in detail in previous studies, and we have shown that it may
depend on the network regime.

We also studied a more realistic spiking network model, and we con-
fronted the analytical solutions of the linear model with the simulations of
the nonlinear spiking model. We looked at small, linear changes in the cur-
rent as a function of changes in the external firing rate input to the spiking
network and computed the effective parameters of the linear model able to
explain those changes. We found that those effective linearized parameters
are able to predict correlations accurately even when changing the network
size significantly. This suggests that the linear approximation is adequate
for studying correlations. We did not consider the problem of a complete
linear theory of spiking models, which would address the issues of comput-
ing the linearized kernel and the effective interaction matrix. Those issues
have been studied, for example, in Lindner, Doiron, and Longtin (2005),
Trousdale, Hu, Shea-Brown, and Kresimir (2012), and Tetzlaff et al. (2012).

The small mean correlation observed in our study and previous mod-
eling studies agrees qualitatively with the experimental observations. The
model may be useful to investigate correlations in different brain areas,
especially those dominated by inhibition, such as the striatum and globus
pallidus. Interestingly, large correlations between pallidal neurons have
been shown to be correlated with Parkinsonism (Raz et al., 2000; Wilson,
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Beverlin, & Netoff, 2011). The model is also consistent with the strong
anticorrelations between excitatory and inhibitory inputs observed experi-
mentally (Okun & Lampl, 2008; Cafaro & Rieke, 2010; Salinas & Sejnowski,
2000). However, different experimental studies report quantitative differ-
ences in measured correlations. For example, correlations depend on the
temporal window on which action potentials are counted to determine a
neuron’s firing rate (see Figure 1). While neural dynamics occurs on a vari-
ety of timescales in our model,2 as well as in real neurons (Bernacchia, Seo,
Lee, & Wang, 2011), additional modeling studies are necessary to capture
the wide range of phenomena observed in the experimental measures of
correlations, including the effects of distance between neurons, multiple
timescales and firing activity (Cohen & Kohn, 2011).

Appendix A: Statistics of Random Networks

In this section, we calculate the averages of neural activity and correlations
with respect to both temporal fluctuations (noise) and the spatial variability
of the connection strengths (disorder). Due to the linearity of the model, all
quantities of interests can be simply calculated. The novel contribution of
this work is averaging those quantities over the randomness of the connec-
tivity matrix. The equation of dynamics, equation 2.1, can be expressed in
matrix form (the time constant of temporal evolution τ is set to 1):

dx(t)
dt

= (G − I)x(t) + Gextxext (t), (A.1)

where x is the vector of local neural activities, xext is the vector of exter-
nal neural activities, the matrices G (of size N × N) and Gext (size N × Next)
express respectively the recurrent connections and the feedforward projec-
tions, and I is the identity matrix. The equation of dynamics is linear and,
given the interaction matrices G, Gext and the input signal xext , the neural
activity can be expressed as a sum over the external input weighted by an

2Since the dynamics is linear (see equation A.1), the timescales of the network are
determined by the eigenvalues of the matrix (I − G). A random matrix with gaussian
and independent elements has eigenvalues distributed uniformly in a circle in the com-
plex plane centered at 0 and of radius λ (where its elements have variance λ2/N; see
Gudowska-Nowak, Janik, Jurkiewicz, & Nowak, 2003). One isolated eigenvalue is found
approximately at mN, where m is the mean of the elements of the matrix and N is its
dimension. Finally, the identity matrix translates all eigenvalues by one. Therefore, the
eigenvalues of (I − G) are contained in a circle centered at 1 and of radius λ, with one
additional eigenvalue approximately equal to 1 + g

√
K. Timescales, in units of τ , are equal

to the inverse of those eigenvalues; therefore, the fastest timescale is equal to 1/(1 + g
√

K),
while the remaining timescales are between (1 + λ)−1 and (1 − λ)−1.
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exponential temporal decay,

x(t) =
∫ t

−∞
dt′e(G−I)(t−t′ )Gextxext (t

′) =
∫ +∞

0
dt′e(G−I)t′

Gextxext (t − t′). (A.2)

We assumed that initial conditions have decayed and that the inequality
λ < 1 holds, to prevent network activity from growing in time without
bounds. In the limit of large N, the real part of the eigenvalues of G is
bounded by λ (Gudowska-Nowak et al., 2003). Therefore, if λ ≥ 1, some
eigenvalues of (G − I) have a nonnegative real part, and the integral does
not converge. This corresponds to an unstable fixed point at x = 0, and
network activity grows in time without bounds.

We start by calculating the mean neural activity. We perform the tem-
poral average of the above expression; therefore, we substitute the external
activity xext (t) with its average xext , and we perform the integral, obtaining
(temporal average is denoted by overbar)

x = xext (I − G)−1Gext1, (A.3)

where the vector 1 has all Next components equal to one. Because the matri-
ces of connection strengths are heterogeneous, G and Gext, different neurons
have a different mean activity. In order to calculate the spatially averaged
activity, we compute the sample mean across neurons. For large N, this is
independent of the specific realization of the spatial disorder; therefore, we
perform its average over the distribution of connectivity strengths, namely,

〈x〉 =
〈

1
N

N∑
i=1

xi

〉
=

〈
xext

N
1†(I − G)−1Gext1

〉
(A.4)

The average (angular brackets) is across all possible realizations of the ran-
dom matrices G and Gext. We denote by † the transpose operation. Note that
in expression A.4, the row vector 1† has N components, while the column
vector 1 has Next. In the following, we will use the same notation regardless
of the dimension of 1, since that can be determined by the dimension of the
multiplied matrix. Since G and Gext are independent, we can substitute Gext

with its mean, 〈Gext〉 = gext

√
Kext

Next
11†. Furthermore, we show in appendix B,

equation B.15, that < 1†(I − G)−11 >= N(1 + g
√

K)−1. Therefore, the mean
activity is equal to

〈x〉 = gext

√
Kext

1 + g
√

K
xext (A.5)

This expression is used in the main text (see equation 3.1).
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Different neurons have different connections and therefore different ac-
tivity, and the extent to which the activity varies from neuron to neuron is
determined by the spatial variance. We calculate this quantity by taking the
sample variance across neurons and averaging over the spatial disorder.
We take the scalar product of equation A.3 with itself, and we use again the
fact that the sample mean does not depend on the spatial disorder for large
N to obtain

〈�x2〉 =
〈

x†x
N

〉
− 〈x〉2 =

〈
x2

ext

N
1†G†

ext (I − G†)−1(I − G)−1Gext1

〉
− 〈x〉2.

(A.6)

We rewrite this expression by using the trace operator and its cyclic invari-
ance. Namely, for any arbitrary matrices A, B, the following equations hold:
1†A1 = Tr(A11†) and Tr(AB) = Tr(BA). We obtain

〈�x2〉 =
〈

x2
ext

N
Tr((I − G†)−1(I − G)−1Gext11†G†

ext )

〉
− 〈x〉2. (A.7)

Again, since G and Gext are independent, we can average separately
the factors involving the two matrices. A simple calculation shows that
〈Gext11†G†

ext〉 = g2
extKext11† + λ2

extI. Furthermore, we show in equations B.27
and B.28 that the following two equalities hold: 〈Tr((I − G)−1(I − G†)−1)〉 =
N(1 − λ2)−1 and 〈Tr((I − G†)−1(I − G)−111†)〉 = N(1 − λ2)−1(1 + g

√
K)−2.

Using the expression of the mean activity, equation A.5, the spatial variance
is equal to

〈�x2〉 = 1
1 − λ2

[〈x〉2λ2 + x2
extλ

2
ext

]
. (A.8)

This expression is used in the main text, equation 3.2.
After looking at the spatial variability, we study temporal variability and

correlated fluctuations by calculating the covariance matrix. We take the
scalar product of equation A.2 with itself and we perform the temporal av-
erage, using the fact that the external stimulus is uncorrelated in space and
time. This corresponds to the covariance matrix of an Ornstein-Uhlenbeck
process (Gardiner, 1985) and is equal to

Q = �x�x† = �x2
ext

∫ +∞

0
dt e(G−I)tGextG

†
ext e(G†−I)t . (A.9)

Note that the covariance matrix satisfies the Lyapunov equation,

(G − I)Q + Q(G† − I) + �x2
extGextG

†
ext = 0, (A.10)
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but this cannot be used for averaging Q, since G and Q are dependent and
do not commute. Note also that equation A.9 represents the covariance at
zero time lag. We will consider the case of finite time lag at the end of this
section.

The on-diagonal elements of the covariance matrix are the temporal
variances of different neurons. To determine the average temporal variance,
we take the sample mean across neurons and average over the spatial
disorder, obtaining

〈�x2〉 =
〈

1
N

Tr(Q)

〉
= �x2

ext

N

∫ +∞

0
dt

〈
Tr

(
e(G†−I)te(G−I)tGextG

†
ext

)〉
, (A.11)

where we applied the trace operator to select the diagonal elements, and
we used its cyclic invariance. Again, since G and Gext are independent, we
can average separately the factors involving the two matrices. A simple cal-
culation gives 〈GextG

†
ext〉 = kextg

2
ext11† + λ2

extI. Furthermore, using equations
B.30 and B.31, we obtain

〈�x2〉 = �x2
ext

2

[
kextg

2
ext

1 + g
√

K
ξ + λ2

ext√
1 − λ2

]
. (A.12)

This corresponds to equation 3.4 in the main text. The factor ξ is equal to

ξ =
[

1 − λ2

1 + √
1 − λ2(1 + g

√
K)

]−1

. (A.13)

It is never smaller than one, and it is very close to one for a wide range of
parameters, including for large K and small λ. However, it diverges near
the critical point λ 	 1.

Next, we calculate the average covariance by looking at the off-diagonal
elements of the matrix in equation A.9. The off-diagonal elements are the
pairwise covariances, and the sample mean across neuron pairs can be
averaged over the spatial disorder to obtain the average covariance. We use
the matrix (11† − I) to select the off-diagonal elements and obtain

〈�x′�x′′〉 =
〈

1
N(N − 1)

Tr((11† − I)Q)

〉
=

= �x2
ext

N(N − 1)

∫ +∞

0
dt

〈
Tr

(
e(G†−I)t (11† − I)e(G−I)tGextG

†
ext

)〉
.

Again, we used the cyclic invariance of the trace operator, and since G
and Gext are independent, we can average separately the factors involving
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the two matrices. We use 〈GextG
†
ext〉 = kextg

2
ext11† + λ2

extI. Furthermore, using
equations B.30 to B.32 and neglecting all terms of order N−1, we obtain

〈�x′�x′′〉 = �x2
ext

2
kextg

2
ext

1 + g
√

K
. (A.14)

This expression is used in the main text in equation 3.5.
The mean correlation is obtained by dividing the covariance, equation

A.14, by the variance, equation A.12 (we assume that variance and covari-
ance are independent):

〈R〉 = 〈�x′�x′′〉
〈�x2〉

= 1

ξ + λ2
ext√

1−λ2

(1+g
√

K)

kext g
2
ext

. (A.15)

This expression is positive and never exceeds one. This corresponds to
equation 3.6 in the main text.

We now turn to calculating the correlations of activity integrated in time.
In order to calculate those correlations, we define the covariance at time lag
�t as Qx(�t). Note that equation A.9 represents the covariance at zero time
lag, a special case of the covariance at time lag �t, namely, Q = Qx(0). The
covariance at finite time lag �t = t′ − t′′ is equal to (Gardiner, 1985)

Qx(�t) = �x(t′)�x(t′′)† =
{

e(G−I)�t Q for �t ≥ 0

Q e−(G†−I)�t for �t < 0
. (A.16)

We define the temporally integrated activity as a linear convolution of the
activity, namely,

y(t) =
∫ +∞

−∞
dt′ h(t − t′)x(t′), (A.17)

where h(t) is a given convolution kernel. Using the Wiener-Khinchin the-
orem and the convolution theorem, it is straightforward to calculate the
covariance of the integrated activity, which is equal to

Qy(�t) = �y(t′)�y(t′′)† =
∫ +∞

−∞
dt h2(�t − t)Qx(t), (A.18)

where the second-order kernel is equal to h2(t) = ∫ +∞
−∞ dt′h(t′)h(t′ + t). If

time integration is slow enough, such that the kernels h and h2 are approx-
imately constant in a time interval in which the covariance Qx is sensibly
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different from zero, the above expression simplifies to

Qy(�t)	 h2(�t)
∫ +∞

−∞
dt Qx(t) = h2(�t)

[
(I − G)−1Q + Q(I − G†)−1] =

= h2(�t)�x2
ext (I − G)−1GextG

†
ext (I − G†)−1

In the last two equalities we have, respectively, integrated equation A.16
and used equation A.10, which we have multiplied by (I − G)−1 on the
left side and by (I − G†)−1 on the right side. The latter expression can be
averaged over the network disorder to compute the mean correlation of the
integrated activity. We will consider only the case of �t = 0, since the case
�t �= 0 is straightforward and is not our focus, and we denote Qy = Qy(0). In
addition, we substitute h2(0) = T−1, where T is defined as the characteristic
integration time of the kernel.

The on-diagonal elements of Qy are the temporal variances of the inte-
grated activity of different neurons. As in the computation of the variance
of x, we take the sample mean across neurons and average over the spatial
disorder, obtaining

〈�y2〉 =
〈

1
N

Tr(Qy)

〉
= �x2

ext

TN

〈
Tr

(
(I − G†)−1(I − G)−1GextG

†
ext

)〉
. (A.19)

Again, we applied the trace operator to select the diagonal elements,
we used its cyclic invariance, and since G and Gext are independent we
can average separately the factors involving the two matrices. We use
〈GextG

†
ext〉 = kextg

2
ext11† + λ2

extI and equations B.27 and B.28 to obtain

〈
�y2

〉 = �x2
ext

T(1 − λ2)

[
kextg

2
ext

(1 + g
√

K)2
+ λ2

ext

]
. (A.20)

Note that the first term in square brackets is small, of order K−1, and could
be neglected.

Next, we calculate the average covariance of the integrated activity by
looking at the off-diagonal elements of the matrix Qy. The off-diagonal el-
ements are the pairwise covariances, and the sample mean across neuron
pairs can be averaged over the spatial disorder to obtain the average co-
variance. As in the computation of the covariance of x, we use the matrix
(11† − I) to select the off-diagonal elements, and we obtain

〈
�y′�y′′〉 = 〈

1
N(N − 1)

Tr
(
(11† − I)Qy

)〉
=

= �x2
ext

TN(N − 1)

〈
Tr

(
(I − G†)−1(11† − I)(I − G)−1GextG

†
ext

)〉
.
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Again, we used the cyclic invariance of the trace operator, and since G and
Gext are independent, we can average separately the factors involving the
two matrices. We use 〈GextG

†
ext〉 = kextg

2
ext11† + λ2

extI and equations B.27 to
B.29. Because the leading term is K−1, here we keep terms of order N−1, and
we obtain

〈
�y′�y′′〉 = �x2

ext

T

[
kextg

2
ext

(1 + g
√

K)2
− 1

N
λext

1 − λ2

]
. (A.21)

The mean correlation of the integrated activity is obtained by dividing
the covariance, equation A.21, by the variance, equation A.20 (we assume
that variance and covariance are independent):

〈Ry〉 = 〈�y′�y′′〉
〈�y2〉

= kextg
2
ext

(1 + g
√

K)2

(1 − λ2)

λ2
ext

− 1
N

. (A.22)

Note that we neglected the term of order K−1 in using equation A.20. This
expression shows that correlations of integrated activity can be negative
and are small, of order K−1.

Appendix B: Traces of Random Matrix Products

In this appendix, we introduce the diagrammatic notation to calculate
the quenched averages of random matrix products (see, e.g., Gudowska-
Nowak et al., 2003). In the context of neural networks, a diagrammatic
notation has been also implemented recently by Rangan (2009), Pernice,
Staude, Cardanobile, and Rotter (2011), and Trousdale et al. (2012). Theo-
retical results are obtained for the gaussian distribution, although numeri-
cal simulations suggest that they generalize to other distributions with the
same mean and variance (e.g., Bernouilli). We consider the case in which the
mean of the matrix element is ∼ g/N and then recover the scaling studied
in the main text by analytical continuation and the substitution g → g

√
K.

We conclude by studying the case of a nonhomogeneous mean (e.g., inter-
connected excitatory and inhibitory neurons).

We start with the problem of calculating the quenched average of the
trace of a power of the random matrix R in the limit of large N (where the
size of the matrix is N × N). The matrix R is characterized by independent
and normally distributed elements, each element having zero mean and
variance N−1:

〈Ri j〉 = 0
〈
R2

i j

〉 = 1
N

(B.1)

We start by calculating the second order, that is, the average trace of the
square of R. For convenience of notation, we omit the sum over the indices
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Figure 9: Diagrams of the traces of random matrix powers, described by equa-
tion B.5. Below each diagram, the number of its closed loops is indicated.
(a) Second order. (b) Fourth order. (c) Sixth order.

(in this case, the sum over the indices a, b, c, d):〈
Tr

(
R2) 〉 = δadδbc〈RabRcd〉 = N−1 δadδbcδacδbd (B.2)

The diagram corresponding to this expression is shown in Figure 9a. The
diagram is obtained by drawing one node for each one of the four indices
a, b, c, d and by drawing an edge for each delta function in the expression,
where the two nodes connected by the edge correspond to the two indices of
the delta function. Horizontal edges are due to the operations of trace (base
edge) and matrix multiplication (middle edge), while arc-shaped edges
are due to averaging. The multiple edges determine different paths, and
each pair of nodes connected by a path (even if not linked by an edge)
corresponds to a pair of indices that must be equal, since they are connected
by a sequence of delta functions. Therefore, for each closed loop in the
diagram, there is one redundant delta function, which can be eliminated
without performing the sum over the corresponding indices. This implies
that each closed loop contributes with a factor N due to a free sum over
N elements. Since the diagram for the second order has one loop, we have
〈Tr

(
R2

)〉 = N−1N = 1.
Note that all terms of odd order are zero, because 〈Rk

i j〉 = 0 for odd k. The
next order is therefore the fourth order, which is equal to (again we omit
the sum over all indices)〈

Tr
(
R4) 〉 = δahδbcδdeδ f g〈RabRcdRe f Rgh〉 = (B.3)

= N−2 δahδbcδdeδ f g

[
δacδbdδegδ f h + δaeδb f δcgδdh + δagδbhδceδdf

]
. (B.4)
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The fourth order has three diagrams—one for each term in the sum, shown
in Figure 9b. The middle diagram has two closed loops, and the other
two have only one loop. Therefore, the other two terms can be neglected;
the middle term contributes with a factor N2, and the fourth-order gives
〈Tr(R4)〉 = 1. The contribution of the fourth-order moment (〈R4

i j〉) can be
neglected because the corresponding terms in the sum have quartets of
indices with the same value. The number of those terms is smaller by a
factor of N2 with respect to the number of second-order terms. Similar
arguments apply for higher order moments.

The 15 diagrams of the sixth order are shown in Figure 9c. Again, we
neglect moments higher than the second, and we note that only one dia-
gram contributes with three loops; therefore, 〈Tr(R6)〉 = 1. By iterating this
procedure, we find that order 2k has (2k − 1)!! diagrams of which only one
has k loops; therefore

〈
Tr(R2k)

〉 = 1 (B.5)

for all values of k.
Note that the elements of the matrix R have zero mean, while the matrices

considered in the main text (G and Gext) have nonzero mean. As explained
below, in order to calculate the average trace of matrix powers with nonzero
mean, we need to compute averages where R is interleaved by the matrix
of ones. We denote by 1 the column vector of N components all equal to
one, by 1† the row vector, and by 11† the N × N matrix with all elements
equal to one (we denote by † the transpose operation). We consider the two
second-order terms:

〈Tr(R11†R)〉 = δad〈RabRcd〉 = N−1δadδacδbd = 1, (B.6)

〈Tr
(
R211†)〉 = δbc〈RabRcd〉 = N−1δbcδacδbd = 1. (B.7)

It is not surprising that these two expressions are equal, since the trace is
cyclic invariant. The only difference between these expressions and equa-
tion B.2 is the absence of a factor δbc in the former expression and δad in
the latter. This corresponds to cutting, respectively, the middle and the base
horizontal edges in the diagram of Figure 9a. In general, inserting a ma-
trix of ones at a given point of the sequence of R products is equivalent to
cutting the horizontal edge at that point in the corresponding diagram. If
the edge belongs to a closed loop, the cut has the effect only of removing
a redundant delta function; there is no change in the contribution of that
diagram to the sum. Conversely, if the edge belongs to an open path, the cut
determines an additional N factor, because the delta function removed was
not redundant. Since all diagrams have at least one closed loop, inserting a
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single matrix of ones has no effect at all orders. Therefore,

〈Tr(R2k−k′
11†Rk′

)〉 = 1 (B.8)

for all k′ = 0, . . . , 2k. Unless more loops are available to cut, inserting more
matrices of ones may cut open paths; therefore, the trace may be multiplied
by N. An additional N factor is obtained also by multiplying the matrix of
ones with itself, which occurs whenever additional matrices are inserted at
the same point in the sequence (we have that 1†1 = N and (11†)k = Nk−111†

if k > 0).
Using these results, we can calculate the average trace of random ma-

trix powers with nonzero mean and arbitrary variance (provided that the
variance is of order N−1). We consider the matrix G equal to

G = g
N

11† + λR. (B.9)

Note that the mean of this matrix has a different scaling with respect to that
considered in the main text, but we will recover the latter by the substitution
g → −√

Kg. A power of G is calculated by multiplying G to itself, and this
determines an ordered product of powers of the matrices R and 11†. Note
that these two matrices do not commute; therefore, the binomial theorem
cannot be applied. We consider the average trace

〈Tr(Gk)〉 =
k∑

k′=0

N−k′
gk′

λk−k′
( k

k′)∑
〈Tr(. . .)〉, (B.10)

where the trace on the right-hand side is applied to an ordered product
of k′ matrices 11† and k − k′ matrices R, and the sum runs over all the

( k
k′
)

ordered products for a given k and k′. Using the above results, we find that
the contribution of any of those traces is zero for k − k′ odd, equal to one for
k′ = 0 (provided that k is even), equal to Nk for k′ = k, and at most of order
Nk′−1 for k′ = 1, . . . , k − 1. Therefore, the leading-order terms are k′ = k (for
any value of k) and k′ = 0 (for k even); all other terms can be neglected, and
we find

〈Tr(Gk)〉 = gk + λkδk,even. (B.11)

If the matrix Gk is further multiplied by a matrix of ones, the term k′ = 0
can also be neglected, and we find that

〈Tr(Gk11†)〉 = Ngk = Tr(〈G〉k11†) (B.12)
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for all values of k. Note that if the mean of G has a higher order in N,
the result still holds. This expression is particularly useful to compute the
average of bracket expressions. Because Tr(Axy†)=y†Ax for any matrix A
and vectors x, y, the expression can be rewritten as

〈1†Gk1〉 = 1†〈G〉k1 (B.13)

for all values of k. Since any infinitely differentiable function f can be ex-
panded in Taylor series, the above result implies that

〈1† f (G)1〉 = 1† f (〈G〉)1. (B.14)

Therefore, the following expression can be calculated and used to compute
the mean activity in the main text:

〈1†(I − G)−11〉 = N
1 − g

. (B.15)

Note that the substitution g → −g
√

K must be applied to recover the scaling
studied in the main text.

Next, we calculate the diagrammatic expansion for products of a random
matrix with its transpose. Again, all odd orders vanish, and we neglect
moments higher than the second at all orders. The second-order term is

〈Tr(RR†)〉 = δadδbc〈RabRdc〉 = N−1 δadδbcδadδbc. (B.16)

The corresponding diagram has two loops and is shown in Figure 10a.
Therefore, the loops contribute with a factor N2, and the second order is
〈Tr(RR†)〉 = N. The fourth order is equal to

〈Tr(R2R2†)〉 = δahδbcδdeδ f g〈RabRcdR f eRhg〉 = (B.17)

= N−2 δahδbcδdeδ f g[δacδbdδ f hδeg + δa f δbeδchδdg + δahδbgδc f δde]. (B.18)

The three diagrams are shown in Figure 10b. The first two diagrams have
one loop, and the third has three. Therefore, that diagram contributes with
a factor N3, and the fourth order is equal to 〈Tr(R2R2†)〉 = N. The diagrams
for the sixth order are shown in Figure 10c: only one diagram has four
loops, and no diagram has three; therefore, 〈Tr(R3R3†)〉 = N. Iterating the
procedure, we find that order 2k has (2k − 1)!! diagrams of which only one
has k + 1 loops; therefore

〈Tr(RkRk†)〉 = N (B.19)
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Figure 10: Diagrams of the traces of random matrix powers multiplied by its
transpose, described by equation B.19. Below each diagram the number of its
closed loops is indicated. (a) Second order. (b) Fourth order. (c) Sixth order.

for all values of k. Other combinations of powers of R and its transpose give
a smaller contribution—〈Tr(R2k−k′

Rk′ †
)〉 = o(1) for k′ �= k.

Inserting matrices of ones in this case has a similar effect as in the case
above, equation B.8: each matrix cuts the horizontal edge corresponding to
where the matrix is placed. Again, since each diagram has at least one loop,
the insertion of a single matrix of ones (and the consequent edge removal)
has no effect on the trace at all orders. Therefore,

〈Tr(Rk−k′
11†Rk′

Rk†)〉 = 〈Tr(RkRk′ †
11†Rk−k′ †

)〉 = N. (B.20)

An insertion in a term with unequal powers of R and R† remains of order
one. Adding more matrices increases the trace by an order N for each matrix,
provided that no further loops are cut.

Using the above expressions, we can compute the average of products
of powers of the matrix G and its transpose,

〈Tr(GkGl†)〉 =
k∑

k′=0

l∑
l′=0

N−k′−l′ gk′+l′λk+l−k′−l′
( k

k′)(
l
l′)∑

〈Tr(. . .)〉, (B.21)

where the trace on the right-hand side is applied to an ordered product of
k′ + l′ matrices 11†, k − k′ matrices R and l − l′ matrices R†. If k′ = k and l′ = l,
the trace is equal to Nk+l , and the term is of order one. If k′ = 0 and l′ = 0, the
trace contributes with an order N, provided that k = l. If k − k′ = l − l′, the
traces contribute at most with an order Nk′+l′ , and the term is of order one,
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while if k − k′ �= l − l′, the term is of smaller order. Therefore, the leading
order is N, and we have

〈Tr(GkGl†)〉 = Nδklλ
k+l . (B.22)

In the case in which matrices of ones are inserted, the term k′ = 0, l′ = 0 is
no longer leading, and many other terms have to be considered. Those are
the terms for k − k′ = l − l′, and for which additional inserted matrices cut
the same loop. Since the leading diagrams at all orders have one two-node
loop in the middle and one at the boundaries, if a matrix of ones is inserted
in the middle or at the boundaries, additional matrices must continue to be
inserted at the same place in order to cut the same loop. We eliminate one
sum and use the index m = k − k′ = l − l′ in place of k′ and l′. We obtain

〈Tr(GkGl†11†)〉

=
min (k,l)∑

m=0

N2m−k−lgl+k−2mλ2m〈Tr((11†)k−mRmRm†
(11†)l−m+1)〉, (B.23)

〈Tr(Gk11†Gl†)〉

=
min (k,l)∑

m=0

N2m−k−lgl+k−2mλ2m〈Tr(Rm(11†)k+l−2m+1Rm†
)〉. (B.24)

Both expressions are equal to

〈Tr(GkGl†11†)〉 = 〈Tr(Gk11†Gl†)〉 = N
min (k,l)∑

m=0

gl+k−2mλ2m. (B.25)

Furthermore, we calculate the average trace with two inserted matrices. In
that case, the leading term is for k = k′ and l = l′ (or m = 0), and we obtain

〈Tr(Gk11†Gl†11†)〉 = N2 gk+l = Tr(〈G〉k11†〈G〉l†11†). (B.26)

Using the expressions above and the Taylor series expansion of infinitely
differentiable functions, we calculate the following traces that are used in
appendix A to compute the variance and covariance of the activity

〈Tr((I − G)−1(I − G†)−1)〉 = N
1 − λ2 , (B.27)

〈Tr((I − G)−111†(I − G†)−1)〉 = N
(1 − λ2)(1 − g)2 , (B.28)

〈Tr((I − G)−111†(I − G†)−111†)〉 = N2

(1 − g)2 , (B.29)
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∫ ∞

0
dt e−2t〈Tr(eGteG†t )〉 = N

2
√

1 − λ2
, (B.30)

∫ ∞

0
dt e−2t〈Tr(eGt11†eG†t )〉 = N

2
√

1 − λ2(1 − g)

[
1 + √

1 − λ2(1 − g)

1 + √
1 − λ2 − g

]
,

(B.31)∫ ∞

0
dt e−2t〈Tr(eGt11†eG†t11†)〉 = N2

2(1 − g)
. (B.32)

Note that the substitution g → −g
√

K must be applied to recover the scal-
ing studied in the main text. If K is proportional to N, this substitution
may change the order of magnitude of various terms in the summation
considered above, possibly modifying the leading terms in each sum. Note
that all series converge only for |g| < 1, but their sum can be evaluated at
g → −g

√
K by analytical continuation. Then, approximating the sums by

the leading terms described above is accurate under the assumption that
all series involving lower-order terms converge to bounded functions of g.

We conclude this appendix by studying the case of nonhomogeneous
mean and variance. We have assumed that the mean and variance are homo-
geneous: they take the same value for different matrix elements: 〈Gi j〉 = g/N
and 〈�G2

i j〉 = λ2/N. However, the same methods could be used to analyze
the more general case in which the mean and variance are inhomogeneous.
In fact, as long as the mean and variances do not depend on N, they do not
change the order of different terms in the sums considered above. There-
fore, the calculation would consist of taking only the leading terms and
recalculating their value according to the new matrices of means and vari-
ances. For example, even in the inhomogeneous case, the sums resulting
in equations B.15, B.29, and B.32 would still be determined uniquely by
the mean 〈Gi j〉, and the sums resulting in equations B.27 and B.30 would
be still determined uniquely by the variance 〈�G2

i j〉. Sums affected by both
the mean and variance, such as those resulting in equations B.28 and B.31,
would still be calculated by using only the leading terms determined above.

A particularly simple case is when the mean and variance depend only
on the presynaptic neuron: 〈Gi j〉 = g j/N and 〈�G2

i j〉 = λ2
j/N. This includes

the case of interconnected excitatory and inhibitory neurons, where gj is
positive for excitatory neurons and negative for inhibitory neurons. In that
case, all results above still hold, with the simple substitutions:

g ←− N−1
N∑

j=1

g j, (B.33)

λ2 ←− N−1
N∑

j=1

λ2
j . (B.34)
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Namely, the parameters g and λ2 now measure the mean connection
strength and the mean variance across presynaptic neurons. Simulations
suggest that a similar substitution, a mean of g and λ2 across all matrix
entries, works well even for general nonhomogeneous parameters.
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