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In economic behavior, choices that have a higher reward expecta-
tion are favored and adaptive decision making depends on our ability 
to learn reward expectation through past rewards associated with 
our actions. The neural mechanisms underlying this process have 
been the subject of growing interest, as they could provide important 
insights on how learning occurs in the brain and how humans and 
other animals make economic decisions. Neural correlates of reward 
valuation have been observed in different studies1–3 and interpreted in 
the framework of reinforcement learning theory4,5. In the reinforce-
ment learning model, reward expectation is computed by weighting 
the previous rewards through a temporal filter, which quantifies the 
memory trace of rewards. The optimal duration of the filter (memory) 
depends on the predictability of the environment. If the payoffs for the 
same option change often and unpredictably, then rewards should be 
filtered on short timescales to track the fast changes in a volatile envi-
ronment; in contrast, if past rewards reliably predict future ones, then 
they should be filtered on long timescales to exploit a stable environ-
ment6,7. The neural mechanism underlying switching between long 
and short time constants for computing reward expectation remains 
poorly understood.

On which timescale does the brain filter rewards? To date, a few 
studies have estimated the time constant of this filter from behavior 
and assessed how past rewards affect choice selection8–12, but the 
neural mechanisms responsible for such timescales are still unknown. 
To address this issue, we analyzed the activity of cortical neurons in 
monkeys performing a competitive game task. Using a method based 
on the idea that reward memory modulates neural activity multipli-
catively, we found that memory time constants can be extracted from 
the activity of single neurons. We found that a different timescale for 
reward memory can be associated with each recorded neuron and that 
there is a wide range of timescales across neurons, obeying a power law 
distribution. The same distribution is found across three different cor-
tical areas: anterior cingulate cortex (ACCd), dorsolateral prefrontal  

cortex (DLPFC) and lateral intraparietal cortex (LIP). Hence, each 
area is endowed with a reservoir of time constants for reward memory, 
which are distributed heterogeneously across neurons.

We found that the time constants estimated from pairs of simulta-
neously recorded neurons are uncorrelated, implying that our results 
cannot be explained by a single time constant for all neurons that 
changes slowly over time. On the other hand, our analysis of an animal’s  
behavior suggests that the timescale over which reward events affect 
decisions changes across experimental sessions, possibly reflecting the 
animal’s attempt to increase its payoff by exploring different strategies. 
The time constants for reward memory at the behavioral and neuronal 
levels were weakly correlated across experimental sessions. Finally, we 
found that a randomly connected circuit model, akin to a reservoir 
network13–15, can reproduce the observed distribution of timescales, 
provided that the network operates at the critical point (or edge of 
chaos)16–18. Taken together, these findings suggest a distributed, flex-
ible neural system for reward valuation and memory.

RESULTS
Multiplicative memory traces in cortical neurons
We analyzed single-neuron activity recorded from three cortical areas, 
ACCd19 (154 neurons), DLPFC20 (322 neurons) and LIP21 (205 neu-
rons) of six monkeys performing a matching pennies task11,22 (Fig. 1a).  
In each trial, the monkey chose one of two targets by shifting its gaze 
and the computer made its choice by simulating a rational oppo-
nent; the animal received reward if its choice matched that of the 
computer. We computed firing rates of each neuron by counting the 
spikes in 12 time intervals of 250 ms (Fig. 1a), which are referred 
to as epochs. This includes six epochs (1.5 s) before saccade initia-
tion (pre-fixation, fore-period and delay) and six epochs (1.5 s) after 
saccade completion (choice fixation, feedback and post-feedback). 
Consistent with previous studies23–25, we found that the activity of 
neurons varied substantially in different trial epochs (99% of neurons,  
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According to reinforcement learning theory of decision making, reward expectation is computed by integrating past rewards with 
a fixed timescale. In contrast, we found that a wide range of time constants is available across cortical neurons recorded from 
monkeys performing a competitive game task. By recognizing that reward modulates neural activity multiplicatively, we found 
that one or two time constants of reward memory can be extracted for each neuron in prefrontal, cingulate and parietal cortex. 
These timescales ranged from hundreds of milliseconds to tens of seconds, according to a power law distribution, which is 
consistent across areas and reproduced by a ‘reservoir’ neural network model. These neuronal memory timescales were weakly, 
but significantly, correlated with those of monkey’s decisions. Our findings suggest a flexible memory system in which neural 
subpopulations with distinct sets of long or short memory timescales may be selectively deployed according to the task demands.
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675 of 681, ANOVA, P < 0.05). The time course of the activity in  
successive epochs differs substantially in different neurons.

We then examined the effect of reward on the activity of neurons. 
Neural activity in all three cortical areas carries the information of past 
reward events19–22. We characterized the memory trace of each neuron 
using a new approach (Fig. 1b,c). Consider the time course of neu-
ral activity in different epochs, averaged across trials and hence across 
reward/no reward conditions. The difference in activity from the average 
time course, triggered by a reward/no reward event, was defined as the 
memory trace of the reward, which is positive for one of the outcomes 
and negative for the other. Thus, if the average activity of a neuron is 
zero in a given epoch, then the change by either outcome must be zero, 
and the memory trace in that epoch is therefore also zero. Starting with 
this intuition, we hypothesized that the memory trace in a given epoch 
is proportional to the average firing rate in that epoch. In that case the 
memory trace is modulated (multiplied) by the average firing rate.

We define the epoch code as the firing rate averaged across all tri-
als, as a function of the different epochs, denoted by g(k) (k = 1,…,12 
epochs, in temporal order). In one neuron recorded in ACCd, firing 
rate decreased after the saccade to a chosen target and increased after 
the feedback period (Fig. 2a). To separate the contributions of epoch 
and reward memory to neural activity, we modeled the firing rate 
measured in trial n and epoch k, denoted by FR(n,k), as the sum of 
the epoch code g(k) and a filter f(n′,k) convolved with the animal’s 
reward history in previous trials (last five trials; in each trial, Rew = 
+1 indicates reward; Rew = −1 indicates no reward). 

FR Rew( , ) ( ) ( , ) ( )
:

n k g k f n k n n
n

= + ′ ⋅ − ′
′=∑ 0 5

The filter f describes how the reward in a given trial affects neural 
activity in the subsequent trials, assuming that the effects of rewards 
in successive trials are additive. For example, f(3,4) describes the effect 
of a reward after 3 trials during epoch 4. The filter f corresponds to our 
definition of memory trace (Fig. 1b,c); it reflects the deviation from 
the epoch-dependent time course g(k) resulting from a reward event. 
Because Rew(n) is nearly a random sequence11 of +1 and −1, averag-
ing the firing rates over all trials recovers the epoch code g(k) (sum 
over n of FR(n,k)). We estimated the memory trace f(n′,k) by applying 
multiple linear regression to the data according to equation (1). In 
an example negative neuron (that is, reward decreases the activity of 
this neuron in subsequent trials), the memory trace does not decay 
monotonically, but its strength is modulated throughout the trial con-
sistent with the epoch code (Fig. 2b). According to the multiplicative 
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Figure 1 Behavioral task and schematic illustration of memory traces.  
(a) In the matching pennies task, the monkey was required to fixate a 
central spot during the fore-period (500 ms) and delay period (500 ms) 
while the two choice targets (green disks) were displayed. The central spot 
then disappeared and the monkey made a saccadic eye movement to one 
of the two choice targets and maintained its gaze on the chosen target for 
500 ms (choice fixation). A red ring appearing around the correct target 
revealed the computer’s choice, and if it matched the animal’s choice  
(as illustrated), reward was delivered 500 ms later. ITI, inter-trial interval. 
Colored bars at the bottom show the 12 250-ms intervals (epochs) used 
to compute the firing rates in the analysis. (b,c) Two hypothetical neurons. 
The neuron in b has a constant average firing rate (black line), whereas 
the firing rate of neuron in c depends on the trial epoch, repeating in each 
of the three consecutive trials. Red lines show the change in activity as a 
result of the outcome in the first trial (continuous line indicates reward, 
dashed line indicates no reward). The inset shows the memory trace of 
the reward, given by the difference between the red and black lines. The 
memory trace of the neuron in b shows a simple decay, whereas that of the 
neuron in c is multiplicatively modulated by the epoch-dependent activity.

Figure 2 An example neuron in ACCd showing 
multiplicative modulation of memory traces 
by the epoch code. The colors in all panels 
denote trial epochs, following the format of 
Figure 1a. (a) The epoch code for an example 
neuron; that is, the firing rate computed in 12 
250-ms epochs in a trial and averaged over all 
trials (black squares, interpolated by the black 
line, broken during the saccade). Colored disks 
correspond to the slopes fitted in c (error bars 
represent ±s.e.); their correlation with the epoch 
codes quantifies the multiplicative modulation 
and is referred to as the factorization index (0.97 in this example). (b) The memory trace f of past rewards in the same neuron, up to five trials in the 
past. Colored dots and error bars (±s.e.) show the results of the multiple linear regression model (equation (1)) and the black line is the exponential  
fit (equation (2), continuous line, exponential ex(t); broken line, modulated envelope g·ex(t)). The parameters for the fit are shown (A, amplitude;  
τ, timescale). (c) The memory trace f (from b), plotted as a function of the exponential function ex. The lines are least-squares fit, each line 
encompassing a particular epoch and all five trial lags. According to the factorization, the slopes should correspond to the epoch code, f = g·ex.  
The values of the slopes are plotted in a (colored squares) and compared with the epoch code g(k).
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model (Fig. 1b,c), we assumed that the memory trace f is factorized 
into the epoch code g(k) and an exponential function ex(t). 

FR n k g g k ex Rew( , ) ( ) ( ) ( ) ( ):= + ⋅∑ × − ′=k t n nn′ 0 5

The filter f considered in equation (1) is now replaced by the product 

of two factors g(k)·ex(t), where ex( )t Ae
t

=
−
t  is an exponential decay 

function and t is the time elapsed since the outcome (Online Methods). 
By applying this model to the example neuron (Fig. 2a,b), we obtained 
a timescale of memory decay τ = 6.9 trials and an amplitude A = 
−0.24. According to the factorization ( f = g·ex), the constant of pro-
portionality between the memory trace f and the exponential function 
ex, estimated in different epochs (Fig. 2c), should reproduce the 
epoch code g(k). The epoch codes for the neuron closely followed 
these predictions, indicating that the factorization is nearly exact  
(Fig. 2a). The factorization index of a neuron, defined as the correla-
tion coefficient between the epoch code and the proportionality  
constants (slopes), was 0.97 for this neuron.

The modulated decay of the memory trace was observed in the 
majority of the recorded neurons in all three cortical areas. In some 

cases, the sum of two exponential functions, ex( )t A e A e
t t

= +
− −

1 2
1 2t t , 

fitted the data better than a single exponential, in which case the 
memory trace often exhibited a biphasic characteristic (with A1 and 
A2 of the opposite sign; Fig. 3). Using the Bayesian Information 
Criterion, we found that the best fit was a single exponential for 269 
neurons and double exponentials for 268 neurons, whereas the 

(2)(2)

remaining 144 neurons were fitted best by a model with ex(t) = 0. The 
latter is interpreted as no memory and the corresponding neurons 
were excluded from further analysis. We tested the validity of the 
fitting procedure by randomly reshuffling the order of trials in each 
session and we consistently found that 96% of neurons (656 of 681) 
showed no memory after reshuffling.

We examined the average firing rates and memory traces of all 
recorded neurons (examples shown in Fig. 3). Although the activity of 
most neurons is consistent with an exponential decay of the memory 
trace (79%, 537 of 681, single and double exponentials), a fraction of 
them did not show a modulation of the memory by the epoch code. 
This is quantified by the factorization index, which is significantly 
positive for approximately half of the neurons showing a memory 
effect (46%, 249 of 537, P < 0.05, t test). We found a small, but sig-
nificant, difference in the fraction of neurons with memory across 
different areas (87% in ACCd, 75% in DLPFC and 78% in LIP, χ2 
test, P = 0.01).

We next investigated how the timescales of memory traces were dis-
tributed across neurons in different cortical areas. We determined that 
the distribution of timescales in all cortical areas could be fit with a 
power law with an exponent of −2 (Fig. 4). The power law implies that 
timescales are distributed in a wide range of values. In fact, for a power 
law distribution ~τ−2, the variance increases with the sample size and, 
in principle, arbitrarily large timescales would be observed with a 
proportionally large increment in the number of recorded neurons. 
Note that the power law tail applies for timescales equal to or larger 
than one trial, which are those timescales that might be involved in 
memory (see below). About 20% of all recorded neurons (133 of 681) 
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Figure 3 Firing rates and memory traces for six neurons, two for each of the three recorded areas. For each of the six neurons, epoch codes (first and 
third column) and memory traces (second and fourth column) are shown, presented as in Figure 2a,b. The second column shows monotonic decay of the 
memory trace and the fourth column shows biphasic memory traces (double exponential). Different neurons had different firing rates, both in magnitude 
and time course, and different types of memory decay, but they were all consistent with an exponential (single or double) decay of the memory 
modulated by the epoch code. The factorization indexes for those neurons are 0.98 (a,b), 0.91 (c,d), 0.98 (e,f), 0.84 (g,h), 0.97 (i,j) and 0.61 (k,l).
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had timescale larger than one trial (29% in ACCd, 19% in DLPFC and 
13% in LIP; χ2 test, P = 0.0005; see Supplementary Fig. 1c–e). Because 
the timescales from one- (τ) and two-exponential functions (τ1, τ2) 
were distributed similarly (Supplementary Fig. 1a,b), we pooled all 
timescales (a total of 805 timescales from 269 single exponential and 
268 double exponential; that is, 269 τ, 268 τ1 and 268 τ2). ACCd con-
tributed 197 timescales from 71 single exponential and 63 double 
exponential functions (71 τ, 63 τ1 and 63 τ2), whereas 20 neurons had 
no memory. A total of 362 timescales were obtained from DLPFC with 
124 single and 119 double exponential functions (124 τ, 119 τ1 and 119 
τ2) and 79 DLPFC neurons had no memory. LIP neurons contributed 
246 timescales from 74 single and 86 double exponential functions  
(74 τ, 86 τ1 and 86 τ2) and 45 LIP neurons showed no memory.

Comparison with behavior
Are the neural memory timescales relevant for learning and decision 
making? The matching pennies task that we used does not necessar-
ily require the memory of past rewards and the optimal strategy for 
the monkey is to choose randomly and unpredictably. Although the 
overall performance of monkeys was nearly optimal, their trial-by-
trial decisions, locally in time, were influenced by previous rewards 
and actions11,19–22. We analyzed the behavior of monkeys in different 
experimental sessions by fitting their decisions with a standard rein-
forcement learning model5 (reinforcement learning, Online Methods). 
The learning rate parameter (α) of the reinforcement learning model 
quantifies the behavioral timescale of the memory trace (α ~1/τ). 
The resulting likelihood was significantly larger than the likelihood 
for reshuffled trials and the model fit with behavioral data was sig-
nificant in 78% of the sessions (196 of 250, P < 0.05). We found that 
the timescales of behavioral memory varied across sessions, possibly 

suggesting that monkeys adopted different strategies in successive 
sessions. For the 196 sessions fitted by the reinforcement learning 
model, the distribution of behavioral timescales followed a power law 
distribution (Fig. 5a) and the exponent was consistent with that meas-
ured in the neural distribution. Hence, the distributions of behavioral 
and neuronal timescales qualitatively matched with each other. This 
result suggests that there might be a relationship between the memory 
trace observed at the neural level and that observed at the behavioral 
level. We tested this hypothesis by comparing the neural timescale for 
reward memory observed during a given recording session with the 
behavioral timescale fit in that session (when both are available) and 
we found a small, but significant, correlation across sessions (R = 0.12, 
P = 0.003; Fig. 5b), suggesting that the activity of single neurons is 
related, albeit weakly, to the behavioral strategy of the animals.

Do the reward memory timescales also change in a single session? 
We determined whether the timescales are stable in a single recording 
session by dividing each session into two separate blocks (halves) of 
trials and we re-estimated both the neural and behavioral timescales 
separately in the two blocks. Both the behavioral and neural memory 
timescales were fairly stable in a single session (Fig. 6).

The neural and behavioral timescales might fluctuate together 
across sessions, but their small correlation indicates that there is 
only a weak coupling. Indeed, we found that at any moment, the 
timescales of reward memory varied across cortical neurons. In each 
recording session, only few neurons were simultaneously recorded 
(about two on average). When we estimated memory timescales for 
pairs of simultaneously recorded neurons, the correlation between 
their time constants was not significantly different from zero (312 
pairs of timescales, R = 0.07, P = 0.2). This result suggests that the 
broad distribution of memory time constants observed in the data 
reflects a variability of timescales across different neurons, rather 
than resulting from a memory timescale fixed for all neurons that 
collectively changes across sessions.

Taken together, our results support the conclusion that a diverse 
collection of neural memory timescales, a reservoir, is available across 
cortical neurons at any given time. The animal’s behavior may be deter-
mined by a readout system that is able to sample, at different times, 
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from a variety of timescales present in the reservoir. The reservoir 
might not be static and it may change its distribution of timescales 
from day to day. During competitive games, the subjects might also 
take into account their recent choices to determine their future behav-
ior. We therefore tested whether any memory trace of choice exists in 
the recorded neurons by applying the same analysis of equations (1) 
and (2) and substituting reward with choice. We found that multiplica-
tive modulation and a power law distribution of memory timescales 
also hold for memory trace of past choices (Supplementary Fig. 2).

Neural network model for memory traces
What neural mechanism(s) accounts for the statistical properties 
of reward memory described above? To address this question, we 
constructed a simple neural network model that reproduces the 
observed neural memory traces (Fig. 7 and Supplementary Fig. 3).  
Model neurons integrate the reward signals by receiving a cur-
rent impulse whenever a reward is obtained. Because neurons are 
recurrently connected and form loops, their activities reverberate 
and are able to maintain the memory of reward events. However, 
those memories decay and are slowly forgotten according to a time 
course that depends on the pattern of synaptic connections among 
neuron pairs. Specifically, the activity of neurons evolve according  
to d

d
Rewv

t
J v t h t= ⋅ + ⋅( ) ( ) , where v is a vector of M components, each 

component is the activity of a different neuron in the reservoir  
(M = 1,000 neurons in simulations), J is the synaptic connectivity 
matrix of their interactions and h is a vector representing the relative 
strength of the reward input Rew(t) to each neuron. For our pur-
poses, the specific form of the input signals is not important; the 
results depend only on the synaptic matrix J. We assumed that the 
connection weights (the entries of the matrix J) were randomly dis-
tributed and we looked for candidate probability distributions such 
that the network model reproduces the distributions of timescales 
and amplitudes observed in the neural data from behaving monkeys 
(see Supplementary Text). Amplitudes determine the extent of the 
immediate response of neurons to reward, with respect to the aver-
age activity. Time constants had a power-law 
distribution (Fig. 4) and the distribution of 

amplitudes was exponential (Fig. 8a, where we used A for one expo-
nential and A1 + A2 for two exponentials).

First, we found that the connection weights must be broadly dis-
tributed among neuron pairs and that this endows the network with 
a wide variety of timescales. Intuitively, the stronger the connection, 
the longer the reverberation of the input and hence the timescale 
of the memory trace. However, if connections are also heteroge-
neous, then weaker connections and smaller timescales will also 
contribute to the memory traces. If the width of the distribution of 
connection weights reaches a certain threshold, a power-law distri-
bution of timescales is observed (Fig. 7b), which is characterized 
by a high probability for both small and large timescales. This is a 
distinct type of network state ‘at a critical point’ (or edge of chaos 
in nonlinear systems), which have been proposed to be desirable for 
many kinds of computations16–18. In our model, the criticality cor-
responds to the situation where the system is on the verge of losing 
stability. When the width of the connection distribution exceeds 
the critical level, the linear system is unstable and the model would 
need to be extended to include nonlinearities such as saturation 
of neural activity. For the sake of simplicity, we limited ourselves 
to the linear model, which is sufficient for the purpose of repro-
ducing the observed power-law distribution of timescales under  
specific conditions.

A second desirable property of the network is that its dynamics are 
robust with respect to small changes of the connection strengths. If the 
coding of the memory changes markedly as a result of small changes 
in the connection strengths (for example, synaptic noise), it would 
be difficult for a downstream system to interpret that code. A known 
property of the connection matrix J that ensures that kind of robust-
ness is normality, which guarantees that there is an orthogonal set of 
eigenvectors26 (but see refs. 27–29 for non-normal neural network 
models). If J is normal, we found that the amplitudes of the memory 
traces followed an exponential distribution (Fig. 8b), consistent with 
the experimental observations (Fig. 8a). To the best of our knowl-
edge, our results provide the first complete statistical description of 
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a network connection matrix based on in vivo neuronal recordings 
of behaving animals (see also refs. 30–32).

DISCUSSION
The power law of timescales suggests that the duration of reward mem-
ory trace is highly diverse across cortical neurons. The same diversity is 
observed across three cortical areas, suggesting that the computation of 
reward memory is a distributed process. This finding is consistent with 
an increasing appreciation that neural encoding of cognitive variables 
is highly heterogeneous and distributed33,34. Prefrontal cortex is impor-
tant for dynamic decision processes encoding and updating values1–4. 
Although anterior cingulate cortex has been implicated in monitoring 
conflict between incompatible response processes35 or detecting per-
formance errors36, recent studies have placed more emphasis on its role 
in representing both positive and negative values19,37. Parietal cortex 
has also been implicated in decision making on the basis of the value 
representation and the accumulation of sensory evidence38,39.

Our work provides a comprehensive description of memory traces 
in terms of a specific distribution of timescales across a population 
of neurons and introduces a framework that could potentially be 
applicable to different brain areas and different types of memory. The 
concept of multiplicative modulation of memory traces can be used 
to deduce the neural memory timescales in various tasks and to test 
the idea that a different set of time constants is selected to adapt to a 
specific environment6,7. Although the global optimal strategy for the 
matching pennies task is to choose randomly and therefore does not 
require memory, the animals made their decisions largely on the basis 
of their reward history11,19–22. Perhaps in the persistent search for an 
appropriate strategy, they sampled different timescales across experi-
mental sessions. We found that those behavioral timescales followed 
a similar distribution and were weakly, but significantly, correlated 
with the timescales observed at the neural level. This suggests the 
possibility that the behavior might be driven by a mechanism that 
appropriately samples from a range of timescales in a neural network, 
which has yet to be elucidated. Alternatively, this weak correlation 
might be caused by factors that are currently not understood. Note 
that the observed range is different for the neuronal versus behavioral 
time constants. Also, we have not attempted to fit the behavioral data 
by a reinforcement learning model endowed with multiple time con-
stants. Future work is needed to further assess the correlation between 
neural memory traces and behavior. Regardless, our results suggest 

that reward memory with multiple time con-
stants might be used to compute the value 
functions in reinforcement learning theory in 
more than one timescale. Similarly, the dou-
ble exponential decay of memory may corre-
spond to a reward prediction error signal; if 
the short timescale (τ1) is small enough (about 
one trial or smaller), then the corresponding 
exponential filter will respond primarily to 
the reward in the present trial, whereas the 
long timescale (τ2) may provide a value signal 
by weighting the rewards in the past few tri-
als. When the two exponentials have opposite 
signs, they roughly subtract the value from 
the actual reward signal, therefore providing 
a reward prediction error. It has been noted 
that a biphasic filtering in dopamine neurons 
might provide a reward prediction error40.

Besides the memory for reward, the activ-
ity of primate cortical neurons reflects other 

types of short-term memory. The time course of memory-related 
activity varies across different neurons and different task protocols, 
including persistent, ramping and multi-phasic activity41–43. Memory 
traces in the neural signals are mixed with other task-dependent 
factors44,45 and it has been debated as to whether other processes 
involved in goal-directed behavior could be inter-mixed with a mem-
ory trace, such as spatial attention46, motor planning47, anticipation 
of future events48 or timing49. The epoch code in the present task 
might include many of those processes and we found that memory 
signals could be dissociated from those factors by assuming a mul-
tiplicative computation. The hypothesis of a multiplicative effect of 
memory on neural activity could be tested by looking more closely at 
the multi-phasic time course of memory-related activity observed in 
other experiments. The computational advantage of the multiplica-
tive effect of memory needs to be further investigated. For example, it 
may serve the appropriate recall of memories at different epochs (see 
Supplementary Text), as observed in a recent study50.

Reservoir-type networks have been the subject of active research in 
computational neuroscience and machine learning13–15, but experi-
mental support that such networks are adopted by the brain has been 
lacking. Those models predict that the memory of input signals is 
stored in a large, recurrent and heterogeneous network (reservoir) in a 
distributed manner and that a desired output is obtained by a trainable 
combination of the response signals in the reservoir. The heterogene-
ous encoding of the input allows the flexible learning of different out-
put functions. In our context, that may correspond to a flexible change 
in strategy resulting from the variety of timescales for reward memory 
present in the reservoir. We present direct experimental evidence, at 
the level of single neurons, for a high-dimensional reservoir network of 
reward memory traces in prefrontal, cingulate and parietal areas of the 
primate cortex. This empirical finding is reproduced by a simple com-
putational model, which suggests that reward filtering in the cortex 
involves a dynamic reservoir network operating at the critical point, 
leading to a power-law distribution of time constants. The output of 
the network, supposedly driving the animal’s behavior, is not explicitly 
modeled in our equations. Further studies are necessary to elucidate 
how the motor areas read out the memory of reward and choices and 
how the two are combined to subserve adaptive choice behavior.

Power-law distributions are unusual, as they imply a high probability 
for both large and small time constants. A diversity of time constants 
also means a broad range of learning rates, as the two are inversely 
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related to each other. This is noteworthy, as a shift from an exploitive 
to an exploratory strategy as the environment becomes uncertain is 
often assessed by an increase in the learning rate10. Our work suggests 
that a broad range of learning rates are available in the system, a subset 
of which (fast or slow) might be selectively utilized according to which 
strategy is behaviorally desirable. Ultimately, this framework could lead 
to a new model for predicting how reward expectation is computed and 
how reward memory affects decision making.

METhODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METhODS
Animal preparation and electrophysiological recording. All of the data were 
collected using the same behavioral task and electrophysiological techniques. 
These techniques have been described previously19–21. We used six rhesus mon-
keys (five male and one female). The animal’s head was fixed during the experi-
ment and eye movements were monitored at a sampling rate of 225 Hz with a 
high-speed eye tracker (Thomas Recording). Animals performed an oculomotor 
free-choice task22 (matching pennies; Fig. 1a). Trials began with the animal 
fixating a small yellow square (0.9° × 0.9°) displayed at the center of the com-
puter screen for a 0.5-s fore-period. Two identical green disks were presented at  
5° eccentricity in diametrically opposed locations along the horizontal meridian 
for a 0.5-s delay period. The extinction of the central target signaled the animal to  
shift its gaze toward one of the targets within 1 s. After the monkey maintained 
its fixation on the chosen peripheral target for 0.5 s, a red ring appeared around 
the target selected by the computer. The animal was rewarded only if it chose 
the same target as the computer, which simulated a rational decision maker in 
the matching pennies game trying to minimize the animal’s expected payoff. 
Before each trial, the computer made a prediction for the animal’s choice by 
computing the conditional probabilities for the animal to choose each target 
given its choices and rewards in the preceding four trials. The computer made 
a random choice if the probabilities were consistent with unbiased behaviors, 
otherwise it would bias its selection against the prediction. Single-unit activity 
was recorded using a five-channel multi-electrode recording system (Thomas 
Recording) from three cortical regions: the ACCd19 (area 24c, two male mon-
keys, 8–12 kg), DLPFC20,22 (anterior to the frontal eye field; four male and 
one female monkeys, 5–12 kg) and LIP21 (two male and one female monkeys,  
5–11 kg). All the neurons were recorded without pre-screening. The placement 
of the recording chamber was guided by magnetic resonance images and con-
firmed by metal pins inserted in known anatomical locations at the end of the 
experiment in some animals. In three animals, two recording chambers were 
used for simultaneous recording of DLPFC and LIP. All the experimental pro-
cedures were approved by the Institutional Animal Care and Use Committee at 
Yale University and conformed to the Public Health Services Policy on Humane 
Care and Use of Laboratory Animals and the Guide for the Care and Use of 
Laboratory Animals.

multiple regression analysis of memory traces. To estimate the memory 
traces f(n,k) from the observed neuronal firing rates and sequence of rewards, 
we computed the firing rates in each trial in 12 time intervals of 250 ms each 
(Fig. 1a). The following model was used to fit the firing rates. The firing 
rate of a neuron depends on the trial epoch k, following the epoch code g(k); 
after the outcome is revealed (feedback period) in each trial, the firing rate 
is changed by an amount of +f(n′,k) for reward and −f(n′,k) for no reward, 
where n′ is the number of trials elapsed since that outcome. The effects of 
outcomes in successive trials are additive. The firing rate FR(n,k) is thus 
described by 

FR Rew noise( , ) ( ) ( , ) ( ):n k g k f n k n nn= + − +=∑ ′ ′′ 0 5

where the index k labels the epoch (k = 1,…,12) and the indices n and n′ label 
trials. The effect of reward extends up to five trials (n′ = 0,…,5), while the index 
n runs over all N trials available in each neuron recording (starting after the 
first five trials, n = 6,…, N). To determine f(n,k) and g(k), we applied a multiple 
regression model by using the known FR(n,k) and Rew(n) (+1/−1 for reward/no 
reward). Note that the epoch code g(k) depends on the twelve different epochs 
within a trial, whereas the reward Rew(n) depends only on trial number. As a 
consequence, the regression can be applied separately for each epoch. For a fixed 
epoch k, the seven unknown variables g(k), f(0,k), f(1,k), f(2,k), f(3,k), f(4,k) and 
f(5,k) can be determined by using the known values of FR(n,k) and Rew(n) in  
N – 5 trials (n = 6,…, N). Using a parsimonious matrix notation and omitting the 
epoch label k, equation (3) can be rewritten as 

FR Rew noise= +i f

where the vector of the known firing rates FR is equal to 

FR FR FR FR= [ ( , ), ( , ),..., ( , )]6 7k k N k T

(3)(3)

(4)(4)

(5)(5)

The seven unknown variables have been rewritten by a single vector f 

f = [ ( ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )]g k f k f k f k f k f k f k T0 1 2 3 4 5

 The matrix Rew is known, given by 

Rew

Rew Rew Rew Rew Rew Rew
Rew Rew Rew Rew Rew Rew

6 5 4 3 2 1

7 6 5 4 3 2=

1
1
... .... ... ... ... ... ...
1 1 2 4 5Rew Rew Rew Rew Rew Rew3N N N N N N− − − − −



















Because the sequence of rewards is nearly random and N is large, different  
columns of the matrix Rew are nearly orthogonal. This implies that the matrix 
product (RewT·Rew) is well conditioned and that the solution fsol minimizing the 
variance of the noise (or squared error) is robust and given by 

f T T
sol Rew Rew Rew FR= −( )i i i1

This expression is used to obtain the results. The confidence intervals for fsol  
are derived from the residual errors according to the Matlab (Mathworks)  
function regress.

The matrix product (RewT·Rew) is approximately proportional to the identity 
matrix. When RewT·Rew = I, the filter is equal to the firing rate averaged over all 
trials, where the average is conditioned on the past rewards. This is equivalent to 
the cross-correlation between the input (rewards) and output (firing rates) and 
its application would correspond to a reverse correlation method, commonly 
used in the analysis of sensory neural coding. Here, however, we only showed 
results from the multiple regression analysis. For simplicity, we used an average 
over all trials as the definition of epoch code g(k) in the main text, making use 
of the above approximation.

exponential memory traces and model selection. The model considered here 
is similar to that of equation (3), but we assumed that memory traces are expo-
nential function ex(t) rescaled by the epoch code g(k). 

FR ex Rew noise( , ) ( ) ( ) ( ) ( ).n k g k g k t n nn= + − +=∑ ′′ 0 5

The filter f considered in equation (3) is replaced by g(k)·ex(t). We considered 
two different exponential functions, a single exponential and the sum of two 
exponentials. 

ex1( )t Ae
t

=
−
t

 

ex2 1 1 2 2( )t A e A e

t t

= +

− −
t t

where τ1 < τ2. The physical time t depends on all indices k, n and n′ because the 
time elapsed between different epochs and between successive trials is variable, 
due to the variability in the time taken by the animal to start a trial and to make a 
saccade to one of the two targets. On the basis of the time stamps generated dur-
ing the experiment, we computed the physical time t = t(n,k,n′) as the difference 
between the time corresponding to a given trial and epoch (n,k) and the time 
corresponding to the feedback epoch of n’ trials in the past (up to five trials). Note 
that the memory trace f obtained by the multilinear regression is not computed 
in physical time. In that case, we assumed that the saccade reaction time of the 
animal in all trials is equal to 120 ms (average) and that the time elapsed between 
the initiation of two successive trials is 3.4 s (median).

The epoch code g(k) was fixed by the firing rates averaged across trials, whereas 
the parameters of the exponential function (two parameters (A,τ) when using 
equation (10) and four parameters (A1,τ1, A2,τ2) when using equation (11)) were 
estimated using a nonlinear curve-fitting procedure, implemented by the Matlab 
function fminsearch, minimizing the variance of the noise (sum of squared 
errors) in equation (9). Fitting was repeated ten times for each neuron and each 
model in the search for a global minimum of the error. Any parameters resulting 
in unrealistic values were discarded, such as negative values of τ, τ1 or τ2, values of 

(6)(6)

(7)(7)

(8)(8)

(9)(9)

(10)(10)

(11)(11)
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τ larger than 20 trials, and the absolute value of A or (A1 + A2) larger than 4. We 
determined the parameters for all neurons in both exponential models, single and 
double exponential and denoted the corresponding square errors by σ1

2 and σ2
2, 

respectively. We also computed the variance of firing rate, σ0
2, as the square error 

for a zero filter model, that is, ex = 0 or FR = g + noise. Among the three models, 
the selection of the appropriate one for each neuron was determined according 
to the Bayesian information criterion (BIC) 

BICi i im p m= +log( ) log( )s2

where pi denotes the number of parameters in the model, and p0 = 1, p1 = 3, p2 =  
5, for 0, 1 and 2 exponential fit, respectively (note that the variance σi

2 is also a 
parameter), and m is the number of data points (m = 12(N – 5); 12 epochs and 
N – 5 trials for each neuron). The model with the minimum BIC was chosen for 
each neuron. As a control of the fitting procedure, we reshuffled the label n in 
the firing rates FR(n,k), assigning to each firing rate the value of a random trial, 
and we repeated the entire procedure.

Reinforcement learning fit of behavior. We applied a standard reinforcement 
learning model5, separately for each recording session, to analyze how the ani-
mal’s choice was influenced by the outcomes of its previous choices. For example, 
when right target R was chosen in trial t, the value function for R, denoted by 
QR(t), was updated according to 

Q t Q t t Q tR R R( ) ( ) [ ( ) ( )]+ = + −1 a Rew

where Rew(t) denotes the reward received by the animal in trial t, and the term 
inside square is commonly defined as the reward prediction error; that is, the 

(12)(12)

(13)(13)

discrepancy between the actual reward and the expected reward. A similar 
equation holds for the left value function QL(t). The probability that the animal 
would choose the rightward target in trial t, PR(t), was determined by the SoftMax 
transformation 

P t
Q t

Q t Q tR
R

L R
( )

exp( ( ))
exp( ( )) exp( ( ))

=
+

b
b b

where β, referred to as the inverse temperature, determines the randomness of 
the animal’s choices. Model parameters (α,β) were estimated separately for each 
recording session by using a maximum likelihood procedure, where the likelihood 
is the product of probabilities in all trials (equation (14)), in each trial using R or 
L according to the actual monkey’s choice. The parameter values maximizing the 
likelihood were found by using the Matlab function fminsearch. The significance 
of the estimation was assessed, for each session, by constructing 100 surrogate 
sessions, each one obtained by reshuffling of the order of trials. The distribution 
of 100 maximum likelihoods obtained by the estimation procedure was then com-
pared with the maximum likelihood of the non-reshuffled case, which was consi-
dered to be significant if not smaller than the five largest reshuffled likelihoods.

Value functions and reward prediction error signals can be related to the expo-
nential filters estimated for individual neurons. If a single value function (for a 
given stimulus/action) and a single reward (delivered at time zero) are considered, 
the solution of equation (13) can be approximated by an exponential response, 

Q t tt( ) ( ) ~ exp( )= − −1 1
t t

, provided that τ is larger than one trial. When a 

sequence of rewards is delivered instead of a single one, the value is a super-
position of the exponential responses for each reward.

(14)(14)
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