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Supplemental Figures

                    

Supplemental Figure 1. Schematic representation of the particle swarm optimization

algorithm used for finding network parameters that produce the required responses

in area MT.

A, Schematic representation of the PSO algorithm (supplemental Methods, supplemental Eqs. 3 and

4) illustrating 4 particles in a 2-dimensional space for clarity (in our simulations, we had 50

particles in a 13-dimensional space). For one of the particles (center) a path with previously visited

locations (dark blue dots) is drawn. The particle updates its velocity stochastically towards the

location visited by this particle with best fitness value (cyan dot) and towards the best location

found by the whole swarm (magenta dot). B, Injected V1 input to the MT model. This input takes

into account maximal response normalization, thus the maximum activity in the network is

conserved irrespective of whether a single moving or two transparent RDPs are present, or the

separation between the two components during transparent motion. C, Characteristic population

activity profiles for pyramidal cells in the MT model solutions. The background activity is near 10

Hz; peak of activity for a single RDP is around 45 Hz; there is slight suppression in this case in the
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tails of the bell-shaped curve; and it implements mean activity normalization, so the mean activity

remains unaltered for single moving RDP and for transparent motion, irrespective in this case of the

separation between the two components.
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Supplemental  Figure  2.  Distribution  of  parameters  in  the  MT  network  model

solutions found by the optimization procedure. 

Each panel shows the value of the corresponding parameter for each different MT network solution

found with our optimization procedure. Those highly irregular parameter distributions point at the

fact that we found MT networks very distinct with respect to their parameter values. The control

model solution shown in the figures of the main text corresponds to the first model (first column in

all panels). The second model solution corresponds to the MT model in (Ardid et al., 2007). Mean

and standard deviation for each parameter are indicated in the title for each panel.
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Supplemental Figure 3. Interneurons show similar patterns of spiking activity in the

course of the attention task. 

A, Average firing rate activity of one inhibitory neuron in the PFC network through the various task

epochs  and  conditions  (attention  and  no  attention  trials).  Rates  and  dynamics  are  similar  to

excitatory neurons (Fig. 2A,B).  B, Same for one inhibitory neuron in the MT network.  C, Spatio-

temporal graphs of spiking activity in small windows in the test epoch of attention trials for PFC

inhibitory neurons show traces of synchronized activity. D, Same for MT inhibitory neurons. E, and

F, Same in  no-attention trials showing  the  lack  of  visually  evident  synchronization among  the

networks of interneurons.
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Supplemental  Figure  4.  The  time  course  of  LFP  gamma  power  mimics  rate

modulations, but not for asynchronous top-down inputs. 

A, Time resolved spectral power in the gamma band (30-50 Hz) of MT LFP in three different trials

(synchronous attention, asynchronous attention and no attention) (Nt=70).  B, zoom in of panel  A

around the time of test onset. C, Time histograms of spiking activity of an MT neuron in the three

trials in  A (Nt=20).  D, zoom in of panel  C around the time of test  onset.  The no-attention and

synchronous-attention curves show similar time courses in A and C, and in B and D. However, the

asynchronous-attention  curve  differs:  In  C and  D it  follows  the  synchronous-attention  curve,

whereas in A and B it follows the no attention curve. This shows that rate effects in the test period

are only partially due to the enhancement of MT synchronization, and that the faster dynamics of

activity onset in attention trials (panel D) does not depend on enhanced synchronization in the MT

local circuit.
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Supplemental  Figure  5.  Inter-areal  synchronization  and  local  oscillations  in  the

gamma-range frequency are mediated by recurrent AMPA receptors. 

Oscillations and synchrony in the model are based on the interplay between short time constants of

recurrent  AMPA synapses  and  medium  time  constants  of  recurrent  GABAA synapses  in  each

network.  We  show  here  that  when  we  removed  completely  AMPA dynamics  in  the  model

compensating with NMDA synapses (PFC: GEE,NMDA = 0.830 nS, GEI,NMDA = 0.654 nS; MT: GEE,NMDA =
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1.50 nS, GEI,NMDA = 2.25 nS), then both inter-areal synchronization and local oscillations vanish.  A,

Spatio-temporal graph of test-period spiking activity in the PFC area network without recurrent

AMPA shows the lack of oscillations in the WM circuit (Compare to Fig. 2C).  B, Same for MT

network (compare to Fig.  2D). In this case,  remaining MT slight oscillations reflect oscillations

coming from V1 sensory input. C, The gamma-range peak in the coherence between spike trains of

one PFC neuron and one MT neuron (control in orange) disappears when there is no recurrent

AMPA synapses in any of the circuits (black). D, Removing recurrent AMPA synapses of the PFC

circuit completely abolishes inter-areal synchronization (green), while some significant coherence

remains in the absence of AMPA recurrence in MT when AMPA-synapses mediate excitation in the

PFC module (violet).  E, The gamma-range peak in the coherence  between pairs of MUA in MT

(control in orange) disappears almost completely when there is no recurrent AMPA synapses in any

of the circuits (black). F, Synchronization within MT is weaker, but is still significant, when AMPA

receptors are removed in either one of the two networks. 
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Supplemental  Figure  6.  Gamma-range synchrony in  MT and modulation  ratio  of

firing  rates  decrease  with  synaptic  latency  dispersion,  but  remain  sizable  for

physiological values. 

The  exponential  distribution  from  which  conduction  latencies  for  top-down  synapses  were

randomly drawn was parametrically varied and the modulation ratio was computed as in Figure 7B.

A, Parametric analysis of the dependence of the maximum value of modulation ratio (purple, see

Fig. 7B) and MT LFP-MUA coherence (blue) with the s.d. of top-down (exponentially distributed)

synaptic latencies σ. The reduction in inter-areal coherence mimicked the drop in peak modulation

ratio  as  the  standard  deviation  σ of  top-down  latencies  increased,  but  remained  high  for

physiologically  plausible  values  (range  0.15-1.21 ms  (Ghosh  and  Porter,  1988;  Fanardjian  and

Papoyan, 1997; Sirota et al., 2005; Le Bé et al., 2007),  gray shaded rectangle).  B, Same as A but

zooming in σ and computing changes relative to the control case σ=0. Physiological dispersion of

synaptic  latencies in long-range connections are therefore insufficient to  eliminate the effect  of

inter-areal  synchronization  in  the  attentional  modulations  of  firing  rate  responses  in  area  MT

(Nt=20).
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Supplemental Figure 7. Local synchrony enhancement by attention in MT underlies

the slight refinement of MT population activity.

A, When the MT network received a zero-mean 35-Hz oscillating input in addition to the PFC top-

down with randomly-dispersed long latencies, intra-MT coherence increased (black trace) from the

low level caused by random latencies (green trace) to the control level of synchronizing PFC input

(orange trace). Notice that, because of the random top-down latencies, the high coherence in the

black  trace  is  not  concomitant  with  significant  PFC-MT  coherence,  as  for  the  orange  trace.

B, Firing  rate  modulations,  relative  to  the  non-attention  case,  also  recovered from the  case  of

random top-down latencies (green trace) to the control case (orange trace). Note that in our model,

the PFC module represents a single cortical circuit from which the attentional signal emanates. By

this figure's analysis we are not proposing third attentionally-related areas (an increase in model

complexity not justified by current data), but to show that: 1) the sources for the two attentional

contributions (mean input and synchronization enhancements) may be separated or not, with equal

MT attentional effects; 2) attentionally-related inter-areal synchrony, either with PFC or with other

cortical areas, is the mechanism underlying the enhancement of local oscillatory activity in area MT

in our model; and 3) such local synchrony potentiation is what underpins the slight refinement of

the  MT  activity  profile  by  synchronization  in  selective  attention.  Our  model  integrates  these

separable  contributions  of  the  attentional  signal  in  a  generic  PFC-MT  network,  as  the  most

parsimonious model of currently available data.
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Supplemental Figure 8.  Multiplicative gain modulation of responses is potentiated

by inter-areal synchrony. 

A, Average firing rate  of a  neuron (preferred direction of  motion  θ=0o)  in trials where the test

stimulus direction  of  motion  θs was  changed continuously  from -180o to  180o,  and  where  the

attended feature stored in PFC was maintained either at the neuron's preference (0o, red curve), or at

the neuron's null direction (180o, black curve).  B, Same for the case when long random synaptic

delays were introduced in the top-down attentional signal (Fig. 6). C, The two curves in A are very

approximately multiplicatively related. This is shown by plotting one against the other, and fitting

with a linear regression. The intersect of the regression line with the y-axis includes zero in the 95%

confidence interval of the estimation (inset), in agreement with an exact multiplicative relationship

between the curves in A. D, Same analysis for the case of asynchronous top-down in B shows that

the curves follow approximately a gain modulation change, but the regression line does not include

zero in the 95% C.I. of its y-axis intersect (inset). Although the difference is small, this proves that

inter-areal synchrony improves the multiplicative character of modulatory responses to additive bias

inputs.
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Supplemental Figure 9. None of the MT networks in supplemental Figure 1 showed

significant effects of inter-areal synchronization on attentional rate modulations in

MT.

Qualitatively different model solutions for area MT (in each panel), found using our optimization

procedure (see supplemental Figs. 1, 2, and supplemental Methods), were coupled with the PFC

network in order to obtain similar firing rate modulations by attention (orange lines in all panels).
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When widely dispersed random latencies were introduced in the top-down input from PFC to MT,

the resulting firing rate modulations (green curves) were unaffected or only slightly affected (MT1,

MT2 and MT6). This indicates that inter-areal synchronization had weak effects on firing rate

encoding in area MT irrespective of the parametric details of the MT network model. 
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Supplemental Methods

Despite the correspondence with experimental results, many parameters of a theoretical model

simulation are not specified experimentally, and constitute the set of free parameters that the

modeler tunes in order to simulate a specific brain function. Usually, the approximation to this

problem is by manual trial-and-error: trying different sets of parameters with the only help of

intuition and experience. This procedure is quite ineffective, as it involves a long, tedious, and often

frustrating hand-tuning period. Furthermore, even though a model solution is found, one cannot be

sure that qualitatively different model solutions may also exist, or even that the solution found

represents a reasonably big portion of the possible models.

Here, we are dealing with correlates of selective attention on the visual motion processing in area

MT. We have shown that inter-areal synchronization between the working memory circuit and the

sensory module is able to enhance moderately the attentional modulations in the mean rate activity

of the MT sensory neurons. Nevertheless, with a single model solution for motion processing in MT

we are not in a position to say whether other possible alternative solutions could present much

larger impact of inter-areal synchronization on mean rate activity.

To evaluate this aspect we use here a novel approach to tune large neuronal networks, which

exploits the power of an optimization algorithm in order to explore much more efficiently the set of

free parameters. In this way, we can find different model solutions in an automated, unbiased way.

Still, it is not possible to explore the whole infinite hyperspace of parameters, and the answer to our

question cannot be final. However, with a number of different model solutions found in an unbiased

way, we can certainly acquire an understanding about how robust our result is. In the next sections,

we introduce this technique, beginning with a detailed description of the inputs and network

parameters in area MT, following with the constraints (fitness functions) that we have considered in

order to consider a given network an MT model solution. Finally, we describe in detail the

optimization method used.

Sensory input to MT. One third of cells in V1 are direction-selective, and they are the main

afferent input to MT (Zeki, 1974; Maunsell and Van Essen, 1983; Albright, 1984; Mikami et al.,

1986; Born and Bradley, 2005). For simplicity, we have modeled the sensory input from V1 to MT

network as a selective injected current (Poisson synaptic inputs were also tested with equivalent

results). We modeled this V1 input according to the three main properties of V1 activity for moving

random-dot patterns (RDPs): direction-selectivity of these cells (Albright, 1984; Snowden et al.,

1992), sensory response saturation in V1 (Snowden et al., 1992), and absence of sensory response
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suppression (Snowden et al., 1991; Qian and Andersen, 1994, 1995). Saturation implies that two

RDPs moving in the neuron's preferred direction, separation=0º, do not suppress, nor enhance

neuronal activity. Response suppression may occur when an RDP is moving in the preferred

direction and simultaneously another RDP moves in the neuron's null direction, separation=180º, as

occurs in area MT. However, this is not observed for V1 direction-selective cells: the appearance of

another RDP in the neuron's RF moving in whatever direction does not modify the neuron's activity

(see supplemental Fig. 1B).

The bottom-up input from V1 to MT is totally described by three parameters (supplemental Eq. 1):

the baseline ( I 0 ), the amplitude ( I 1 ) and the width of the bell-shaped curve ( � ). The selectivity

of this input depends on I 1  , I 0 and � . Thus, for single motion, the bottom-up input is:

I S=I 0�I 1exp �� [cos����C ��1 ] � (Supplemental Eq. 1)

where θC represents the direction of motion of the visual stimulus. On the one hand, this equation

agrees with the periodicity of the direction of motion. On the other hand, it is a bell-shaped curve,

very similar to a Gaussian curve, where their respective widths are closely related by

��1/�2�	�2 , being 	  the width of the approximating Gaussian curve. 

For transparent motion (RDPs in directions θC1 and θC2), the bottom-up input is:

I S=I 0�I 1

exp �� [cos����C1��1 ] ��exp �� [cos����C2 ��1 ] �
max [exp �� [ cos����C1��1 ] ��exp �� [cos����C2��1 ]� ]

(Supplemental Eq. 2)

and it fulfills both the saturation and lack of suppression properties, as the maximal input is I 0�I 1

independently of how many RDPs are presented and independently of the separation between θC1

and θC2.

Parameters in the MT model simulation. The MT network model has N=40  different

parameters that describe completely its behavior. From them, N '=16  are well-characterized

electrophysiologically. These are the intrinsic parameters that describe E-cells and I-cells in the

integrate-and-fire formalism: membrane capacitance ( Cm ), leak conductance and reversal potential

( g L , E L ), firing threshold and reset potentials ( V th , V r ) and refractory time ( 
ref ). We also have

good estimation for parameters defining the dynamics of conductance-based synapses ( 
AMPA ,


s , NMDA , 
x , NMDA , � s , NMDA , 
GABAA
) and their synaptic reversal potentials ( V E , V I ).

As the number of remaining free parameters is very high ( N�N '=24 ), the hyperspace of
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parameters that remains is still too big to be considered in its completeness. In order to reduce it, we

used our experience and intuition with these network simulations to choose n=13  free parameters

that will be explored using the optimization algorithm for the MT network model. The chosen

parameters refer to: the sensory input from V1 to MT (input strengths to each cell population: I 0
E

,

I 1
E

, I 0
I

, I 1
I

, and the width � , which we assume equal for the two populations); the strength of

local conductances ( GEE , AMPA , GEE , NMDA , GEI , AMPA , GEI , NMDA , G IE , G II ); and the maximum

external Poisson synaptic conductances ( gext , E , gext , I ). The remaining parameters (number of

neurons in each population, selectivity in recurrent connectivities, and rate of the uncorrelated

Poisson spike trains in each neuron) remain fixed during the whole execution.

Fitness functions. The space of all possible set of free parameters is named SP�n , where n

denotes the number of free parameters, n=13  in our case, as it has been explained above. To

evaluate the goodness of a set of parameters P�SP , it is necessary to run three kinds of

simulations (7 simulations in total): one simulation without visual stimulation (spontaneous

activity), one simulation with a single moving RDP, and five simulations with two RDPs in

transparent motion and varying separation between the directions of motion of each component:

30° , 60° , 90° , 120°  and 180° , respectively. A �good� set of parameters P must mimic real

behavior, as extracted from experimental results:

� We put restrictions in the values of the mean spontaneous activity to be in agreement with

the experimental observations (Maunsell and Van Essen, 1983; Mikami et al., 1986). Thus,

we require spontaneous activity to lie within the interval [7, 11] Hz for E-cells.

� We consider the activity of E-cells in MT when an RDP is moving coherently in their

receptive field (RF). It has been found that preferred directions of motion present strong

enhancements in the neural responses but non-preferred directions generate in average slight

suppressions (Britten et al., 1993; Britten and Newsome, 1998). Then, we require the

maximum activity for E-cells during single moving RDP to be within the range [38, 47] Hz,

and the minimum activity to be slightly smaller (by 0.5-2.5 Hz) than the spontaneous

activity.

� We constrain the model not to have too high inhibitory activity: the mean spontaneous

activity without stimulation and the minimum activity during single moving RDP must be

below 30 Hz, and the maximum activity during single moving RDP must be below 60 Hz

for I-cells in the model.
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� Finally, we want to include the observed MT activity normalization for E-cells (Snowden et

al., 1992; Qian and Andersen, 1994, 1995; Simoncelli and Heeger, 1998; Treue et al., 2000):

the average activity in the population is conserved for RDPs in transparent motion with

respect to a single moving RDP, and that occurs independently of the separation between the

two components of motion (with a tolerance of 5% in the model).

Since there is high variability in the neural activity, we average steady-state responses in a window

of 5 s simulation. After defining the previous list of conditions, that we expect an MT network

model solution to satisfy, we developed statistical and heuristic measures that evaluate

automatically the goodness of simulation results, given a set of parameters P�SP . Specifically, the

steps to follow for the evaluation are:

� A fitness function is designed according to each condition in the previous list.

� All the fitness functions are calculated for the given set of parameters P�SP .

� Each fitness function is weighted by a specific multiplicative factor (the values that these

weights take are important to be able to find a solution to the problem, also the speed of

convergence of the algorithm strongly depends on them).

� Finally, the fitness value Fit �P � , to a given set of parameters P�SP , is computed as the

sum of all the weighted fitness functions.

Searching algorithm. As described in (Kennedy and Eberhart, 1995, 2001), the Particle Swarm

Optimization algorithm (PSO) is an adaptive algorithm based on a social environment where a set

of particles, called population, are visiting different �positions� of a given domain. In our context,

this domain is a bounded region of the space of free parameters SP , where we anticipate solutions

for our network to exist. Each possible particle in SP  therefore specifies all the parameters for a

network simulation, which can then be run in the computer and a fitness value can be computed (see

the previous sections above). PSO is designed to search among SP  the best evaluated sets. At each

iteration particles will move (i.e. new parameters will be chosen from SP ) returning stochastically

toward the population's best fitness position (social knowledge) and the particle's own previous best

fitness position (cognitive knowledge or self-knowledge). Particles of the population share

information of the best areas to search.

Let us denote PAR  the set of n  parameters and let PO  be the population of particles. At each

iteration, x fp  and v fp  denote respectively the current value and the current velocity of the
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parameter p�PAR  for the particle f �PO . Then, �x f={x fp}p=1. .n  and �v f ={v fp}p=1. .n  are the

vectors of the current position and the current velocity of particle f . The movements of the

particles are defined by the following equations (see supplemental Fig. 1A):

v fp �i�1�=w v fp �i ��r1 c1� x fp �i��blfp��r2 c2�x fp �i ��bgp� (Supplemental Eq. 3)

x fp �i�1�= x fp �i���v fp
(Supplemental Eq. 4)

where c1 , c2  are integer non-negative values, named cognitive and social values respectively (they

are equal to 2 in our implementation). r 1 , r 2  are real values drawn randomly from [0, 1], w  and

�  are non-negative real values, named respectively inertia weight and constriction factor (their

values are respectively 0.729 and 0.95k, where k is the iteration number), bgp  is the value of

parameter p  pertaining to the best set of parameters found by the population (social knowledge)

and blfp  is the value of parameter p  pertaining to the best parameters set found by particle f

(self-knowledge). In supplemental Eq. 3, the first term refers to the previous velocity (inertia term),

and the second and the third terms are related respectively to the distance to the best set of

parameters found by the particle (cognitive knowledge) and to the distance to the best set of

parameters found by the population (social knowledge). We have chosen PSO as a searching

algorithm because it is able to work on any fitness function and it is easy to implement on real

parameters. PSO has been efficiently used as an optimizing method for a variety of problems

(Kennedy and Eberhart, 2001), although to our knowledge this is the first time it is used in

Neuroscience.

Technical implementation. In our experiment, particle positions are each set of parameter values

P�SP  that define an MT network model. Particles are initially randomly instantiated to a position

within the allowed hyperspace and simulations are run for each particle. After running 7 simulations

per particle, fitness functions are computed for each particle. Following PSO, particles are moved

and new positions are assigned to each particle. PSO and fitness functions are computationally

affordable but simulations are computationally very expensive and many need to be run to perform

one single evaluation. Each simulation lasts in average 20-50 minutes. For each position visited, 7

simulations are run, that gives ~4 hours. A swarm with 50 particles would need ~200 hours at each

movement phase. If each experiment lasts ~50 iterations, then ~10,000 hours of CPU processing

time are necessary per experiment. We ran these intensive simulations in large clusters of computers

(including MareNostrum Supercomputer at the Barcelona Supercomputing Center). These
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simulations involve three separate codes:

� the worker code: the biological neural network simulation of the MT cortical microcircuit.

� the master code: a code to control the simulation that, at each time step, evaluates the

behavior of the population of neural network simulations, updates the parameters to advance

towards the required optimization following the PSO algorithm, and launches the new

simulations.

� the Grid SuperScalar application (Sirvent et al., 2006), that allows an easy granular

parallelization of the previous two items.

Thus, our approach consists in processing, at each iteration, a myriad of small jobs (the biological

neural network simulation for area MT, which we call the worker code). Each job is completed

within a single computational node, under the control and evaluation of the master code that

implements the optimization algorithm (PSO). The Grid SuperScalar technology provided the right

computational tool to deploy this efficiently in a large cluster of computers (Sirvent et al., 2006).

Representative MT model solution. In this section we present a characteristic network model

solution for visual motion processing in area MT (supplemental Fig. 1C), derived by using the PSO

algorithm described in the previous sections. The unspecific Poisson external input is responsible of

the neurons' spontaneous activity, generating a firing rate for the chosen solution close to 10 Hz.

The MT network model shows both the direction selectivity and the population activity

normalization found in area MT (supplemental Fig. 1C). This kind of normalization implies that

increasing the separation in terms of the direction of motion between two transparent RDPs

generates a reduction in the activity of the neurons that code for them (Treue et al., 2000).

Moreover, the same experimental observations show that the averaged response in MT for

transparent RDPs is well-fitted by the sum of two Gaussian curves divided by 2, trend that our

model solutions reproduce quite approximately, too (with a 5% tolerance). This kind of fit maintains

constant the area under the curve independently of the RDPs separation, showing that the average

activity for the population profile is conserved, even when the peak activity decreases with such

separation. Such kind of population normalization was already used in another MT model, although

it was imposed without considering plausible physiological mechanisms (Simoncelli and Heeger,

1998). The PSO algorithm found 15 different biophysically plausible network models for area MT

(supplemental Fig. 2). In order to generate the population normalization, we show here that the

main characteristic of the MT network model is that the circuit is dominated by inhibition: recurrent
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inhibition in the model is much higher than recurrent excitation for all MT network model solutions.
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Supplemental Table

µ I0
E (nA) I1

E (nA) I0
I (nA) I1

I (nA) GEE,AMPA

(nS)

GEE,NMDA

(nS)

GEI,AMPA

(nS)

GEI,NMDA

(nS)

GIE

(nS)

GII

(nS)

gext,E

(nS)

gext,I

(nS)

MT1 (Control) 2.63 1.65 0.740 1.40 0.390 0.801 1.10 0.684 2.00 7.34 7.34 17.0 9.20
MT2 2.53 1.00 0.900 0.200 0.180 4.88E-3 0.0927 4.88E-3 0.195 1.46 0.391 15.0 4.50

MT3 1.51 1.45 2.06 0.372 0.691 0.694 0.469 1.81 0.948 7.70 6.18 29.5 16.6
MT4 2.08 1.73 1.47 1.28 0.768 0.271 0.0246 1.48 0.679 7.80 7.72 19.4 9.51
MT5 2.95 1.86 1.11 0.414 0.141 0.378 0.144 1.19 0.0891 6.73 2.28 17.5 3.28
MT6 2.53 1.00 0.900 0.200 0.180 0.269 0.00 0.0488 0.195 1.46 0.391 15.0 4.50
MT7 3.04 2.61 1.08 0.684 0.192 0.635 1.23 1.39 1.31 7.48 4.53 23.9 8.02
MT8 1.93 2.41 0.880 1.19 0.465 0.934 1.21 1.61 0.778 7.66 5.74 22.0 15.5
MT9 2.99 1.89 0.861 1.45 0.443 0.236 0.465 1.69 0.757 7.31 7.50 13.5 5.91
MT10 2.67 1.59 1.30 0.526 0.319 1.40 0.752 1.73 1.28 7.72 5.34 25.9 10.6

MT11 1.57 2.62 1.99 1.44 0.295 0.969 0.168 1.89 1.82 7.44 6.93 29.4 12.3
MT12 1.26 3.28 1.44 1.09 0.329 1.25 0.589 1.37 1.02 7.56 4.83 25.7 10.7
MT13 1.71 2.86 1.48 0.646 0.411 0.592 0.0345 1.81 0.786 6.36 5.53 25.7 12.6
MT14 2.63 1.65 0.829 1.40 0.392 0.724 1.14 1.34 1.78 7.36 7.34 16.9 9.18
MT15 2.08 2.45 1.60 0.0241 0.202 0.0202 0.145 0.855 1.00 6.58 3.37 26.5 4.69
Mean 2.27 2.00 1.24 0.821 0.360 0.612 0.505 1.26 0.976 6.53 5.03 21.5 9.13

SD 0.581 0.671 0.421 0.519 0.183 0.419 0.472 0.607 0.588 2.10 2.44 5.49 4.06

% SD/Mean 25.5 33.5 33.9 63.3 51.0 68.6 93.4 48.2 60.2 32.2 48.6 25.5 44.5

Supplemental Table 1. Subset of free parameters considered in our optimization

procedure and their specific values in each MT network model solution. 

Basic statistics for each parameter between models are indicated in the three bottom rows (mean,

standard deviation and coefficient of variation, i.e. standard deviation relative to the mean), to stress

the variance of the different MT model solutions in the space of parameters. Notice that for any

parameter the standard deviation relative to the mean is >25%, and in more than half of the

parameters it is higher or very close to 50%.
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