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Abstract

The perception of complex visual patterns emerges from neuronal activity in a

cascade of areas in the cerebral cortex. As information propagates along this hier-

archy, neuronal responses become more selective for particular features of natural

images and more tolerant to image transformations that preserve those features.

Despite this generally accepted framework for visual processing, we lack satisfy-

ing descriptions of the neural computations supporting visual representations at

intermediate stages of this pathway. The role of the second visual area (V2) in

pattern vision has been particularly enigmatic, partly because no simple response

properties robustly distinguish V2 neurons from their inputs in primary visual cor-

tex (V1). Previous approaches to midlevel vision and V2 have employed intuitions

about features of intermediate complexity in natural images, or have attempted

to build models to predict neuronal responses to arbitrary natural images. Here,

we employ a new approach, constructing targeted, naturalistic stimuli by building

on insights from models of the V1 inputs into V2, the statistics of natural images,

and perception. We found that V2 neurons, but not V1 neurons, responded more

vigorously to naturalistic texture stimuli than to control stimuli that lacked the

statistical dependencies found in natural images. V2 responses were also linked

to both the detection and discrimination of naturalistic structure in perceptual

experiments in humans and nonhuman primates. Together, our results suggest a

specific role for V2 in visual perception, and a framework for approaching midlevel

computations in hierarchical sensory transformations.
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Chapter 1

Introduction: An approach to

mid-level vision

Vision is supported by a cascade of dozens of di�erent brain areas working in

concert to produce our experience of the visual world [121]. The study of vision

encompasses the investigation of our visual behaviors as well as their neural basis.

As primarily visual animals, humans have a vast repertoire of highly developed and

complex visual capabilities, and devote an exceedingly large proportion of their

brains to processing visual information. This neural specialization is shared with

our primate ancestors as well as many other species who also rely on vision as a

primary and essential sense [246, 52, 181]. No visual capability is as striking as our

talent for quick object recognition and scene understanding [46]. The remarkable

nature of this capacity can be obscured by its e�ortlessness. But the complexity

of this fundamental component of human vision is underscored by the fact that

until only the last handful of years, no artificial systems could even approach

the performance of human observers at recognizing objects, despite attempts that

stretch back for over a half century.

One goal of visual neuroscience is to understand the contribution of each di�er-
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ent area of the brain in supporting our visual capabilities [18]. We often conceive

of the visual system as a branching hierarchy, with each area of the brain process-

ing particular aspects of visual information (Fig. 1.1, [52]). Representations at

di�erent processing stages become increasingly complex as information flows from

the retina to deeper structures in the brain [179]. This hierarchy has also been

grossly divided into two di�erent visual streams, each comprising multiple visual

cortical areas [231, 230]. The dorsal visual stream is often described as processing

vision for action and the ventral visual stream as processing vision for recognition

(Fig. 1.1).

A major approach over the last many decades has been to investigate the prop-

erties of single and populations of neurons at each stage of this visual hierarchy.

The goal is to elucidate what di�erent neurons represent about the visual world,

and how they can accomplish this through computations on their inputs [87, 32].

This has proved a di�cult endeavor beyond the earliest stages because our visual

behaviors are complex, and the dimensionality of the visual input is enormous.

With current technology, we can record from one to hundreds of neurons simulta-

neously and expose them to tens of thousands of stimuli at the very most. The

space of possible visual images is e�ectively infinite, however, and this curse of

dimensionality means that choices must be made about the subset of stimuli to

use in characterizing the visual selectivity of neurons. Those choices can have a

profound impact on the conclusions that we draw from physiological experiments.

What principles can guide the choice of stimuli? Often the choice has come

down to intuitions about what is important in the visual world. As will be dis-

cussed further, this has worked well at both the top and bottom of the visual

hierarchy. This intuitive approach has given us a broad understanding of what

2



PIT

V1 V2 V3

PIP

V3a

MDP

MIP

PO

MT

V4

VIP

LIP

MST

FST

7a

STPp

CIT

STPa

AIT

O

V

T

D

P

Figure 1.1: The primate visual system. Each visual cortical area in the macaque monkey
is represented as a colored box proportional in size to the cortical surface area. Con-
nections are represented as lines whose thickness represents the number of fibers in the
connection. Dorsal stream areas are represented on the top right, and ventral stream
areas on the bottom right. From [245], adapted from [52]
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kinds of visual information are represented at many stages of the visual system.

However, in order to claim a true understanding of the visual system, we need

models that can account for the responses of single neurons to arbitrary stimuli.

Additionally, we need those models to be interpretable to gain insight into the

perceptual consequences of particular neural representations. We have attained

something approaching this success in only a handful of areas of the visual brain

[32], and have yet to achieve it fully even in the retina [56, 178].

Understanding visual neurons has been particularly di�cult at the middle levels

of the ventral stream of the visual pathway, thought to underlie vision for recogni-

tion. Here, our intuitions about the building blocks of the visual world have largely

failed us. In this thesis, my collaborators and I have attempted to outline a new

approach, guided by perceptual observations, the statistics of natural images, and

a model-based understanding of visual representations at lower levels of the visual

system.

1.1 Transformations in early vision

Vision begins in the retina, and the visual selectivity of single neurons was first

investigated there. The responses of intrinsically light sensitive photoreceptors

in the retina are transformed into the receptive fields of retinal ganglion cells

(RGCs), the output cells of the retina. Single RGCs respond to increments (ON-

centered) or decrements (OFF-centered) of light at a particular location in the

visual field. In the primate, most receptive fields in the retina and its major

target, the lateral geniculate nuclues (LGN), are circularly symmetric and exhibit

antagonistic surround regions driven by the opposite polarity of light [249]. This

generic subcortical receptive field is radically altered once visual signals reach the
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a b

Figure 1.2: Construction of simple and complex receptive fields in V1. (a) The hypoth-
esized scheme for constructing oriented, V1 simple cell receptive fields by combining
unoriented LGN receptive fields. (b) The hypothesized scheme for constructing complex
cells. Simple cell receptive fields of di�ering position but the same orientation are com-
bined to form an oriented, but spatially invariant complex cell receptive field. Adapted
from [101]

cerebral cortex.

Hubel and Wiesel discovered a major reorganization in the cortical sensitivity

to patterns of light. They found that single neurons in the primary visual cortex

(V1) are selective for the orientation of luminance edges ([101, 102], Fig. 1.2a).

Mapping receptive fields using simple spots, bars, and edges of light, they dis-

covered that some V1 cells (referred to as a “simple” cells) were characterized by

nonoverlapping, elongated subregions selective for increments and decrements of

light. The organization of these elongated subregions endowed the overall receptive

field with selectivity for the orientation of edges. This finding uncovered a wholly

new form of visual selectivity than is present in the LGN inputs into V1. Hubel

and Wiesel suggested this transformation could be accomplished by summing the

responses of LGN neurons whose receptive fields were aligned along the axis of

preferred orientation ([101], Fig. 1.2a).

Hubel and Wiesel also discovered “complex” cells that contained no subregions

with specific ON or OFF selectivity. These neurons were still selective for orien-

tation, but invariant to the polarity, and the exact position of the oriented edge
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([101], Fig. 1.2b). By analogy to the construction of simple cells from combina-

tions of LGN receptive fields, Hubel and Wiesel proposed that complex cells were

constructed by combining multiple simple cells with the same orientation prefer-

ence but di�erent positions. The multiple overlapping ON and OFF subregions of

the simple cells generate invariance to position and polarity but retain selectivity

to orientation.

The discovery of the emergence of orientation selectivity in cortex, and the

proposed hierarchical transformation of simple cell receptive fields into complex cell

receptive fields has been hugely influential. Although the proposed mechanisms for

receptive field construction were not necessarily correct at a quantitative level, The

basic intuition was sound. And in the years since these discoveries, this conceptual

model of sensory transformation has been made more concrete by formalizing it

within an explicitly computational framework. Linear systems analysis allowed

researchers to test the validity of intuitions about how the selectivity of these early

visual neurons arose.

The first attempts at applying a more rigorous, model-based understanding of

receptive fields were made in the retina. A simple linear receptive field mechanism

followed by a static nonlinearity could account very well for the receptive fields of

many RGCs [47]. However, some RGCs exhibit profound nonlinearities in their

summation properties over space [47]. Still, the nonlinearity of these neurons could

be explained by the action of many smaller, linear subunits whose outputs are

combined following a rectification [97, 234]. This subunit idea was a powerful one

that faciliated the description of highly complex selectivity within a computational

framework that was eminently workable [59]. Along with the concept of linear

filtering, static nonlinearities, and normalization, subunit architecture has become
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part of a toolkit of canonical neural computations that appear to recur throughout

the visual system as well as other sensory and nonsensory systems in the brain [87,

33, 139].

Over many years, our picture of the retina has grown increasingly complex [56,

135, 14]. Highly specialized, even cortex-like, receptive fields have been discovered

in the retinas of many animals, including the rabbit and the mouse [19, 25, 215,

192]. However, these complicated retinal receptive fields have yet to be discovered

in many higher mammals like the primate, and even if they are present must be

hugely outnumbered by simpler receptive field types. Although there is likely much

more retinal complexity yet to be discovered, models of V1 built upon a linear,

pixel-like input have been very successful.

Just as we have a standard model for retinal receptive fields, a standard model

of V1 has also developed. The responses of simple cells can be captured with a

linear filter and nonlinearity (Fig. 1.3, [142]). The structure of the linear filter

distinguishes subcortical from V1 responses here. To model the nonlinear behav-

ior of V1 complex cells, the subunit architecture from the retina can be modified

such that simple cells constitute the subunits. In this framework, multiple simple

cell-like linear filters are applied to an image, rectified and then summed [141]. For

most purposes, the responses of V1 complex cells can be summarized using just

two subunits in quadrature phase ([4, 227], Fig. 1.3). Capturing the full complex-

ity of V1 responses requires additional subunits, and can be done e�ectively with

an e�cient convolutional subunit architecture [187, 130, 240]. While such models

can account for a great deal of the variance in V1 responses, there are many addi-

tional known (and also likely unknown) nonlinear properties of V1 neurons, such

as adaptation and modulatory influences from beyond the classical receptive field.

7



Retina, LGN

V1 simple cell

V1 complex cell

Figure 1.3: Commonly used models to summarize the response selectivity of neurons in
the retina, LGN, and V1. Each model consists of one or more linear receptive fields,
followed by a pointwise nonlinearity such as rectification or squaring.

Several of these can be reproduced through modifications to the basic modeling

framework; for example, by adding normalization, adaptation, or other forms of

gain control [85, 31, 32, 186, 134, 38].

It is useful to step back and ask what success at characterizing the basic se-

lectivity of the early visual system tells us about the prospects for understanding

neurons in later areas. Although receptive fields in the retina, LGN, and V1 were

first characterized using simple spots and edges of light, that does not mean the

purpose of these neurons is to detect the presence of such stimuli. Indeed, it is

precisely moving away from thinking of V1 neurons as edge or line detectors that

has allowed their thorough quantitative characterization. Adelson and Bergen re-

ferred to this as thinking of the early visual system as measuring “stu�” rather

than detecting “things” [6]. Many aspects of receptive fields make intuitive sense

within this framework, as they appear to be measuring structured changes in visual

substances along dimensions such as space, time, wavelength, or depth. A V1 sim-
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ple cell can be thought of as an oriented spatial derivative, a directionally selective

V1 cell as a derivative oriented in space-time. This powerful conceptualization of

early vision has been di�cult to carry downstream, because we have no concept

for what the “stu�” of midlevel vision might be, at least in the domain of form

vision.

1.2 Approaching midlevel vision

There has been a great deal of success in characterizing midlevel vision, it is only

that it has mostly been accomplished in visual areas that are thought to be part

of the dorsal stream [231]. How should one approach the study of vision outside

of V1? A good first step is to identify how visual signals might be elaborated in

the extrastriate area under study. One area where this first step was immediately

successful is area MT (V5), where nearly all neurons are selective for the direction

of visual motion.

Selectivity for direction of motion first arises in V1. Hubel and Wiesel, along

with their discovery of the emergence of orientation selectivity in V1, also dis-

covered that a subset of V1 neurons are additionally sensitive to the direction of

motion of an oriented edge [101, 102]. However, the pervasiveness of direction

selectivity in MT distinguishes its neurons from those in V1 quite well (Fig. 1.4a,

[140, 22]). If one were to play a hypothetical physiologists game to identify the

cortical origin of a single neuron on the basis of one a single response property,

one would be correct over 80% of the time by using direction selectivity to distin-

guish V1 from MT (Fig. 1.4a). In addition to the increased selectivity for motion

direction in MT, it was also discovered that several MT cells exhibited further

complexity that was completely absent in V1. Some MT neurons could signal the

9
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Figure 1.4: Characterization of area MT. (a) Distribution of direction selectivity for
single neurons in V1 (top) and MT (bottom). The directional index was computed as
1 ≠ n/p, where p is the response to the preferred direction and n is the response to the
direction 180¶ away. Adapted from [140]. (b) Computational framework for MT. The
input to a single MT neuron is a simulated V1 population response. Adapted from [87].
(c) Comparing neuronal sensitivity with behavioral sensitivity. Comparing sensitivity
to coherent motion of a single MT neuron with the simultaneously measured behavior
of a nonhuman primate observer. Distribution of the ratio of neuronal threshold to
psychophysical threshold across 216 sessions. Adapted from [27].

direction of motion of a moving visual pattern invariant to the spatial structure of

the pattern [144].

Once the selectivity of the inputs has been di�erentiated from that of neurons

in the target area, one must understand how this elaboration can arise through

computation performed on the inputs. How could V1 inputs be combined to form

pattern cells in MT tuned to the velocity of a visual pattern and relatively invariant

to the structure of that visual pattern [144]? The ultimate goal is to characterize

the computation well enough to predict the spikes of individual neurons to arbitrary

stimuli. However, this can be very di�cult for a variety of reasons, and deriving

a qualitative match to neural data can be challenging enough. In the case of MT,

there was a theoretical understanding of how MT neurons might acquire their

selectivity long before that model was instantiated in a way that could predict
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the firing rate of single neurons (Fig. 1.4b, [87, 204]). Subsequently, hierarchical

models for MT have been constructed to operate on a simulated V1 output and

fit to individual MT neurons [185, 156, 257].

Finally, one can ask how an area supports perception of the visual features

represented by its neurons. There are many indirect ways to compare the similarity

of a perceptual representation to a given level of neuronal representation [117, 165].

When possible, the ideal experiment is to record from or perturb a population of

neurons while a subject is engaged in perceptual behavior thought to depend on

those neurons. In these types of experiments, first carried out in area MT [149, 27],

investigators have consistently found a close relationship between the sensitivity

of single sensory neurons and the perceptual sensitivity of the entire organism

(Fig. 1.4c, [27, 36, 152, 174, 229, 155]. The tightness of this relationship can be

a�ected by several factors, including timing [39] and optimization of the stimuli

for the neuron under study [80, 79, 175, 198]. In most cases, at the very least,

the most sensitive neurons in a sample approach the sensitivity of the animal

[165, 151]. MT has been tied to perceptual behavior in several other ways as well

(but see [84]): Lesioning MT causes a specific and profound impairment of motion

perception [148], microstimulation of MT biases motion judgments [188, 189], and

the responses of single MT neurons to the same stimulus predict behavior on a

trial-to-trial basis [26].

Thus, to understand a midlevel visual area we must di�erentiate the selectivity

of its neurons from that of its inputs, develop a functional understanding of the

computations its neurons perform to achieve this selectivity, and link this selectiv-

ity to perceptual behaviors. Arguably, MT is the only area where all three have

been adequately explored. There are many areas of the brain beyond V1 where
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one or two of these tests have been passed for a specific stimulus domain. There

are many more areas for which we really have not succeeded fully in any of these

endeavors, the most surprising and enigmatic of which is the second visual area,

or V2.

1.3 The second visual area

The role of V2 has been particularly inscrutable, despite its apparently substantial

role in many aspects of vision. V2 is the largest extrastriate visual cortical area

in primates [226], and the most prominent recipient of projections from V1 (Fig.

1.1, [52, 121, 190]). It makes strong projections to areas in both the dorsal and

ventral stream [199, 44, 66], and its neurons exhibit selectivity to a wide range of

elemental visual properties [123, 68, 210].

Anatomical staining of V2 in some species of primate reveals a tripartite, stripe-

like compartmental structure [226, 225, 210]. Tracers indicate that di�erent com-

partments receive distinct inputs from di�erent anatomically defined subpopula-

tions of V1 [209, 49, 50]. Such studies suggest that some V2 neurons, those in the

“thick” stripes, may be more a part of the dorsal visual pathway and project to

MT, whereas other neurons, those in the “thin” and “pale” stripes, may be more

involved in ventral stream processing [44, 199]. While some studies have found

functional di�erences between neurons in di�erent stripe types [100, 200, 131, 129,

68], others have found little to di�erentiate them [123, 201]. The functional signif-

icance of these compartments, like much else in V2, remains to be fully elucidated

[98].

Mirroring the greater success in understanding the dorsal stream, the role of V2

has been clearer within stimulus domains associated with this visual pathway. In
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particular, the representation of disparity has been well characterized. V2 neurons

can be strongly di�erentiated from their V1 inputs on the basis of selectivity for

absolute or relative disparity cues [220, 24]. The transformation from the repre-

sentation of absolute disparity by V1 neurons to that of relative disparity by V2

neurons can be explained by using computational models that utilize a subunit

architecture [220, 23, 217]. Finally, V2 neurons, and not V1 neurons, have been

shown to predict behavioral judgments of disparity [152, 153]. These representa-

tional properties in V2 are vital for further processing in the dorsal stream [171,

213], and may also provide important input to ventral stream structures. How-

ever, establishing a role for V2 in ventral stream processing of pattern and form

information has proven much more di�cult.

Anatomically, V2 appears to be central to processing in the ventral stream

pathway. V2 makes a large projection to area V4 [66, 232], the largest midlevel

ventral stream area (Fig. 1.1, [180]), as well as areas further up the ventral hierar-

chy [145]. Lesioning V2 in macaque monkeys leaves many aspects of vision intact,

but impairs performance on certain tasks such as visual search within textured

displays which suggest a role in midlevel form vision [138].

The responses of V2 neurons depend on feedforward input from V1 [190, 210],
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and their receptive fields are roughly twice the diameter of those in V1 (Fig. 1.5,

[64, 201]). Just as receptive fields in V2 are larger than those in V1, receptive fields

in V4 are larger than those in V2 (Fig. 1.5). This progression of receptive field sizes

in the ventral stream suggests that each stage combines multiple receptive fields

from previous stages, and is thought to be mirrored by a progression in receptive

field complexity. Unlike MT, which receives V1 input from a functionally limited

subset of directionally selective complex cells [140], V2 receives input from the full

diversity of receptive fields that exist in V1 [195]. V2 is most likely combining and

elaborating signals from V1 to encode image features that V1 does not, but simply

examining the properties of its inputs provides little insight.

Examining the selectivity of V2 neurons using the kinds of stimuli often used

to characterize V1 reveal few noteworthy di�erences (Fig. 1.6). V2 neurons are

selective for orientation and spatial frequency content, similar to V1 neurons [57,

123, 75, 51, 121]. V2 neurons also have similar proportions of selectivity for di-
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rection of motion and chromatic properties as those in V1 [51, 121, 114, 163].

Many studies have subsequently resorted to more elaborate stimuli in attempting

to reveal di�erences between V1 and V2 neurons.

Hubel and Wiesel made some of the first attempts to try to understand how

extrastriate areas might elaborate on the receptive fields they encountered in V1.

Similar to their formulation of simple and complex cells in V1, they posited that

increased receptive field complexity in V2 neurons could come from simple combi-

nations of their inputs. They proposed that V2 neurons might combine V1 neurons

of di�ering preferred orientation to create selectivity for corners of a specific angle

[103]. This idea reveals an inclination toward thinking of visual neurons func-

tioning as detectors of specific “things” in the environment that seem intuitively

important for building complex visual representations. Their intuition that, fol-

lowing the emergence of orientation selectivity in V1, the next logical step in vision

is curvature or angle selectivity has been reflected in many studies over subsequent

decades [89, 91, 132, 106, 11, 105]. Nonetheless, such properties have largely failed

to reliably di�erentiate V2 neurons from their V1 inputs (Fig. 1.7).

Another related approach suggests that V2 neurons are tuned for orientation

like those in V1, but can signal the orientation of features more complex than

luminance. Oriented edges can be signaled by luminance, but also with so-called

anomolous contours or sharp transitions in texture. Using such stimuli has revealed

some interesting aspects of visual representation in V1 and V2, but only modestly

di�erentiated their response properties (Fig. 1.7, [169, 120, 219, 196, 83, 125]).

Von der Heydt and colleagues have extensively investigated the selectivity of V2

neurons for the figure-ground structure of an oriented edge [259]. Compared with

V1, a larger subset of V2 neurons seem to be sensitive to the “border ownership”
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of an oriented edge (Fig. 1.7). However, these signals rely on global contextual

information from far outside the receptive field of V2 neurons, may depend on

top-down visual attention [176, 48], can persist when contextual cues are removed

[159], and even remap across the visual field [160]. Thus, although apparent in

the responses of V2 neurons, it remains to be seen whether this signal represents

computations being carried out by V2 neurons or rather feedback from higher areas

in the ventral stream [94].

Accuracy differentiating V1 and V2

based on:

66%
Angles

(Anzai et al., 2007)

53%
Curvature

(Hegde & Van Essen, 2007)

61%
Anomolous contours

(Peterhans et al., 1989)

64%
Border ownership

(Zhou et al., 2000)

Figure 1.7: Attempts to di�erentiate V1 and
V2 based on novel stimuli. Accuracy was
determined by ROC analysis on a single re-
sponse metric. Data adapted from [106, 91,
169, 259].

A problematic feature of such ap-

proaches to understanding midlevel

vision is the inability to explain

or even engage with other potential

forms of selectivity. Characterizing

V2 responses within a handpicked,

parametric feature space such as those

of curvature, texture-defined edges, or

figure-ground organization does not

allow us to predict how V2 neu-

rons would respond to other classes

of stimuli, including natural images.

This presents a limitation, as validat-

ing models using natural images rep-

resents an important benchmark for gauging our understanding of neural repre-

sentations [186]. The visual system evolved to represent natural images, and using

highly complex or natural stimuli has facilitated our understanding of areas deep in

the ventral stream such as inferotemporal cortex (IT). Here, our intuitions about
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what is important in the visual world seem to match what is represented by sin-

gle neurons. IT neurons are selective for complex objects or visual categories [78,

104, 113, 118, 252, 228]. This highly complex selectivity certainly di�erentiates

their responses from those in early vision, and these neurons can even be linked to

specific perceptual behaviors [7]. However, we cannot build interpretable models

that predict the response of these individual neurons to arbitrary images until we

understand midlevel vision more fully.

One approach to early and midlevel vision that circumvents the problem of

stimulus selection entirely is to simply present large numbers of natural images

to single neurons [53]. Natural images contain the full complexity of the natural

world, so the hard problem of stimulus selection is transformed into the problem

of model selection. In areas such as V1 and MT, where there already existed a

previous understanding and modeling framework, this approach has been relatively

successful [54, 37, 156, 38]. Such studies can often generate good predictions for

neural responses to natural images, have confirmed or elaborated observations

made with artficial stimuli (such as the importance of suppressive influences), but

have mostly not uncovered unknown features of neural representation.

This framework has been less successful in V2. Since the primary input into

V2 is from V1, any modeling e�ort should start with a simulated V1 front end

(Fig. 1.8). Willmore and colleagues fit the responses of V2 neurons as linear

combinations of wavelets tuned to di�erent orientations and spatial frequencies

[250]. The fitted parameters for V2 neurons compared with those fitted to V1

responses did reveal a marked increase in the strength of suppressive tuning. The

Willmore model provided adequate fits to V2, but ultimately did not elucidate what

specific image properties V2 neurons represent beyond those already represented in

17



V2 stage

... ...

V1 front end

+

w1

w3

wn

w2
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combination of V1-like
filter responses. Based
on model architectures
from [250, 238, 239]

V1. This has generally been the case when fitting similar models to more artificial

stimuli [238, 239], as well as when fitting simpler models that operate by taking

linear combinations of the pixels of natural images [129]. Thus, although this

approach benefits from fitting models that can be applied generally to arbitrary

stimuli, they have mostly not di�erentiated V2 from its V1 inputs and have little

hope of providing a link to perception.

A new way of tackling problems of mid- and high-level vision has done away

with both choosing stimuli and hand-configuring models. The unprecedented suc-

cess in recent years of deep convolutional neural networks in object recognition has

driven some to suggest that they may serve as a general model of the biological

ventral visual stream [254, 28, 112, 253]. A weighted combination of unit outputs

at intermediate and higher stages of such a network recently provided the first

workable functional model of visual neurons deep in the ventral stream (V4 and

IT, [254]). Intriguingly, the better the network was trained to categorize objects,

the better it predicted neural responses [254]. This approach has yet to be applied

to lower levels of the ventral stream, but may have similar predictive success in

V2. However, such a result would ultimately substitute one thing we don’t fully

understand for another. The performance of these networks has increased rapidly

over just the last handful of years, and understanding their internal workings is
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still an active area of research [216, 258, 150, 255, 208, 73, 67].

These early results using deep convolutional neural networks suggest that quan-

titatively accurate models can be built for neurons in higher hierarchical levels of

the ventral stream without an understanding of representations in lower levels [254,

112]. Further, some have suggested that intermediate levels of representation may

be so complex as to preclude descriptions beyond assigning them a level within

a performance-optimized deep network [253]. However, simply finding the right

subspace can sometimes obscure understanding of the computations performed by

visual neurons. For example, using spike-triggered covariance, one recovers sub-

units that provide a good prediction for the selectivity of V1 complex cells [187].

However, the subunits themselves often contrain structure that is di�cult to inter-

pret. By constructing models based on what we know to be represented in lower

levels (here, simple cells), we can build much more e�cient, parsimonious, and

satisfactory accounts of complex cell responses [240, 241]. Using this bottom-up

approach to understanding representations, combined with performance-optimized

networks and guided by perception may provide fundamental insights into vision

in the coming years [116, 92]. Along these lines, the approach summarized below

represents a first step along this path, albeit utilizing a much shallower network.

We posit that to understand V2, we need an approach that is not driven simply

by our intuitions about what may be useful at intermediate stages in the ventral

visual hierarchy, nor by just aiming to best predict neuronal responses to arbitrary

natural images. Instead, we propose a multidisciplinary attack on the problem of

midlevel representation, using computational models of lower level representations,

insights gleaned from studying the statistics of natural images, and a dynamic

interplay between physiology and perception.
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1.4 The current approach

In order to approach midlevel vision we have to address the structure of the natural

world these neurons must represent. It is well established that sensory neurons

are likely to be adapted to e�ciently encode the statistics of natural signals [13,

20]. However, the structure of natural images is highly complex and di�cult to

capture, and there are many ways to establish links between neural processing and

environmental statistics [205].

One basic observation is that natural images contain strong spatial correla-

tions. Two neighboring pixels are much more likely to have similar values than

two widely separated pixels. We can capture this elementary feature by examining

the second-order (covariance) statistics of natural images. If we assume transla-

tion invariance across space, the covariance of natural images is captured by the

Fourier power spectrum. Natural images have a characteristic relationship between

spectral amplitude and spatial frequency, according to the power law 1/fa (with a

often between 1 and 2, [223, 182, 205]). V1 neurons capture the spectral properties

of natural images well. The receptive fields of V1 neurons are well described by

selectivity to a local region of the power spectrum of images [42, 157].

However, natural images are not defined solely by their spectral statistics and

contain a great deal of higher-order (beyond second-order) structure. This can been

demonstrated by imposing the Fourier power spectrum of a natural image on an

image of Gaussian white noise (or by randomizing the phase and maintaining the

power spectrum). The resulting image will look radically di�erent and retain none

of the recognizable complex features present in natural images [205]. However,

a model V1 receptive field convolved with both images will respond the same on

20



average, because they contain the same amount of all orientations and spatial

frequencies (i.e. second-order or spectral statistics).

What higher-order statistics might be needed to capture the perceptually rel-

evant features contained in natural images? Julesz [108] conjectured that when

viewing spatially homogeneous texture images, humans would not have the ability

to discriminate images that were matched for a su�cient set of statistics [108]. He

formulated his theory in terms of the order of pixel statistics, and subsequently

found that higher and higher statistical orders were insu�cient to match visual per-

ception and abandoned the theory [110, 29, 30, 109]. Working with pixel statistics

is challenging as the number of statistics beyond second-order grows exponentially

and there is no tractable basis in which to represent them. One way to simplify

things and make this approach workable is to limit pixel intensities to just two

values (black and white) and generate texture arrays with particular multipoint

(beyond second-order) correlations. This creates an image space within which

perceptual discrimination can be fully characterized [235]. However, while this

statistical description is mathematically rigorous, it cannot be expanded to engage

with the full complexity of images in the natural world (but see [222] for one at-

tempt to do so) and is not well aligned to known physiology at the level of V1,

prior to areas where such statistics might be represented [256].

The higher-order statistics of natural images can be captured in an alternative

framework that is both informed by physiology and can be applied to arbitrary

natural images. Specifically, instead of working with the pixels of a natural im-

age we can work with the output of a population of V1-like filters (Fig. 1.9a-c).

Examining the outputs of such a mutli-scale and multi-orientation image transfor-

mation can yield clues about what structure might be represented at later stages of
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Figure 1.9: Correlations in V1-like filter outputs. A natural image (a) is convolved with
3 filters tuned for orientation and spatial frequency (b). (c) The outputs across the image
for three di�erent filters. (d) Examining joint histograms of outputs for filters di�ering
in orientation or scale reveals a lack of correlation but strong dependencies. (e) Plotting
the log of the absolute value reveals strong correlations.

the visual hierarchy to capture the attributes of natural images [207]. Heeger and

Bergen found that generating synthetic images by matching the marginal statistics

of V1-like filter outputs to that of an original recapitulates many features of pho-

tographs of natural texture [88]. However, the synthetic images generated through

this method also failed to express many key attributes of natural texture images,

including strong edges aligned across frequencies, spatial periodicity, and extended

contours. These failures suggested that examining dependencies across di�erently

tuned filters might aid in capturing more naturalistic structure.

Although convolving a natural image with V1-like filters decorrelates the second-

order pixel statistics, strong dependencies in the output of di�erently tuned filters

remain (Fig. 1.9d, [206]). This is immediately apparent when examining the joint

histograms of filters tuned to di�erent orientations (Fig. 1.9d bottom), scales (Fig.

1.9d top), or relative positions. Although their output is not correlated, the joint

histogram contains a clear “bow-tie” shape indicating that the response variance of
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one filter depends on the activation level of the other. Dependencies across scale,

for example, occur in the vicinity of abrupt changes in luminance, and dependen-

cies across orientation and position arise from spatially extended contours [202,

69]. These dependencies can be summarized directly by a correlation if consider-

ing the filter magnitudes (absolute values, Fig. 1.9e). Thus, higher-order statistics

in natural images can be captured by second-order statistics applied to the output

of a V1 front end.

What kind of visual attributes can be encapsulated by correlations in the mag-

nitude of filter outputs? Portilla and Simoncelli found that the appearance of many

visual textures can be recreated by imposing a well-chosen set of correlations (or

more accurately covariances) across filter outputs (Fig. 1.10, [172]). To analyze

an original image, they first decomposed it into the outputs of linear and energy

filters tuned to di�erent orientations and scales (Fig. 1.10b [207]). The second

stage of the model computes local correlations between the output of energy filters

tuned to di�erent orientations and scales, and di�erent relative positions within

a subband (Fig. 1.10a). The autocorrelation and cross-scale phase correlation of

linear filters are also included, as well as the marginal statistics of the pixels of the

original image. Following this analysis stage, They then use a synthesis algorithm

to iteratively modify a image of Gaussian white noise until it is exactly matched

for this set of statistics [172].

The resulting images (Fig. 1.10d) capture many of the naturalistic features of

original texture images (Fig. 1.10c). Depending on the complexity of the origi-

nals, humans can be quite poor at discriminating between original and synthetic

texture images [16]. However, the model can only recreate the appearance of nat-

ural texture images. When applied to inhomogeneous natural images containing
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Figure 1.10: Texture analysis and synthesis using the Portilla and Simoncelli model
[172]. (a) Cross-scale, cross-position and cross-orientation correlations are computed by
taking products of localized V1-like filter responses. Each circle represents an image
location. Filters at each location are tuned to orientation and frequency, and compute
either linear or energy responses. (b) Linear filters are sensitive to phase, akin to V1
simple cells; energy filters compute the square root of the sum of squared responses of
two phase-shifted filters (in quadrature pair) and are thus insensitive to phase, akin to V1
complex cells [4]. For both filter types, products are averaged across spatial locations to
yield correlations. (c) Original natural textures and (d) naturalistic images synthesized
using the Portilla and Simoncelli algorithm. (e) non-textural natural images and (f) their
synthesized versions.

recognizable objects and features (Fig. 1.10e), the model fails to synthesize images

that could be confused with the originals (Fig. 1.10f).

This failure comes from the fact that the statistics are measured and imposed
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averaged over the entire spatial extent of the image. This averaging destroys the

global image structure that defines objects and complex shapes. This might suggest

that much more complicated measurements (or higher-order statistics) would be

required to match the appearance of natural images. Instead, a simple set of

statistics (such as those used by Portilla and Simoncelli) may be su�cient when

they are only averaged over relatively small regions of the image. Visual textures

are ubiquitous in natural images, and capturing their features locally may be a

good candidate for a representation of intermediate complexity from which more

complex visual attributes can be extracted. In fact, when viewing images through

the visual periphery they tend to take on a more textural character [122]. We

lose our ability to recognize objects, faces, and letters when lots of visual structure

is “crowded” together in the visual periphery [167, 168]. Many have suggested

that a summary statistic representation operates in the periphery to explain such

perceptual limitations [122, 166, 167, 76, 17].

Freeman and Simoncelli tested this idea directly by building a model that

computed the statistical dependencies in the output of a V1-like representation,

but combined it with the fact that visual receptive fields scale with eccentricity

(Fig. 1.5). They computed the same statistics from the Portilla dn Simoncelli

texture model (Fig. 1.11, [172]) within pooling regions that grow in size from a

central point (akin to the model’s fovea) in an original natural photograph (Fig.

1.11g). They then adjusted an image of white noise until the statistics within each

pooling region were exactly matched to the original (Fig. 1.11b). Varying the

scaling of pooling regions creates synthetic images with more or less distortion at

a given distance from the image center. Observers who fixated the central point

were unable to discriminate between two statistically matched samples when the
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Figure 1.11: Metamers of the ventral stream. (a) higher-order statistical dependencies
from an original natural image are captured within each pooling region by computing
the average pairwise products of a V1 front end. (b) Synthetic image matched exactly
for higher-order statistical dependencies within V2 sized pooling regions. (c) Spectral
(second-order) statistics alone are captured within each pooing region by computing the
average output of a V1 front end. (d) Synthetic image matched exactly for spectral
statistics within V1 sized pooling regions. (e) Psychophysical ABX task. (f) Summary
of psychophysical scaling for the two types of images shown in (b) and (d). Colored
horizontal bars represent 95% confidence interval on receptive field scaling as measured
physiologically in each visual area. (g) Original image. Adapted from [60]

pooling regions scaled with eccentricity at a rate that matched the receptive field

sizes of V2 neurons (Fig. 1.11ef). Importantly, they confirmed that the joint

statistics of di�erently tuned V1 filters were specifically represented in V2 sized

pooling regions. Observers were able to discriminate di�erent samples generated

with a simpler model containing only the average output of di�erent V1-like filters

at much smaller pooling region sizes (Fig. 1.11c-f). But again, they became unable
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to discriminate images matched for this V1-like representation when the pooling

regions matched the size of V1 receptive fields.

All these previous results suggest that the higher-order statistics underlying the

appearance of naturalistic textures provide a potentially e�ective foundation for

investigating midlevel form vision and its neural basis. The biologically inspired

parameterization of these features [172], as well as psychophysical experiments

[60] point to V2 as a potential neural locus for the representation of these features.

What follows in this dissertation is a series of physiological investigations to test

this hypothesis. Our results suggest a new way of approaching midlevel sensory

computation, not just in area V2 but further downstream in the ventral hierarchy,

and not just in vision but in other sensory domains as well.
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Chapter 2

A functional and perceptual

signature of V2

2.1 Introduction

The perception of complex visual patterns emerges from neuronal activity in a

cascade of areas in the primate cerebral cortex. Neurons in the primary visual

cortex (V1) represent information about basic image features like local orientation

and spatial scale. Downstream areas contain neurons sensitive to more complex

properties, especially those found in behaviorally relevant, natural images. But

sensitivity to these naturalistic structures requires transformations of basic visual

signals, which have been di�cult to characterize in computational or physiological

terms.

The role of the second visual area (V2) has been particularly enigmatic. V2 is

the largest extrastriate visual cortical area in primates, and its responses depend

on feedforward input from V1 [190, 210]. Neurons in V2 presumably combine and

elaborate signals from V1 to encode image features that V1 does not, but the

responses of V2 neurons to most “artificial” stimuli, including gratings, angles,
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curves, anomalous contours, and second-order patterns are largely similar to the

responses of neurons in V1 [169, 89, 91, 120, 132, 106, 11, 196]. Reliable responses

to border ownership and relative disparity are more prevalent in V2 than in V1

[259, 220], and V2 neurons exhibit stronger tuned suppression [250], but neither

of these properties reliably and robustly distinguish V1 and V2 neurons.

We wondered whether the responses of V2 cells encode aspects of natural image

structure. A ubiquitous property of natural images is that they contain orderly

structures which create strong statistical dependencies across the outputs of filters

— similar to the responses of V1 cells — tuned to di�erent positions, orientations,

and spatial scales [206, 193, 111]. Dependencies across scale, for example, occur in

the vicinity of abrupt changes in luminance, and dependencies across orientation

and position arise from spatially extended contours [202, 69]. The character and

extent of these dependencies varies for di�erent classes of images. Many artificial

stimuli lack them; in photographs of scenes and objects, they are present but

sparse, non-uniform, and di�cult to control. But a sub-class of natural images

— visual textures — contain these dependencies in a form that can be captured

parametrically [172], and previous psychophysical investigations suggest that V2

may be the locus for representing them [60].

We found a novel and distinctive property of V2 cells by measuring their re-

sponses to controlled naturalistic texture stimuli. We first captured the statistical

dependencies in natural texture photographs by computing correlations among

the outputs of V1-like filters tuned to di�erent positions, orientations, and spatial

scales. We then generated families of homogenous textures containing the same

statistical dependencies. There was a unique response to these texture stimuli in

V2 but not V1, in both macaque and human, that reliably predicted perceptual
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sensitivity to the same stimuli. A large-scale crowdsourced psychophysics experi-

ment revealed the statistical dependencies most relevant for perception and — by

extension — selective responses in V2. Together, these findings situate V2 along

a cascade of computations that lead to the representation of naturally occurring

patterns and objects.

2.2 Methods

2.2.1 Model and synthesis of stimuli

Model

Here we describe aspects of the model and stimulus generation common to all ex-

periments. Further details of stimulus presentation for each experimental method

are presented separately, below. Stimuli in all experiments were generated using

the texture analysis-synthesis procedure described in [172] (code and examples

available at http://www.cns.nyu.edu/~lcv/texture/) . We began with an en-

semble of diverse natural homogenous black and white photographs of visual tex-

tures, drawn from both commercial and personal databases. Each original texture

photograph served as the basis for a “texture family.” Most of our experiments used

15 texture families, selected to vary in the extent to which each texture di�ered

from an image of spectrally matched noise. The crowdsourced psychophysical ex-

periments (Fig. 2.20, 2.21, 2.22) used an additional 479 texture families, selected

only to avoid duplicates and images with entirely blank regions (e.g. clouds). For

each texture family, we computed the model parameters on the original photo-

graph, by processing the image with a multi-scale multi-oriented bank of filters

with 4 orientations and 4 spatial scales. For each filter, we computed the real, lin-
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ear output and the energy (square root of sum of squared quadrature pair outputs),

analogous to the responses of simple and complex V1 cells. We then computed

pairwise products across filter responses at di�erent positions (within each ori-

entation and scale), across di�erent orientations, and across di�erent scales. All

of these pairwise products were averaged across the spatial extent of the image,

yielding correlations. We additionally computed spectral statistics (average energy

within each band of the pyramid) and marginal pixel statistics (skew and kurtosis).

Synthesis

After computing the model responses on an original image, we synthesized 15 new

samples by initializing 15 di�erent images of Gaussian white noise, and adjusting

each using gradient descent (specifically, gradient projection) until it matched the

model parameters computed on the original image. Because the dimensionality of

the image was larger than the number of parameters, this process yielded multiple

random high-entropy samples that were statistically identical in terms of the model

parameters. Convergence of all parameter groups was monitored and ensured, and

the number of synthesis iterations used (50) was far more than typically required.

For each texture family, we also generated spectrally matched “noise” images by

randomizing the phase but matching the complete two-dimensional power spectra.

This procedure yielded nearly identical results to iteratively matching the power

averaged within each band of the multi-scale multi-oriented filter bank. We per-

formed noise synthesis separately on each naturalistic texture sample to generate

15 samples. For psychophysical experiments, we generated stimuli that spanned a

“naturalness” axis between noise (0) and naturalistic (1). For each texture family

we computed the model parameters P̨
nat

on the original natural photograph and pa-
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rameters P̨
noise

on a spectrally matched noise image, and then linearly interpolated

the model parameters between the two endpoints, P̨
interp

= �P̨
nat

+ (1 ≠ �)P̨
noise

.

For each interpolated parameter vector, we used the same synthesis procedure to

generate 15 samples. Pilot experiments suggested that the distribution of thresh-

olds across texture families was approximately normally distributed in the log

domain, so we sampled the naturalness axis with 10 values of equally spaced on a

logarithmic scale. For laboratory psychophysics, we used a range of 0.04-0.8; for

crowdsourced psychophysics, we used a range of 0.1-1.0 (see below).

2.2.2 Physiology

Recording

We recorded from 13 anesthetized, paralyzed, adult macaque monkeys (2 M.

Nemestrina and 11 M. Cynomolgus). Our standard methods for surgical prepa-

ration have been documented in detail previously [34]. We maintained anesthesia

with infusion of sufentanil citrate (6-30 µg/kg/hr) and paralysis with infusion

of vecuronium bromide (Norcuron; 0.1 mg/kg/hr) in isotonic dextrose-Normosol

solution. We monitored vital signs (heart rate, lung pressure, EEG, body tem-

perature, urine volume and specific gravity, and and end-tidal pCO
2

) and main-

tained them within the appropriate physiological range. The eyes were protected

with gas permeable contact lenses and refracted with supplementary lenses chosen

through direct ophthalmoscopy. At the conclusion of data collection, the animal

was killed with an overdose of sodium pentobarbital. All experimental procedures

were conducted in compliance with NIH Guide for the Care and Use of Labora-

tory Animals and with the approval of the New York University Animal Welfare

Committee. We made a craniotomy and durotomy centered approximately 2-4mm
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posterior to the lunate sulcus and 10-16mm lateral and individually advanced sev-

eral quartz-platinum-tungsten microelectrodes (Thomas Recording) into the brain

at an angle 20 degrees from vertical. We distinguished V2 from V1 on the basis

of depth from the cortical surface and changes in the receptive field location of

recorded units. In an e�ort to obtain an unbiased sample of single units, we made

extracellular recordings in V1 and V2 from every single unit with a spike wave-

form that rose su�ciently above noise to be isolated, and we fully characterized

every unit that demonstrated a measurable visually evoked response to gratings

or naturalistic texture. Data are reported from every unit for which we completed

characterization (see below). The receptive fields of most units were between 2

and 5 degrees eccentricity, but our estimates of eccentricity were not su�ciently

precise to include in analyses.

Visual stimulation

We presented visual stimuli on a gamma-corrected CRT monitor (Eizo T966; mean

luminance, 33 cd/m2) at a resolution of 1280◊960 with a refresh rate of 120Hz.

Stimuli were presented using Expo software on an Apple Macintosh computer.

For each isolated unit, we first determined its ocular dominance and occluded

the non-preferred eye. We used drifting sinusoidal gratings to characterize the

basic receptive field properties of each unit, including tuning for orientation and

direction, spatial and temporal frequency, size, and contrast. We then presented

the texture stimuli. We used a set of 15 texture families, and generated 15 samples

for each texture family for a total of 225 images. 15 spectrally matched noise

samples of the 15 families were also presented. The 450 unique images making up

our stimulus ensemble were presented in pseudo-random order for 100 ms each,
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separated by 100 ms of mean luminance. Each image was presented 20 times.

Images were presented to every unit at the same scale and at a size of 4 degrees

within a raised cosine aperture. We chose a 4 degree aperture to be larger than all

the receptive fields at the eccentricities from which we typically record. Nearly all

recorded units had receptive fields smaller than 4 degrees, and the majority were

less than 2 degrees. For a subset of V1 and V2 neurons we additionally presented

stimuli in a smaller aperture matched to the receptive field size of that unit. The

aperture diameter was set to be the grating summation field as measured with full

contrast drifting gratings [34]. We ran the full texture stimulus ensemble within

this aperture although typically with only 5-10 repeats per image.

Analysis

The full stimulus ensemble consisted of 450 images presented 20 times each. All

analyses were performed after averaging spiking responses across those 20 repeats,

and also averaging responses across the 15 samples. Depending on the analysis,

responses were further averaged across texture family, neurons, and/or a temporal

window. Response time courses were computed by counting spikes within a sliding,

non-overlapping 10 ms window. Time courses were always averaged across texture

families (Fig. 2.4ab). For the population average plot (Fig. 2.4b), time courses for

each neuron were first normalized by dividing by each neuron’s maximum response

across all texture families and time points, but after averaging responses evoked

by the 20 repeats of each of the 15 images within the same texture family. A

modulation index was computed as the di�erence in firing rate between naturalistic

and noise divided by the sum. The index was computed separately for each texture

family. For time course plots (Fig. 2.4c), modulation was computed within 10
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ms windows. In all other cases, firing rates were first averaged within an 100

ms window following response onset, and the modulation index was computed

on those rates. Response onset was determined by inspection as the time point

eliciting a response above baseline; results were nearly identical when using a

quantitative criterion based on the standard deviation of the response. Finally,

modulation indices were additionally averaged across neurons (Fig.2.5b) or across

texture families (Fig.2.7).

Basic receptive field properties for each neuron — e.g., receptive field size,

surround suppression — were determined o�ine by using maximum likelihood

estimation to fit an appropriate parametric form to each tuning function. These

fits were only obtainable for a subset of neurons (81% in V1, 74% in V2) due to

incomplete characterization arising from time constraints during the experiment.

2.2.3 fMRI

Subjects

Data were acquired from three healthy subjects with normal or corrected-to-normal

vision (all male; age range, 26-30 years). Two subjects were authors. Experiments

were conducted with the written consent of each subject and in accordance with

the safety guidelines for fMRI research, as approved by the University Committee

on Activities Involving Human Subjects at New York University. Each subject

participated in at least three scanning sessions: one session to obtain a set of

high-resolution anatomical volumes, one session for standard retinotopic mapping

(single wedge angular position, and expanding ring eccentricity), and one session

to measure di�erential responses to naturalistic and spectrally matched noise stim-

uli. Two subjects participated in two additional scanning sessions, one using tex-
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ture families derived from the crowdsourced psychophysical experiment (described

below), and one to measure di�erential responses between natural photographic

images, naturalistic textures, and spectrally matched noise images.

Stimuli

Stimuli were presented using Matlab (MathWorks) and MGL (available at http:

//www.justingardner.net/mgl) on a Apple Macintosh computer. Stimuli were

displayed via an LCD projector (Eiki LC-XG250) onto a back-projection screen in

the bore of the magnet. Subjects laid supine and viewed the stimuli through an an-

gled mirror. All images were presented within a suitably vignetted annular region

(inner radius, 2 degrees; outer radius, 8 degrees). We used textures that approxi-

mately matched in scale the presentation conditions in the electrophysiological and

psychophysical experiments.

Protocol

Blocks of naturalistic and spectrally matched noise stimuli were presented in al-

ternation. Within each 9 s block, a random sequence of images from one texture

family were presented at 5 Hz. Each run consisted of 20 blocks: 10 naturalistic,

10 noise. Di�erent texture families were presented in separate runs, and multiple

runs were performed within each session. Subjects performed two runs for each

texture family. In each session, a separate localizer run was used to define retino-

topic subregions corresponding to the stimulus region. Within each 9 s block of

the localizer run, a random sequence of both naturalistic and noise stimuli were

presented within the stimulus annulus or the region complementary to the annulus.

Each run consisted of 40 blocks: 20 annulus, 20 anti-annulus.
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Task

Observers performed a demanding two-back detection task continuously through-

out each run to maintain a consistent behavioral state, encourage fixation, and

divert attention from the peripheral stimulus. Without attentional control, we

have reported large and variable attentional signals in visual cortex [177]. Digits

(0 to 9) were displayed continuously at fixation, changing every 400 ms. The ob-

server used a button press to indicate whether the current digit matched the digit

from two steps before.

Preprocessing

All preprocessing and analyses were implemented in Matlab using mrTools (http:

//www.cns.nyu.edu/heegerlab/?page=software). The anatomical volume ac-

quired in each scanning session was aligned to the high-resolution anatomical vol-

ume of the same subject’s brain, using a robust image registration algorithm [147].

Data from the first half cycle (eight frames) of each functional run were discarded

to minimize the e�ect of transient magnetic saturation and allow the hemodynamic

response to reach steady state. Head movement within and across scans was com-

pensated for using standard procedures [147] The time series from each voxel was

high-pass filtered (cuto�, 0.01 Hz) to remove low-frequency noise and drift [211].

Analysis

We performed two complementary analyses of fMRI responses to alternating blocks

of naturalistic texture and noise stimuli, one to visualize responses, and a second to

quantify them for statistical analyses (and for comparisons to psychophysics and

physiology). First, for each voxel, response time courses were averaged across tex-
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ture families, and fit with a sinusoid with period matched to the block alternation

(9 s). The coherence between the best-fitting sinusoid and the average time series

was used to assess the statistical reliability of di�erences in cortical activity evoked

by naturalistic and noise stimuli, visualized on flattened maps of the occipital lobe

(Fig. 2.12, 2.14a, 2.16).

To quantify responses, we computed an fMRI modulation index, analogous to

the index used for single unit measurements. We computed the index as the ratio

of two response amplitudes: the amplitude of di�erential responses to naturalis-

tic versus noise (texture minus noise), and the amplitude of di�erential responses

to naturalistic and noise together versus a blank screen (texture plus noise). To

obtain the numerator (texture minus noise), for each texture family, we averaged

the time course of each voxel across repeated runs, and then projected it onto a

unit-norm sinusoid having period matched to the stimulus alternation, and phase

given by the responses to the localizer scan (see above). The reference phase pro-

vided an estimate of the hemodynamic delay, and was computed separately for

each visual area. The amplitude of projection isolated the component of the re-

sponse time course that responded positively and di�erentially to the naturalistic

texture stimuli [86]. To obtain the denominator (texture plus noise), we projected

the response time courses from the localizer scan onto a unit-norm sinusoid with

the same reference phase. The amplitude of this projection captured the combined

response to texture and noise images together, because the localizer scan presented

both (randomly interleaved) alternating with a blank screen. Both response am-

plitudes (texture minus noise, and texture plus noise) were averaged across voxels,

and their ratio yielded a modulation index for each visual area. fMRI modulation

indices were then either averaged across texture families (Fig. 2.13) or analyzed
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separately (Fig. 2.14b, 2.19b, 2.21b). Results were qualitatively similar (and sup-

ported the same conclusions) when this fMRI modulation index was replaced by

either coherence, or the texture minus noise response amplitudes (without division

by texture plus noise response amplitudes).

MRI acquisition

MRI data were acquired on a Siemens 3T Allegra head-only scanner using a head

coil (NM-011; Nova Medical) for transmitting and an eight-channel phased array

surface coil (NMSC-071; Nova Medical) for receiving. Functional scans were ac-

quired with gradient recalled echo-planar imaging to measure blood oxygen level

dependent changes in image intensity [158]. Functional imaging was conducted

with 24 slices oriented perpendicular to the calcarine sulcus and positioned with

the most posterior slice at the occipital pole (1500 ms repetition time; 30 ms echo

time; 72o flip angle; 2 ◊ 2 ◊ 2 mm voxel size; 104 ◊ 80 voxel grid). A T1-weighted

magnetization-prepared rapid gradient echo anatomical volume (MPRAGE) was

acquired in each scanning session with the same slice prescriptions as the func-

tional images (1530 ms repetition time; 3.8 ms echo time; 8o flip angle; 1 ◊ 1 ◊

2.5 mm voxel size; 256 ◊ 160 voxel grid). A high-resolution anatomical volume,

acquired in a separate session, was the average of three MPRAGE scans that were

aligned and averaged (2500 ms repetition time; 3.93 ms echo time; 8o flip angle;

1 ◊ 1 ◊ 1 mm voxel size; 256 ◊ 256 voxel grid). This high-resolution anatomical

scan was used both for registration across scanning sessions and for gray matter

segmentation and cortical flattening.
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Defining retinotopic regions of interest

Each subject participated in a standard retinotopic mapping experiment, described

in detail previously [119, 63]. The data were analyzed, following standard proce-

dures to identify meridian representations corresponding to the borders between

retinotopically organized visual areas V1, V2, V3, and V4. There is some contro-

versy over the exact definition of human V4 and the area just anterior to it; we

adopted the conventions proposed by [246]. We used data from an independent

localizer scan (see above) to further restrict each visual area to only those voxels

responding to the stimulus annulus with coherence of at least 0.25. Qualitatively

similar results were obtained using higher or lower thresholds.

2.2.4 Psychophysics (Laboratory)

Observers

Three observers with normal or corrected-to-normal vision participated in the ex-

periments (all male; age range, 26-30 years). Protocols for selection of observers

and experimental procedures were approved by the Human Subjects Committee

of New York University. Two observers were authors. The other was naive to the

purpose of the experiment.

Stimuli

Stimuli were presented on a 41◊30cm flat screen CRT monitor at a distance of

46cm. Texture images were presented within vignetted 4 degree circular patches

at three locations equidistant from fixation, each 4 degree eccentricity (one above

fixation, one to the lower left, and one to the lower right). A 0.25 degree fixation
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square was shown throughout the experiment.

Task

Every trial of the 3AFC “oddity” task presented three di�erent image within the

three patches: two images were spectrally matched noise and one was naturalistic,

or one was noise and two were naturalistic. The “naturalness” of the naturalistic

texture(s) varied across trials, spanning ten points between 0.4 and 0.8, equally

spaced on a log scale. If two naturalistic textures were presented on a trial, they

had the same level of naturalness. Image patches were presented for 600 ms, after

which observers had 1 sec to indicate with a keypress which of the three was the odd

one out. There was no feedback during the experiment. Before the experiment,

each observer performed a small number of practice trials (≥10) with feedback

to become familiar with the task. Di�erent texture families were run in separate

blocks. Each observer performed 480 trials in each block; the order of conditions

and location of the target were appropriately randomized and counterbalanced.

Blocks were performed in random order for each subject. Data were collected from

15 texture families.

Analysis

For each texture family, we fit the parameters of a Weibull function that maximized

the likelihood of the psychometric data. The function was parameterized with a

threshold, slope, and lapse rate [248]. Estimated lapse rates were typically very

small (mean 0.01, maximum 0.06). Threshold was converted to its reciprocal

(sensitivity) for all subsequent analyses, and statistics, e.g. correlations, were

computed in the log domain (Fig. 2.19, 2.21, 2.22).

41



2.2.5 Psychophysics (crowdsourced)

Observers

Several hundred observers (“Turkers”) were recruited for experiments through

Amazon.com’s Mechanical Turk website. Each was paid $0.40 for approximately 5

minutes of their time. Payment was made so long as Turkers completed the task,

regardless of performance. Demographic data were not collected, but demographic

studies of the Mechanical Turk [164] suggest that our sample reflected gender and

age diversity. Participation was restricted to those Turkers achieving 95% approval

rating on other Mechanical Turk tasks. Protocols for selection of Turkers and ex-

perimental procedures were approved by the human subjects committee of New

York University. All Turkers signed an electronic consent form at the beginning of

the experiment. We ensured that 10 unique Turkers completed the task for each

texture family, but we did not prevent the same Turkers from completing the task

for multiple texture families.

Stimuli

We developed a version of our 3AFC task for display in a web browser (see example

at http://www.jeremyfreeman.net/public/turk/code/?csv=tex-018-files.

csv), using Javascript and HTML. Each trial began with 700 ms blank period,

followed by a 600 ms stimulus presentation, and a second 700 ms blank period.

As in the laboratory version of the experiment, images were presented in three

patches equidistant from fixation. A small red fixation dot was shown throughout

the experiment. After the second blank, three arrows were presented near fixation

pointing towards the three possible target locations. Turkers were instructed that
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“One image will look di�erent from the other two — your task is to identify it

by clicking the black arrow that points to it.” There was no other explanation of

the nature of the stimuli or the conditions. We were unable to verify or control

viewing distance, size, eccentricity, or presentation time. However, data obtained

from the crowd and from the lab were comparable (Fig. 2.20b), suggesting that

such variations were unimportant, at least with respect to this stimulus and task.

Task

Trial types for the 3AFC task were similar to those in the laboratory experiment,

except naturalness was varied across ten points equally spaced on a logarithmic

scale between between 0.1 and 1.0, instead of 0.04-0.8. This range was chosen

because pilot experiments suggested moderately higher thresholds compared to the

laboratory data. Each Turker performed 60 trials, and di�erent texture families

were run separately. There was no feedback during the experiment, but Turkers

performed 6 trials at the beginning with 1.0 naturalness, and were told that these

initial trials would be easier than the others. Data were collected from 494 texture

families.

Analysis

Each Turker and texture family yielded a psychometric function, based on six tri-

als for each of ten levels of naturalness. Typically, for each texture family, a small

number of Turkers performed at or near chance at all naturalness levels, suggesting

that they may not have been performing the task appropriately. If data from all

Turkers were averaged, the influence of these Turkers would have yielded fitted

psychometric functions with unreasonably high lapse rates [248]. As an alterna-
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tive, we described the data using a mixture model, with one common psychometric

function and an individual lapse rate for each Turker, based on an approach de-

veloped in a related problem setting [41]. The analysis inferred the quality of

individual Turkers and appropriately weighted their contribution to estimates of

threshold. Although we consider this approach appropriate for these data, simple

averaging of Turker responses yielded qualitatively similar results.

Validation of perceptual-neuronal relationship

We used the crowdsourced sensitivities to validate the relationship between percep-

tual sensitivity and neuronal response as measured both with fMRI and in single

units. From the distribution of 494 sensitivities, we selected 20 texture families

that sampled the range of sensitivity, emphasizing the extremes (Fig. 2.20c), and

not including the 15 used previously. In two human subjects, we performed an

additional fMRI experiment measuring responses to these 20 texture families. In

one monkey, we recorded responses from 16 single units in V2 and 11 single units

in V1 to 17 of the texture families (3 of the families were excluded due to exper-

imental time constraints). Experimental procedures and analyses for both fMRI

and single-unit experiments were otherwise identical to those described above.

2.2.6 Predicting perceptual sensitivity from texture statistics

All naturalistic textures were generated by matching an image for a particular set

of higher-order image statistical parameters derived from an original texture pho-

tograph. We used a combination of principal components analysis and multiple

linear regression to relate diversity in these parameters to diversity in perceptual

sensitivity — and, by extension, neuronal response in V2. We began by comput-
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ing all parameters for each texture family. The parameters were appropriately

transformed so that all varied linearly in image contrast; for example, by taking

the signed square root of correlations. Parameters were then Z-scored so that, for

each parameter, the mean of its value across the images was 0, and the standard

deviation was 1. We then grouped the parameters as follows: (1) marginal statis-

tics (skew and kurtosis) (2) spectral statistics (average energy in each subband),

(3) correlations of linear filter responses at neighboring locations, (4) correlations

of linear filter responses at neighboring scales, (5) correlations of energy filter re-

sponses at neighboring orientations, (6) correlations of energy filter responses at

neighboring locations, (7) correlations of energy filter responses at neighboring

scales. For each group of parameters g, we constructed the 494◊p
g

matrix P
g

con-

taining the p
g

parameters in that group for the 494 texture categories. We then

reduced the dimensionality of each group of parameters separately using principal

components analysis, projecting each parameter matrix into the space spanned by

the first k components, yielding a 494◊k
g

matrix P̂
g

. We used the k components

required to capture 70% of the variance in each parameter group (typically be-

tween 2 and 6, at most 10), for a total of 35 components across all groups. Overall

predictive performance was similar when using only 1 component per parameter

group, but that would have made it inappropriate to compare the predictive power

of the di�erent parameter groups (see below).

Having reduced the dimensionality of each parameter group, we obtained a

combined predictor matrix X, with 494 rows and 35 columns, and used multiple

linear regression to predict sensitivity to the parameters. We added a column of

ones to the matrix (to account for a constant o�set), and solved for the weights ˆ̨
b

that minimized the squared error,
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E = ||Xb̨ ≠ y̨||2

where y̨ is a vector of log sensitivities for each of the texture families (as

mentioned above, we worked in the log domain because log sensitivities were ap-

proximately normally distributed). We removed from analysis any families where

thresholds were estimated as greater than 1.0 or less than 0.0 naturalness (only

4% of families), to avoid the influence of outliers arising from unstable threshold

estimates.

R2 for the linear model was used to assess prediction accuracy. R2 was com-

puted for the full model fit, as well as using 10-fold cross-validated, where the

model was fit to 9/10 of the data and R2 was evaluated on the remaining 1/10,

and R2 was averaged over di�erent splits.

Three complementary procedures were used to assess the relative importance

of the di�erent parameter groups in predicting sensitivity. When parameter groups

are correlated, as ours were, there is no objective decomposition of R2, but for our

primary analysis we used a well-established procedure known as “averaging over

orderings” [77]. For each parameter group, a di�erence in R2 is computed for two

models, only one of which contains the group. This di�erential R2 depends on the

order in which the di�erent parameter groups were added to the model, as well

as the size of the model when the group was added, so its value is averaged over

all possible order permutations and model sizes. The resulting estimates of R2 for

each parameter group exactly partition the full model’s R2 (Fig. 2.22).

As a complementary analysis, we assessed the marginal predictive accuracy
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of each parameter group by computing R2 when including each parameter group

on its own. We also assessed the conditional predictive accuracy of each param-

eter group by computing the di�erence in R2 for two models containing all pa-

rameter groups, with or without the group of interest. Both additional analyses

yielded qualitatively similar results to the averaging-over-orderings procedure, in

particular, emphasizing the importance of cross-scale dependencies of energy filter

responses.

2.3 Generating naturalistic texture stimuli

For each of several original photographs of visual texture, we transformed sam-

ples of Gaussian noise to synthesize new images with the statistical properties of
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Spectrally matched noise
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Figure 2.1: Analysis and synthesis of naturalistic textures. (a) Original texture pho-
tographs. (b) Spectrally matched noise images. The original texture is analyzed with
linear filters and energy filters (akin to V1 simple and complex cells, respectively) tuned
to di�erent orientations, spatial frequencies, and spatial positions. Noise images contain
the same spatially averaged orientation and frequency structure of the original. (c) Nat-
uralistic texture images. Correlations are computed by taking products of linear and
energy filter responses across di�erent orientations, spatial frequencies, and positions.
Images are synthesized to match both the spatially averaged filter responses and the
spatially averaged correlations between filter responses.
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the original [88, 172] (Fig. 2.1, 2.3). For each original texture, we generated two

sets of stimuli using di�erent statistics: “spectrally matched noise images” and

“naturalistic texture images”. Spectrally matched noise images were synthesized

using phase randomization, i.e., by computing the Fourier transform, randomizing

the phase values, and then inverting the Fourier transform. This is approximately

equivalent to measuring and matching the spatially averaged responses of linear

and energy filters (akin to V1 simple and complex cells, respectively) selective for

di�erent orientations, positions, and spatial scales. The resulting synthetic images

had the same overall orientation and spatial-frequency content as the original (i.e.,

the same spectral properties) but lacked its higher-order statistical dependencies

(Fig. 2.1a,b). Naturalistic texture images were generated by additionally matching

correlations between filter responses (and their energies) across orientations, posi-

tions, and spatial scales (Fig. 2.1a,c). We used an iterative procedure (Fig. 2.2)

to match the spatially averaged filter responses, the correlations between filter re-

sponses, and also the mean, variance, skewness, and kurtosis of the pixel luminance

Iteration 1

Compute

responses

Recompute

responses

Adjust

Original

Iteration 2

...

...

Iteration 50

+

×

+
×
×

×

×
×

Figure 2.2: Synthesis of naturalistic textures begins with Gaussian white noise, and
the noise is iteratively adjusted using gradient descent until analysis of the synthetic
image matches analysis of the original (see [172]). Initializing with di�erent samples of
Gaussian noise yields distinct but statistically similar images.
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Figure 2.3: Original texture photographs, synthetic naturalistic textures, and spectrally
matched noise images, for the 15 texture families used in our primary experiments.
Families are sorted by the di�erential neuronal response they evoked in V2 (as in 2.5)
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distribution (“marginal statistics”). Synthetic images matched for these properties

contain many complex naturalistic structures seen in the original photograph [172],

readily recognizable by human observers [16].

We synthesized images based on 15 original texture photographs, yielding 15

di�erent “texture families”; for each original, we made ensembles of self-similar

naturalistic texture samples, each di�erent in detail but all having identical statis-

tical dependencies and containing similar visual properties (Fig. 2.3). Since each

of these 15 texture families was based on a di�erent original photograph, they var-

ied in their appearance, and in the form and extent of their higher-order statistical

dependencies.

2.4 Di�erentiating V2 from V1 in macaque

We recorded the responses of 102 V1 and 103 V2 neurons in 13 anesthetized

macaque monkeys to a sequence of texture stimuli, presented in suitably vignetted

4 deg patches centered on each neuron’s receptive field. The sequence, which was

identical for all cells, included 20 repetitions, each of 15 samples of naturalistic

and 15 samples of noise stimuli from 15 di�erent texture families (9000 stimuli in

total). The textures were each presented for 100 ms and were separated by 100 ms

of a blank gray screen, so the entire sequence lasted 30 min.

2.4.1 Sensitivity to naturalistic image structure

V1 neurons responded similarly to both stimulus types, while V2 neurons often

responded more vigorously to naturalistic textures than to spectrally matched

noise. This distinction between V2 and V1 was evident when examining individual

responses as a function of time from stimulus onset (averaged over all samples of all
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(a)Time course of firing rate
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and spectrally matched noise
(light). Thickness of lines indi-
cates s.e.m. across texture fam-
ilies. Black horizontal bar in-
dicates the presentation of the
stimulus; gray bar indicates the
presentation of the subsequent
stimulus. (b) Time course of
firing rate averaged across neu-
rons in V1 and V2. Each neu-
ron’s firing rate was normalized
by its maximum before averag-
ing. Thickness of lines indi-
cates s.e.m. across neurons. (c)
Modulation index, computed as
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texture families) (Fig. 2.4a), and when the responses were averaged over the cell

populations (Fig. 2.4b). We use the term “modulation” to capture the di�erential

responses to textures and noise, and index its magnitude by taking the di�erence

of responses divided by the sum (Fig. 2.4c). The average modulation index of

neurons in V1 was near zero for most of the response time course, except for a

modest late positive modulation (Fig. 2.4c). Neurons in V2 showed a substantial
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Figure 2.5: Diversity of modulation across families in V2. (a) Firing rates for three single
units in V1 (green) and V2 (blue) to naturalistic (dark dots) and noise (light dots),
separately for the 15 texture families. Families are sorted according to the ranking
in panel b. Gray bars connecting points are only for visualization of the di�erential
response. Modulation indices (averaged across texture families) are reported in the
upper right of each panel. Error bars indicate s.e.m. across the 15 samples of each
texture family. (b) Diversity in modulation across texture families, averaged across all
neurons. Error bars indicate s.e.m. across neurons. Gray bar indicates 2.5th and 97.5th
percentiles of the null distribution of modulation expected due to chance.
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Figure 2.6: Average texture family ranking by modulation. For each cell, the 15 texture
families were ranked and sorted according to modulation index. The sorted modulation
indices were then averaged across all cells in V1 (green, panel a) and V2 (blue, panel b).
A null distribution was obtained for both areas by permuting the naturalistic and noise
labels and iterating 1000 times. Gray areas in both panels indicate the 2.5th and 97.5th
percentiles of the null distribution. On average, any di�erences between naturalistic and
noise stimuli exhibited by V1 cells, either positive or negative, were not distinguishable
from those expected by chance, but this was not the case for V2 cells.

modulation that was evident soon after response onset and maintained throughout

the duration of the response (Fig. 2.4c). The late modulation in V1 might reflect

feedback from V2 or other higher areas [10].

V2 responses were significantly modulated by naturalistic structure on aver-

age, but the modulation was typically more pronounced for some texture families

than for others. We examined responses as a function of texture family, averaged

over all samples. There was a consistent trend across the V2 population for some

texture families to evoke stronger modulation than others, although the most ef-

fective families varied from cell to cell (Fig. 2.5). By contrast, all families yielded

negligible modulation of V1 responses (Fig. 2.5). In V2, the modulation strength

across texture families was not significantly correlated with the response magnitude

(r=0.42, P=0.12, correlation computed after averaging across cells). An analysis
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each neuron, the modulation index for each texture family was computed on firing rates
averaged within an 100 ms window following response onset, and modulation was then
averaged across families.

of the distribution and ranking of modulation across individual neurons ruled out

the possibility that modulation in V1 was present but concealed by the process of

taking means (Fig. 2.6).

Some neurons were more sensitive overall to naturalistic structure than others.

We computed a modulation index for each neuron, averaged over the response

duration and over all samples of all texture families (Fig. 2.7). Significant positive

modulation was observed in 15% of V1 neurons, and 63% of V2 neurons (P<0.05,

randomization test for each neuron). The di�erence in modulation between V1

and V2 was significant (P<0.0001, t-test on signed modulation; P<0.0001,t-test

on modulation magnitude, ignoring sign). Results were similar when examining

firing rates instead of the modulation index (Fig. 2.8).
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Figure 2.8: Di�erence between V1 and V2 in terms of firing rate. Responses to natu-
ralistic and spectrally matched noise images in V1 (green, panel a) and V2 (blue, panel
b). Diagonal dashed line is the line of equality. The di�erence between naturalistic and
noise was statistically significant in V2 but not in V1 (paired t-tests), and the di�erence
of di�erences between the two areas was statistically significant (P < 0.0001, unpaired
t-test). Neurons with comparable responsiveness ( 5-10 ips) show a di�erential response
to naturalistic images in V2 but not in V1.

2.4.2 Relationship to receptive field properties

The receptive fields of V2 neurons are larger than those of V1, but this distinction

did not explain the observed di�erences in sensitivity to naturalistic structure (Fig.

2.9). The stimuli presented to V1 and V2 cells were of the same size (diameter),

roughly twice that of a typical V2 receptive field, and 4 times that of a typical

V1 receptive field. There was no evidence for a correlation between receptive field

size and modulation in either visual area (V1:r=0.13, V2:r=–0.13, P> 0.05, Fig.

2.9a). When we restricted our analysis to subsets of neurons matched for average

receptive field size, the di�erence in modulation index between areas was reduced

by only 9% and remained significant (P<0.0001, randomization test).

We also made measurements on a subset of cells in which the stimuli were con-

fined to each neuron’s classical receptive field (CRF). In V1, the modulation was
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Figure 2.9: Receptive field size does not explain di�erential responses to naturalistic
texture stimuli in V2. (a) Modulation index (ordinate) versus classical receptive field
size (abscissa). Each data point represents a neuron. There was no evidence for a
relationship between modulation index and classical receptive field size in either V1
or V2. (b) Comparison of modulation indices measured using stimuli presented in an
aperture matched in size to the classical receptive field (ordinate) versus indices measured
using stimuli presented within a 4¶ aperture (abscissa). Each data point represents a
neuron. Diagonal dashed line is the line of equality. Modulation in V1 was near 0 for
both stimulus sizes. Modulation in V2 was positive for both stimulus sizes, but there
was significantly less modulation in V2 for the smaller size.
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near 0 for both CRF-matched and large stimuli, though there was a small but sig-

nificant reduction in modulation for the smaller stimuli (P<0.05, t-test, Fig. 2.9b).

In V2, there was a robust but incomplete reduction in modulation for the smaller

stimuli (P<0.0001, t-test, Fig. 2.9b), suggesting that the modulation in V2 de-

pended partly, but not entirely, on interactions between receptive field center and

surround. We found no evidence for a relationship in V2 between the modulation

and commonly characterized properties of early visual neurons, including surround

suppression, orientation tuning bandwidth, preferred spatial frequency, spatial fre-

quency tuning bandwidth, or parameters of the contrast sensitivity function (c50

and exponent) (all P > 0.05, correlation). We therefore believe that our measure-

ments reveal a hitherto unrecognized dimension of visual processing in macaque

V2.

We wondered whether there was any relationship between the strength of mod-
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Figure 2.10: Lack of relationship between modulation and cortical depth. Each neuron
was assigned a relative cortical depth based on the estimated top of layer I and bottom
of layer VI in V1 and V2. Gray shaded region represents a running average over 10
neurons. V1 borders come from [195]
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ulation and the architecture of visual cortex. For each of our recorded neurons we

measured the depth of the electrode relative to an estimate of the top of layer I

and the bottom of Layer VI. In V1, There was very little modulation at all depths

of cortex, with a slight trend toward neurons with outlying positive modulation

in the deep layers (Fig. 2.10). Similarly, in V2, modulation was of roughly equal

strength throughout the cortical depth. We found no evidence that sensitivity to

naturalistic features may be strengthened through transformations taking place

between the input and output layers of V2 (Fig. 2.10; but see [256]).

2.5 Di�erentiating V2 from V1 in human

2.5.1 fMRI modulation across naturalistic families

Given the reliable e�ect of higher-order image statistics on the responses of V2 neu-

rons, we wondered if similar e�ects could be observed in humans using functional

magnetic resonance imaging (fMRI), which can capture large-scale di�erential re-

sponses across visual areas [246]. We presented alternating blocks of naturalistic

and noise stimuli — one texture family at a time — in the near-peripheral visual

field while measuring blood-oxygenation level dependent (BOLD) fMRI responses

. . .. . .
200 ms

200 ms
Time

Texture block (9 seconds) Noise block (9 seconds)

200 ms
200 ms

200 ms
200 ms

200 ms
200 ms

Figure 2.11: fMRI experimental design. Subjects viewed a peripheral annulus that
alternated every 9 seconds between rapid presentation of spectrally matched noise and
naturalistic stimuli.
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mapping experiment.

in visual cortex (Fig. 2.11).
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Figure 2.13: fMRI modulation
index across subjects. A mea-
sure of fMRI modulation (see
Methods) averaged across vox-
els and texture families in V1
and V2 for three subjects. Er-
ror bars indicate s.e.m. across
texture families.

Subjects performed a demanding task at the cen-

ter of gaze to divert their attention from the pe-

ripheral stimulus. Responses were visualized on a

flattened representation of the occipital lobe, and

boundaries between V1 and V2 were derived from

independent retinotopic mapping [119, 246].

In all three subjects, there were strong di�eren-

tial fMRI responses to naturalistic texture through-

out V2, and weaker ones in V1 (Fig. 2.12). We

captured di�erential fMRI responses evoked by nat-

uralistic texture and noise stimuli with a modulation

index analogous to that used for single-unit physi-

ology. Di�erences in modulation between V2 and
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Figure 2.14: fMRI responses across di�erent texture families. (a) Responses from a
subject to two individual texture families, only one of which evoked robust di�erential
responses in V2. Same format as Fig. 2.12. (b) Correlation between fMRI and single-
unit modulation for V1 (green) and V2 (blue). Each data point represents a di�erent
texture family.

V1 were significant in each subject (Fig. 2.13; P<0.0001, paired t-test comparing

responses in V1 and V2 across the 15 texture families). The much weaker modu-

lation in V1 was nevertheless significantly greater than 0 in two of three subjects

(Fig. 2.13; P<0.05). Modulation was also evident in V3, and to some extent in

V4, though weaker in higher object-selective areas like the lateral occipital complex

(LOC). The modulation in V3 and V4 might be inherited from V2. These results

complement the single-cell findings by showing that the same response di�erences

were evident over all of V2, and were su�ciently robust to manifest at the coarse

spatial scale of fMRI.

As for the single-cell responses, some texture families elicited more robust fMRI

modulation in V2 than others (see examples in Fig. 2.14a). We compared, across

texture families, the fMRI and single-unit modulation indices (averaged across

neurons). fMRI and electrophysiological measures were significantly correlated in

V2 (Fig. 2.14b; r=0.55, P<0.05), but this was not evident in V1 (r=0.30, P=0.28).

We also correlated the modulation indices from each individual neuron with the
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fMRI response modulation, and found that correlations were significantly higher

in V2 than in V1 (P<0.005, t-test on Z-transformed correlations). The presence

and diversity of the di�erential responses to naturalistic textures in V2 are thus

similar when measured in macaque neurons and human fMRI.

2.5.2 From naturalistic to natural images

We wondered how the neural representation of naturalistic textures might dif-

fer from intact natural images containing the full complexity of scenes and forms

present in natural vision. Although the parameters of the texture model are largely

su�cient to capture the appearance of natural images of visual texture (Fig. 2.3,

[172, 16]), this is not the case for most images containing recognizable objects (Fig.

2.15, [184]). In addition to our previous experiment alternating blocks of natural-

istic and noise images, we ran two additional experiments, alternating blocks of

natural and noise images, as well as natural and naturalistic texture stimuli. We

found a very di�erent pattern of activation across the three alternations. As noted

above, the alternation of naturalistic and noise stimuli drove the largest modula-

tion in mid-level areas such as V2, but yielded little modulation in higher areas. In

contrast, alternation between natural images and spectrally matched noise drove

similar levels of modulation in V2 and V3, but much larger modulation in higher

areas such as LOC (Fig. 2.16, [133]). Alternation between natural images and

naturalistic textures preserved this modulation in higher areas, but nearly abol-

ished modulation in V2 (and V3, 2.16). None of the alternations drove significant

modulation in V1, consistent with the selectivity of V1 being largely driven by

spectral features of images. Similarly, we observe little di�erential response in

V2 between natural images and naturalistic textures, indicating that the statistics
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Figure 2.15: From textures to forms. Rows: Three levels of naturalness, from original
photographs to naturalistic texture to spectrally matched noise. Columns: 3 example
original images and their scrambled counterparts from the 30 used as stimuli.
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Figure 2.16: fMRI responses across three levels of naturalness. Responses from a single
subject to alternations between three types of stimuli. Same format as in Fig. 2.12.

used to synthesize our texture stimuli may be su�cient to capture the selectivity

of neurons in V2.

2.6 Linking neuronal and perceptual sensitivity

2.6.1 Psychophysics from the lab

If this distinctive feature of V2 responses has a perceptual correlate, then texture

families that evoke larger di�erential responses should be those for which the nat-

uralistic textures are more perceptually distinct from spectrally matched noise.

To test this hypothesis, we built textures with varying degrees of “naturalness”

(Fig. 2.17a), by titrating the inclusion of higher-order correlations in the synthe-

sis process. We measured perceptual sensitivity to naturalness for each texture

family using a three-alternative forced choice discrimination task (Fig. 2.17, 2.18)

suitable for studying stochastic stimuli like textures [95].

Across 15 texture families, perceptual sensitivity was significantly correlated

with electrophysiological response modulations, averaged across neurons in V2
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Figure 2.17: Psychophysical task. (a) Stimuli were generated along an axis of “natu-
ralness” by gradually introducing higher-order correlations (Fig. 2.1c). (b) Observers
performed a 3AFC “oddity” task in which they viewed three images, two naturalistic and
one noise (or vice versa), and indicated which looked di�erent from the other two. All
three images were synthesized independently (e.g., starting with statistically independent
samples of Gaussian white noise).

(Fig. 2.19a; r=0.62, P<0.05), but not in V1 (r=0.21, P=0.45), and the correlation

was significantly larger for V2 than V1 (P<0.0001, t-test on Z-transformed correla-

tions). We also found that perceptual sensitivity was significantly correlated with
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Figure 2.18: Example psychometric functions: performance as a function of naturalness.
Solid curves, best-fit cumulative Weibull function. Chance performance is 1/3. The
two panels show two di�erent texture families (same as in Fig. 2.14a) with di�erent
thresholds (defined as the level of naturalness required to obtain 75% correct).
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Figure 2.19: Neuronal responses to naturalistic textures in V2 predict perceptual sensi-
tivity. (a) Correlation between psychophysical sensitivity (1/threshold) and single-unit
modulation in V1 (green) and V2 (blue). Each data point represents a texture family.
(b) Correlation between psychophysical sensitivity and fMRI modulation. Same format
as panel a.

the fMRI modulation in V2 (Fig. 2.19b; r=0.70; P<0.005) but not in V1 (r=0.40;

P=0.13), and that this correlation was again significantly larger for V2 than V1

(P<0.01, paired t-test on Z-transformed correlations). These relationships suggest

a functional role for V2 in the perception of these naturalistic stimuli.

2.6.2 Psychophysics from the crowd

The texture families we used varied in the form and extent of their statistical

dependencies. We wondered which of the many possible dependencies were most

important for perception and — by extension — for evoking responses in V2. Iden-

tifying the relevant subset requires a large number of stimuli, but making biologi-

cal measurements – neuronal or fMRI – for such an ensemble would be unfeasible.

We therefore measured perceptual sensitivity for nearly 500 texture families using

Amazon.com’s Mechanical Turk service to “crowdsource” our measurements [164]

and expand their range 30-fold. This approach yielded a total of 300 hours of
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Figure 2.20: Crowdsourced psychophysical estimates of sensitivity for hundreds of tex-
ture families. (a) Example psychometric functions for two texture families (same as Fig.
4c and 5c), each based on observers recruited from Amazon.com’s Mechanical Turk per-
forming a 3AFC task in a web browser. Each colored line corresponds to one observer.
The black line indicates the best-fitting psychometric function, estimated using a mix-
ture model that re-weighted observers based on their reliability; thickness of the colored
lines indicates the weight assigned to each observer. Chance performance is 1/3. (b)
Perceptual sensitivity (1/threshold) was significantly correlated when measured in the
laboratory (abscissa) and in the crowd (ordinate). Dashed line is the line of equality.
(c) The distribution of perceptual sensitivities across 494 texture families was used to
pick 20 families spanning the range of sensitivities, emphasizing the extremes (light gray
regions).
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Figure 2.21: Crowdsourced psychophysical estimates predict V2 responses. (a) Corre-
lations between single-unit modulation and sensitivity (measured in the crowd) for the
chosen families, in V1 (green) and V2 (blue). Only 17 of the 20 families were included
due to experimental time constraints. (b) Correlations between fMRI modulation and
sensitivity. All 20 families were included. Same format as panel d.

behavioral data from thousands of human observers (Fig. 2.20, see Methods). We

developed analysis procedures to combine data from this large number of observers,

and to evaluate the reliability of the results.

We related our crowdsourced measurements to our previous results in two ways.

First, we confirmed for the original 15 texture families (Fig. 2.19) that perceptual

sensitivity measured in the crowd was reliably correlated with, albeit lower than,

sensitivity measured in the laboratory (r=0.92,P<0.0001,Fig. 2.20b). Second, we

used the 494 new texture families to link the crowdsourced sensitivity estimates

back to physiological responses. We selected 20 texture families spanning a range

of crowd-estimated sensitivities, emphasizing the extremes (Fig. 2.20c). We used

images from these families as stimuli in additional single-unit and fMRI experi-

ments. Both the single-unit modulation in V2 (r=0.74,P <0.001, 16 cells) and

fMRI modulation in V2 (r=0.77, P<0.0001, 2 subjects) were significantly corre-

67



Energy
cross 
scale

Energy
cross 
position

Energy
cross 
orientation

Linear 
cross 
scale

Linear
cross 
position

Spectral
statistics

Marginal
statistics

b

33%

23%

19%

4%

12%

7%

1 10

1

10

Predicted perceptual sensitivity

M
ea

su
re

d 
pe

rc
ep

tu
al

 s
en

si
tiv

ity

R 2 = 66%
n = 468

a

Figure 2.22: Using higher-order correlations to predict perceptual sensitivity. (a) We
used multiple linear regression to predict perceptual sensitivity to naturalistic textures
based on higher-order correlations and other image statistics used in texture synthesis.
Each data point corresponds to a texture family; black dots indicate all texture families
used in physiological experiments. Black dashed line is the line of equality. (b) Wedges
indicate the fractional R2 assigned to each group of texture synthesis parameters from
the regression analysis. See [172] and [16] for example images demonstrating the role of
some of these parameters in texture synthesis.

lated with crowd-estimated sensitivity (Fig. 2.21), confirming with novel stimuli

the relationship found in our earlier experiments (Fig. 2.19). In V1, single-unit

modulation showed no evidence for a correlation with sensitivity (r=–0.25, P=0.33,

11 cells). fMRI modulation in V1 to these new stimuli revealed a significant corre-

lation (r=0.49, P<0.05). This was weaker than the correlation found for V2, and

similar to our results using the original 15 textures (Fig. 2.19b).

The crowdsourced psychophysical data for the complete ensemble of texture

families allowed us to identify which statistical dependencies of the images ex-

plained diversity in perceptual sensitivity to naturalistic structure. Recall that

our textures were synthesized to match correlations among V1-like responses —

both linear filter responses, and energies — at di�erent orientations, positions and

scales. Through a combination of principal components analysis and multiple lin-
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ear regression (see Methods), we used these correlations, along with spectral and

marginal statistics, to predict more than half of the variance in perceptual sensitiv-

ity (Fig. 2.22a, R2=66%). To ensure that results were not a result of overfitting,

we confirmed that accuracy was still high (R2=60%) with 10-fold cross-validation.

To identify the relative importance of di�erent synthesis parameters, we decom-

posed the total R2 using the “averaging over orderings” technique (see Methods)

[77]. The largest share of variance was accounted for by the cross-scale correlations

among the energy filter responses; second and third most important were the cross-

position and cross-orientation energy-filter correlations (Fig. 2.22b). Correlations

among linear filter responses were less important. Spectral properties had a small

amount of predictive power, but this likely reflected how spectra control visibil-

ity, e.g., insensitivity to high spatial frequencies. The contribution of marginal

statistics (skewness and kurtosis) was negligible, indicating that perceptual sensi-

tivity is driven by the higher-order correlations rather than basic image properties.

Together, these results link perceptual sensitivity — and, we infer, neuronal sen-

sitivity in V2 — to the particular kinds of higher-order statistical dependencies

found in our visual textures.

2.7 Towards a functional model

How might individual V2 neurons represent these statistical dependencies? We do

not intend to suggest that V2 neurons directly encode the correlations in V1-like

a�erents contained in our texture synthesis algorithm [172]. Instead, a variety of

nonlinear computations, similar in function but di�ering in detail, can e�ectively

capture the same information and could enable the sensitivity to naturalistic stim-

uli that we found in V2. For example, selectivity for di�erent kinds of correlations
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could be achieved by combining squared and spatially pooled linear combinations

of pairs of V1 inputs, analogously to the way ‘motion energy’ computations can

express the correlations of the Reichardt model [4]. By indirectly computing corre-

lations, such a mechanism can produce increased responses to naturalistic stimuli

[58]. However, we wondered whether a similar framework could account for ad-

ditional features of our physiological results, such as the pattern of modulation

strength across families and the V1-like tuning of V2 neurons for simpler stim-

uli such as sinusoidal gratings. We specifically aimed to simulate our V2 results

while limiting the model construction to assumptions derived from known canoni-

cal computations commonly used to model V1 neurons.

We first constructed a model V1 stage to demonstrate that standard models of

early visual cortex are insu�cient to account for sensitivity to naturalistic image

structure. We built a bank of simulated V1 complex cells whose selectivity tiled

the Fourier domain with 6 spatial frequency bands and 8 preferred orientations,

and tiled space with 11 center positions in both dimensions (Fig. 2.23a). The out-

put of each filter was normalized by the sum of the activity of all filters over the

entire image patch (Fig. 2.23b). The strength of this normalization was controlled

through a scale parameter that ranged from 0 to 1. To simulate our physiological

V1 population we sampled the responses of 100 units selective for di�erent ori-

entations, spatial frequencies, spatial positions, and with di�erent normalization

constants. We generated responses to each of the 450 images (15 samples from 15

families for both noise and naturalistic) used in our initial physiological recordings

and computed the average modulation index for each unit (Fig. 2.23c). We found

the simulated distribution was similar to that observed for V1 neurons (Fig. 2.7).

We next constructed a second stage by taking a linear combination of di�erently
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Figure 2.23: Model V1 neurons are not sensitive to higher-order structure. (a) Each V1
unit was modeled as the sum of the squared output of two linear filters in quadrature
phase. (b) Signal flow diagram for V1 model. Each image was represented as the output
of a population of V1 complex cells whose receptive fields tiled space, orientation, and
spatial frequency. The output of each V1 cell was normalized by the sum of the total
activity in the population. (c) Distribution of the modulation index over a population of
100 simulated V1 complex cells. Each unit was chosen randomly to have a specific pre-
ferred orientation, spatial frequency, position, and normalization constant. Modulation
index was computed identically to that used for physiological characterization. Arrow
indicates median modulation index across the population. Compare with 2.7.

tuned V1 neurons. This represents an approach to V2 that has been investigated

previously both explicitly [250, 238, 239] and implicitly by positing V2 neurons

combine multiple orientations within their receptive fields [103, 106, 11]. However,

we lacked enough data to fit such a model to the responses of single neurons and

thus had no way to constrain the linear filter applied to V1 inputs. Instead, we

made the assumption that the filtering operation in V2 likely resembles the linear

filters found in V1. Adelson and Bergen [6] suggested that the two-dimensional,

Gabor-like filters found in V1 can be usefully considered as oriented derivatives

applied to the two dimensions of space. Just as V1 neurons are selective for changes

in luminance across space (as represented by their LGN a�erents), V2 neurons may

be selective for changes in the activity of V1 populations across space, as well as

across orientation and spatial frequency.

We instantiated this idea by taking a derivative across the four dimensions
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Figure 2.24: “V2 simple” cells take linear combinations of V1 a�erents. (a) Model archi-
tecture for “V2 simple” cells. (b) Distribution of the modulation index over a population
of 100 simulated “V2 simple” cells. Each unit had random center and orientation in the
four dimensions of space, orientation, and spatial frequency. Arrow indicates median
modulation index across the population. Compare with 2.7.

of simulated V1 activity. Applying a weight to the derivative of each dimension

results in an oriented gradient. We simulated the response of individual “V2”

units as the rectified and squared output of this derivative operation (Fig. 2.24a).

We sampled the responses of 100 units to our stimuli, each with random weights

applied to the derivatives across the V1 population. We found this population had

a modulation index that was modestly higher than our simulated V1 population,

and also exhibited more variability (Fig. 2.24b). The lack of strong modulation is

consistent with previous results modeling V2 responses as linear combinations of V1

a�erents [238, 239]. This previous approach to V2 did not constrain the weights on

di�erent V1 filters as we do here, allowing for much more flexibility in the V2-stage

filtering operation. Even so, model responses fit directly to V2 neuronal responses

failed to predict increased sensitivity to naturalistic image structure [239].

This model architecture can be considered as describing a “V2 simple” cell.

Similar to V1 simple cells, the output of a “V2 simple” cell is determined by a

linear combination of its a�erents followed by a nonlinearity. Such an architecture

can achieve weak sensitivity to naturalistic correlations depending on the form
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Figure 2.25: “V2 complex” cells are sensitive to naturalistic structure. (a) Model archi-
tecture for “V2 complex” cells. (b) Distribution of the modulation index over a popula-
tion of 100 simulated “V2 complex” cells. Each unit had random center and orientation
and pooling width in the four dimensions of space, orientation, and spatial frequency.
Arrow indicates median modulation index across the population. Compare with 2.7.

of the nonlinearity. Simple rectification will not produce modulation on average

[58], but the half-squaring operation we use here does induce weak modulation

(because of the multiplicative term in the output of the squared di�erence of two

V1 a�erents). However, the strength of this modulation in our simulation does

not approach that observed in the physiology (and increasing the exponent of

the nonlinearity further did could not make up this discrepancy). We therefore

constructed “V2 complex” cells that pool the output of multiple “V2 simple” cells

over space, orientation, and frequency. Such a mechanism is analogous to those

proposed to compute motion energy in V1 [4] or relative disparity in V2 [220].

Specifically, we convolved the output of our V1 front end with a single deriva-

tive subunit across space, orientation, and frequency (Fig. 2.25a). The output

was rectified and squared and then pooled in a second stage. This second stage

thus receives the output of several “V2 simple” cells that apply the same filtering

operation to di�erent combinations of V1 a�erents. We varied the width of this

second stage pooling (across space, orientation, and frequency) to determine how

“complex” the resulting “V2 complex” cell is. If the pooling is small, the unit
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will act mostly as a “V2 simple” cell; if the pooling is large, the unit will more

e�ectively compute stimulus correlations. This convolutional framework reflects

recent models of V1 computation that e�ciently and elegantly capture features

of V1 computation (such as the fundamentally noncategorical distinction between

simple versus complex V1 cells) [187, 130, 240]. We again simulated a population

by sampling units with random parameters determining the derivative orientation

of the subunits and the width of a Gaussian pooling function applied to each of the

four dimensions of V1 activity. We found that a population of such “V2 complex”

cells contains strong modulation on average (Fig. 2.25b), qualitatively consistent

with our physiological results (Fig. 2.7).

Intriguingly, we also found that this simulated population of “V2 complex” cells

also accounted for the variability in modulation across texture families (Fig. 2.26).

While there was no relationship between the average “V2 simple” cell modulation

with V2 physiology across families (Fig. 2.26a), the average modulation of “V2

complex” cells was significantly correlated with the average V2 physiology (Fig.
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Figure 2.26: “V2 complex” cells predict physiolgical modulation across families. (a) “V2
simple” cell model and physiological modulation index for each of 15 texture families.
(b) Same as in (a) but for “V2 complex” cells.
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Figure 2.27: “V2 complex” cells have V1-like tuning to gratings that di�er in orientation
(left), spatial frequency (center) and diameter (right). This model unit had a strong
modulation index of 0.19 but did not show heterogeneity in it’s tuning to orientation or
spatial frequency. The suppressed response to large stimuli of large diameter (a common
feature observed in both V1 and V2) is inherited from the normalization in the V1 stage.
Compare these tuning curves with those in Fig. 1.6.

2.26b). We also found that even model “V2 complex” cells selective for naturalistic

structure often exhibit V1-like tuning to simpler stimuli such as drifting gratings

(Fig. 2.27, compare with Fig. 1.6). Because the mechanism computing correla-

tions in our model does so through pooling the squared output di�erences of V1

neurons that neighbor each other in space, orientation, and/or spatial frequency

we do not see a large increase in tuning bandwidths or receptive field heterogeneity.

These results suggest an explanation for why distinctive selectivity in V2 has been

di�cult to detect using the kinds of artificial stimuli often used previously [169,

89, 91, 120, 132, 106, 11, 196]. Finally, the idea of a “V2 complex” cell is con-

ceptually satisfying because it suggests that nonlinear computations of identical

form reappear at multiple stages of the cortical hierarchy [87, 33], and could be

further explored in V2 by measuring responses to naturalistic or artificial stimuli

containing specific higher-order correlations and predicting their responses with

hierarchical models [185, 241].
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2.8 Discussion

We have discovered that naturalistic texture stimuli modulate the responses of

neurons in area V2, while having only a minimal e�ect on neurons in area V1.

These modulations were similar and substantial in both anesthetized macaques

and awake humans. The diversity of modulation across di�erent texture families

predicted the perceptual salience of their naturalistic structure. We capitalized on

this diversity to reveal the importance of correlations across scale, and to a lesser

extent across position and orientation, for driving V2 activity. The combination

of human and monkey physiology, and crowdsourced psychophysics, provide mu-

tually reinforcing evidence that V2 plays a direct functional role in representing

naturalistic structures.

Previous studies have identified specialized response properties for representing

visual form in subpopulations of V2 neurons [106, 11, 250], but the di�erences

between V2 and V1 were usually small [169, 120, 132, 91, 196]. Some of these

may reflect special cases of the properties identified here, such as tuning for angles

reflecting sensitivity to cross-orientation correlations. The attribute that has most

robustly distinguished V2 from V1 is “border ownership” [259], which may also

depend on the receptive field surround in V2 [40, 69]. Border ownership signaling,

however, may rely on attentional feedback [176, 48], whereas the response pattern

we have discovered probably does not, as it is evident in both awake humans with

diverted attention and anesthetized macaques.

Our fMRI measurements robustly di�erentiated human V2 from V1. However,

unlike in our single-unit recordings, there was a weak, significant correlation be-

tween fMRI measurements in V1 and perceptual sensitivity (Fig. 2.19b, 2.21b).
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These V1 signals may reflect the influence of modulatory feedback [10]. Such an

influence was hinted by the late component of modulation in the V1 single-unit

response time course (Fig. 2.4c), and could be more readily evident with fMRI

[177]. Establishing a more direct relationship would require further study of the

late V1 single-unit response — by recording from more neurons, and thus more

reliably measuring the weak signal, or employing techniques, like cooling, capable

of isolating or disabling feedback signals [55, 146].

We compared responses to naturalistic texture stimuli with responses to spec-

trally matched noise images, similar to the globally phase-randomized images that

have been used previously in fMRI [133], psychophysics [221], and physiology [54]

experiments. Presentation of intact and phase-randomized objects, for example,

reveals di�erential fMRI responses throughout the human lateral occipital cortex

[133]. But none of these studies reported di�erences between V1 and V2. This may

be due to the use of uncontrolled images of natural objects or scenes [53, 186], which

obscures the influence of the higher-order statistical dependencies upon which we

have focused, and instead emphasizes responses in downstream object-selective ar-

eas. A previous study of V1 and V2 used natural photographs as stimuli [250],

but this study had di�erent goals and did not relate neuronal responses to the

particular statistical dependencies considered here. The spatial homogeneity of

our stimuli, coupled with a synthesis method that enforced a particular set of

higher-order statistical dependencies, facilitated robust and specific links between

neuronal responses in V2, image statistics, and perception. Our ability to generate

multiple images from each texture family also facilitated comparisons between neu-

rophysiology (averaging across neurons with di�erent receptive field locations) and

human fMRI [86]. Synthetic naturalistic stimuli like ours thus o�er a balance be-
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tween natural and artificial that may prove useful in physiological characterization

in other sensory domains [137, 136].

We used a large-scale, crowdsourced psychophysical experiment to show that

particular subsets of higher-order statistical dependencies predicted diversity in

perceptual sensitivity — and, by extension, neuronal responses in V2. Correlations

among energy filter responses (akin to V1 complex cells) were more important than

among linear filter responses (akin to V1 simple cells), which is notable given that

V2 neurons receive input from both simple and complex cells [195]. The partic-

ular computation implied by the responses to our stimuli may depend primarily

on complex cell input. This hypothesis could be further explored by combining

our stimulus protocol with measures of V1-to-V2 connectivity[72]. Our analysis

of crowdsourced data also revealed the importance of dependencies across scale,

followed by dependencies across position and orientation. Most studies of V2 thus

far have emphasized interactions across orientation, e.g., by measuring responses

to curvature or angles[89, 91, 106, 11, 238]. These visual elements are salient in

man-made environments, but may play an outsized role in our intuitions about

how the visual system begins the process of parsing natural scenes. Instead, we

infer that V2 neurons might be particularly sensitive to dependencies across scale,

which are equally fundamental to natural image structure.

The transformation of visual information as it ascends the cortical hierarchy en-

ables the perception of scenes and objects. A common view is that early computa-

tions encode the primitive elements of which scenes are made, and that subsequent

stages of processing assemble these elements into larger and more complex com-

binations, capturing the structural relationships that determine the visual world.

This constructionist view has stumbled on the problem of V2, whose neurons have
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stubbornly refused to reveal the form of their preferred elementary feature combi-

nations [169, 89, 91, 120, 132, 106, 11, 238, 196]. We have found it useful to attack

this problem with well-controlled texture stimuli that emphasize the statistical

regularities of natural images, as well as with stimuli containing more conventional

visual features. Our findings suggest that two fundamental constituents of visual

scenes — the specific feature combinations that comprise objects, and the statistics

that define textures — may both be represented in V2 [5].
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Chapter 3

Selectivity and tolerance in V2

3.1 Introduction

Visual perception in primates arises from the responses of neurons in a variety

of areas within the cerebral cortex. These responses are typically characterized

by measuring selectivity for specific visual attributes, such as light intensity or

color, and local structural properties such as spatial position, orientation, and

spatial frequency. Stimulus selectivity, along with the complementary notion of

“invariance” or “tolerance” to irrelevant variation, provides a de facto language

for describing the functional roles and relationships of neurons in visual areas.

For example, simple cells in area V1 are selective for orientation [101] and spatial

frequency [143, 224, 42]. Complex cells exhibit similar selectivity, but are also more

tolerant to changes in spatial position [101, 141, 4]. Component cells in area MT

(V5) exhibit selectivity for orientation and speed, but (relative to their V1 inputs)

are more tolerant of changes in location and spatial frequency, whereas MT pattern

cells are tolerant to changes in orientation (and more generally, spatial structure)

[144].

Neurons in area IT are selective for visual images of particular objects, but are
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tolerant to identity-preserving transformations, such as translation, rotation, or

background context [263, 242]. This tolerance increases from area V4 to IT [184],

suggesting that an increase in selectivity is balanced by an increase in tolerance,

preserving overall response levels and their distribution across neurons [183]. But

the selectivity and tolerance of visual representations in midventral areas, in par-

ticular V2, has been more di�cult to establish because of the lack of knowledge

of the relevant visual attributes. V2 neurons receive much of their a�erent drive

from V1, have receptive fields that are roughly twice the size of those in V1, and

exhibit similar selectivity for orientation and spatial frequency [64, 123]. Indeed,

the responses of V2 neurons to many forms of artificial stimuli, including gratings,

curves, and texture-defined patterns are only modestly di�erent than the responses

of neurons in V1 [106, 91, 11, 196].

Recent work suggests that local statistical measurements that capture the ap-

pearance of visual textures might provide a feature space for characterizing the

responses of V2 neurons [60, 61, 256]. Sensitivity to multipoint correlations in ar-

rays of binary (black and white) pixels first arises in V2 [256], and is strongest for

those correlations that are most informative about binarized natural images [222],

and that are most perceptually salient [235]. This sensitivity to higher-order corre-

lations is also present for more naturalistic stimuli. Images of natural visual texture

evoke correlated responses in rectified V1-like filters tuned for di�ering orientation,

scale, and position [172]. V2 neurons are well-driven by synthetic texture stimuli

containing these naturally occurring correlations, and less so by texture stimuli

that lack them [61]. Moreover, the performance of human observers in detecting

these correlations is predicted by the di�erential increase in average V2 response

levels [61]. All of these results provide evidence that area V2 plays a role in rep-
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resenting the higher-order statistics of visual textures, but the ways in which this

representation supports visual tasks such as discrimination have yet to be explored.

Here, we provide a more direct test of the link between V2 and the representa-

tion of the higher-order statistics of natural textures. We generated stimuli that

are matched to the statistics of naturally occurring homogeneous texture images.

These stimuli are perceptually similar to one another, and similar to the original

texture image, despite marked di�erences in the position and detailed arrange-

ment of their local features [172, 16, 1]. This property can be used to generate

pronounced distortions in peripheral viewing, which remain imperceptible so long

as the distortions preserve texture statistics over spatial regions the size of V2

receptive fields [60]. If V2 is encoding these local statistics, and is responsible for

these perceptual phenomena, then the responses of populations of V2 neurons to

statistically matched stimuli should reveal a particular form of tolerance. Specif-

ically, populations of neurons in V2 should respond similarly to stimuli that are

statistically matched, despite variation in local image detail. This kind of tolerance

would complement previously reported tolerances to geometric image transforma-

tions, such as translation or rotation, found at higher levels of visual cortex [263,

242, 184].

We studied this tolerance to statistical resampling by analyzing responses of

a collection of V1 and V2 neurons to images of synthetic texture, generated to

match the statistics of di�erent texture “families.” V2 responses across families of

statistically matched stimuli were more homogeneous than V1 responses, reflecting

an increased tolerance that was only partly explained by the larger size of their

receptive fields. Using a neural population decoder, we found V2 was better than

V1 at discriminating between-family images matched for di�erent statistics and
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worse at discriminating within-family images matched for the same statistics, a

pattern of performance that broadly resembles human perceptual experience [172,

1].

3.2 Methods

Stimuli and physiological methods for this chapter were identical to those reported

for chapter 2 in sections 2.2.1 and 2.2.2.

3.2.1 Analysis

ANOVA

For all quantitative analyses, we averaged spike counts within a 100 ms time

window aligned to the response onset of each single unit. Response onset was

determined by inspection as the first time point eliciting a response above base-

line; results were nearly identical when using a quantitative criterion based on the

standard deviation of the response. We first applied a Freeman-Tukey variance-

stabilizing transformation,
Ô

x + 1 +
Ô

x [62], to the spike counts for each neuron.

We then performed a nested analysis of variance (ANOVA) to partition the total

variance into the portions arising across families, across samples within a family,

and across repetitions of the same stimulus. The ANOVA generates an F-statistic

that captures the ratio of variances between each hierarchical level. For the vast

majority of neurons, the F-statistic was significant for ratios of variance across

repetitions and across samples (101/102 in V1, 103/103 in V2) as well as for ratios

of variance across samples and across families (91/102 in V1, 97/103 in V2). We

chose to perform further analysis using the ratio between partitioned variance, but
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all results were qualitatively similar when using the F-statistic itself. To obtain

the variance ratio we divided the percent variance across families by the percent

variance across samples. To avoid outlying values when either variance was very

low, we stabilized the ratio by adding 2% variance to both the numerator and

denominator. We tested how reliable our estimates of the variance ratio were by

splitting the 20 repetitions for each condition in half and performing the ANOVA

separately on both halves of the data for each neuron. We repeated this process

10,000 times with di�erent partitions of the original repetitions and asked how well

our estimate on one half of the data could predict the other half.

Regression

Basic receptive field properties for each neuron — e.g., receptive field size, con-

trast response function — were determined o�ine by using maximum likelihood

estimation to fit an appropriate parametric form to each tuning function. These

fits were only obtainable for a subset of neurons (84% in V1, 73% in V2) due to

incomplete characterization arising from time constraints during the experiment.

We first asked how well we could predict the log variance ratio in each area using

a large number of receptive field properties (preferred spatial frequency, spatial

frequency bandwidth, orientation selectivity, classical receptive field size, contrast

exponent, c50, maximum firing rate, surround suppression index, modulation ra-

tio (f1/f0), and texture modulation index (see 2.7). We used the log variance

ratio because the ratios were approximately normally distributed in the log do-

main. We used a stepwise linear model to estimate which receptive field properties

added to the goodness of fit. For V1, only receptive field size and modulation

ratio were included in the model. For V2, receptive field size and modulation ratio
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were included along with orientation selectivity and semisaturation contrast (c50).

Classical receptive field size was defined as the standard deviation of the center in

a ratio of Gaussians model. The modulation ratio was computed from responses

to one-second presentation of an optimal grating, and represents the ratio between

the first harmonic and mean of the average response. The orientation selectivity

index (OSI) was computed as the circular variance of the baseline-subtracted firing

rates to each orientation, so that OSI = 0 indicated no selectivity and OSI = 1

indicated sharp tuning for orientation. Semisaturation contrast (c50) represents

the contrast level that evoked half the maximum firing rate in a Naka-Rushton fit

to the responses to a grating of varying contrast. To examine how each of these

predictors contributed to the variance ratio we used an averaging-over-orderings

[77, 61] technique to estimate variance explained by each receptive field property.

This allowed us to asses the relative importance of each predictor in each area. We

computed error bars for the contribution of each receptive field property and the

overall explained variance using a jackknife resampling procedure. We reapplied

the averaging-over-orderings procedure to the data set with one neuron left out and

computed 95% confidence intervals over the distribution of all partial datasets.

t-SNE visualization

To visualize the structure of the data we used a method for dimensionality re-

duction known as t-distributed stochastic neighbor embedding (t-SNE) [233], a

variant of the stochastic neighbor embedding technique originally developed by

Hinton and Roweis [96]. This method attempts to minimize the divergence be-

tween the distributions of neighbor probability in the high-dimensional space and

a low-dimensional space. The input to the algorithm was a set of 225 data vectors,
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each of which collected the firing rates of all neurons in an area in response to a

stimulus. We also normalized the data so that, for each neuron, responses to the

225 images had mean 0 and standard deviation 1. We used an initial dimension-

ality reduction down to 90 dimensions, and perplexity value of 30. We ran the

algorithm multiple times to ensure convergence and stability of map estimates.

Classification decoding

We used a simple Poisson decoder to classify samples or families into one of 15

di�erent categories. On each iteration we randomly selected a number of units

from our recorded population. Since our units were recorded sequentially, we

randomized the order of repetitions for each cell. To compute performance in

the sample classification task, we estimated the mean spike counts of each neuron

for each of the 15 samples within each family by computing the sample average

over 10 of the 20 repetitions. For the held-out 10 repetitions of each sample, we

computed which of the 15 samples was most likely to have produced the population

response, assuming independent Poisson variability under the estimated mean spike

counts. We computed the average performance (% correct) over all samples and

families and repeated this process 10,000 times to get a performance for each

population size. To compute performance in the family classification task, we

estimated the average spike counts for each family over eight of the 15 di�erent

samples, and all repetitions. For each of the repetitions of the held-out seven

samples we computed which of the 15 families was most likely to have produced

the population response. We computed the average performance over all repetitions

and repeated this process 10,000 times to get a performance for each population

size. Results were similar using several alternative decoding methods including
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a linear classifier and a mixture-of-Poissons model. The potential advantage of a

more sophisticated mixture-of-Poissons model was negated by the larger parameter

space and insu�ciency of data. We also performed family classification by training

on a subset of repetitions over all samples, and found increased performance in both

V1 and V2, although V2 still outperformed V1.

Matched subpopulation decoding

To examine the e�ect of receptive field properties on decoding, we excluded neurons

with a modulation ratio (f1/f0) greater than 0.8 and extracted 40-neuron subpop-

ulations in each area that were matched for the mean and variance of classical

receptive field (CRF) size (mean CRF in both V1 and V2 = 0.73±0.02¶). We de-

coded our CRF-matched, complex cell subpopulations and compared performance

to that achieved by 40-neuron subpopulations sampled randomly from the full pop-

ulation of both areas (mean CRF in V1 = 0.62±0.05¶; V2 = 1.1±0.09¶). In the

sample classification task, V1 performance was significantly reduced by drawing

matched subpopulations (65% to 55%), and there was no e�ect on V2 performance

(which remained at 46%). V1 performed significantly better than V2 in sample

classification for both unmatched (p < 0.005; bootstrap test resampling neurons

and cross-validation partitioning) and matched subpopulations (p < 0.01). In the

family task, V1 performance was increased by drawing matched subpopulations

(30% to 35%), and V2 performance was only slightly decreased (41% to 40%). V2

performed significantly better than V1 in family classification for both unmatched

(p < 0.05) and matched subpopulations (p < 0.05).
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Discrimination decoding and prediction

We used the same decoding procedure for family classification, but performed dis-

crimination between all pairs of texture families, yielding 105 pairwise comparisons.

All discrimination decoding was performed using 100 units and was repeated 10,000

times to get a performance value. We transformed the measured performance val-

ues for V1 and V2 into a d’ value and performed total least squares regression

to get a linear fit to the V1 and V2 data. We then isolated two subsets of pa-

rameters from the texture model. The first consisted of the correlations of linear

filter responses at nearby locations, which represent second-order pixel statistics,

and are most intuitively described as representing a portion of the power spectrum

(as such, we refer to them as “spectral”). We also gathered a set of higher-order

statistics, consisting of correlations of magnitudes at neighboring locations, ori-

entations, and scales, as well as correlations of phase-adjusted filter responses at

adjacent scales [172].

To summarize the family discrimination capability of each group of statistics,

we computed a matrix whose columns contained the absolute value of the di�er-

ence between those statistics for each pair of texture families (105 columns, one

for each pair of families). For the spectral statistics, we reduced the dimension-

ality (number of rows) of this matrix using principal components analysis. We

found that four components captured 70% of the variance, and standard regres-

sion analysis revealed that both V1 and V2 performance was well predicted by a

weighted sum of these components, (Fig. 3.7b). To examine the relationship be-

tween higher-order statistics and neural performance, we first removed the e�ects

of the spectral statistics. We adjusted each of the rows of the higher-order di�er-
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ence matrix by projecting out the dimensions spanned by the rows of the spectral

di�erence matrix. We then again reduced the dimensionality (number of rows)

of this matrix using principal components analysis, retaining those components

needed to capture at least 70% of the variance (in this case, ten components).

Regression analysis revealed that a weighted sum of these components provided a

good prediction for the di�erence in performance between V2 and V1 (Fig. 3.7c).

3.3 Examining tolerance of single neurons

We studied the population representation of visual information in areas V1 and

V2 using naturalistic images generated from a texture model defined in terms of

joint and marginal statistics of a simulated population of V1 simple and complex

cells [172]. These statistics include local correlations between the output of pairs

of model neurons that di�er in preferred spatial frequency, position, and/or ori-

entation. Some of these correlations are second-order statistics that capture the

amount of energy at specific orientations and spatial frequencies — we refer to these

as “spectral” statistics. Other correlations are higher-order, capturing naturalistic

features beyond the power spectrum. We first computed this set of statistics for

a grayscale photograph of a natural texture, and then generated synthetic texture

images by starting with an image of Gaussian white noise and iteratively adjusting

the pixels until the image had the same statistics (computed over the entire extent

of the synthesized image) as the original photograph [172].

We refer to a set of images with identical statistics as a texture “family” (Fig.

3.1a, columns). Within a family, di�erent white noise starting images yield di�erent

synthetic images, and we refer to all such images as “samples” from that family

(Fig. 3.1a, rows). By construction, samples are identical in their model statistics,
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Figure 3.1: Example responses of V1 and V2 neurons. (a) Naturalistic texture stimuli.
Each column contains three di�erent samples from each of four texture families. The
samples within each family are statistically matched, but di�er in detail because the
synthesis procedure is initialized with independent images of Gaussian white noise. (b)
Raster plots and mean firing rates for an example V1 neuron, responding to textures in
(a). Gray bar indicates presentation of the stimulus (first 100 ms), and each row of black
ticks represents the timing of spikes on a single presentation of the stimulus. Thickness
of lines indicates s.e.m across 20 repetitions of each of the images in (a). (c) Same as in
(b), for an example V2 neuron.

but di�er in the location and arrangement of features across the image. Previous

work [172, 16] and visual inspection of Fig. 3.1a reveals that samples from a given

family are similar in appearance to each other, and to the original photograph from

which their statistics were drawn. We recently showed that these stimuli produce

enhanced responses in V2 neurons, compared to images that are matched only for

their Fourier power spectra [61]. This enhancement was not found in V1 neurons.

For the present study, we chose 15 original natural photographs to define 15

di�erent texture families. These images were perceptually distinct and human

sensitivity to their higher-order statistics spanned a range that was similar to that

found over a much larger set of natural photographs [61]. We synthesized 15

di�erent samples from each family, yielding 225 unique images.

We recorded the spiking activity of 102 V1 and 103 V2 neurons in 13 anes-

thetized macaque monkeys to these texture stimuli. We presented the stimuli
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within a four-degree aperture centered on the receptive field of each recorded neu-

ron. Each of the 225 di�erent stimuli appeared 20 times in pseudorandom order,

and was displayed for 100 ms, separated by 100 ms of uniform gray at the mean

luminance. The same stimulus sequence was presented to each neuron. We have

previously published a comparison of these responses to those obtained from spec-

trally matched (phase-scrambled) noise stimuli [61]. Here, we present a new anal-

ysis of these data that seeks to determine the relative selectivity and tolerance of

V1 and V2 neurons for the di�erent texture families and the image samples drawn

from those families, respectively.

Texture stimuli elicited selective responses in most V1 and V2 neurons (Fig.

3.1b,c). Neurons in both V1 and V2 displayed a characteristic firing rate for

each image, with some variability across presentations. For most texture families,

firing rates of V1 neurons were highly variable across the samples (Fig. 3.1b). In

contrast, V2 neurons exhibited similar firing rates across samples, as well as more

consistent di�erences in average firing rate across families (Fig. 3.1c). That is,

V2 neurons appeared to be more tolerant to the variations in image detail that

occur across samples within a texture family, and more selective for the statistical

parameters that define the family.

To quantify this observation, we used a nested analysis of variance (ANOVA)

to partition the total variance in firing rate for each neuron into three components

representing variation across families (columns), across samples within a family

(rows), and across repeated presentations of each sample (residual spiking vari-

ability across rows of each raster in Fig. 3.1b,c). We first note that a smaller

portion of V2 response variance was explained by the stimulus, as compared to

V1 (Fig. 3.2a,b insets), consistent with previous reports [74]. The reduction in
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Figure 3.2: Nested ANOVA analysis of single-unit responses in V1 and V2. (a,b) Re-
sponse variance of single units in V1 and V2 is partitioned into a component across
families, a component within families (across samples), and a residual component across
stimulus repetitions (noise). The position of each dot indicates, for a single neuron, the
percentage of variance corresponding to the first two of these components. The insets
indicate the distribution of the sum of these first two components. Points outlined in
black correspond to the example single units shown in Figure 1. (c,d) Distributions of
the ratio of across-family versus across-sample variance for V1 and V2. The geometric
mean variance ratio was 0.4 in V1 and 0.63 in V2 (indicated by triangles). The di�erence
was significant (p < 0.001, t-test in the log domain).
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explainable variance in V2 was accompanied by a reduction in the population av-

erage firing rate compared with V1 (8.3 ips in V2 compared with 13.6 ips in V1),

and may reflect a greater e�ect of anesthesia in V2.

While variance within families dominated the responses of most V1 neurons,

many V2 neurons exhibited as much or more variance across families. However, the

absolute levels of variance across and within families are a�ected by our particular

choice of texture stimuli. To eliminate the influence of the stimulus ensemble, we

compared the ratio of variance across and within families for neurons in V1 and

V2 (Fig. 3.2c,d). This ratio is similar to the F-statistic from our ANOVA analysis,

with a large value indicating high tolerance to the statistical variation of samples

within families for our stimulus set. We found a significantly larger value of the

variance ratio in our population of V2 neurons compared with V1 (Fig. 3.2c,d; p

< 0.001, t-test on the log variance ratio). 29% of neurons in V2 were more variable

in their firing rate across families versus within families compared with 16% of V1

neurons. These data indicate that on the whole, the V2 population exhibited more

stable responses across samples within a family.

3.4 Analyzing the influence of receptive field properties on

tolerance

We wondered whether this di�erence in tolerance was a consequence of well-known

di�erences in receptive field properties between V1 and V2. For example, V2 con-

tains a larger proportion of neurons that can be classified as complex (as opposed

to simple [101, 123]) and the receptive fields of V2 neurons at a given eccentric-

ity are about twice as large as those in V1 [64, 201]. Both of these properties
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Figure 3.3: Dependence of response tolerance on conventional receptive field properties.
(a–h) Variance ratio plotted against receptive field properties of individual V1 (green)
and V2 (blue) neurons. (i) Results of multiple linear regression of the variance ratio
against the four receptive field properties highlighted in (a–h). Horizontal lines show
total explained variance for V1 (green) and V2 (blue). Points represent the contribu-
tion to explained variance from di�erent receptive field properties determined using the
averaging-over-orderings technique [77]. Shaded regions and error bars represent 95%
confidence intervals computed using jackknife resampling.

would be expected to contribute to the variance ratio. Specifically, simple cells are

sensitive to phase and should exhibit more response variation than complex cells

across samples. Similarly, neurons with small receptive fields have a more limited

area over which to compute statistics, and thus their responses are expected to

fluctuate with changes in local statistics across samples (note that the statistics of

sample images within a family are identical only when measured across the entire

image).

To examine these and other e�ects on the variance ratio, we measured responses

of a subset of our V1 and V2 populations to drifting sinusoidal gratings, and used
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these to quantify ten conventional receptive field properties. We then used a step-

wise regression separately in both areas to determine which of these properties

might explain the within-to-across-family variance ratios (see methods). Alto-

gether, receptive field properties accounted for only a limited amount of diversity

of the variance ratios in both areas (Fig. 3.3i; V1, R2 = 0.28; V2, R2 = 0.42).

This was not due to data insu�ciency in our estimation of the variance ratio, since

one half of our data could predict the other accurately (V1, R2 = 0.89 ± 0.02;

V2, R2 = 0.86 ± 0.02; mean and standard deviation of bootstrapped distribution;

see methods). As expected, we found that size and the spatial phase sensitivity

of receptive fields were significantly correlated with the variance ratio, and this

relationship held for both V1 and V2 (Fig. 3.3a–d). For V1 neurons, no other

properties were significantly correlated (Fig. 3.3e,g). But in V2, the strength of

orientation tuning (Fig. 3.3f) and contrast sensitivity (Fig. 3.3h) were also corre-

lated with the variance ratio: Neurons with weaker orientation tuning and lower

contrast sensitivity appeared to be more tolerant. To summarize these e�ects, we

decomposed R2 using the averaging-over-orderings technique [77] and examined

the contribution of each property to the explained variance in V1 and V2 (Fig.

3.3i). This analysis confirmed the di�erent pattern of contributions for the two

areas.

We found that this pattern depended on the presence of higher-order correla-

tions in the texture families. We computed the response tolerance for each neuron

by taking the ratio of response variance across and within families that contained

no higher-order statistics and only di�ered in their power spectrum (Fig. 3.4a,

see chapter 2). We repeated the regression analysis on these variance ratios and

found that, while the pattern of receptive field contributions remained the same
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in V1, it di�ered markedly for V2 neurons (Fig. 3.4b). In particular the relation-

ship between V2 tolerance with orientation selectivity and contrast sensitivity was

eliminated. Instead, the pattern of contributions in V1 and V2 was very similar,

with receptive field size and the modulation ratio explaining most of the variability

in response tolerance. We conclude that while some of the increase in tolerance

of V2 over V1 may be due to conventionally assessed di�erences in receptive field

properties, some other factor is needed to fully explain the enhanced tolerance of

V2 neurons to naturalistic stimuli.

3.5 Visualizing selectivity and tolerance of neuronal pop-

ulations

We visualized the representation of texture stimuli within each neural population

by transforming their responses from the high-dimensional response space (di-

mensionality = number of neurons) to a two-dimensional space. Ideally such a

mapping would capture local and global aspects of the representation as much as

possible. We used the t-distributed stochastic neighbor embedding (t-SNE) algo-
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Figure 3.5: Two-dimensional visualization of neural population responses in V1 and
V2. (a) V1 population response to each visual texture stimulus, displayed in a two-
dimensional coordinate system that captures the full population of 102 V1 responses
(computed using t-distributed stochastic neighbor embedding [233]). Each point repre-
sents one texture image, with color indicating the texture family. The larger, desaturated
disks in the background indicate the centroid of all samples within each family. (b) Same
analysis for the population of 103 V2 responses.
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rithm, which solves this problem by minimizing the di�erence between the high-

and low-dimensional distributions of neighbor distances [96, 233]. The choice of

two dimensions is purely for interpretability and visualization, and is not meant

not to imply anything about the underlying dimensionality of representation in

either area.

We normalized the firing rate of each neuron and applied t-SNE to the V1

and V2 populations separately (Fig. 3.5a,b). Each of the 225 points represents

population responses to a single texture sample, colored according to the family

to which it belongs. Points that lie close together correspond to images that

evoked similar responses from the neural population. Within V1, the groups of

images from the same family generally produce scattered population responses,

and the closest neighbors of most images do not correspond to samples from the

same texture family (Fig. 3.5a). When applied to V2, the visualization reveals

that population responses often cluster by texture family (Fig. 3.5b), with all the

samples from several families tightly grouped.

3.6 Decoding neuronal populations

The low-dimensional t-SNE visualization (Fig. 3.5) provides an intuition for how

the representation in V2 di�ers from V1, which can be more precisely quantified

using a neural population decoder. To this end, we analyzed the ability of V1

and V2 representations to support two di�erent perceptual discrimination tasks.

For the first task, we built a Poisson maximum-likelihood decoder to discriminate

between the 15 di�erent samples within a texture family based on the responses

within a neural population (Fig. 3.6a; see methods). Performance in both areas,

averaged across all texture families, increased as the number of neurons included
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Figure 3.6: Quantifying representational
di�erences between V1 and V2. (a)
Schematic of sample (black) and family
(red) classification. For sample classifica-
tion, holdout data were classified among
the 15 di�erent samples for each fam-
ily. Performance for each of the fam-
ilies was then averaged together to get
total performance. For family classifica-
tion, the decoder was trained on multi-
ple samples within each family, and then
used to classify held-out data into each
of the 15 di�erent families (b) Compari-
son of proportion correct classification of
V1 and V2 populations, for family clas-
sification (red) and sample classification
(black). We computed performance mea-
sures for both tasks using five di�erent
population sizes, indicated by the dot
size. Chance performance for both tasks
was 1/15. Error bars represent 95% confi-
dence intervals of the bootstrapped distri-
bution over included neurons and cross-
validation partitioning.

in the analysis increased, but V1 outperformed V2 for all population sizes (Fig.

3.6b). The representation of image content in V1 thus provides more information

for discriminating between specific samples.

For the second task, we built another decoder to discriminate between the

15 di�erent texture families (Fig. 3.6a; see methods). We forced this decoder

to generalize across samples by training on a subset of samples and testing on

samples not used in the training. For both V1 and V2, and for all population

sizes, absolute performance on this task was worse than on the sample classification

task, although the di�erence was much larger in V1 (Fig. 3.6b), but in contrast

to the sample classification task, V2 outperformed V1 for all population sizes. To
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examine whether this finding could be a consequence of the di�erences in receptive

field properties described above (Fig. 3.3), we excluded neurons classified as simple

from both areas and selected subpopulations matched for classical receptive field

size. This matching procedure had little e�ect on V2 performance in either task,

but did reduce V1 performance on the sample task and increase V1 performance

on the family task (see methods). However, performance in the two areas remained

significantly di�erent, suggesting more complex forms of selectivity are involved.

3.7 Comparing selectivity of neuronal populations

To elucidate the V2 response properties that allow it to outperform V1 in family

classification, we examined the dependence of performance on the di�erences in

statistics between pairs of texture families. We built a Poisson maximum-likelihood

decoder to best discriminate between each pair of texture families (105 di�erent

comparisons). Comparing performance in V1 and V2 (Fig. 3.7) reveals two promi-
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Figure 3.7: Texture discrimination
performance of neural populations.
Comparison of V1 and V2 per-
formance on pairwise texture dis-
crimination. Performance values
were plotted on coordinates that
varied linearly in discriminability
(dÕ). Right and top axes indi-
cate corresponding values of per-
formance expressed as proportion
correct. Each point represents one
of 105 pairwise comparisons among
the 15 texture families. Solid lines
indicate chance performance and
the identity line. Dashed line in-
dicates best fit using total least
squares.
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statistics. The magnitude of di�erence in spectral statistics for each texture family pair
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nent features (Fig. 3.7). First, performance in V1 and V2 was highly correlated

across the di�erent texture discriminations (r = 0.82; p < 0.001), suggesting that

some of the features that drive performance in V1 are also responsible for perfor-

mance in V2. Second, V2 neurons performed better for nearly all pairs, and this

improvement was approximately independent of the performance seen in V1 (Fig.

3.7). A straight-line fit suggests that if V1 discrimination performance were at

chance, V2 performance would be 65% correct (dÕ = 0.54). To understand this re-

lationship, we sought to separate those stimulus properties that drive performance

in both V1 and V2 from those that underlie the increase in performance of V2 over

V1.

We chose texture families for this study that di�ered in their spectral content

— the relative amount of energy at di�erent orientations and spatial frequencies.

V1 neurons are highly selective for spectral content [42] and this selectivity is main-
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tained in V2 [123]. We wondered whether the spectral parameters of the model

could explain V1 performance. Across all 105 pairs of texture families, we mea-

sured the magnitude of the di�erence in spectral statistics between the two families.

We then predicted V1 discrimination performance from the statistical di�erences,

over all pairs (Fig. 3.8; see methods). The spectral di�erences predicted V1 per-

formance well (r = 0.7; p < 0.001), and the same model also provided a good

prediction for V2 performance (r = 0.59; p < 0.001). Reoptimizing the weights to

predict V2 responses barely improved the correlation (r = 0.6; p < 0.001), con-

sistent with the notion that the spectral information represented in V2 is directly

inherited from V1. However, the spectral statistics captured little of the di�erence

in performance between V1 and V2 (r = 0.22; p < 0.05).

These analyses suggest that the superior performance of V2 must be due to

the higher-order (i.e., beyond second-order) correlations present in the texture

model. To test this hypothesis, we extracted the parameters that capture higher-
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Figure 3.10: Single neuron discrimination between spectrally matched families. (a) Ex-
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samples of the five pairs of spectrally matched texture families shown in (a), and selected
the texture family pair with maximum dÕ.

order statistics through correlations of filter response magnitudes across position,

frequency, and orientation, and projected out the portion captured by the spectral

statistics. We then predicted the di�erence in V1 and V2 performance (Fig. 3.9).

Di�erences in the higher-order statistics — in contrast to spectral statistics —

provided a good prediction for the V1/V2 performance di�erence (r = 0.61; p <

0.001).

To provide a more direct test and confirm this prediction, we subsequently

performed a tuning experiment on a small subset of V1 and V2 neurons. We

created pairs of texture families that di�ered only in their higher-order statistics

(Fig. 3.10a, see methods), and presented them to single neurons in V1 and V2 of an

awake, fixating macaque. Here we did not perform a population decoding analysis,

but simply examined the maximum single-neuron performance at discriminating
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higher-order statistics (Fig. 3.10b, see methods). We found several neurons in V2

that were highly sensitive to di�erences in higher-order statistics, and very few in

V1. On average, single-neuron performance in V2 was over twice as high as in V1

(Fig. 3.10b).

In summary, V1 discrimination performance was well captured by the spectral

statistics of naturalistic textures. This same set of statistics captured a significant

portion of V2 discrimination performance, but most of the superiority of V2 over

V1 comes from higher-order statistics.

3.8 Discussion

Our results support the hypothesis that populations of V2 neurons represent the

statistics of the activity of local ensembles of V1 neurons, which capture the ap-

pearance of naturally occurring textures. Using a set of stimuli for which these

statistics are tightly controlled, we showed that, relative to neurons in V1, V2 neu-

rons exhibit increased selectivity for these statistics, accompanied by an increased

tolerance for randomized image variations that do not a�ect these statistics. This

“tolerance to statistical resampling” complements the more widely discussed visual

invariances to geometric distortions (e.g., translation, rotation, dilation) [263, 184],

or changes in the intensity, color, or position of a light source [242, 12].

Our results also help to integrate and interpret other findings. The selectiv-

ity of V2 neurons for many artificial stimuli, including gratings, angles, curves,

anomalous contours, and texture-defined patterns, is nearly the same as that of

V1 neurons [210, 89, 91, 120, 132, 106, 11, 196]. This similarity would be ex-

pected if V2 neurons are selective for a broad set of V1 response statistics, and

not for a small subset of specialized combinations of V1 inputs as assumed by
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these approaches. On the other hand, the tolerance of V2 cells identified here

does seem consistent with the previously identified behaviors of “complex unori-

ented” V2 cells [99], which are selective for patches of light of a particular size but

tolerant to changes in position over a much larger region. Such a property may

explain why orientation selectivity so strongly predicted tolerance in V2 but less

so in V1. This relationship might also reflect greater heterogeneity of orientation

tuning within V2 receptive fields [11] providing a substrate for computing local

orientation statistics.

Our results complement recent work demonstrating V2 selectivity for third-

and fourth-order pixel statistics. Yu and colleagues [256] examined responses of

V1 and V2 neurons to binary images synthesized with controlled pixel statistics up

to fourth order, and found that neuronal selectivity for multipoint (i.e., third and

fourth order) correlations is infrequent in V1, but common in V2. The strength of

this work derives from the well-defined stimulus ensemble, which covers the full set

of statistics up to fourth order and allows a thorough assessment of the selectivity

for individual statistics in the responses of single neurons. On the other hand, the

restriction to statistics of a particular order, while mathematically natural, is not

necessarily aligned with the restrictions imposed by the computational capabilities

of biological visual systems, and this may explain why selectivity of V2 neurons for

these statistics is only modestly greater than that of V1 neurons. The stimuli in our

experiments are constrained by statistics that are defined in terms of an idealized

response model for a V1 population. Although they also constrain multipoint pixel

statistics, they do not isolate them in pure form, and they span too large a space

to allow a thorough experimental characterization of selectivity in individual cells.

On the other hand, they represent quantities that may be more directly related to
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the construction of V2 responses from V1 a�erents, and they allow direct synthesis

of stimuli bearing strong perceptual resemblance to their ecological counterparts

[172, 16, 17, 60].

The particular statistics we matched to create our texture families are surely not

represented fully and only in V2, and this may explain why the reported di�erence

in selectivity and tolerance between V1 and V2, while robust, is not qualitative. In

particular, these statistics include both the local correlation of oriented linear filter

responses (equivalent to a partial representation of average spectral power across

the image) as well as pairwise correlations between the magnitudes of responses of

oriented filters tuned to di�erent orientations, spatial frequencies, and positions.

We created di�erent families from the statistics extracted from 15 original pho-

tographs, which di�ered in both the spectral and higher-order statistics. We found

that the spectral di�erences between di�erent families accounted for a substantial

portion of the discrimination performance of both V1 and V2 populations. How-

ever, V2 nearly always outperformed V1, and this superiority was well predicted by

the di�erences in higher-order statistics. This suggests that an artificial stimulus

set in which families di�er only in higher-order statistics would better di�erentiate

the discrimination performance of V1 and V2.

How do V2 neurons achieve higher classification and discrimination perfor-

mance than their V1 inputs? There are two possible answers: reducing variability

in the representation of individual families or increasing the mean separation in

the representations of di�erent families. The first of these can be achieved by com-

bining many V1 inputs so as to average out their trial-by-trial variability. Larger

receptive fields may be an indication of such a construction: Indeed, larger recep-

tive fields are associated with higher variance ratios and better family classification
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performance. However, when we matched receptive field sizes between the two ar-

eas, V2 still performed better in family classification. Thus, we posit that V2

neurons are also taking advantage of the second option, transforming their V1

inputs to make family di�erences more explicit in their average responses. This

transformation amounts to “untangling” the representation of visual features that

were not directly decodable in the V1 representation [45]. Specifically, V1 neurons

don’t appear to signal the presence of higher-order correlations with a consistent

change in firing rate, while V2 neurons do [61, 256]. A a result, larger di�erences

in higher-order correlations between families explains a significant portion of the

increased discrimination performance in V2 (Fig. 3.7c).

Perceptually, invariances related to statistical resampling were originally pro-

posed by Julesz as a testable prediction of statistical texture models [108], and have

been used to test and refine such models in both vision [172, 16, 222, 235] and audi-

tion [137]. Theories regarding the statistical summary nature of “crowding” e�ects

in peripheral vision [122, 166, 167, 76] have also been tested for such perceptual

invariances [17, 60], and are consistent with representation of texture statistics in

area V2. Although our analysis of V2 responses is qualitatively consistent with

these perceptual observations, the connection is di�cult to test quantitatively. In

particular, the statistics in our texture stimuli were computed by averaging over

the full stimulus aperture, which was held to a fixed size of four degrees for all

cells to allow a reasonable interpretation of population decoding. This size was

generally larger than the receptive fields of the neurons (Fig. 3c,d). Thus, most

neurons saw only a portion of the stimuli, over which the statistics would not have

been fully matched. Finally, recall that the transformation from V1 to V2 is part

of a cascade, and it may well be that perception relies more on downstream areas
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such as V4 where neurons may show even more selectivity and tolerance for the

statistics we used [162, 12].

The visual world is often described in terms of forms or “things” made up of

lines, edges, contours, and boundaries, and these symbolic descriptions have played

a dominant role in developing theories for both biological and machine representa-

tions of visual information. But textures and “stu�” [5] are ubiquitous in natural

visual scenes, and are not easily captured with edge or contour descriptions. The

results presented here suggest that V2 neurons combine V1 a�erents to represent

perceptually relevant statistical features of visual textures. It is currently un-

known whether this statistical description of the visual world is also su�cient to

account for perception of visual form. Recent work suggests that textural statis-

tics such as those used here can account for aspects of peripheral vision that are

not exclusive to the perception of texture [17, 60]. Additionally, recent successes

in machine recognition of complex objects using multistage neural networks also

call into question the need for explicit boundary, contour, or edge information in

high-level vision. Indeed, the model responses at di�erent stages of these neural

networks have provided a good basis for accounting for neural responses in both

midlevel and late stages of visual cortex [254, 112], and attempts to visualize the

selectivities of model units at midlevel stages have often revealed texture-like visual

structure [258]. Thus, the two-stage representation we describe here may provide

a foundation for the representation of the more complex and structured signals

found in images of objects or of entire visual scenes [122].
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Chapter 4

Sensitivity from beyond the

receptive field in V2

4.1 Introduction

We previously found that V2 neurons with larger receptive fields were no more

likely to be sensitive to the higher-order statistics of natural textures than those

with smaller receptive fields (Fig. 2.9a). However, we also observed that neuronal

sensitivity in V2 was decreased by shrinking the diameter of the stimulus to match

that of the estimated receptive field, suggesting that the surround may play a role

in establishing sensitivity to naturalistic image structure in V2 (Fig. 2.9b). The

influence of stimuli presented outside the classical receptive field has been studied

extensively in V1 and is generally suppressive [9, 21, 43, 124, 34]. The strength of

surround suppression is modified by several stimulus properties, including orien-

tation, spatial frequency, and spatial position [35]. In general, the influence of the

surround has not been posited to play a significant role in establishing or enhanc-

ing selectivity for visual features more complex than those represented within the

receptive field center (but see [71, 83]). More often, surround mechanisms have
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been proposed to increase the transmission e�ciency for information presented to

the receptive field center [193]. This e�ciency hypothesis has mostly been tested

by using natural images rather than the simpler artificial stimuli frequently used

to characterize V1 neurons [236, 237, 38]. Surround selectivity has been less ex-

tensively studied in V2 but is generally considered to function similarly to that in

V1 [201]. However, stimuli containing naturalistic structure have rarely been used

to study the surround of V2 neurons, and it is currently unknown whether the sur-

round in V2 may play a distinctive role in establishing selectivity for naturalistic

visual features.

Here, we performed aperture-size tuning experiments on a population of V2

neurons using naturalistic textures and spectrally matched noise lacking higher-

order features. Generally, responses were suppressed when both types of stimuli

extended beyond the classical receptive field. However, responses in V2 also be-

came increasingly sensitive to the higher-order structure of naturalistic textures

as stimulus size increased. Part of this enhanced sensitivty was driven by in-

creased surround suppression for spectrally matched noise stimuli. The dynamics

of enhanced naturalistic sensitivity also mirrored the temporal onset of surround

suppression to both types of stimuli. We conclude that surround suppression may

be weakened by the presence of naturalistic correlations in the V1 input to V2 (an

observation that runs opposite to recent findings on the e�ect of surround stim-

ulation on V1 neurons [38]). Alternatively, a facilitatory mechanism selective for

joint activity patterns of V1 neurons influences the firing rate of V2 neurons over

a much larger region than the traditionally measured receptive field.
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4.2 Methods

Physiological methods for this chapter were identical to those reported for chapter

2 in section 2.2.2.

4.2.1 Visual stimuli

We generated stimuli as described previously in section 2.2.1, with one exception.

Using the Portilla-Simoncelli texture model [172], we analyzed the statistics of

the 31 original photographs used in chapter 2. Each of these photographs had a

resolution of 320 ◊ 320. During synthesis, we began with an image of Gaussian

white noise at a resolution of 2048 ◊ 512, resulting in synthetic images at this

larger resolution. When using these larger images in our experiments, we presented

them at the same scale (pixels/degree) as our original experiments. For the initial

characterization, we presented naturalistic and spectrally matched noise stimuli

from each of these 31 families within a 4¶ raised cosine aperture, as in our initial

experiments described in chapter 2.

Here, we showed di�erent “samples” by shifting the center of this aperture hor-

izontally across the 2048 ◊ 512 image, rather than presenting multiple images that

had been independently synthesized. These two methods are roughly consistent

since the textures are spatially homogeneous and the statistics were analyzed for

images much smaller than the 2048 ◊ 512. However, the statistics of di�erent

“samples” here will be slightly less well matched than in the previous experiment

since the statistics have only converged to match the original exactly when aver-

aged over the full 2048 ◊ 512 resolution. We analyzed the stability of the statistics

when cropping from these larger texture stimuli and show that they have mostly
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converged at the relevant size (Fig. 4.4a). When performing the size tuning ex-

periments, we changed the aperture diameter applied to these larger textures. We

always presented textures at the same scale of 80 pixels/¶ as in our intial exper-

iments in chapter 2. For aperture sizes that exceeded 512 pixels (or 6.4¶) the

images were wrapped so the same part of the image was visible in two places on

the monitor. This property likely had no e�ect on the results because of the large

spatial segregation of the image elements and the homogeneous nature of texture

stimuli.

4.2.2 Analysis

Receptive field characterization

We first performed size tuning experiments using drifting gratings presented for 1

s to the receptive field of each neuron. We calculated the response as the firing

rate within a time window matched to the duration of the stimulus, shifted by

the latency of each neuron. We fit a ratio of Gaussians model as described in [34]

to the responses of each neuron. We then took twice the standard deviation of

the excitatory Gaussian to be our estimate of the classical receptive field (CRF)

size. Results were similar when using a di�erent metric such as the optimal size.

We then binned the stimulus diameters from each tuning curve by the estimated

CRF size to get a relative size measure. Relative values between 0.1 and 0.4 were

assigned to the 1/3 times CRF size bin, between 0.8 and 1.2 to the CRF-matched

bin, and between 2.4 to 3.9 to the 3 times CRF size bin. We computed the surround

suppression index from the maximum mean firing rate and the mean firing rate

to the largest stimulus we presented. We subtracted the suppressed response from

the maximum and divided by the maximum to obtain the fractional reduction.
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We estimated the latency of each neuron by maximizing the stimulus associated

response variance [212]. We aligned each neuron to its response onset and binned

spikes at 1 ms, smoothing the peristimulus time histogram (PSTH) with a boxcar

filter with a width of 10 ms. The time course of suppression and modulation indices

were computed separately for each neuron and then averaged together.

Parameter stability

To examine parameter stability with stimulus size we first measured parameters

of the Portilla Simoncelli texture model [172] from 15 samples of naturalistic and

spectrally matched noise stimuli drawn from all 31 texture families used in our

initial neural characterization. We separated out parameter groups as we have done

previously (Fig. 2.22, [61]). Here, we focused on energy filter correlations across

scale, position, and orientation because we showed them to be most important

for establishing sensitivity to naturalistic visual structure (Fig. 2.22). We also

used linear filter correlations across position because these capture the spectral

sensitivity of V1 and V2 neurons well (Fig. 3.8), and should not be a cue for

discriminating naturalistic from spectrally matched noise stimuli. We measured

each individual parameter within a group across 15 samples of the 31 texture

families used in our initial characterization. Each sample was measured at multiple

image sizes by cropping the full image down to dimensions ranging from 64 ◊ 64

pixels to 704 ◊ 704 pixels (equivalent to 0.8¶ –8.8¶ of visual angle). For each

texture family and image size we subtracted the parameter value (averaged over

samples) to spectrally matched noise from that measured to naturalistic stimuli

and divided by the sum of these two values, analogous to the computation of the

modulation index we used for physiology. We averaged this parameter modulation
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index across the 31 texture families and all parameters within a group to get our

final measure.

4.3 Charactizing size dependence of naturalistic sensitivity

We generated synthetic stimuli containing naturally occurring marginal and joint

statistics across the outputs of a simulated population of V1 simple and complex

cells [172]. These statistics include spatially averaged local correlations between

the output of pairs of model neurons that di�er in preferred spatial frequency,

position, and orientation. We first measured this set of statistics from a grayscale

photograph of natural texture, and then generated synthetic texture images by

starting with an image of Gaussian white noise and iteratively adjusting the pixels

Spectral
noise

Naturalistic
textures

Classical
receptive
field size

1/3x CRF

CRF-matched

3x CRF

a b c

Figure 4.1: (a) Three examples of naturalistic tex-
tures. (b) Three examples of spectrally matched noise
stimuli. (c) Design of the size tuning experiment. The
receptive field size of an example V2 neuron is repre-
sented as a dashed blue line. Stimuli were centered
on the receptive field and shown at a variety of sizes.

until the image had the same

statistics as the original pho-

tograph [172]. We refer to

images generated using the

full set of parameters as

“naturalistic” (Fig. 4.1a).

We additionally created spec-

trally matched noise stimuli

by randomizing the phase of

each naturalistic image (Fig.

4.1b). These noise stimuli are

matched to the originals in

their average orientation and

spatial frequency content, but
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contain no higher-order struc-

ture. These two image types evoke equal firing rates in V1 neurons on average,

while V2 neurons are driven more strongly by naturalistic stimuli [61].

We recorded neural responses from 42 V2 neurons in four anesthetized macaque

monkeys to sequences of naturalistic and spectrally matched noise stimuli. For

each neuron, we first characterized its classical receptive field (CRF) using drifting

gratings to determine location and size. We subsequently measured responses to

naturalistic and spectrally matched noise images presented within a 4¶ aperture

centered on the receptive field [61]. We presented 15 “samples” of both naturalistic

and noise stimuli drawn from 31 di�erent texture “families” synthesized from 31

original images (one naturalistic and one spectrally matched noise sample from

three families are shown in Fig. 4.1a and Fig. 4.1b, respectively). Each image

was presented for 100 ms followed by 100 ms of mean luminance. We computed

a modulation index from the responses to each texture family by subtracting the

firing rates to naturalistic and spectrally matched noise and dividing by their

sum. After this initial characterization, we chose a number of texture families for

additional characterization based on the strength of this modulation index. For

each chosen texture family we performed a size tuning experiment by varying the

diameter of the aperture of the texture patch in logarithmically spaced intervals

centered around our estimate of the neuron’s classical receptive field size from its

response to drifting gratings (Fig. 4.1c). Importantly, we varied the size of our

stimuli by masking the full texture image, and not by rescaling the textures. The

image content in the center of the receptive field was therefore identical for large

and small size conditions (Fig. 4.1c).

We found a wide range of receptive field sizes and size tuning shapes across
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Figure 4.2: Size dependence of naturalistic sensitivity. (a) Firing rate to naturalistic
and noise stimuli for four example V2 neurons as a function of the aperture diameter of
texture patch. (b) Modulation index computed from the firing rates in (a).

our recorded population (Fig. 4.2a). Similar to our previous findings, we found

no evidence for a relationship between the modulation index and estimated re-

ceptive field size using responses measured with drifting gratings (r = 0.09; p =

0.55). However, there were clear di�erences between size tuning to naturalistic and

noise stimuli for most neurons. Specifically, naturalistic and spectrally matched

noise stimuli appeared to drive similar responses at small sizes, while a preference

for naturalistic textures emerged gradually as the size of the stimulus increased.

We quantified this by computing a modulation index for each size (Fig. 4.2b).

Modulation strength increased with aperture diameter for most neurons.

To examine this trend across the population we aligned each modulation tun-
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ing curve to the estimated receptive field size of each neuron. We computed the
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Figure 4.3: Population sensitivity depends on
size. The average modulation index across the
population was plotted against the relative
stimulus size. Error bars represent ±s.e.m.
across neurons.

average modulation strength across

the population at three sizes: when

the stimulus aperture was one-third

the CRF diameter, roughly matched

to the CRF, and three times the CRF

(Fig. 4.3). We found that at sizes ap-

proximately one-third the CRF there

was very little modulation across the

population. Modulation was strong

when aperture size was matched to

the CRF, but roughly doubled when

aperture size was increased to approx-

imately three times the CRF size (Fig.

4.3). As with our previous results [61], this pattern suggested a role for the sur-

round in strengthening sensitivity to naturalistic image structure.

A possible explanation for increasing modulation index with aperture diameter

could be the increasing sample size for computing higher-order statistics. Our syn-

thesis procedure only guarantees statistics to be fully converged to their specified

values when averaging over the entire image. When the aperture is very small,

the sample of higher-order statistics is potentially more variable and could lead to

reduced sensitivity. To examine the influence of parameter stability on neuronal re-

sponses, we analyzed the spectral and higher-order statistics of samples of texture

stimuli cropped at varying sizes. For di�erent groups of parameters, we computed

a modulation index, analogous to that used for neuronal responses, by taking the
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.

di�erence of each parameter value (averaged across samples) for naturalistic and

spectrally matched noise stimuli and dividing by the sum (Fig. 4.4a). The spectral

(second-order) statistics computed through correlations across the output of linear

filters di�ering in position had a very small modulation index for all image sizes

(Fig. 4.4a, blue). Although the stimuli are spectrally matched for large sizes, the

variance of the spectral modulation index does increase at small sizes, which could

drive neuronal response variability and diminish the modulation index.

We also examined parameter groups capturing magnitude correlations across

orientation, scale, and position. The strength of the modulation index for all

of these parameters was biased toward lower values when the image was small
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(Fig. 4.4a). However, all groups appeared to approach their asymptotic values

once stimuli reached about 2¶, close to the average receptive field size of our V2

population (1.7¶±0.8¶). This contrasted with the average neuronal modulation

index computed for di�erent sized stimuli (Fig. 4.4b). The V2 modulation index

more than doubled between 2¶ and the largest stimulus sizes around 8¶. Therefore,

instability in the higher-order statistics could potentially be driving the increase in

modulation at small sizes, but could not explain the strong increase in sensitivity to

naturalistic image structure we observed for texture patches extending well beyond

the receptive field.

We wondered what could drive this enhancement of sensitivity as stimuli in-

creased outside the CRF. Typically, the e�ect of contrast outside the receptive field

has been found to be suppressive [9, 21, 43, 124, 34]. We observed a wide range of

surround suppression for both naturalistic and noise stimuli, from no suppression

(Fig. 4.2a, second from left) to nearly complete suppression (Fig. 4.2a, right).

Although we previously found that surround suppression strength measured with

drifting grating stimuli was not significantly correlated with the modulation index

across neurons [61], we still wondered whether it might play a role. For each neu-

ron, we computed a suppression index measuring the fractional reduction in firing

rate to large stimuli [34]. There was a significant relationship between surround

suppression strength measured with noise stimuli and the modulation index (r =

48; p = 0.001). However, it also appeared that modulation could be quite strong

even in cases of little or no surround suppression (Fig. 4.2a, second from left).

When we compared the strength of surround suppression to naturalistic versus

spectrally matched noise stimuli, we found that there was significantly more sup-

pression to noise stimuli across the population (Fig. 4.5a). We recorded a small
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population of V1 neurons under the same conditions and found no such e�ect

(Fig. 4.5b), consistent with previous reports that used phase-randomized stimuli

to study surround suppression in V1 neurons [38]. We conclude that areas outside

the receptive field may play a distinctive role in V2 by enhancing sensitivity to

naturalistic image structure.

To further examine the possible relationship between surround suppression and

the strength of naturalistic modulation, we examined the time course of responses

for these two e�ects. We aligned all our recorded neurons to their response onset

and computed the average firing rate as a function of time for di�erent conditions

(Fig. 4.6a). We focused on trials where the stimulus diameter was roughly matched

to the CRF of the neuron and when the stimulus was roughly three times the CRF

diameter. We examined the time course of suppression between these two condi-
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Figure 4.6: Temporal dynamics of suppression and sensitivity. (a) Average normalized
population firing of V2 neurons to large and small naturalistic and spectrally matched
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tions by computing the surround suppression index at each time point (Fig. 4.6b).

As has been previously observed [15, 197, 247, 93], we found that suppression from

the receptive field surround was delayed, beginning to a�ect responses about 15–20

ms after response onset and reaching a steady state 50–60 ms post-response (Fig.

4.6b). Surround suppression to spectrally matched noise began a few milliseconds

earlier than to naturalistic stimuli and reached a higher value, consistent with our

results when aggregating spikes across the entire stimulus window (Fig. 4.5a).

The temporal dynamics of the modulation index had a di�erent but related

temporal profile (Fig. 4.6c). For the CRF-matched condition, modulation began

to rise right at response onset and reached its steady-state level around 10–15 ms

later. When the stimulus was three times the CRF, however, the modulation index

continued to rise, surpassing the modulation strength for CRF-matched stimuli

around 15–20 ms after response onset. Thus, the time at which surround-enhanced

modulation strength became apparent matched the onset of suppressive signals

from the surround.

4.4 Discussion

Here, we provide further evidence for the distinctive selectivity of V2 neurons

for the statistics of natural textures. The sensitivity of individual V2 neurons for

naturalistic visual structure increased as stimuli were extended well beyond the size

of the classical receptive field. This observation could partly be explained for some

neurons by the recruitment of increased surround suppression for stimuli lacking

naturalistic structure. More generally, the delayed onset of surround-enhanced

sensitivity and surround suppression in the V2 population was similar, suggesting

the possibility that similar mechanisms underlie both phenomena.
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The presence of naturalistic statistical dependencies in our stimuli function to

either weaken surround suppression, or else drive a facilitative mechanism with

similar spatial summation and dynamics. Surround influences on visual neurons

have generally been found to be suppressive [21, 43, 115, 34], although facilita-

tive interactions have been observed as well [9, 124, 70]. Can we di�erentiate

between these two possibilities? Firstly, the strength of naturalistic modulation is

weakly related or unrelated to the strength of surround suppression over di�erent

stimulus ensembles, suggesting di�erent origins. Secondly, neurons with weak or

no surround suppression often still exhibited increasing sensitivity to naturalistic

structure with size (Fig. 4.2).

Theories for the role of the extraclassical surround have often suggested it acts

to decorrelate or increase the sparseness responses to support e�cient encoding

of visual structure presented to the receptive field [193, 236, 237]. The generally

suppressive influence thus acts to weaken responses when the visual structure in

the receptive field center and surround are redundant [20]. Surround influences

have most often been studied in V1 neurons with simple artificial stimuli in the

domain of orientation [115, 43, 203]. When an optimally oriented stimulus is pre-

sented to the center, stimulating the surround with the same orientation induces

the largest suppression, whereas an orthogonal orientation partially relieves this

suppression [203, 35, 247, 93]. The observation that suppression is greatest for

matched orientations in the center and surround holds even when the center ori-

entation is nonoptimal, suggesting a general mechanism for suppressing responses

to redundant or homogeneous visual elements [203, 35, 38].

This idea has recently been examined and extended using data from V1 neu-

ronal responses to both artificial and natural stimuli [38]. In the proposed frame-
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work, surround suppression is gated by a computation that detects visual homo-

geneity between image content presented to the center and surround of individual

neurons. Images containing strong cross-position dependencies, such as some nat-

ural images or some of the naturalistic texture families used here, would drive

strong suppression, whereas phase-scrambled stimuli with independent structure

in the center and surround regions would drive little or no suppression. This con-

jecture was tested on a population of V1 neurons and surround suppression was

indeed found to be weaker for phase-scrambled stimuli compared with an ensemble

of natural images [38]. These results match our own small sample of V1 neuronal

responses to phase-scrambled and naturalistic texture stimuli (Fig. 4.5b), and

suggest a fundamentally di�erent role for the surround in V1 and V2.

Alternatively, our results in V2 may represent a spatially broad facilitative

mechanism. Previous suggestions of a facilitatory role for the surround in V1 have

emphasized the potential role of long range orientation matched lateral connec-

tions that may play a role in contour integration [71, 126, 214, 127]. However,

recent work has suggested these signals are significantly delayed and may repre-

sent feedback from higher areas induced by perceptual learning [128]. In contrast,

the temporal dynamics we observe for the emergence of naturalistic sensitivity are

similar to those seen for tuned suppression in V1 thought to originate in lateral

connections [115, 15, 197, 93]. Compared with V1 then, our results may indicate

a distinctive function for lateral interactions in V2.

The influence of receptive field surrounds has been much less studied in V2

than in V1. When V2 has been studied, surround properties have generally been

found to be similar [201], although there may be di�erences in the spatial layout of

suppressive regions in the surround relative to the preferred orientation of the cen-
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ter [191]. Interestingly, spatially inhomogeneous surround regions have been linked

to the representation of “second-order” features, or texture-defined form, in both

V1 and V2 [244, 218, 83]. Receptive field models that incorporate this selectivity

can resemble a spatial derivative across spectral features [218, 83]. Depending on

its implementation, such a model could potentially yield selectivity to higher-order

spatial correlations contained in naturalistic images (See Fig. 2.25). However, pre-

vious studies have found little di�erence in the selectivity to texture-defined form

between V1 and V2 [196, 83] (but see [125]).

Naturalistic textures are defined by their repeating elements and broad spatial

extent. Limiting the aperture through which one observes a patch of texture can

drastically change the qualities of the texture. If texture is made up of visual

“stu�,” limiting the surrounding elements can allow one to better see the “things”

that make it up [6, 5]. Visual neurons are generally thought to view the world

through the aperture of their receptive fields. However, our results suggest that V2

neurons are sensitive to the statistical dependencies that determine the appearance

of natural visual textures through mechanisms that operate at a scale much larger

than individual V2 receptive fields.
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Chapter 5

Neuronal signals supporting

naturalistic texture discrimination

5.1 Introduction

Di�erent visual behaviors are supported by groups of neurons specialized to encode

specific aspects of the visual world. Several brain areas have been linked to specific

visual functions through simultaneous characterization of neuronal and behavioral

sensitivity [149]. Many studies have found that individual neurons approach or

even exceed the perceptual sensitivity of the observer and, moreover, predict be-

havioral choices even on trials where the visual stimulus is ambiguous [27, 174, 229,

152, 155]. Such results have become a benchmark by which to judge the suitability

of a potential neural correlate of behavior.

This framework has been di�cult to apply to areas of the brain believed to

support midlevel representations of visual form, since we often lack a foundation

for exploring their particular visual selectivity. We have recently demonstrated

a promising indirect relationship between the response of populations of V2 neu-

rons and the perception of naturalistic textures [58, 260, 261]. Despite being

126



recorded under anesthesia, V2 responses, but not V1 responses, predicted human

psychophysical performance on a naturalistic texture discrimination task. Here, we

test the strength of this link between V2 neurons and the perception of naturalistic

image structure by measuring neuronal and behavioral sensitivity simultaneously

in the same observer.

We found that V2 neurons were much more sensitive to naturalistic image

structure than V1 neurons, confirming our previous results [61]. However, average

sensitivity in V1 and V2 was far from behavior. Despite this, we found a signifi-

cant relationship between neuronal responses and choice in both V1 and V2. The

temporal profile of this choice-related activity was markedly di�erent in V1 and

V2. In V2, neurons were both selective for the stimulus and predictive of upcom-

ing choice soon after stimulus onset. In contrast, V1 neurons gradually built-up

stimulus selectivity and choice-related activity until they peaked just before the

choice. Our results di�erentiate the functional role of V1 and V2 neurons in the

perception of naturalistic visual structure, and also demonstrate the emergence of

neuronal signals supporting naturalistic texture discrimination across both time

and di�erent brain regions.

5.2 Methods

5.2.1 Physiology

Two male macaque monkeys (1 M. mulatta, 1 M. nemestrina) were trained to per-

form a naturalistic texture discrimination task and an orientation discrimination

task. Neuronal recordings were only made from one animal during performance

of the texture discrimination task, so we report results from only this subject.

127



Experimental procedures conformed to the National Institute of Health Guide for

the Care and Use of Laboratory Animals and were approved by the New York

University Animal Welfare Committee. Under general anesthesia, the animal was

implanted with a titanium head post and recording chamber [2, 3]. Extracellular

recordings were made with dura-penetrating glass-coated tungsten microelectrodes

(Alpha Omega), advanced mechanically into the brain. We distinguished V1 from

V2 on the basis of depth from the cortical surface and changes in the receptive field

location of the recorded units. We made recordings from every single unit with a

spike waveform that rose su�ciently above noise to be isolated. We first presented

suitably vignetted sinusoidal grating stimuli to map each isolated unit’s receptive

field in a fixation task. Across our population, receptive fields were centered at

eccentricities ranging from 2¶ to 6¶. Thereafter, we ran an initial characterization

of each neurons sensitivity to naturalistic image structure. We presented a random

sequence of di�erent samples of naturalistic and spectrally matched noise stimuli

from five di�erent families. Each image was presented for 100 ms with 100 ms of

intervening mean luminance. We computed the discriminability between the aver-

age firing rate across samples of naturalistic stimuli and spectrally matched noise

for each of the five families. We then selected the the family for which natural-

istic and spectrally matched noise were most discriminable for use in the texture

discrimination task.

5.2.2 Behavioral task

We generated our naturalistic texture and spectrally matched noise stimuli as

described previously in section 4.2.1. Stimuli of intermediate naturalness were

synthesized as described in section 2.2.1. Subjects were seated in a semi-dark room
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in front of a gamma-corrected CRT monitor (iiyama HM204DTA) with their heads

stabilized. Eye position was recorded with a high-speed, high-precision eye tracking

system (EyeLink 1000). We presented visual stimuli at a viewing distance of 57

cm, a spatial resolution of 1,280 ◊ 960 pixels, and a refresh rate of 120 Hz. Stimuli

were presented using Expo software (http://corevision.cns.nyu.edu/expo/)

on an Apple Macintosh computer.

Each trial in the discrimination task began when subjects fixated a small white

point at the center of the screen (0.2¶ diameter). After 250 ms, two choice targets

appeared, one on each side of the fixation point (on the horizontal meridian, at

3.5¶ eccentricity). For the texture discrimination task the choice targets were

samples of naturalistic and spectrally matched noise presented in a 2¶ aperture

that did not change over the course of a session. In the orientation discrimination

task, the choice targets were white lines (0.3¶ wide, 2.0¶ long) rotated –22.5¶ and

22.5¶ away from the discrimination boundary. After a 500 ms delay, the target

appeared. In the texture discrimination task, the target was a sample of texture of

intermediate naturalness presented within a 4¶ aperture. In the orientation task,

the target was a drifting grating. The stimulus remained on for 500 ms. In the

texture discrimination task subjects judged whether the target was more similar to

naturalistic or spectrally matched noise. In the orientation task, subjects judged

the orientation of the stimulus relative to the discrimination boundary. When the

stimulus disappeared, the fixation point turned black and subjects reported their

decision with a saccadic eye movement to one of the choice targets. If the monkeys

made a saccade to the correct choice target, they received a liquid reward.

We varied naturalness over a range from fully naturalistic (naturalness = 1) to

fully phase-randomized (naturalness = 0). We varied orientation over a 30¶ range
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centered on the discrimination boundary. Stimuli were presented in random order.

On each trial, naturalistic texture stimuli were drawn from 300 di�erent possible

samples within each naturalness condition. New samples were generated for each

texture family once a week to prevent the animal from memorizing individual sam-

ples. However, on a subset of tasks in the ambiguous condition where naturalness

= 0.5, we overrepresented a single sample to measure behavioral and neuronal

covariability without the added variance from the presentation of di�erent sam-

ples. Stimuli that were matched to the discrimination boundary were rewarded

randomly. Trials in which the subject did not maintain fixation within 0.6¶ of the

fixation point were aborted. Data are reported from every experiment for which

at least 100 trials were completed.

5.2.3 Analysis of behavioral response

We measured the observer’s behavioral capability to discriminate the naturalness

of texture stimuli by fitting the relationship between stimulus naturalness and

probability of naturalistic choice with a psychometric function consisting of a lapse-

rate and a cumulative Gaussian function. We optimized model parameters by

maximizing the likelihood over the observed data, assuming responses arise from

a Bernoulli process. We defined the decision criterion and estimation noise as the

mean and standard deviation of the cumulative Gaussian. In the vast majority

of experiments, lapses were rare, indicating that observers’ responses were almost

always informed by the stimulus. Experiments in which the lapse rate exceeded

15% were excluded from the population analysis.
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5.2.4 Analysis of neuronal response

We computed each neuron’s stimulus response by counting spikes in a 500 ms

window following response onset. For each cell, we chose a latency by maximizing

the stimulus-associated response variance [212]. We measured strength of neuronal

tuning in the orientation discrimination task by computing the correlation between

(relative) stimulus orientation and response mean. For orientation-selective neu-

rons with a suitably chosen discrimination boundary, the absolute value of this

correlation approximates one. Small values occur when orientation selectivity is

very weak, or when the discrimination boundary is misplaced. Data are reported

from every unit for which the absolute value exceeded 0.5. The strength of neu-

ronal tuning to texture naturalness was much weaker. Here we measured the sign

of tuning by conducting a logistic regression analysis between the spike counts of

individual neurons and the animals choices across di�erent conditions. The slope

of this function reflects the strength and sign of tuning. We performed analyses

on all neurons for which we collected su�cient data and the animal performed

adequately, regardless of the strength of tuning.

We measured neuronal capability to discriminate stimuli by fitting the relation-

ship between stimulus naturalness (or orientation) and probability of naturalistic

(or “clockwise”) choice for an ideal observer with a cumulative Gaussian function.

The ideal observer’s choices were obtained by applying a deterministic decision

criterion to the responses of each neuron. To minimize bias in the ideal observer’s

choices, the criterion was set to the median response to the zero signal stimulus.

We defined neuronal estimation noise as the standard deviation of the cumulative

Gaussian. For each cell, we computed choice probability (CP) for the zero-signal
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stimulus and the neighboring stimulus conditions. As described previously [26], CP

is calculated by performing an ROC analysis on the choice-conditioned neuronal

responses to repeated presentations of a single stimulus. We classified a CP esti-

mate as statistically significant if it fell outside of the central 95% of the expected

null distribution, computed from 1000 randomly permuted data sets [26].

We computed average peristimulus time histograms (PSTHs) by counting spikes

in 1 ms windows for individual neurons, normalizing to the maximum observed fir-

ing rate, and averaging across neurons. Population PSTHs were then smoothed

using a causal exponential filter with a time constant of 25 ms. To compute the dy-

namics of CP we calculated CP for individual neurons within 100 ms time windows

each shifted by 10 ms before averaging together CP values across the population.

5.3 Naturalistic texture discrimination

We trained macaque monkeys to discriminate the “naturalness” of a peripherally

presented patch of texture (Fig. 5.1). On each trial, after the animal attained

stable fixation, we presented two choice targets to the left and right of fixation

in the upper visual field. One choice target was a naturalistic texture matched

to an original natural photograph for the joint statistics of the outputs of V1-

like filters tuned to di�erent orientations, spatial frequencies, and positions. [172].

The other choice target was phase-randomized noise, spectrally matched to the

same original photograph, and lacking the higher-order statistics of the naturalistic

texture. Following the choice targets, we presented a stimulus centered on the

receptive field of a simultaneously recorded single unit in V1 or V2. We generated

the target stimulus by titrating the strength of higher-order statistics to create

intermediate levels of naturalness. When no higher-order statistics were included
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Figure 5.1: Naturalistic texture discrimination task. The animal attained fixation on a
central point. After 250 ms two choice targets appeared, one naturalistic texture and
one spectrally matched noise. 500 ms later a target stimulus appeared centered on the
receptive field of a simultaneously recorded V1 or V2 neuron. 500 ms later, the animal
was prompted to indicate its decision with a saccade to one of the choice targets. Blue
circle represents a receptive field and was not part of the visual display.

in the synthesis (naturalness = 0) the stimulus was spectrally matched noise, and

when the higher-order statistics were fully imposed (naturalness = 1) the stimulus

resembled naturalistic texture. The monkey indicated whether the target was

more naturalistic or noise-like by making a saccade to one of the choice targets

after stimulus o�set. Target stimuli above 0.5 naturalness were rewarded for a

saccade to the naturalistic choice target. Stimuli at exactly 0.5 were rewarded

randomly.

The monkey performed naturalness discrimination for five texture families gen-

erated from di�erent original photographs. The five naturalistic texture families

corresponded to those producing the largest di�erential response in a population of

V2 neurons compared with spectrally matched noise (top five in Fig. 2.5). At the

beginning of each session, we isolated a single unit in V1 or V2, mapped the center
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Figure 5.2: Tuning to naturalness in V1 and V2. (a). The firing rate of an example
V2 neuron to naturalistic and spectrally matched noise stimuli drawn from five texture
families (bottom). Corresponding discriminability (dÕ) values for each texture family ob-
tained form an ideal observer analysis applied to the spike counts (top). (b) Distribution
of average signed dÕ of single neurons in V1 and V2. Negative dÕ values indicated the
neuron preferred noise stimuli over naturalistic stimuli. Mean dÕ was -0.013 in V1 and
0.13 in V2.

of its receptive field and briefly determined its tuning to naturalness (Fig. 5.2a,

bottom). We presented multiple samples of naturalistic and spectrally matched

noise images from the five families, each presented for 100 ms and separated by

100 ms of gray screen. We calculated the discriminability between the distribution

of spike counts to the two categories of stimuli (Fig. 5.2a, top). We selected the

texture family that evoked the most discriminable responses between naturalistic

and noise for the subsequent behavioral task, regardless of whether the neuron pre-

ferred naturalistic or noise stimuli. By choosing the most neurally discriminable

of five families, we attempted to optimize the discrimination task the animal per-

formed to rely on the neuron under study. However, our optimization is admittedly

limited by the small number of texture categories in comparison with the probable
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complexity of selectivity for naturalistic image structure.

Examining the average signed discriminability over all five texture families for

the entire population of recorded neurons, we found a very similar pattern to

that observed in anesthetized macaque cortex (Fig. 5.2b, compare with Fig, 2.7).

Specifically, there was no overall preference in the V1 population for naturalistic or

spectrally matched noise stimuli, whereas V2 neurons were driven to higher firing

rates by naturalistic stimuli.

The subject performed the task well. When the target had a naturalness value

of 0 or 1 they were nearly perfect, and performance progressively declined as natu-

ralness approached the bound of 0.5 (Fig. 5.3a). Naturalness of 0.5 is the midpoint
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between naturalistic and noise stimuli for the model parameters, and we enforced

this discrimination bound through the structure of the rewards. However, o.5 does

not necessarily correspond to the perceptual midpoint and so the subject could

potentially develop biases in its judgments. To distinguish perceptual sensitivity

from bias, we fit the animal’s behavior with a model in which choices arise from

applying a deterministic decision criterion to a noisy estimate of naturalness. We

transformed the estimation noise into a measure of sensitivity, which corresponds

to the slope of the psychometric function at the discrimination bound. The subject

had high sensitivity (Fig. 5.3b) and little bias (Fig. 5.3c) despite having to learn

the 0.5 naturalness bound for each family.

5.4 Neuronal and perceptual sensitivity

Although the subject learned to perform the task well, and was quite consistent

across sessions, the sensitivity of single neurons to naturalness varied widely. To

estimate neuronal sensitivity we performed an ideal observer analysis on the dis-

tribution of spike counts to di�erent levels of naturalness. We directly compared

the resulting neurometric functions to the simultaneously recorded psychometric

function (Fig. 5.4). In some cases, the sensitivity of a single neuron approached

the sensitivity of the entire organism (Fig. 5.4a). Neurons with sensitivity ap-

proaching that of behavior were much more common in V2 than V1. However, we

more typically found that the sensitivity of the monkey far exceeded that of single

neurons in both V1 (Fig. 5.4c) and V2 (Fig. 5.4b).

We found that over the whole population of recorded units, sensitivity in V2 was

significantly greater than in V1 (Fig. 5.5; P < 0.0001, Wilcoxon rank sum test).

On average, V1 neurons were 18 times less sensitive than the animal’s behavior
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ing recording a highly sensitive V2 neuron. Gray symbols represent measured behavior,
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observer analysis applied to the responses of a single V2 neuron. Neuronal sensitivity
was obtained by fitting the signal detection theory model to this neurometric function
and, extracting sensitivity, and dividing by the square root of 2 to correct for the added
sensitivity of the “anti-neuron” (see methods). (b) Another example V2 cell, much less
sensitive than the animal. (c) An example V1 cell even less sensitive than behavior.

while V2 neurons were 11 times less sensitive than behavior. In V1, neurons

were roughly equally split between those that preferred naturalistc and those that

preferred spectrally matched noise stimuli (Fig. 5.5), and there was no di�erence

in the average sensitivity of these two populations (P = 0.58). In contrast, in V2

there were twice as many units preferring naturalistic over noise stimuli and this

population was over twice as sensitive (Fig. 5.5; P < 0.0001). The population of

V2 neurons that preferred spectrally matched noise was on average 18 times less

sensitive than behavior and was not significantly di�erent from the V1 population

(P = 0.40). The population of V2 neurons that preferred naturalistic textures was

only 8 times less sensitive than behavior (Fig. 5.5).
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5.5 Comparison with orientation sensitivity

To put these sensitivity numbers in perspective, we compared the naturalistic

texture sensitivity of V1 and V2 neurons to that of a more well known form of visual

cortical selectivity. Prior to training on the naturalistic texture discrimination task,

we previously trained the same monkey to perform a fine orientation discrimination

task (Fig. 5.6). The orientation task followed the same temporal structure as the

texture discrimination task. Instead of texture patches, in this case the choice

targets were two oriented bars, rotated 45¶apart. The discrimination boundary

was implicitly indicated to the animal by the orientation midway between the

orientation of the two choice targets. In this task, the discrimination boundary was

fully optimized for the neuron under study. We measured the orientation tuning
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Figure 5.6: Orientation discrimination task. The animal attained fixation on a central
point. After 250 ms two choice targets appeared in the form of bars oriented 45¶ from
each other. The orientation midway between them was the orientation discrimination
bound. 500 ms later a target stimulus appeared centered on and sized optimally for the
receptive field of a simultaneously recorded V1 or V2 neuron. 500 ms later, the animal
was prompted to indicate its decision with a saccade to one of the choice targets. Blue
circle represents a receptive field and was not part of the visual display.

of each neuron prior to the behavioral experiment, and placed the orientation

boundary on the steepest part of the tuning curve.

Under these conditions, neuronal sensitivity was much closer to that of behav-

ior. To quantify this, we performed the same ideal observer analysis on these data

that we applied to the naturalness task. On average, V1 neurons were only 1.75

times less sensitive than the behavior of the entire organism, and V2 was only 1.6

times worse (Fig. 5.7). We found no discernable di�erence in the sensitivity of V1

and V2 to orientation (P = 0.81). Thus, V2 and especially V1 appear much more

selective for orientation than for naturalistic image structure, but the di�erence

was likely compounded by the inability to optimize the stimulus fully for individual

neurons in the texture discrimination task.
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5.6 Choice-related signals in V1 and V2

Given the large disparity between neuronal and perceptual sensitivity in the texture

discrimination task, we wondered whether we could find further direct evidence

for the causal involvement of these neurons in perceptual decisions. In particular,

we wondered whether the increased sensitivity of V2 neurons would manifest in

a greater tendency to predict perceptual decisions on a trial-by-trial basis. To

examine this, we computed “choice probability” for the responses of each neuron

to the ambiguous 0.5 naturalness condition. This quantity measures the probability

that a neuron fires more spikes preceding a behavioral decision associated with its

preferred stimulus. Although choice probability values varied widely across the

population of individual neurons, the population was shifted significantly above

the chance value of 0.5 in both V1 (mean = 0.54; P < 0.005, t test) and V2 (mean
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= 0.54; P < 0.0005; Fig. 5.8).

These values of choice probability are weak but not substantially di�erent from

values often reported in the literature [26, 152, 155]. However, our experimen-

tal paradigm di�ers from many previous experiments for which significant choice

probabilities have been observed. Specifically, we presented a single static image

for 500 ms during a trial in contrast to most studies that have presented dynamic

noise stimuli. Our previous results indicate that di�erences in statistically matched
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Figure 5.9: Distribution of choice probabilities computed from responses to identical
samples at 0.5 naturalness for V1 (left) and V2 (right) neurons.
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texture samples account for a substantial amount of neuronal variability in V1 and

V2 (Fig. 3.2, [260]). Variability from di�erent samples could thus influence be-

havioral reports as well as neuronal activity and lead to spurious correlations. To

examine whether this possibility contributed to our observations, we displayed a

single sample of the 0.5 naturalness condition multiple times during a subset of

experiments. We selected experimental sessions where the animal made di�ering

behavioral responses to multiple presentations of the same sample and analyzed

choice probability. We found that although choice probability was no longer sig-

nificantly di�erent than chance in V1 (mean = 0.51; P = 0.67), choice probability

was largely unchanged in V2 (mean = 0.55; P < 0.05; Fig. 5.9). However, there

was no significant di�erent between choice probability in V1 and V2 (P = 0.21).

We were struck that sensitivity di�erences were so strong between V1 and V2

but choice probability was not substantially di�erent. Previous studies have consis-

tently found that the most sensitive neurons tend to have the strongest association
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Figure 5.10: Neuronal sensitivity plotted against choice probability for V1 (left) and V2
(right) neurons. Filled symbols represent neurons that preferred naturalistic stimuli, and
open symbols represent neurons that preferred spectrally matched noise stimuli. There
was no significant correlation in either area.
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with choice. However, we found no evidence for a relationship between neuronal

sensitivity and choice probability in either V1 or V2 (Fig. 5.10), consistent with

the lack of a relationship across areas.

5.7 Dynamics of neuronal responses in V1 and V2

We wondered whether a more detailed analysis of the time course of responses in

V1 and V2 could shed light on the apparent inconsistency between sensitivity and

choice-related activity across V1 and V2. We first examined the average popula-

tion firing rate across our population of V1 and V2 neurons (Fig. 5.11). In both

areas, there was a prominent initial transient in firing rate following stimulus onset.

The transient was stereotyped in its amplitude across di�erent naturalness condi-

tions, indicating that this initial portion of the response contained little stimulus

selectivity. To quantify the dynamics of population selectivity, we computed the

variance across the average firing rate to each condition, yielding a measure of the
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Figure 5.11: Normalized population firing rate to di�erent levels of naturalness in V1
(left) and V2 (right). The firing rate of each neuron was normalized by its mean firing
rate before averaging. The stimulus conditions for neurons that preferred spectrally
matched noise were flipped before averaging so that the black lines represent the firing
rate to the preferred stimulus (either naturalistic stimuli or spectrally matched noise).
The stimulus was on for 500 ms.
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Figure 5.12: Dynamics of selectivity for naturalness and orientation. We plotted the
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stimuli (right) and orientation stimuli (left). We computed stimulus-induced variance by
computing the variance across the average response to each condition (Fig. 5.11. Note
di�erent ordinate scales for naturalistic stimuli and orientation stimuli.

stimulus induced variance.

The dynamics of this selectivity measure di�ered markedly across V1 and V2

(Fig. 5.12a). The stimulus-induced variance was very weak in V1 and developed

only gradually, peaking over 400 ms after stimulus onset. In contrast, variance

in V2 peaked early (between 100 and 150 ms) and subsequently maintained a

steady level throughout the stimulus period. This di�erence between V1 and V2

was specific to naturalistic texture stimuli. When we examined the time course

of orientation-induced variance there was no prominent di�erence in either overall

selectivity or the dynamics of selectivity between V1 and V2 (Fig. 5.12b). However,

even in V2, which showed much stronger selectivity for naturalness than V1, the

orientation-induced variance was more than an order of magnitude larger than that

induced by varying naturalness.

Interestingly, although selectivity for naturalness peaked much earlier in V2

than in V1, the peak was quite delayed with respect to response onset. This
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reflected the presence of the non-selective transient response in the population

firing rate (Fig. 5.11b). We found that this was not a feature of selectivity for

orientation. Selectivity for orientation in both V1 and V2 appeared to peak roughly

50 ms before it did for naturalness in V2. Thus, while orientation information

appears immediately in the firing rate of individual neurons, the first spikes in V2

don’t appear to carry information about the naturalness of the stimulus.

Given the markedly di�erent dynamics of selectivity between V1 and V2, we

wondered whether choice-related activity would also di�ere between the two areas.

We computed choice probability within 100 ms windows shifted by 10 ms for

each individual neuron and then averaged the result. We found that choice-related

activity evolved over a di�erent time course in V1 and V2 (Fig. 5.13). In V1, choice

probability was roughly 0.5 for the first 150 ms following response onset. Choice

probability began to rise later during the stimulus period and peaked just before

stimulus o�set — a temporal profile that resembled the lack of early selectivity

in V1. In V2, choice probability grew to be larger than 0.5 soon after response

onset, peaking at about 150 ms post-stimulus and remaining high thereafter. Thus,
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the distinct dynamics of choice-related activity in V1 and V2 appeared to mirror

di�erences in the dynamics of selectivity in the two areas.

5.8 Discussion

We have uncovered multiple functional di�erences between V1 and V2 neurons

active during the performance of a naturalistic texture discrimination task. We

found much greater sensitivity for the higher order structure present in natural

texture images, replicating our previous findings di�erentiating V1 and V2 neu-

rons recorded from the anesthetized macaque cortex [61, 260]. We further show

that despite the increased sensitivity from V1 to V2, V2 neurons are still much

less sensitive than behavior on average. This finding leaves open the possibility

that although sensitivity to naturalistic image structure first emerges in V2, it is

further consolidated downstream, potentially in V4 [12, 184, 162]. Recent work

has demonstrated selectivity in V4 neurons for the higher-order statistics present

in our naturalistic stimuli [162]. A direct comparison between V2 and V4 suggests

that selectivity for higher-order statistics may be increased relative to the repre-

sentation of spectral statistics in V4 [161]. fMRI results in humans also suggest

that areas downstream of V2, especially V3, contain similar or increased sensitivity

to naturalistic image structure (Fig. 2.12).

Although the finding of increased naturalistic selectivity of V2 over V1 neurons

is consistent with our previous work, there are some notable di�erences. First, the

strength of sensitivity to naturalistic statistics appears to be slightly lower than

in our anesthetized experiments (compare Fig. 5.5b and Fig. 2.7). Similarly, the

number of V2 neurons that showed a preference for spectrally matched noise over

naturalistic stimuli was much higher. Although this inconsistency could conceiv-
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ably be a consequence of recording neuronal activity during the awake versus the

anesthetized state, it is more likely a simple sampling issue. The current data are

from just one monkey, whereas our previous experiment contained data from thir-

teen. There is some evidence that neural sensitivity to naturalistic image structure

develops over the course of months in infancy [243], and can be disturbed by ab-

normal visual development [262]. It is thus possible there are simply di�erences in

the strength of sensitivity in V2 across individuals. Another possibility is that the

constraints on awake physiological recording caused us to oversample one of the

anatomically-defined compartments in V2, and it is currently unknown whether

sensitivity to naturalistic image structure di�ers across these compartments.

We also observed a markedly di�erent temporal emergence of sensitivity to

naturalistic statistics compared with our previous work (compare Fig. 2.4c and

Fig. 5.12a). In this case, a large portion of this di�erence likely reflects the e�ect

of anesthesia on subcortical and cortical responses [8, 107]. In our anesthetized

recordings there was no initial transient to stimulus onset in the population ac-

tivity of V1 or V2, but a gradual rise in responses. This could be due both to

slower dynamics within individual neurons [107], or more variability in the latency

to response across neurons. In the anesthetized state, sensitivity to naturalistic

statistics was present at response onset and gradually develop over the course of

tens of milliseconds. Here, there was a significant delay in the onset of natural-

istic sensitivity (Fig. 5.12a). This observation, along with our previous finding

that the onset of surround enhanced sensitivity is delayed (Fig. 4.6), may suggest

that intracortical processing within V2 (or potentially feedback from higher areas)

plays a significant role in establishing selectivity for naturalistic image structure.

The dynamics we report here also di�er from the previously reported fast onset of
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"shape selectivity" recorded in awake V2 [90]. However, this form of selectivity does

not diverge markedly from that in V1, and so may be inherited [91]. Along these

lines, the dynamics of naturalistic sensitivity di�er strikingly from the emergence

of orientation selectivity (Fig. 5.12b), a property known to be influenced largely

by linear filtering of feedforward inputs [173, 75]. In contrast, a functional account

of naturalistic sensitivity requires two stages of processing in V2 (Fig. 2.25a), and

the slow emergence of selectivity may reflect the dynamics of this computation.

Although we found much higher sensitivity for V2 neurons compared with V1,

average sensitivity in V2 neurons was still very far from behavioral performance.

Many studies have found a tight correspondence between neuronal and behavioral

thresholds [27, 174, 229, 152, 155], and suggest a clear role for the area under study

in supporting a particular perceptual behavior. However, each of these studies, as

well as our own orientation discrimination experiment, involved tailoring the tar-

get stimulus and discrimination bound to the tuning preference of each individual

neuron. This procedure gives the single neuron the best chance to match behav-

ioral performance. We currently do not have a detailed understanding of the space

of naturalistic statistics and cannot perform tuning experiments along meaning-

ful axes of selectivity (although see [162] for an example of adaptively searching

the parameter space). Instead, we are limited to characterizing the di�erential

response for a predefined set of texture families (for which the animal has been

previously trained) and performing subsequent behavioral experiments using the

most discriminable texture family for the recorded neuron. Compared with the

hundreds of parameters in the texture model used to generate our naturalistic

stimuli [172], five texture families is not many for truly optimizing the stimulus.

Had we been able to use more texture families in characterizing neuronal selec-
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tivity, it’s very probable we would have found a closer correspondence between

neuronal and behavioral sensitivity.

Moreover, the naturalistic sensitivity of V2 neurons compared with behavior

is comparable to previous studies that have not optimized stimuli to the tuning

preferences of recorded neurons [175, 79, 80, 198]. Average neuronal sensitivity

in these studies can range from 3 to 17 times less sensitive than behavior. The

pattern observed in most of these studies is a very wide distribution over neuronal

sensitivity, with the most sensitive neurons approaching or overtaking behavioral

sensitivity. Broadly, this is the pattern of sensitivities we see in V2, although

V1 had very few neurons that approached behavioral sensitivity. Thus, Our ob-

servation of inconsistent neuronal and behavioral sensitivity does not necessarily

indicate V2 is an inappropriate neural substrate for supporting naturalistic texture

discrimination.

Many studies, both those that optimize stimuli for single neurons and those

that don’t, have found significant choice-related activity. However, the interpre-

tation of this observation has grown murkier over the last decade. It was initially

suggested that the inherent noise in sensory neurons causally a�ected the decision

process downstream, manifesting as correlations between single sensory neurons

and behavior [26, 194, 170]. Recent results have instead posited a feedback origin

of such correlations, whereby the outcome of a perceptual decision is relayed to

early sensory neurons [154, 151]. The temporal emergence of choice probability

has been important in disentangling contributions from feedforward versus feed-

back sources. Here we report two very di�erent temporal profiles of choice-related

activity in V1 and V2. The dynamics of choice-related signals in V2 are similar to

many previous reports in the literature, which show an early onset of significant
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choice probability that remains roughly constant throughout the stimulus period

[26]. Even recent theoretical work that posits a strong feedback component for

choice probabilities finds that this flat temporal choice probability profile reflects

an early feedforward contribution to perceptual decisions [81, 251, 82]. Dynamics

in V1 are less consistent with previous observations, and strongly suggest a feed-

back origin [154]. There was no choice probability in V1 early in the trial, but

there was very little stimulus information in these neurons early in the trial as

well. Thus, our data appear consistent with an interpretation whereby V2 neurons

directly participate in supporting naturalistic texture discrimination, while both

stimulus selectivity and choice-related activity in V1 arise via feedback connections

from V2 or higher areas.

150



References

[1] John F. Ackermann & Michael S. Landy. “Statistical templates for visual
search”. eng. In: Journal of Vision 14.3 (2014), p. 18.

[2] Daniel L. Adams, John R. Economides, Cristina M. Jocson & Jonathan
C. Horton. “A biocompatible titanium headpost for stabilizing behaving
monkeys”. eng. In: Journal of Neurophysiology 98.2 (Aug. 2007), pp. 993–
1001.

[3] Daniel L. Adams, John R. Economides, Cristina M. Jocson, John M. Parker
& Jonathan C. Horton. “A watertight acrylic-free titanium recording cham-
ber for electrophysiology in behaving monkeys”. eng. In: Journal of Neuro-
physiology 106.3 (Sept. 2011), pp. 1581–1590.

[4] E. H. Adelson & J. R. Bergen. “Spatiotemporal energy models for the per-
ception of motion”. eng. In: Journal of the Optical Society of America. A,
Optics and Image Science 2.2 (Feb. 1985), pp. 284–299.

[5] Edward H. Adelson. “On seeing stu�: the perception of materials by humans
and machines”. In: vol. 4299. 2001, pp. 1–12.

[6] Edward H. Adelson & James R. Bergen. “The Plenoptic Function and the
Elements of Early Vision”. In: Computational Models of Visual Processing.
MIT Press, 1991, pp. 3–20.

[7] Seyed-Reza Afraz, Roozbeh Kiani & Hossein Esteky. “Microstimulation
of inferotemporal cortex influences face categorization”. eng. In: Nature
442.7103 (Aug. 2006), pp. 692–695.

151



[8] Henry J. Alitto, Bartlett D. Moore, Daniel L. Rathbun & W. Martin Usrey.
“A comparison of visual responses in the lateral geniculate nucleus of alert
and anaesthetized macaque monkeys”. eng. In: The Journal of Physiology
589.Pt 1 (Jan. 2011), pp. 87–99.

[9] J. Allman, F. Miezin & E. McGuinness. “Stimulus specific responses from
beyond the classical receptive field: neurophysiological mechanisms for local-
global comparisons in visual neurons”. eng. In: Annual Review of Neuro-
science 8 (1985), pp. 407–430.

[10] Alessandra Angelucci, Jonathan B. Levitt, Emma J. S. Walton, Jean-Michel
Hupe, Jean Bullier & Jennifer S. Lund. “Circuits for local and global signal
integration in primary visual cortex”. eng. In: The Journal of Neuroscience:
The O�cial Journal of the Society for Neuroscience 22.19 (Oct. 2002),
pp. 8633–8646.

[11] Akiyuki Anzai, Xinmiao Peng & David C. Van Essen. “Neurons in mon-
key visual area V2 encode combinations of orientations”. eng. In: Nature
Neuroscience 10.10 (Oct. 2007), pp. 1313–1321.

[12] F. Arcizet, C. Jou�rais & P. Girard. “Natural textures classification in area
V4 of the macaque monkey”. eng. In: Experimental Brain Research 189.1
(July 2008), pp. 109–120.

[13] Fred Attneave. “Some informational aspects of visual perception”. In: Psy-
chological Review 61.3 (1954), pp. 183–193.

[14] Tom Baden, Philipp Berens, Katrin Franke, Miroslav Román Rosón, Matthias
Bethge & Thomas Euler. “The functional diversity of retinal ganglion cells
in the mouse”. eng. In: Nature 529.7586 (Jan. 2016), pp. 345–350.

[15] Wyeth Bair, James R. Cavanaugh & J. Anthony Movshon. “Time course
and time-distance relationships for surround suppression in macaque V1
neurons”. eng. In: The Journal of Neuroscience: The O�cial Journal of the
Society for Neuroscience 23.20 (Aug. 2003), pp. 7690–7701.

[16] Benjamin J. Balas. “Texture synthesis and perception: using computational
models to study texture representations in the human visual system”. eng.
In: Vision Research 46.3 (Feb. 2006), pp. 299–309.

152



[17] Benjamin Balas, Lisa Nakano & Ruth Rosenholtz. “A summary-statistic
representation in peripheral vision explains visual crowding”. eng. In: Jour-
nal of Vision 9.12 (2009), pp. 13.1–18.

[18] H. B. Barlow. “Why have multiple cortical areas?” In: Vision Research 26.1
(1986), pp. 81–90.

[19] H. B. Barlow & W. R. Levick. “The mechanism of directionally selective
units in rabbit’s retina”. eng. In: The Journal of Physiology 178.3 (June
1965), pp. 477–504.

[20] HB Barlow. “Possible principles underlying the transformations of sensory
messages”. In: Sensory Communication. Ed. by WA Rosenblith. MIT Press,
1961, pp. 217–234.

[21] C. Blakemore & E. A. Tobin. “Lateral inhibition between orientation detec-
tors in the cat’s visual cortex”. eng. In: Experimental Brain Research 15.4
(1972), pp. 439–440.

[22] Richard T. Born & David C. Bradley. “Structure and Function of Visual
Area Mt”. In: Annual Review of Neuroscience 28.1 (2005), pp. 157–189.

[23] C. E. Bredfeldt, J. C. A. Read & B. G. Cumming. “A quantitative ex-
planation of responses to disparity-defined edges in macaque V2”. eng. In:
Journal of Neurophysiology 101.2 (Feb. 2009), pp. 701–713.

[24] Christine E. Bredfeldt & Bruce G. Cumming. “A simple account of cy-
clopean edge responses in macaque v2”. eng. In: The Journal of Neuro-
science: The O�cial Journal of the Society for Neuroscience 26.29 (July
2006), pp. 7581–7596.

[25] Kevin L. Briggman, Moritz Helmstaedter & Winfried Denk. “Wiring speci-
ficity in the direction-selectivity circuit of the retina”. eng. In: Nature 471.7337
(Mar. 2011), pp. 183–188.

[26] K. H. Britten, W. T. Newsome, M. N. Shadlen, S. Celebrini & J. A. Movshon.
“A relationship between behavioral choice and the visual responses of neu-
rons in macaque MT”. eng. In: Visual Neuroscience 13.1 (Feb. 1996), pp. 87–
100.

153



[27] K. H. Britten, M. N. Shadlen, W. T. Newsome & J. A. Movshon. “The anal-
ysis of visual motion: a comparison of neuronal and psychophysical perfor-
mance”. en. In: The Journal of Neuroscience 12.12 (Dec. 1992), pp. 4745–
4765.

[28] Charles F. Cadieu, Ha Hong, Daniel L. K. Yamins, Nicolas Pinto, Diego
Ardila, Ethan A. Solomon, Najib J. Majaj & James J. DiCarlo. “Deep
neural networks rival the representation of primate IT cortex for core visual
object recognition”. eng. In: PLoS computational biology 10.12 (Dec. 2014),
e1003963.

[29] T. Caelli & B. Julesz. “On perceptual analyzers underlying visual texture
discrimination: part I”. eng. In: Biological Cybernetics 28.3 (Feb. 1978),
pp. 167–175.

[30] T. Caelli, B. Julesz & E. Gilbert. “On perceptual analyzers underlying visual
texture discrimination: Part II”. eng. In: Biological Cybernetics 29.4 (June
1978), pp. 201–214.

[31] M. Carandini, D. J. Heeger & J. A. Movshon. “Linearity and normalization
in simple cells of the macaque primary visual cortex”. eng. In: The Journal
of Neuroscience: The O�cial Journal of the Society for Neuroscience 17.21
(Nov. 1997), pp. 8621–8644.

[32] Matteo Carandini, Jonathan B. Demb, Valerio Mante, David J. Tolhurst,
Yang Dan, Bruno A. Olshausen, Jack L. Gallant & Nicole C. Rust. “Do we
know what the early visual system does?” eng. In: The Journal of Neuro-
science: The O�cial Journal of the Society for Neuroscience 25.46 (Nov.
2005), pp. 10577–10597.

[33] Matteo Carandini & David J. Heeger. “Normalization as a canonical neu-
ral computation”. eng. In: Nature Reviews. Neuroscience 13.1 (Jan. 2012),
pp. 51–62.

[34] James R. Cavanaugh, Wyeth Bair & J. Anthony Movshon. “Nature and in-
teraction of signals from the receptive field center and surround in macaque
V1 neurons”. eng. In: Journal of Neurophysiology 88.5 (Nov. 2002), pp. 2530–
2546.

154



[35] James R. Cavanaugh, Wyeth Bair & J. Anthony Movshon. “Selectivity
and spatial distribution of signals from the receptive field surround in
macaque V1 neurons”. eng. In: Journal of Neurophysiology 88.5 (Nov. 2002),
pp. 2547–2556.

[36] S. Celebrini & W. T. Newsome. “Neuronal and psychophysical sensitivity
to motion signals in extrastriate area MST of the macaque monkey”. eng.
In: The Journal of Neuroscience: The O�cial Journal of the Society for
Neuroscience 14.7 (July 1994), pp. 4109–4124.

[37] Xiaodong Chen, Feng Han, Mu-Ming Poo & Yang Dan. “Excitatory and
suppressive receptive field subunits in awake monkey primary visual cor-
tex (V1)”. eng. In: Proceedings of the National Academy of Sciences of the
United States of America 104.48 (Nov. 2007), pp. 19120–19125.

[38] Ruben Coen-Cagli, Adam Kohn & Odelia Schwartz. “Flexible gating of con-
textual influences in natural vision”. en. In: Nature Neuroscience advance
online publication (Oct. 2015).

[39] Marlene R. Cohen & William T. Newsome. “Estimates of the contribution
of single neurons to perception depend on timescale and noise correlation”.
eng. In: The Journal of Neuroscience: The O�cial Journal of the Society
for Neuroscience 29.20 (May 2009), pp. 6635–6648.

[40] Edward Craft, Hartmut Schütze, Ernst Niebur & Rüdiger von der Heydt.
“A neural model of figure-ground organization”. eng. In: Journal of Neuro-
physiology 97.6 (June 2007), pp. 4310–4326.

[41] A. P. Dawid & A. M. Skene. “Maximum Likelihood Estimation of Observer
Error-Rates Using the EM Algorithm”. In: Journal of the Royal Statistical
Society. Series C (Applied Statistics) 28.1 (1979), pp. 20–28.

[42] R. L. De Valois, D. G. Albrecht & L. G. Thorell. “Spatial frequency se-
lectivity of cells in macaque visual cortex”. eng. In: Vision Research 22.5
(1982), pp. 545–559.

[43] G. C. DeAngelis, R. D. Freeman & I. Ohzawa. “Length and width tuning
of neurons in the cat’s primary visual cortex”. eng. In: Journal of Neuro-
physiology 71.1 (Jan. 1994), pp. 347–374.

155



[44] Edgar A. DeYoe & David C. Van Essen. “Segregation of e�erent connections
and receptive field properties in visual area V2 of the macaque”. en. In:
Nature 317.6032 (Sept. 1985), pp. 58–61.

[45] James J. DiCarlo & David D. Cox. “Untangling invariant object recogni-
tion”. eng. In: Trends in Cognitive Sciences 11.8 (Aug. 2007), pp. 333–341.

[46] James J. DiCarlo, Davide Zoccolan & Nicole C. Rust. “How does the brain
solve visual object recognition?” In: Neuron 73.3 (Feb. 2012), pp. 415–434.

[47] C. Enroth-Cugell & J. G. Robson. “The contrast sensitivity of retinal gan-
glion cells of the cat”. eng. In: The Journal of Physiology 187.3 (Dec. 1966),
pp. 517–552.

[48] Fang Fang, Huseyin Boyaci & Daniel Kersten. “Border ownership selectiv-
ity in human early visual cortex and its modulation by attention”. eng.
In: The Journal of Neuroscience: The O�cial Journal of the Society for
Neuroscience 29.2 (Jan. 2009), pp. 460–465.

[49] Frederick Federer, Jennifer M. Ichida, Janelle Je�s, Ingo Schiessl, Niall
McLoughlin & Alessandra Angelucci. “Four projection streams from pri-
mate V1 to the cytochrome oxidase stripes of V2”. eng. In: The Journal
of Neuroscience: The O�cial Journal of the Society for Neuroscience 29.49
(Dec. 2009), pp. 15455–15471.

[50] Frederick Federer, Delaney Williams, Jennifer M. Ichida, Sam Merlin &
Alessandra Angelucci. “Two projection streams from macaque V1 to the
pale cytochrome oxidase stripes of V2”. eng. In: The Journal of Neuro-
science: The O�cial Journal of the Society for Neuroscience 33.28 (July
2013), pp. 11530–11539.

[51] D. J. Felleman & D. C. Van Essen. “Receptive field properties of neurons
in area V3 of macaque monkey extrastriate cortex”. eng. In: Journal of
Neurophysiology 57.4 (Apr. 1987), pp. 889–920.

[52] Daniel J. Felleman & David C. Van Essen. “Distributed Hierarchical Pro-
cessing in the Primate Cerebral Cortex”. en. In: Cerebral Cortex 1.1 (Jan.
1991), pp. 1–47.

156



[53] Gidon Felsen & Yang Dan. “A natural approach to studying vision”. eng.
In: Nature Neuroscience 8.12 (Dec. 2005), pp. 1643–1646.

[54] Gidon Felsen, Jon Touryan, Feng Han & Yang Dan. “Cortical sensitivity to
visual features in natural scenes”. eng. In: PLoS biology 3.10 (Oct. 2005),
e342.

[55] D. Ferster, S. Chung & H. Wheat. “Orientation selectivity of thalamic input
to simple cells of cat visual cortex”. eng. In: Nature 380.6571 (Mar. 1996),
pp. 249–252.

[56] G. D. Field & E. J. Chichilnisky. “Information Processing in the Primate
Retina: Circuitry and Coding”. In: Annual Review of Neuroscience 30.1
(2007), pp. 1–30.

[57] K. H. Foster, J. P. Gaska, M. Nagler & D. A. Pollen. “Spatial and temporal
frequency selectivity of neurones in visual cortical areas V1 and V2 of the
macaque monkey”. eng. In: The Journal of Physiology 365 (Aug. 1985),
pp. 331–363.

[58] Jeremy Freeman. “Computation and representation in the primate visual
system”. PhD thesis. Center for Neural Science, New York University, 2012.

[59] Jeremy Freeman, Greg D. Field, Peter H. Li, Martin Greschner, Deborah E.
Gunning, Keith Mathieson, Alexander Sher, Alan M. Litke, Liam Paninski,
Eero P. Simoncelli & E. J. Chichilnisky. “Mapping nonlinear receptive field
structure in primate retina at single cone resolution”. en. In: eLife 4 (Oct.
2015), e05241.

[60] Jeremy Freeman & Eero P. Simoncelli. “Metamers of the ventral stream”.
eng. In: Nature Neuroscience 14.9 (Sept. 2011), pp. 1195–1201.

[61] Jeremy Freeman, Corey M. Ziemba, David J. Heeger, Eero P. Simoncelli
& J. Anthony Movshon. “A functional and perceptual signature of the sec-
ond visual area in primates”. en. In: Nature Neuroscience 16.7 (July 2013),
pp. 974–981.

[62] Murray F. Freeman, John W. Tukey, et al. “Transformations Related to the
Angular and the Square Root”. In: The Annals of Mathematical Statistics
21.4 (1950), pp. 607–611.

157



[63] Justin L. Gardner, Elisha P. Merriam, J. Anthony Movshon & David J.
Heeger. “Maps of visual space in human occipital cortex are retinotopic, not
spatiotopic”. eng. In: The Journal of Neuroscience: The O�cial Journal of
the Society for Neuroscience 28.15 (Apr. 2008), pp. 3988–3999.

[64] R. Gattass, C. G. Gross & J. H. Sandell. “Visual topography of V2 in
the macaque”. eng. In: The Journal of Comparative Neurology 201.4 (Oct.
1981), pp. 519–539.

[65] R. Gattass, A. P. Sousa & C. G. Gross. “Visuotopic organization and extent
of V3 and V4 of the macaque”. eng. In: The Journal of Neuroscience: The
O�cial Journal of the Society for Neuroscience 8.6 (June 1988), pp. 1831–
1845.

[66] R. Gattass, A. P. Sousa, M. Mishkin & L. G. Ungerleider. “Cortical pro-
jections of area V2 in the macaque”. eng. In: Cerebral Cortex (New York,
N.Y.: 1991) 7.2 (Mar. 1997), pp. 110–129.

[67] Leon A. Gatys, Alexander S. Ecker & Matthias Bethge. “Texture Synthe-
sis Using Convolutional Neural Networks”. In: arXiv:1505.07376 [cs, q-bio]
(May 2015).

[68] K. R. Gegenfurtner, D. C. Kiper & S. B. Fenstemaker. “Processing of color,
form, and motion in macaque area V2”. eng. In: Visual Neuroscience 13.1
(Feb. 1996), pp. 161–172.

[69] W. S. Geisler, J. S. Perry, B. J. Super & D. P. Gallogly. “Edge co-occurrence
in natural images predicts contour grouping performance”. eng. In: Vision
Research 41.6 (Mar. 2001), pp. 711–724.

[70] C. D. Gilbert, A. Das, M. Ito, M. Kapadia & G. Westheimer. “Spatial
integration and cortical dynamics”. eng. In: Proceedings of the National
Academy of Sciences of the United States of America 93.2 (Jan. 1996),
pp. 615–622.

[71] C. D. Gilbert & T. N. Wiesel. “The influence of contextual stimuli on the
orientation selectivity of cells in primary visual cortex of the cat”. eng. In:
Vision Research 30.11 (1990), pp. 1689–1701.

158



[72] Lindsey L. Glickfeld, Mark L. Andermann, Vincent Bonin & R. Clay Reid.
“Cortico-cortical projections in mouse visual cortex are functionally target
specific”. eng. In: Nature Neuroscience 16.2 (Feb. 2013), pp. 219–226.

[73] Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy. “Explaining and
Harnessing Adversarial Examples”. In: arXiv:1412.6572 [cs, stat] (Dec. 2014).

[74] Robbe L. T. Goris, J. Anthony Movshon & Eero P. Simoncelli. “Partition-
ing neuronal variability”. eng. In: Nature Neuroscience 17.6 (June 2014),
pp. 858–865.

[75] Robbe L. T. Goris, Eero P. Simoncelli & J. Anthony Movshon. “Origin and
Function of Tuning Diversity in Macaque Visual Cortex”. eng. In: Neuron
88.4 (Nov. 2015), pp. 819–831.

[76] John A. Greenwood, Peter J. Bex & Steven C. Dakin. “Positional averag-
ing explains crowding with letter-like stimuli”. eng. In: Proceedings of the
National Academy of Sciences of the United States of America 106.31 (Aug.
2009), pp. 13130–13135.

[77] Ulrike Grömping. “Estimators of Relative Importance in Linear Regres-
sion Based on Variance Decomposition”. In: The American Statistician 61.2
(May 2007), pp. 139–147.

[78] C. G. Gross, C. E. Rocha-Miranda & D. B. Bender. “Visual properties
of neurons in inferotemporal cortex of the Macaque.” en. In: Journal of
Neurophysiology 35.1 (Jan. 1972), pp. 96–111.

[79] Yong Gu, Dora E. Angelaki & Gregory C. DeAngelis. “Neural correlates
of multisensory cue integration in macaque MSTd”. en. In: Nature Neuro-
science 11.10 (Oct. 2008), pp. 1201–1210.

[80] Yong Gu, Gregory C. DeAngelis & Dora E. Angelaki. “A functional link
between area MSTd and heading perception based on vestibular signals”.
eng. In: Nature Neuroscience 10.8 (Aug. 2007), pp. 1038–1047.

[81] Ralf M. Haefner, Pietro Berkes & József Fiser. “The implications of per-
ception as probabilistic inference for correlated neural variability during
behavior”. In: arXiv:1409.0257 [q-bio] (Aug. 2014).

159



[82] Ralf M. Haefner, Pietro Berkes & József Fiser. “Perceptual Decision-Making
as Probabilistic Inference by Neural Sampling”. English. In: Neuron (Apr.
2016).

[83] Luke E. Hallum & J. Anthony Movshon. “Surround suppression supports
second-order feature encoding by macaque V1 and V2 neurons”. In: Vision
Research. The Function of Contextual Modulation 104 (Nov. 2014), pp. 24–
35.

[84] James H. Hedges, Yevgeniya Gartshteyn, Adam Kohn, Nicole C. Rust,
Michael N. Shadlen, William T. Newsome & J. Anthony Movshon. “Dissoci-
ation of neuronal and psychophysical responses to local and global motion”.
eng. In: Current biology: CB 21.23 (Dec. 2011), pp. 2023–2028.

[85] D. J. Heeger. “Normalization of cell responses in cat striate cortex”. eng.
In: Visual Neuroscience 9.2 (Aug. 1992), pp. 181–197.

[86] D. J. Heeger, G. M. Boynton, J. B. Demb, E. Seidemann & W. T. Newsome.
“Motion opponency in visual cortex”. eng. In: The Journal of Neuroscience:
The O�cial Journal of the Society for Neuroscience 19.16 (Aug. 1999),
pp. 7162–7174.

[87] D. J. Heeger, E. P. Simoncelli & J. A. Movshon. “Computational models of
cortical visual processing”. eng. In: Proceedings of the National Academy of
Sciences of the United States of America 93.2 (Jan. 1996), pp. 623–627.

[88] David J. Heeger & James R. Bergen. “Pyramid-based Texture Analysis/Synthesis”.
In: Proceedings of the 22Nd Annual Conference on Computer Graphics and
Interactive Techniques. SIGGRAPH ’95. New York, NY, USA: ACM, 1995,
pp. 229–238.

[89] J. Hegdé & D. C. Van Essen. “Selectivity for complex shapes in primate
visual area V2”. eng. In: The Journal of Neuroscience: The O�cial Journal
of the Society for Neuroscience 20.5 (Mar. 2000), RC61.

[90] Jay Hegdé & David C. Van Essen. “Temporal dynamics of shape analysis
in macaque visual area V2”. eng. In: Journal of Neurophysiology 92.5 (Nov.
2004), pp. 3030–3042.

160



[91] Jay Hegdé & David C. Van Essen. “A comparative study of shape represen-
tation in macaque visual areas v2 and v4”. eng. In: Cerebral Cortex (New
York, N.Y.: 1991) 17.5 (May 2007), pp. 1100–1116.

[92] O. J. Hena�, R. L. T. Goris & E. P. Simoncelli. “Perceptual evaluation of
artificial visual recognition systems using geodesics”. In: Computational and
Systems Neuroscience (CoSyNe). 2015.

[93] Christopher A. Henry, Siddhartha Joshi, Dajun Xing, Robert M. Shapley
& Michael J. Hawken. “Functional characterization of the extraclassical re-
ceptive field in macaque V1: contrast, orientation, and temporal dynamics”.
eng. In: The Journal of Neuroscience: The O�cial Journal of the Society
for Neuroscience 33.14 (Apr. 2013), pp. 6230–6242.

[94] Rüdiger von der Heydt. “Figure–ground organization and the emergence of
proto-objects in the visual cortex”. In: Perception Science (2015), p. 1695.

[95] J. M. Hillis, M. O. Ernst, M. S. Banks & M. S. Landy. “Combining sensory
information: mandatory fusion within, but not between, senses”. eng. In:
Science (New York, N.Y.) 298.5598 (Nov. 2002), pp. 1627–1630.

[96] Geo�rey E. Hinton & Sam T. Roweis. “Stochastic neighbor embedding”.
In: Advances in neural information processing systems. 2002, pp. 833–840.

[97] S. Hochstein & R. M. Shapley. “Linear and nonlinear spatial subunits in Y
cat retinal ganglion cells”. eng. In: The Journal of Physiology 262.2 (Nov.
1976), pp. 265–284.

[98] Jonathan C Horton & Daniel L Adams. “The cortical column: a structure
without a function”. In: Philosophical Transactions of the Royal Society B:
Biological Sciences 360.1456 (Apr. 2005), pp. 837–862.

[99] D. H. Hubel & M. S. Livingstone. “Complex-unoriented cells in a subregion
of primate area 18”. eng. In: Nature 315.6017 (May 1985), pp. 325–327.

[100] D. H. Hubel & M. S. Livingstone. “Segregation of form, color, and stereopsis
in primate area 18”. eng. In: The Journal of Neuroscience: The O�cial
Journal of the Society for Neuroscience 7.11 (Nov. 1987), pp. 3378–3415.

161



[101] D. H. Hubel & T. N. Wiesel. “Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex”. eng. In: The Journal of
Physiology 160 (Jan. 1962), pp. 106–154.

[102] D. H. Hubel & T. N. Wiesel. “Receptive fields and functional architecture
of monkey striate cortex”. eng. In: The Journal of Physiology 195.1 (Mar.
1968), pp. 215–243.

[103] David H. Hubel & Torsten N. Wiesel. “Receptive Fields and Functional
Architecture in Two Nonstriate Visual Areas (18 and 19) of the Cat”. en.
In: Journal of Neurophysiology 28.2 (Mar. 1965), pp. 229–289.

[104] Chou P. Hung, Gabriel Kreiman, Tomaso Poggio & James J. DiCarlo. “Fast
readout of object identity from macaque inferior temporal cortex”. eng. In:
Science (New York, N.Y.) 310.5749 (Nov. 2005), pp. 863–866.

[105] Minami Ito & Naokazu Goda. “Mechanisms underlying the representation
of angles embedded within contour stimuli in area V2 of macaque monkeys”.
eng. In: The European Journal of Neuroscience 33.1 (Jan. 2011), pp. 130–
142.

[106] Minami Ito & Hidehiko Komatsu. “Representation of angles embedded
within contour stimuli in area V2 of macaque monkeys”. eng. In: The Jour-
nal of Neuroscience: The O�cial Journal of the Society for Neuroscience
24.13 (Mar. 2004), pp. 3313–3324.

[107] Mehrdad Jazayeri, Pascal Wallisch & J. Anthony Movshon. “Dynamics of
Macaque MT Cell Responses to Grating Triplets”. en. In: The Journal of
Neuroscience 32.24 (June 2012), pp. 8242–8253.

[108] B. Julesz. “Visual Pattern Discrimination”. In: IRE Transactions on Infor-
mation Theory 8.2 (Feb. 1962), pp. 84–92.

[109] B. Julesz. “Textons, the elements of texture perception, and their interac-
tions”. eng. In: Nature 290.5802 (Mar. 1981), pp. 91–97.

[110] B. Julesz, E. N. Gilbert & J. D. Victor. “Visual discrimination of textures
with identical third-order statistics”. eng. In: Biological Cybernetics 31.3
(Dec. 1978), pp. 137–140.

162



[111] Yan Karklin & Michael S. Lewicki. “Emergence of complex cell properties
by learning to generalize in natural scenes”. eng. In: Nature 457.7225 (Jan.
2009), pp. 83–86.

[112] Seyed-Mahdi Khaligh-Razavi & Nikolaus Kriegeskorte. “Deep supervised,
but not unsupervised, models may explain IT cortical representation”. eng.
In: PLoS computational biology 10.11 (Nov. 2014), e1003915.

[113] Roozbeh Kiani, Hossein Esteky, Koorosh Mirpour & Keiji Tanaka. “Object
category structure in response patterns of neuronal population in monkey
inferior temporal cortex”. eng. In: Journal of Neurophysiology 97.6 (June
2007), pp. 4296–4309.

[114] D. C. Kiper, S. B. Fenstemaker & K. R. Gegenfurtner. “Chromatic prop-
erties of neurons in macaque area V2”. eng. In: Visual Neuroscience 14.6
(Dec. 1997), pp. 1061–1072.

[115] J. J. Knierim & D. C. van Essen. “Neuronal responses to static texture
patterns in area V1 of the alert macaque monkey”. eng. In: Journal of
Neurophysiology 67.4 (Apr. 1992), pp. 961–980.

[116] Nikolaus Kriegeskorte. “Deep neural networks: a new framework for mod-
elling biological vision and brain information processing”. en. In: bioRxiv
(Oct. 2015), p. 029876.

[117] Nikolaus Kriegeskorte, Marieke Mur & Peter Bandettini. “Representational
similarity analysis - connecting the branches of systems neuroscience”. eng.
In: Frontiers in Systems Neuroscience 2 (2008), p. 4.

[118] Nikolaus Kriegeskorte, Marieke Mur, Douglas A. Ru�, Roozbeh Kiani, Jerzy
Bodurka, Hossein Esteky, Keiji Tanaka & Peter A. Bandettini. “Matching
categorical object representations in inferior temporal cortex of man and
monkey”. eng. In: Neuron 60.6 (Dec. 2008), pp. 1126–1141.

[119] Jonas Larsson & David J. Heeger. “Two retinotopic visual areas in human
lateral occipital cortex”. eng. In: The Journal of Neuroscience: The O�cial
Journal of the Society for Neuroscience 26.51 (Dec. 2006), pp. 13128–13142.

163



[120] T. S. Lee & M. Nguyen. “Dynamics of subjective contour formation in
the early visual cortex”. eng. In: Proceedings of the National Academy of
Sciences of the United States of America 98.4 (Feb. 2001), pp. 1907–1911.

[121] P. Lennie. “Single units and visual cortical organization”. eng. In: Perception
27.8 (1998), pp. 889–935.

[122] Jerome Y. Lettvin. “On Seeing Sidelong”. en. In: The Sciences 16.4 (July
1976), pp. 10–20.

[123] J. B. Levitt, D. C. Kiper & J. A. Movshon. “Receptive fields and functional
architecture of macaque V2”. eng. In: Journal of Neurophysiology 71.6 (June
1994), pp. 2517–2542.

[124] J. B. Levitt & J. S. Lund. “Contrast dependence of contextual e�ects in
primate visual cortex”. eng. In: Nature 387.6628 (May 1997), pp. 73–76.

[125] Guangxing Li, Zhimo Yao, Zhengchun Wang, Nini Yuan, Vargha Talebi,
Jiabo Tan, Yongchang Wang, Yifeng Zhou & Curtis L. Baker. “Form-cue
invariant second-order neuronal responses to contrast modulation in pri-
mate area V2”. eng. In: The Journal of Neuroscience: The O�cial Journal
of the Society for Neuroscience 34.36 (Sept. 2014), pp. 12081–12092.

[126] Wu Li & Charles D. Gilbert. “Global contour saliency and local colinear in-
teractions”. eng. In: Journal of Neurophysiology 88.5 (Nov. 2002), pp. 2846–
2856.

[127] Wu Li, Valentin Piëch & Charles D. Gilbert. “Contour saliency in primary
visual cortex”. eng. In: Neuron 50.6 (June 2006), pp. 951–962.

[128] Wu Li, Valentin Piëch & Charles D. Gilbert. “Learning to link visual con-
tours”. eng. In: Neuron 57.3 (Feb. 2008), pp. 442–451.

[129] Lu Liu, Liang She, Ming Chen, Tianyi Liu, Haidong D. Lu, Yang Dan
& Mu-Ming Poo. “Spatial structure of neuronal receptive field in awake
monkey secondary visual cortex (V2)”. eng. In: Proceedings of the National
Academy of Sciences of the United States of America 113.7 (Feb. 2016),
pp. 1913–1918.

164



[130] Timm Lochmann, Timothy J. Blanche & Daniel A. Butts. “Construction
of direction selectivity through local energy computations in primary visual
cortex”. eng. In: PloS One 8.3 (2013), e58666.

[131] Haidong D. Lu, Gang Chen, Hisashi Tanigawa & Anna W. Roe. “A motion
direction map in macaque V2”. eng. In: Neuron 68.5 (Dec. 2010), pp. 1002–
1013.

[132] L. E. Mahon & R. L. De Valois. “Cartesian and non-Cartesian responses
in LGN, V1, and V2 cells”. eng. In: Visual Neuroscience 18.6 (Dec. 2001),
pp. 973–981.

[133] R. Malach, J. B. Reppas, R. R. Benson, K. K. Kwong, H. Jiang, W. A.
Kennedy, P. J. Ledden, T. J. Brady, B. R. Rosen & R. B. Tootell. “Object-
related activity revealed by functional magnetic resonance imaging in hu-
man occipital cortex”. eng. In: Proceedings of the National Academy of Sci-
ences of the United States of America 92.18 (Aug. 1995), pp. 8135–8139.

[134] Valerio Mante, Vincent Bonin & Matteo Carandini. “Functional Mecha-
nisms Shaping Lateral Geniculate Responses to Artificial and Natural Stim-
uli”. In: Neuron 58.4 (May 2008), pp. 625–638.

[135] Richard H. Masland. “The neuronal organization of the retina”. eng. In:
Neuron 76.2 (Oct. 2012), pp. 266–280.

[136] Josh H. McDermott, Michael Schemitsch & Eero P. Simoncelli. “Summary
statistics in auditory perception”. eng. In: Nature Neuroscience 16.4 (Apr.
2013), pp. 493–498.

[137] Josh H. McDermott & Eero P. Simoncelli. “Sound texture perception via
statistics of the auditory periphery: evidence from sound synthesis”. eng.
In: Neuron 71.5 (Sept. 2011), pp. 926–940.

[138] W. H. Merigan, T. A. Nealey & J. H. Maunsell. “Visual e�ects of lesions
of cortical area V2 in macaques”. en. In: The Journal of Neuroscience 13.7
(July 1993), pp. 3180–3191.

[139] Kenneth D. Miller. “Canonical computations of cerebral cortex”. ENG. In:
Current Opinion in Neurobiology 37 (Feb. 2016), pp. 75–84.

165



[140] J. A. Movshon & W. T. Newsome. “Visual response properties of striate
cortical neurons projecting to area MT in macaque monkeys”. eng. In: The
Journal of Neuroscience: The O�cial Journal of the Society for Neuro-
science 16.23 (Dec. 1996), pp. 7733–7741.

[141] J. A. Movshon, I. D. Thompson & D. J. Tolhurst. “Receptive field organi-
zation of complex cells in the cat’s striate cortex”. eng. In: The Journal of
Physiology 283 (Oct. 1978), pp. 79–99.

[142] J. A. Movshon, I. D. Thompson & D. J. Tolhurst. “Spatial and temporal
contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex”.
eng. In: The Journal of Physiology 283 (Oct. 1978), pp. 101–120.

[143] J. A. Movshon, I. D. Thompson & D. J. Tolhurst. “Spatial summation in
the receptive fields of simple cells in the cat’s striate cortex”. eng. In: The
Journal of Physiology 283 (Oct. 1978), pp. 53–77.

[144] J. Anthony Movshon, E. H. Adelson, M. S. Gizzi & William T. Newsome.
“The analysis of moving visual patterns”. English (US). In: 1985.

[145] H. Nakamura, R. Gattass, R. Desimone & L. G. Ungerleider. “The modular
organization of projections from areas V1 and V2 to areas V4 and TEO in
macaques”. eng. In: The Journal of Neuroscience: The O�cial Journal of
the Society for Neuroscience 13.9 (Sept. 1993), pp. 3681–3691.

[146] Jonathan J. Nassi, Stephen G. Lomber & Richard T. Born. “Corticocortical
feedback contributes to surround suppression in V1 of the alert primate”.
eng. In: The Journal of Neuroscience: The O�cial Journal of the Society
for Neuroscience 33.19 (May 2013), pp. 8504–8517.

[147] O. Nestares & D. J. Heeger. “Robust multiresolution alignment of MRI
brain volumes”. eng. In: Magnetic Resonance in Medicine 43.5 (May 2000),
pp. 705–715.

[148] W. T. Newsome & E. B. Paré. “A selective impairment of motion percep-
tion following lesions of the middle temporal visual area (MT)”. eng. In:
The Journal of Neuroscience: The O�cial Journal of the Society for Neu-
roscience 8.6 (June 1988), pp. 2201–2211.

166



[149] William T. Newsome, Kenneth H. Britten & J. Anthony Movshon. “Neu-
ronal correlates of a perceptual decision”. en. In: Nature 341.6237 (Sept.
1989), pp. 52–54.

[150] A. Nguyen, J. Yosinski & J. Clune. “Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images”. In: 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). June 2015,
pp. 427–436.

[151] Hendrikje Nienborg, Marlene R. Cohen & Bruce G. Cumming. “Decision-
related activity in sensory neurons: correlations among neurons and with
behavior”. eng. In: Annual Review of Neuroscience 35 (2012), pp. 463–483.

[152] Hendrikje Nienborg & Bruce G. Cumming. “Macaque V2 Neurons, But
Not V1 Neurons, Show Choice-Related Activity”. en. In: The Journal of
Neuroscience 26.37 (Sept. 2006), pp. 9567–9578.

[153] Hendrikje Nienborg & Bruce G. Cumming. “Psychophysically measured
task strategy for disparity discrimination is reflected in V2 neurons”. eng.
In: Nature Neuroscience 10.12 (Dec. 2007), pp. 1608–1614.

[154] Hendrikje Nienborg & Bruce G. Cumming. “Decision-related activity in
sensory neurons reflects more than a neuron’s causal e�ect”. eng. In: Nature
459.7243 (May 2009), pp. 89–92.

[155] Hendrikje Nienborg & Bruce G. Cumming. “Decision-related activity in sen-
sory neurons may depend on the columnar architecture of cerebral cortex”.
eng. In: The Journal of Neuroscience: The O�cial Journal of the Society
for Neuroscience 34.10 (Mar. 2014), pp. 3579–3585.

[156] Shinji Nishimoto & Jack L. Gallant. “A three-dimensional spatiotemporal
receptive field model explains responses of area MT neurons to naturalistic
movies”. eng. In: The Journal of Neuroscience: The O�cial Journal of the
Society for Neuroscience 31.41 (Oct. 2011), pp. 14551–14564.

[157] Shinji Nishimoto, Tsugitaka Ishida & Izumi Ohzawa. “Receptive field prop-
erties of neurons in the early visual cortex revealed by local spectral reverse
correlation”. eng. In: The Journal of Neuroscience: The O�cial Journal of
the Society for Neuroscience 26.12 (Mar. 2006), pp. 3269–3280.

167



[158] S. Ogawa, T. M. Lee, A. R. Kay & D. W. Tank. “Brain magnetic resonance
imaging with contrast dependent on blood oxygenation”. eng. In: Proceed-
ings of the National Academy of Sciences of the United States of America
87.24 (Dec. 1990), pp. 9868–9872.

[159] Philip O’Herron & Rüdiger von der Heydt. “Short-term memory for figure-
ground organization in the visual cortex”. eng. In: Neuron 61.5 (Mar. 2009),
pp. 801–809.

[160] Philip O’Herron & Rüdiger von der Heydt. “Remapping of border ownership
in the visual cortex”. eng. In: The Journal of Neuroscience: The O�cial
Journal of the Society for Neuroscience 33.5 (Jan. 2013), pp. 1964–1974.

[161] Gouki Okazawa, Satohiro Tajima & Hidehiko Komatsu. “Gradual develop-
ment of visual texture-selective properties between macaque areas V2 and
V4”. In: Submitted ().

[162] Gouki Okazawa, Satohiro Tajima & Hidehiko Komatsu. “Image statistics
underlying natural texture selectivity of neurons in macaque V4”. eng. In:
Proceedings of the National Academy of Sciences of the United States of
America 112.4 (Jan. 2015), E351–360.

[163] G. A. Orban, H. Kennedy & J. Bullier. “Velocity sensitivity and direction
selectivity of neurons in areas V1 and V2 of the monkey: influence of ec-
centricity”. eng. In: Journal of Neurophysiology 56.2 (Aug. 1986), pp. 462–
480.

[164] Gabriele Paolacci, Jesse Chandler & Panagiotis G. Ipeirotis. Running Ex-
periments on Amazon Mechanical Turk. SSRN Scholarly Paper ID 1626226.
Rochester, NY: Social Science Research Network, June 2010.

[165] A. J. Parker & W. T. Newsome. “SENSE AND THE SINGLE NEURON:
Probing the Physiology of Perception”. In: Annual Review of Neuroscience
21.1 (1998), pp. 227–277.

[166] L. Parkes, J. Lund, A. Angelucci, J. A. Solomon & M. Morgan. “Compulsory
averaging of crowded orientation signals in human vision”. eng. In: Nature
Neuroscience 4.7 (July 2001), pp. 739–744.

168



[167] Denis G. Pelli, Melanie Palomares & Najib J. Majaj. “Crowding is unlike
ordinary masking: distinguishing feature integration from detection”. eng.
In: Journal of Vision 4.12 (Dec. 2004), pp. 1136–1169.

[168] Denis G. Pelli & Katharine A. Tillman. “The uncrowded window of object
recognition”. en. In: Nature Neuroscience 11.10 (Sept. 2008), pp. 1129–1135.

[169] E. Peterhans & R. von der Heydt. “Mechanisms of contour perception in
monkey visual cortex. II. Contours bridging gaps”. en. In: The Journal of
Neuroscience 9.5 (May 1989), pp. 1749–1763.

[170] Xaq Pitkow, Sheng Liu, Dora E. Angelaki, Gregory C. DeAngelis & Alexan-
dre Pouget. “How Can Single Sensory Neurons Predict Behavior?” English.
In: Neuron 87.2 (July 2015), pp. 411–423.

[171] Carlos R. Ponce, Stephen G. Lomber & Richard T. Born. “Integrating mo-
tion and depth via parallel pathways”. eng. In: Nature Neuroscience 11.2
(Feb. 2008), pp. 216–223.

[172] Javier Portilla & Eero P. Simoncelli. “A Parametric Texture Model Based
on Joint Statistics of Complex Wavelet Coe�cients”. en. In: International
Journal of Computer Vision 40.1 (Oct. 2000), pp. 49–70.

[173] Nicholas J. Priebe & David Ferster. “Mechanisms of Neuronal Computation
in Mammalian Visual Cortex”. In: Neuron 75.2 (July 2012), pp. 194–208.

[174] S. J. Prince, A. D. Pointon, B. G. Cumming & A. J. Parker. “The precision
of single neuron responses in cortical area V1 during stereoscopic depth
judgments”. eng. In: The Journal of Neuroscience: The O�cial Journal of
the Society for Neuroscience 20.9 (May 2000), pp. 3387–3400.

[175] Gopathy Purushothaman & David C. Bradley. “Neural population code for
fine perceptual decisions in area MT”. en. In: Nature Neuroscience 8.1 (Jan.
2005), pp. 99–106.

[176] Fangtu T. Qiu, Tadashi Sugihara & Rüdiger von der Heydt. “Figure-ground
mechanisms provide structure for selective attention”. eng. In: Nature Neu-
roscience 10.11 (Nov. 2007), pp. 1492–1499.

169



[177] D. Ress, B. T. Backus & D. J. Heeger. “Activity in primary visual cortex
predicts performance in a visual detection task”. eng. In: Nature Neuro-
science 3.9 (Sept. 2000), pp. 940–945.

[178] Fred Rieke & Michael E. Rudd. “The Challenges Natural Images Pose for
Visual Adaptation”. In: Neuron 64.5 (Dec. 2009), pp. 605–616.

[179] Maximilian Riesenhuber & Tomaso Poggio. “Hierarchical models of ob-
ject recognition in cortex”. en. In: Nature Neuroscience 2.11 (Nov. 1999),
pp. 1019–1025.

[180] Anna W. Roe, Leonardo Chelazzi, Charles E. Connor, Bevil R. Conway,
Ichiro Fujita, Jack L. Gallant, Haidong Lu & Wim Vandu�el. “Toward a
unified theory of visual area V4”. eng. In: Neuron 74.1 (Apr. 2012), pp. 12–
29.

[181] Marcello G. P Rosa & Leah A Krubitzer. “The evolution of visual cortex:
where is V2?” In: Trends in Neurosciences 22.6 (June 1999), pp. 242–248.

[182] null Ruderman & null Bialek. “Statistics of natural images: Scaling in the
woods”. ENG. In: Physical Review Letters 73.6 (Aug. 1994), pp. 814–817.

[183] Nicole C. Rust & James J. DiCarlo. “Balanced increases in selectivity and
tolerance produce constant sparseness along the ventral visual stream”. eng.
In: The Journal of Neuroscience: The O�cial Journal of the Society for
Neuroscience 32.30 (July 2012), pp. 10170–10182.

[184] Nicole C. Rust & James J. Dicarlo. “Selectivity and tolerance ("invariance")
both increase as visual information propagates from cortical area V4 to IT”.
eng. In: The Journal of Neuroscience: The O�cial Journal of the Society
for Neuroscience 30.39 (Sept. 2010), pp. 12978–12995.

[185] Nicole C. Rust, Valerio Mante, Eero P. Simoncelli & J. Anthony Movshon.
“How MT cells analyze the motion of visual patterns”. eng. In: Nature
Neuroscience 9.11 (Nov. 2006), pp. 1421–1431.

[186] Nicole C. Rust & J. Anthony Movshon. “In praise of artifice”. eng. In:
Nature Neuroscience 8.12 (Dec. 2005), pp. 1647–1650.

170



[187] Nicole C. Rust, Odelia Schwartz, J. Anthony Movshon & Eero P. Simoncelli.
“Spatiotemporal elements of macaque v1 receptive fields”. eng. In: Neuron
46.6 (June 2005), pp. 945–956.

[188] C. D. Salzman, K. H. Britten & W. T. Newsome. “Cortical microstimula-
tion influences perceptual judgements of motion direction”. eng. In: Nature
346.6280 (July 1990), pp. 174–177.

[189] C. D. Salzman, C. M. Murasugi, K. H. Britten & W. T. Newsome. “Mi-
crostimulation in visual area MT: e�ects on direction discrimination per-
formance”. eng. In: The Journal of Neuroscience: The O�cial Journal of
the Society for Neuroscience 12.6 (June 1992), pp. 2331–2355.

[190] Peter H. Schiller & Joseph G. Malpeli. “The e�ect of striate cortex cooling
on area 18 cells in the monkey”. In: Brain Research 126.2 (May 1977),
pp. 366–369.

[191] Anita M. Schmid, Keith P. Purpura & Jonathan D. Victor. “Responses
to orientation discontinuities in V1 and V2: physiological dissociations and
functional implications”. eng. In: The Journal of Neuroscience: The O�cial
Journal of the Society for Neuroscience 34.10 (Mar. 2014), pp. 3559–3578.

[192] Benjamin Scholl, Andrew Y. Y. Tan, Joseph Corey & Nicholas J. Priebe.
“Emergence of orientation selectivity in the Mammalian visual pathway”.
eng. In: The Journal of Neuroscience: The O�cial Journal of the Society
for Neuroscience 33.26 (June 2013), pp. 10616–10624.

[193] O. Schwartz & E. P. Simoncelli. “Natural signal statistics and sensory gain
control”. eng. In: Nature Neuroscience 4.8 (Aug. 2001), pp. 819–825.

[194] M. N. Shadlen, K. H. Britten, W. T. Newsome & J. A. Movshon. “A com-
putational analysis of the relationship between neuronal and behavioral
responses to visual motion”. eng. In: The Journal of Neuroscience: The Of-
ficial Journal of the Society for Neuroscience 16.4 (Feb. 1996), pp. 1486–
1510.

[195] Yasmine El-Shamayleh, Romesh D. Kumbhani, Neel T. Dhruv & J. Anthony
Movshon. “Visual response properties of V1 neurons projecting to V2 in

171



macaque”. eng. In: The Journal of Neuroscience: The O�cial Journal of
the Society for Neuroscience 33.42 (Oct. 2013), pp. 16594–16605.

[196] Yasmine El-Shamayleh & J. Anthony Movshon. “Neuronal responses to
texture-defined form in macaque visual area V2”. eng. In: The Journal of
Neuroscience: The O�cial Journal of the Society for Neuroscience 31.23
(June 2011), pp. 8543–8555.

[197] Robert Shapley, Michael Hawken & Dajun Xing. “The dynamics of visual
responses in the primary visual cortex”. eng. In: Progress in Brain Research
165 (2007), pp. 21–32.

[198] Hiroshi M. Shiozaki, Seiji Tanabe, Takahiro Doi & Ichiro Fujita. “Neural
Activity in Cortical Area V4 Underlies Fine Disparity Discrimination”. en.
In: The Journal of Neuroscience 32.11 (Mar. 2012), pp. 3830–3841.

[199] S. Shipp & S. Zeki. “Segregation of pathways leading from area V2 to areas
V4 and V5 of macaque monkey visual cortex”. en. In: Nature 315.6017 (May
1985), pp. 322–324.

[200] Stewart Shipp & Semir Zeki. “The functional organization of area V2, I:
specialization across stripes and layers”. eng. In: Visual Neuroscience 19.2
(Apr. 2002), pp. 187–210.

[201] S. Shushruth, Jennifer M. Ichida, Jonathan B. Levitt & Alessandra An-
gelucci. “Comparison of spatial summation properties of neurons in macaque
V1 and V2”. eng. In: Journal of Neurophysiology 102.4 (Oct. 2009), pp. 2069–
2083.

[202] M. Sigman, G. A. Cecchi, C. D. Gilbert & M. O. Magnasco. “On a common
circle: natural scenes and Gestalt rules”. eng. In: Proceedings of the National
Academy of Sciences of the United States of America 98.4 (Feb. 2001),
pp. 1935–1940.

[203] A. M. Sillito, K. L. Grieve, H. E. Jones, J. Cudeiro & J. Davis. “Visual
cortical mechanisms detecting focal orientation discontinuities”. eng. In:
Nature 378.6556 (Nov. 1995), pp. 492–496.

[204] E. P. Simoncelli & D. J. Heeger. “A model of neuronal responses in visual
area MT”. eng. In: Vision Research 38.5 (Mar. 1998), pp. 743–761.

172



[205] E. P. Simoncelli & B. A. Olshausen. “Natural image statistics and neu-
ral representation”. eng. In: Annual Review of Neuroscience 24 (2001),
pp. 1193–1216.

[206] E.P. Simoncelli. “Statistical models for images: compression, restoration and
synthesis”. In: vol. 1. IEEE Comput. Soc, 1997, pp. 673–678.

[207] E.P. Simoncelli, W.T. Freeman, E.H. Adelson & D.J. Heeger. “Shiftable
multiscale transforms”. In: IEEE Transactions on Information Theory 38.2
(Mar. 1992), pp. 587–607.

[208] Karen Simonyan, Andrea Vedaldi & Andrew Zisserman. “Deep Inside Con-
volutional Networks: Visualising Image Classification Models and Saliency
Maps”. In: arXiv:1312.6034 [cs] (Dec. 2013).

[209] Lawrence C. Sincich & Jonathan C. Horton. “Divided by cytochrome oxi-
dase: a map of the projections from V1 to V2 in macaques”. eng. In: Science
(New York, N.Y.) 295.5560 (Mar. 2002), pp. 1734–1737.

[210] Lawrence C. Sincich & Jonathan C. Horton. “THE CIRCUITRY OF V1
AND V2: Integration of Color, Form, and Motion”. In: Annual Review of
Neuroscience 28.1 (2005), pp. 303–326.

[211] A. M. Smith, B. K. Lewis, U. E. Ruttimann, F. Q. Ye, T. M. Sinnwell, Y.
Yang, J. H. Duyn & J. A. Frank. “Investigation of low frequency drift in
fMRI signal”. eng. In: NeuroImage 9.5 (May 1999), pp. 526–533.

[212] Matthew A. Smith, Najib J. Majaj & J. Anthony Movshon. “Dynamics of
motion signaling by neurons in macaque area MT”. eng. In: Nature Neuro-
science 8.2 (Feb. 2005), pp. 220–228.

[213] Alexandra Smolyanskaya, Ralf M. Haefner, Stephen G. Lomber & Richard
T. Born. “A Modality-Specific Feedforward Component of Choice-Related
Activity in MT”. eng. In: Neuron 87.1 (July 2015), pp. 208–219.

[214] Dan D. Stettler, Aniruddha Das, Jean Bennett & Charles D. Gilbert. “Lat-
eral connectivity and contextual interactions in macaque primary visual
cortex”. eng. In: Neuron 36.4 (Nov. 2002), pp. 739–750.

173



[215] Wenzhi Sun, Zhongchao Tan, Brett D. Mensh & Na Ji. “Thalamus pro-
vides layer 4 of primary visual cortex with orientation- and direction-tuned
inputs”. eng. In: Nature Neuroscience 19.2 (Feb. 2016), pp. 308–315.

[216] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow & Rob Fergus. “Intriguing properties of neural net-
works”. In: arXiv:1312.6199 [cs] (Dec. 2013).

[217] Seiji Tanabe & Bruce G. Cumming. “Mechanisms underlying the transfor-
mation of disparity signals from V1 to V2 in the macaque”. eng. In: The
Journal of Neuroscience: The O�cial Journal of the Society for Neuro-
science 28.44 (Oct. 2008), pp. 11304–11314.

[218] Hiroki Tanaka & Izumi Ohzawa. “Surround suppression of V1 neurons me-
diates orientation-based representation of high-order visual features”. eng.
In: Journal of Neurophysiology 101.3 (Mar. 2009), pp. 1444–1462.

[219] X. Tao, B. Zhang, E. L. Smith, S. Nishimoto, I. Ohzawa & Y. M. Chino.
“Local sensitivity to stimulus orientation and spatial frequency within the
receptive fields of neurons in visual area 2 of macaque monkeys”. eng. In:
Journal of Neurophysiology 107.4 (Feb. 2012), pp. 1094–1110.

[220] O. M. Thomas, B. G. Cumming & A. J. Parker. “A specialization for relative
disparity in V2”. eng. In: Nature Neuroscience 5.5 (May 2002), pp. 472–478.

[221] M. G. Thomson, D. H. Foster & R. J. Summers. “Human sensitivity to
phase perturbations in natural images: a statistical framework”. eng. In:
Perception 29.9 (2000), pp. 1057–1069.

[222] Gasper Tkacik, Jason S. Prentice, Jonathan D. Victor & Vijay Balasubra-
manian. “Local statistics in natural scenes predict the saliency of synthetic
textures”. eng. In: Proceedings of the National Academy of Sciences of the
United States of America 107.42 (Oct. 2010), pp. 18149–18154.

[223] D. J. Tolhurst, Y. Tadmor & T. Chao. “Amplitude spectra of natural
images”. eng. In: Ophthalmic & Physiological Optics: The Journal of the
British College of Ophthalmic Opticians (Optometrists) 12.2 (Apr. 1992),
pp. 229–232.

174



[224] D. J. Tolhurst & I. D. Thompson. “On the variety of spatial frequency
selectivities shown by neurons in area 17 of the cat”. eng. In: Proceedings of
the Royal Society of London. Series B, Biological Sciences 213.1191 (Oct.
1981), pp. 183–199.

[225] R. B. Tootell & S. L. Hamilton. “Functional anatomy of the second visual
area (V2) in the macaque”. eng. In: The Journal of Neuroscience: The
O�cial Journal of the Society for Neuroscience 9.8 (Aug. 1989), pp. 2620–
2644.

[226] R. B. Tootell, M. S. Silverman, R. L. De Valois & G. H. Jacobs. “Functional
organization of the second cortical visual area in primates”. eng. In: Science
(New York, N.Y.) 220.4598 (May 1983), pp. 737–739.

[227] Jon Touryan, Gidon Felsen & Yang Dan. “Spatial structure of complex cell
receptive fields measured with natural images”. eng. In: Neuron 45.5 (Mar.
2005), pp. 781–791.

[228] Doris Y. Tsao & Margaret S. Livingstone. “Mechanisms of face perception”.
eng. In: Annual Review of Neuroscience 31 (2008), pp. 411–437.

[229] Takanori Uka & Gregory C. DeAngelis. “Linking Neural Representation to
Function in Stereoscopic Depth Perception: Roles of the Middle Temporal
Area in Coarse versus Fine Disparity Discrimination”. en. In: The Journal
of Neuroscience 26.25 (June 2006), pp. 6791–6802.

[230] L. G. Ungerleider & J. V. Haxby. “’What’ and ’where’ in the human brain”.
eng. In: Current Opinion in Neurobiology 4.2 (Apr. 1994), pp. 157–165.

[231] L. G. Ungerleider & M. Mishkin. “Two cortical visual systems”. In: Analysis
of Visual Behavior (1982), pp. 549–586.

[232] Leslie G. Ungerleider, Thelma W. Galkin, Robert Desimone & Ricardo Gat-
tass. “Cortical connections of area V4 in the macaque”. eng. In: Cerebral
Cortex (New York, N.Y.: 1991) 18.3 (Mar. 2008), pp. 477–499.

[233] Laurens Van der Maaten & Geo�rey Hinton. “Visualizing data using t-
SNE”. In: Journal of Machine Learning Research 9.2579-2605 (2008), p. 85.

175



[234] J. D. Victor & R. M. Shapley. “The nonlinear pathway of Y ganglion cells
in the cat retina”. eng. In: The Journal of General Physiology 74.6 (Dec.
1979), pp. 671–689.

[235] Jonathan D. Victor & Mary M. Conte. “Local image statistics: maximum-
entropy constructions and perceptual salience”. eng. In: Journal of the Op-
tical Society of America. A, Optics, Image Science, and Vision 29.7 (July
2012), pp. 1313–1345.

[236] W. E. Vinje & J. L. Gallant. “Sparse coding and decorrelation in primary
visual cortex during natural vision”. eng. In: Science (New York, N.Y.)
287.5456 (Feb. 2000), pp. 1273–1276.

[237] William E. Vinje & Jack L. Gallant. “Natural stimulation of the nonclassical
receptive field increases information transmission e�ciency in V1”. eng.
In: The Journal of Neuroscience: The O�cial Journal of the Society for
Neuroscience 22.7 (Apr. 2002), pp. 2904–2915.

[238] B. Vintch, E. P. Simoncelli & J. A. Movshon. “A spatial subunit model
for V2 receptive fields reveals heterogeneous receptive field structure”. In:
Annual Meeting, Society for Neuroscience (2011).

[239] Brett Vintch. “Structured hierarchical models for neurons in the early visual
system”. PhD thesis. Center for Neural Science, New York University, 2013.

[240] Brett Vintch, J. Anthony Movshon & Eero P. Simoncelli. “A Convolutional
Subunit Model for Neuronal Responses in Macaque V1”. eng. In: The Jour-
nal of Neuroscience: The O�cial Journal of the Society for Neuroscience
35.44 (Nov. 2015), pp. 14829–14841.

[241] Brett Vintch, Andrew D. Zaharia, J. Anthony Movshon & Eero P. Simon-
celli. “E�cient and direct estimation of a neural subunit model for sensory
coding”. ENG. In: Advances in Neural Information Processing Systems 25
(Dec. 2012), pp. 3113–3121.

[242] Rufin Vogels & Irving Biederman. “E�ects of illumination intensity and
direction on object coding in macaque inferior temporal cortex”. eng. In:
Cerebral Cortex (New York, N.Y.: 1991) 12.7 (July 2002), pp. 756–766.

176



[243] Angela Voyles, Corey M Ziemba, Najib J Majaj, J Anthony Movshon & L
Kiorpes. “Development of texture perception in infant monkeys: Physiology
and behavior”. In: Annual Meeting, Society for Neuroscience (2014).

[244] G. A. Walker, I. Ohzawa & R. D. Freeman. “Asymmetric suppression out-
side the classical receptive field of the visual cortex”. eng. In: The Journal
of Neuroscience: The O�cial Journal of the Society for Neuroscience 19.23
(Dec. 1999), pp. 10536–10553.

[245] Pascal Wallisch & J. Anthony Movshon. “Structure and function come
unglued in the visual cortex”. eng. In: Neuron 60.2 (Oct. 2008), pp. 195–
197.

[246] Brian A. Wandell, Serge O. Dumoulin & Alyssa A. Brewer. “Visual Field
Maps in Human Cortex”. English. In: Neuron 56.2 (Oct. 2007), pp. 366–
383.

[247] Ben S. Webb, Neel T. Dhruv, Samuel G. Solomon, Chris Tailby & Peter
Lennie. “Early and late mechanisms of surround suppression in striate cor-
tex of macaque”. eng. In: The Journal of Neuroscience: The O�cial Journal
of the Society for Neuroscience 25.50 (Dec. 2005), pp. 11666–11675.

[248] F. A. Wichmann & N. J. Hill. “The psychometric function: I. Fitting, sam-
pling, and goodness of fit”. eng. In: Perception & Psychophysics 63.8 (Nov.
2001), pp. 1293–1313.

[249] T. N. Wiesel & D. H. Hubel. “Spatial and chromatic interactions in the
lateral geniculate body of the rhesus monkey”. eng. In: Journal of Neuro-
physiology 29.6 (Nov. 1966), pp. 1115–1156.

[250] Ben D. B. Willmore, Ryan J. Prenger & Jack L. Gallant. “Neural represen-
tation of natural images in visual area V2”. eng. In: The Journal of Neu-
roscience: The O�cial Journal of the Society for Neuroscience 30.6 (Feb.
2010), pp. 2102–2114.

[251] Klaus Wimmer, Albert Compte, Alex Roxin, Diogo Peixoto, Alfonso Re-
nart & Jaime de la Rocha. “Sensory integration dynamics in a hierarchical
network explains choice probabilities in cortical area MT”. en. In: Nature
Communications 6 (Feb. 2015).

177



[252] Yukako Yamane, Eric T. Carlson, Katherine C. Bowman, Zhihong Wang &
Charles E. Connor. “A neural code for three-dimensional object shape in
macaque inferotemporal cortex”. eng. In: Nature Neuroscience 11.11 (Nov.
2008), pp. 1352–1360.

[253] Daniel L. K. Yamins & James J. DiCarlo. “Using goal-driven deep learning
models to understand sensory cortex”. eng. In: Nature Neuroscience 19.3
(Feb. 2016), pp. 356–365.

[254] Daniel L. K. Yamins, Ha Hong, Charles F. Cadieu, Ethan A. Solomon,
Darren Seibert & James J. DiCarlo. “Performance-optimized hierarchical
models predict neural responses in higher visual cortex”. eng. In: Proceed-
ings of the National Academy of Sciences of the United States of America
111.23 (June 2014), pp. 8619–8624.

[255] Jason Yosinski, Je� Clune, Anh Nguyen, Thomas Fuchs & Hod Lipson. “Un-
derstanding Neural Networks Through Deep Visualization”. In: arXiv:1506.06579
[cs] (June 2015).

[256] Yunguo Yu, Anita M. Schmid & Jonathan D. Victor. “Visual processing of
informative multipoint correlations arises primarily in V2”. eng. In: eLife 4
(2015), e06604.

[257] Andrew Zaharia, Robbe Goris, J. Movshon & Eero Simoncelli. “Compound
stimuli reveal velocity separability of spatiotemporal receptive fields in macaque
area MT”. eng. In: Journal of Vision 15.12 (2015), p. 485.

[258] Matthew D. Zeiler & Rob Fergus. “Visualizing and Understanding Convo-
lutional Networks”. en. In: Computer Vision – ECCV 2014. Ed. by David
Fleet, Tomas Pajdla, Bernt Schiele & Tinne Tuytelaars. Lecture Notes
in Computer Science 8689. Springer International Publishing, Sept. 2014,
pp. 818–833.

[259] H. Zhou, H. S. Friedman & R. von der Heydt. “Coding of border ownership
in monkey visual cortex”. eng. In: The Journal of Neuroscience: The O�cial
Journal of the Society for Neuroscience 20.17 (Sept. 2000), pp. 6594–6611.

178



[260] C M Ziemba, J Freeman, J A Movshon & E P Simoncelli. “Selectivity and
tolerance for visual texture in macaque V2”. In: Proceedings of the National
Academy of Sciences of the United States of America (2016).

[261] Corey M Ziemba, Jeremy Freeman, Eero P Simoncelli & J Anthony Movshon.
“Linking visual perception and V2 physiology by crowdsourcing psychophysics”.
In: Society for Neuroscience Annual Meeting (2012).

[262] Corey M Ziemba, Najib J Majaj, Romesh D Kumbhani, Christopher Shooner,
Luke E Hallum, Angela Voyles, Virginia Garcia-Marin, Jenna G Kelly, J
Anthony Movshon & L Kiorpes. “Amblyopia reduces neuronal and percep-
tual sensitivity to naturalistic image structure”. In: Annual Meeting, Society
for Neuroscience (2014).

[263] Davide Zoccolan, Minjoon Kouh, Tomaso Poggio & James J. DiCarlo. “Trade-
o� between object selectivity and tolerance in monkey inferotemporal cor-
tex”. eng. In: The Journal of Neuroscience: The O�cial Journal of the
Society for Neuroscience 27.45 (Nov. 2007), pp. 12292–12307.

179


