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Chapter 3 represents the current state of ongoing work.

vii



Abstract

How does the visual system determine the direction and speed of moving objects?

In the primate brain, visual motion is processed at several stages. Neurons in pri-

mary visual cortex (V1) filter incoming signals to extract the motion of oriented

edges at a fine spatial scale. V1 neurons send these measurements to the extrastri-

ate visual area MT, where neurons are selective for direction and speed in a way

that is invariant to simple or complex patterns.

Previous theoretical work proposed that MT neurons achieve selectivity to pat-

tern motion by combining V1 inputs consistent with a common velocity. Here, we

performed two sets of experiments to test this hypothesis. In the first experi-

ment, we recorded single-unit V1 and MT responses to drifting sinusoidal gratings

and plaids (two gratings superimposed). These stimuli either had jointly vary-

ing direction and drift rate (consistent with a constant velocity) or independently

varying direction and drift rate. In the second experiment, we presented arbitrary,

randomly chosen combinations of gratings in rapid succession in order to sample,

as widely as possible, the space of stimuli that could excite or suppress neural

responses.

Responses to single gratings alone were insufficient to uniquely identify the or-

ganization of MT selectivity. To account for MT responses to both simple and com-

pound stimuli, we developed new versions of an existing cascaded linear-nonlinear

model in which each MT neuron pools inputs from V1. We fit these models to

our data. By comparing the performance of the different model variants and ex-

amining the parameters that best accounted for the data, we showed that MT

responses are best described when selectivity is organized along a common ve-
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locity. This confirms previous predictions that MT neurons are selective for the

arbitrary motion of objects, independent of object shape or texture. We explored

new model variants of MT computation that capture this behavior. Our studies

show that in order to characterize sensory computation, stimuli must be complex

enough to engage the nonlinear aspects of neural selectivity. By exploring different

linear-nonlinear model architectures, we identified the essential components of MT

computation. Together, these provide an effective framework for characterizing

changes in selectivity between connected sensory areas.

Supplementary materials: figures 3.4(a-e), 3.10(a-e), and 3.14(a-e) are rendered

as movies.
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Chapter 1

Introduction

A critical skill for an organism’s survival is the detection of resources and threats

in its environment. Humans and many other animals depend on vision for this.

Predator and prey alike use vision to detect moving objects in their environment,

assess their direction and speed, and use this information to make decisions. How

does the brain detect and measure visual motion?

Primates dedicate upwards of 55% of cortex [48] to purely visual and visual

association areas. Of these areas, there are three in particular in which sensitivity

to motion is prominent and known to change in quality: primary visual cortex

(V1), area V5/MT, and area MST. Selectivity and invariance for motion both

increase [139] in each of these strongly connected areas [166, 48]. Neurons in other

areas of the visual system are also selective for the direction of motion, such as

V3 and V6 [8], FST [97, 37], and VIP [166, 28], but their precise selectivities and

invariances have not been as extensively characterized as in V1, MT, and MST.

Direction-selective cells in V1 respond to the motion of oriented edges [74,

76] (figure 1.1). In MT, neurons are selective for direction of motion in a way

that is invariant to other stimulus properties [12, 47, 4, 105, 6, 117]. MST neurons
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V1 MSTMT

Figure 1.1: Different motion stimuli for which V1, MT, and MST are selective.
V1 direction selective neurons exhibit direction tuning when presented with drifting
oriented edges and sinusoids. MT neurons are additionally direction tuned for
pattern motion. MST neurons are additionally tuned for optic flow. In the optic
flow diagram, the small black filled square, larger open black square, and largest
dashed square correspond to relative receptive field sizes for V1, MT, and MST
neurons. Stimulus diagrams from [5, 105, 109, 181].

respond to stimuli containing just a one (global) velocity in a manner similar to MT

neurons. In the dorsal aspect of MST (MSTd), neurons are additionally selective

for more complex “optical flow” motion [143, 181, 43], which is motion consistent

with the self-motion of an observer moving through an environment [43], such as

a field of dots moving away from a central point.

While selectivity for the direction of motion is common in V1, many neurons are

more strongly modulated by other stimulus dimensions, such as retinal position,

orientation, size, color, and disparity [76]. Neurons in MT and MST, however, are

particularly dedicated to visual motion processing in a way that V1 is not: nearly

all cells are tuned for direction of motion [41, 184, 37, 143]. Furthermore, they

3



each represent the entire visual field in cortical areas roughly one twentieth the size

of V1 [166, 48], suggesting that they are encoding fewer features at each position

in the visual field.

This thesis focuses on the first site at which motion signals are transformed from

edge motion to “general” motion—area MT. Specifically, we explore the question:

how do MT neurons integrate input signals from V1 and transform them? How

does MT represent motion, and what are the computations underlying the emer-

gence of this representation?

By studying how the primate brain computes motion, we hope to better un-

derstand the calculations that individual neurons perform, and how these hint at

fundamental computations that may underpin sensory processing in general [95,

40, 68, 23, 102]. To begin to address this question, we need to understand how the

visual system is organized in the context of motion processing: what the inputs to

the system are, how signals carrying information about motion are extracted and

manipulated, and what the eventual outputs are.

1.1 The cortical representation of visual motion

The visual system has historically been separated into two parallel “streams” of

processing: the ventral “what” stream, concerned with the identification of objects,

and the dorsal “where” stream, localizing where objects are and may be moving

[146, 165]. These streams have alternately been described as the “what” and “how”

pathways [58], focusing instead on the assumed outputs of the pathways. Under

this framework, the dorsal stream’s function is to guide motor action based on

objects identified by the ventral stream. Areas MT and MST, both dedicated to

motion, are firmly in the dorsal/“where” pathway (figure 1.2; but see [57] for a

4



Figure 1.2: Macaque cortical visual areas.
The areas of the boxes and thicknesses of the lines correspond to the surface areas
of each cortical visual area and the strength of the connections between them. The
areas in the top half (reds and browns) are in the dorsal stream, and those in the
bottom half (blues and greens) are in the ventral stream. From [173], modified
from [48].
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recent, critical examination of MT’s placement in the dorsal pathway).

The visual system is organized hierarchically, with receptive fields increasing

in size as one moves up the hierarchy [48], as well as in selectivity and invariance

[139]. Vision begins with light entering the eye and hitting the retina. Changes

in light intensity (i.e., contrast) across adjacent photoreceptors are detected by

retinal ganglion cells and signaled to the lateral geniculate nucleus (LGN). In the

LGN, the contrast measurements collected from the same visual hemifields by the

two eyes are brought into register. V1 simple cells combine several inputs from

the LGN, aligned along a specific orientation; they represent local orientation in

terms of increments and decrements of light at a specific retinal location within

their receptive fields [74, 130]. Complex cells, whose receptive fields are selective

for orientation but invariant to the precise contrast polarity and location within

the receptive field, combine spatially-offset simple cells with the same orientation

preference [74, 104, 107]. V1 neurons appear to span a continuum of selectivities

from the two extremes of simple and complex cell behavior [142]. In addition, both

simple and complex V1 neurons can also be tuned for absolute disparity [74, 76,

121, 30, 126].

1.1.1 Motion selectivity begins in V1

A subset of both simple and complex cells in V1 are selective for the direction of

motion [74, 76]. In the case of simple cells, changes over time in receptive field

subregion selectivity for light and dark produce selectivity for motion [3, 34, 35,

142, 170].

The ways in which selectivity can change over time span two extremes: space-

time separable and inseparable responses [3, 33] (figure 1.3). Separable responses

6



Figure 1.3: Space-time profiles of idealized motion detectors and measured V1
receptive fields.
Idealized separable and inseparable motion detectors on the left (from [3]). A
phase-insensitive motion detector can be constructed by combining input from
two filters with offset phases. On the right, measured spatiotemporal receptive
field profiles from example V1 neurons (from [33]).
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can be fully described by the separable product of one-dimensional tuning functions—

in this case, for space and time. Separable V1 simple cell responses can be de-

scribed as having their light- and dark-preferring subregions flip polarity after a

delay. Inseparable responses cannot be described as a separable product; the two

dimensions in question are jointly represented. Inseparable simple cells exhibit

tuning in which the light- and dark-preferring subregions shift their spatial phase

over time. Adelson & Bergen (1985) predicted that both separable and insepara-

ble space-time tuning could produce sensitivity to motion, but that a separable

representation cannot distinguish opposing directions of motion. An inseparable

representation, however, can.

Since complex cells’ phase-invariance makes their light- and dark-preferring

subregions spatially overlap [74, 104, 3, 33], and thus cancel in a purely first-

order, phase-dependent analysis, their space-time separability can only be assessed

by examining their second-order response properties in terms of combinations of

receptive field subunits [72, 107, 104, 33, 163, 142, 171, 170]. Subunits recovered

from complex cells appear to be separable in space-time if they are not direction-

selective [142] and inseparable in space-time if they are [142, 169, 170].

V1 directly contributes to motion selectivity in MT. MT receives a large pro-

portion of its input from V1 [166, 97, 37], which is composed of predominantly

spiny stellate neurons [108] from layer 4B, but also from layers 5/6 [90, 158, 161,

149]. Movshon & Newsome (1996) showed that neurons projecting from V1 to MT,

identified through antidromic activation, are direction-selective, tend to be com-

plex, and are broadly tuned to spatial and temporal frequency. By removing the

inputs from V1, either through lesioning or reversibly cooling V1, Rodman et al.

(1989) showed that MT neural responses are greatly diminished, but that direction
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and disparity selectivity persists. In doing so, they showed that information about

motion and disparity can reach MT through paths other than V1.

1.1.2 The mystery of the second visual area (V2)

The second visual area (V2) has a similar number of direction selective cells as in

V1 (but many fewer than MT) [184, 41, 99]. In fact, three times as many neurons,

retrogradely labeled from MT, were found in V2 as in V1 or V3, making V2 the

strongest source of input to MT [97]. Disparity- and orientation-selective cells,

primarily from the thick stripes [38, 148, 75, 86, 150] in layers 2/3 [97], project

to MT. Reversible cooling of V2 and V3 significantly reduced disparity tuning in

MT, without a corresponding reduction in direction selectivity [123].

While it is clear that V2 contributes disparity information (and serves as an

indirect pathway for motion information [134]) to MT, it is not known how else it

may be contributing. This may be because there are highly variable accounts of

the stimulus features V2 encodes, which include illusory contours [71, 120], border

ownership [186], complex shape characteristics such as curvature [Essen2000b],

and angles [11]. Perhaps the most successful descriptions of V2 feature represen-

tation so far, in differentiating neural responses in V2 from those in V1 [187], are

in terms of texture [52, 51, 53, 188, 187] and relative disparity [121, 122, 160, 15].

Both of these features are highly relevant for the interpretation of visual motion,

yet precisely how their representation in V2 contributes to motion processing in

MT is less well-known. Because of our fuller understanding of direction-selective

neurons in V1, we will focus on their contribution to the interpretation of two-

dimensional image motion in MT.
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23 ips

MT pattern
Zp - Zc = 6

14 ips

MT component
Zp - Zc = -4

14 ips

MT intermediate
Zp - Zc = 0

Figure 1.4: Example MT tuning direction tuning curves.
Responses to single gratings and plaids are in red and black, respectively. Thick
traces indicate the mean and thin traces ±1 s.e.m. Dashed black lines indicate the
component prediction.

1.1.3 Motion tuning becomes more invariant in MT

Neurons in MT represent motion differently from their V1 inputs. Like V1, MT

receptive fields are localized at a specific retinal position in the visual field [9,

41, 166]. However, MT receptive fields span areas of the visual field 5-10 times

larger than those in V1 (and about 2-3 times larger than those in V2) at the same

eccentricity [166, 56, 37, 25, 52]. MT neurons must therefore be integrating inputs

from a number of neurons to represent motion at all locations within their receptive

fields.

Even in early experiments, direction selectivity appeared to be different in MT

than in V1. MT neurons were tuned for the direction of motion of different types

of moving stimuli, including bars [41, 166, 99], single dots [5], and random dot

fields [5, 111].

Wallach (1935) observed that in order to identify the true direction of motion of

a drifting pattern, viewed through an aperture, more than one orientation needs to

be present. The motion of a single drifting orientation can be interpreted as having
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−3 0 10
−3

0

10

Zc

Zp

−3 0 10
−3

0

10

Zc

All data, V1 and MT MT data only
awake and anesthetizeda b

Figure 1.5: Pattern classification of all recorded V1 and MT neurons.
The Z-scored, normalized correlation between recorded plaid tuning to the com-
ponent and pattern predictions (Zc and Zp, respectively). Pattern cells are in red,
intermediate in black, and component in blue. (a) All the recorded neurons fea-
tured in this thesis are shown (n = 180). Filled circles are MT neurons, open are
V1 neurons. (b) Only MT data is shown (n = 160). Filled circles are anesthetized
data, open circles are awake data from monkey LW, open squares are awake data
from monkey A.

any non-parallel direction [172, 180, 94], a phenomenon later termed the “aperture

problem” [94]. Building on this, Movshon et al. (1985) showed, using sinusoidal

grating and plaid (two gratings superimposed) stimuli, that about a third of MT

neurons are selective for the direction of coherent pattern motion (example cell

tuning curves in figure 1.4). Just as V1 neurons span a spectrum of simple and

complex selectivity, neurons in MT span a continuum of pattern selectivity [105,

141] (figure 1.5). Pattern direction selectivity, however, is exceedingly rare in V1

[105]. Direction tuning appears to be relatively constant at different locations in

the receptive field [128] (but see [29, 131]). Spatial and temporal frequency tuning

is relatively broad in MT, compared to V1 as a whole, but similar to the subset of

direction-selective neurons in V1 [106, 66, 174].

MT neurons are tuned for several other stimulus attributes other than direction

of motion. One is speed, whether it be to moving bars [99, 5], single dots [5, 135],

11



gratings and plaids [133], or random dot fields [5]. MT appears to have Gaussian-

shaped tuning for speed on a logarithmic axis [115]. Another is disparity [185, 96,

36, 164]. Tuning for disparity appears to be separable with respect to direction

tuning [157]. MT responses are also modulated by stimulus size [166, 7, 98, 147,

70, 91].

Aside from MT’s coarse retinotopic structure [166, 37], it may have a columnar

organization based on direction [99, 5] and disparity [32].

A number of perceptual studies have implicated the importance of MT in mo-

tion perception. Lesioning MT led to decreased motion sensitivity to random dot

fields [109]. Electrical microstimulation in MT led to biased performance in direc-

tion discrimination tasks [144, 145] and depth discrimination tasks [36]. Neurons in

MT have also been shown to be weakly correlated with decisions made in direction

discrimination tasks [110, 17, 18, 127].

1.1.4 MST: more selective, more invariant

Aside from feedback connections to V1 and V2, a major destination of MT pro-

jections is MST [97, 14]. Neurons in MST are selective for the direction of motion

[143, 83] in a way that reflects and builds upon the input received from MT. First,

the majority of neurons in MST are pattern selective [83]. Second, MSTd neurons

are selective for more complex types of motion that include more than one direc-

tion. These types of motion include expansion and contraction, rotation [143, 42],

and shear (the combination of translation and rotation) [103].

In addition to direction of motion, MST is selective for relative disparity (depth)

[45]. Depth and optic flow provide information about an individual’s own motion

through an environment [42], and there is compelling evidence that MST is special-
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ized for this purpose. MSTd neurons integrate signals from the vestibular system

to compute estimates of heading direction [63, 62].

1.2 Computational models of motion

1.2.1 Computer vision approaches

Computer vision models of motion have focused on the problem of estimating

motion in moving images from the perspective of optical flow. Horn & Schunck

(1981) defined optical flow as “the distribution of apparent velocities of movement

of brightness patterns in an image... [arising] from relative motion of objects and

the viewer.” They recognized that only measuring local changes in pixel values

between frames and nearby spatial locations does not uniquely constrain object

motion [172, 49, 73]. A previous approach had been to calculate local pixel gradi-

ents and apply a clustering algorithm afterwards to smooth the resulting optical

flow fields [49]. Instead, Horn & Schunck (1981) built a model which formulated

optic flow as a series of partial derivative equations to be numerically solved. Im-

portantly, they introduced two constraints on flow: global brightness constancy

and (global) spatial smoothness of optic flow fields.

Lucas & Kanade (1981) used a similar, but more extreme version of the spatial

smoothness constraint: they assumed optic flow was approximately constant in

local patches of pixels. This allowed them to reduce the optic flow calculation

to a (much more computationally tractable) least squares problem [88]. As a

consequence of its relatively simple formulation and calculation, this algorithm

underpins many contemporary optic flow estimation procedures [19, 136].

It can be argued that signals reaching MT already have these two constraints

13



imposed: local contrast is subject to gain control in the retina, and the larger

receptive fields in MT combine a number of more local measurements of motion

from their V1 inputs, likely with the same or similar direction preferences [128]

(but see [131]).

1.2.2 Computer vision meets biology

From the biological perspective, models of motion also began with few constraints.

The Reichardt (1961) model (originally of fly vision) detects motion by computing

the correlation between the luminance at a given location and at an adjacent

spatial location, with a temporal delay between the two. The result is a model that

detects motion at a particular direction and speed, but its output is modulated by

the spatial phase and luminance of its input. Inverting the contrast of a moving

image, for example, will also invert the response of such a detector, even if the

direction of motion has not changed.

In a highly influential model, Adelson & Bergen (1985) extended this framework

to create a phase-invariant motion detector, inspired by existing models of V1

neurons [74, 162, 107]. Building on recent observations that objects moving at

a constant velocity have constant spatiotemporal slope in the frequency domain

[46, 176], they introduced the idea of “motion as orientation” in space-time (figure

1.1). In their model, an ideal motion detector is oriented, and thus inseparable,

in space-time. The full model measures motion “energy” by summing the squared

output of two filters oriented in space-time, selected specifically to be 90 degrees

out of phase (i.e., in “quadrature”, see figure 1.1). These filters are tuned for both

direction and speed, but in a manner insensitive to phase. The filters themselves

are implemented as Gabor functions (a 2D sinusoid windowed spatially with a
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Figure 1.6: Intersection of constraints.
From [105].

Gaussian [54]). These had been proposed as ideal motion filters [176] and as a

model of V1 simple cells [93, 107], later verified [80]. As discussed in the previous

section, both inseparable Gabor-like filter and separable filter responses have been

observed in V1 [34, 163, 142, 169, 170] (figure 1.3).

The motion energy model alone is only selective for edge motion—it will not

produce pattern selectivity. The “intersection of constraints,” formulated by Adel-

son & Movshon (1982), is a geometric solution to isolate the unique velocity of a

rigidly moving pattern. A single drifting edge, viewed through an aperture, can be

explained by the set of velocities lying on a constraint line in velocity space [172,

4, 105] (figure 1.6). The velocities of two orientations in a drifting plaid uniquely

identify the velocity of the plaid where the constraint lines intersect in velocity

space (figure 1.6).

1.2.3 Cascade models of MT motion processing

Combining Gabor filters with the intersection of constraints formulation, Heeger

(1987) built a motion of optical flow estimation and MT function. The model

was able to extract optic flow on arbitrary images and produced (not entirely

biologically realistic) pattern-selective responses to grating and plaids. Recognizing
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Figure 1.7: V1 and MT spatiotemporal frequency filter responses in frequency
space.
(left) The frequency response of a single spatiotemporal filter in the V1 stage.
(middle) The cylindrical lattice of Gabor filter responses, used in the Heeger (1987)
model. The plane corresponding to the preferred velocity of the pattern cell is also
shown. (right) A pattern cell in the Simoncelli & Heeger (1998) model. Figures
from [67, 155].

that a rigidly moving texture corresponds to energy on a plane in frequency space

[176, 177], the model calculated velocity by fitting a plane to Gabor filter responses

on local image patches. In principle, this is the same constant local flow assumption

used by Lucas & Kanade (1981); its implementation, however, is global and uses

non-biologically plausible operations.

The Heeger (1987) model used a set of Gabor filters whose spatiotemporal

frequency response were arranged in a cylindrical lattice (figure 1.7). Then, a

population of velocity-selective (MT pattern) cells were simulated, each taking the

difference of the sum of the squared filter responses computed on the image and the

cell’s preferred velocity plane. The velocity preference of the cell with the highest

activation was then read out as the velocity predicted by the model.

Simoncelli and Heeger [154, 155] used this model as a foundation for a new

model of MT pattern selectivity by adopting a cascaded computation architecture

[68] and incorporating more biologically plausible computations. It improved ac-

curacy by using derivative filters [151] on a spherical lattice [154] (figure 1.7). The

model also gives improved predictions to grating and plaid responses, as well as
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other observed MT response properties, such as speed tuning, as measured with

drifting bars [135].

The cascade model repeated the same sequence of operations in the simulated

V1 and MT stages. In the initial V1 stage, the image is filtered, then the filter

responses are summed, half-wave rectified and squared, and subject to normaliza-

tion. The normalization step leaves tuning intact, but accounts for other nonlinear

behaviors such as contrast response saturation and cross-orientation suppression

[69, 22, 24]. The result is the simple cell response. Summing over simple cells with

spatially offset receptive fields yields the complex cell responses. These serve as

input to the MT stage, which linearly weights complex cell responses on a preferred

velocity plane. These responses are summed, half-squared, and normalized.

Since the weights in the MT stage (off the preferred velocity plane) take neg-

ative values, there is some suppression to motion in the opposite direction. Op-

ponent suppression is also part of both the Adelson & Bergen (1985) and Heeger

(1987) models and has been observed in MT [99, 47, 135], although it could be

inherited from V1 [140, 170].

The cascade models introduced predictions about the construction of MT re-

ceptive fields that had not yet been verified—specifically, the notion that MT

receptive fields are organized along a preferred velocity plane in frequency space,

and that normalization in MT plays a role in shaping direction selectivity. The

experiments described in the chapters in this thesis aim to test these predictions

on macaque MT neural responses, building on further simplifications that Mante

(2000) and Rust et al. (2006) made to enable the cascade model to be fit to data.
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1.3 Automated and model-based approaches to character-

izing visual receptive fields

In order to characterize receptive fields along more than one stimulus dimension in

the limited time constraints of a typical physiological experiment, experimenters

have turned to automated techniques.

In V1, space-time receptive fields have been mapped through the rapid presen-

tation of light and dark spots at random spatial locations [81, 34]. By computing

a sum of these stimuli, weighted by the spikes occurring in response, one obtains a

spike-triggered average (STA) [27, 153]. Other randomized stimuli have been used

to characterize V1 neurons as well, such as 2D sinusoids [132], light and dark bars

[142], 2D Gaussian noise [113], and natural images [163, 26].

STA methods had early success characterizing phase-sensitive simple cells [81,

34, 132], but second-order methods were required to resolve phase-insensitive com-

plex cell receptive fields. Complex cell receptive field elements were observed using

spike-triggered covariance (STC). In STC, the eigenvectors of the covariance matrix

of the spike-triggered stimuli (with the STA projected out) represent overlapping

elements of the receptive field [153, 142, 163]. An alternative approach, local spec-

tral reverse correlation, calculated the spike-triggered average on the frequency

spectra of local image patches [113].

To reduce bias in recovered receptive field elements from, and increase their

predictive power to, randomized stimuli, researchers have begun directly fitting

receptive field models to these data [171, 87, 170].

In MT, sparse flashed bar and dot stimuli have been used to generate differ-

ence maps, representing the apparent motion generated by the change in relative
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position of the bar or dot from one frame to the next [85, 118]. These maps could

accurately predict the preferred direction of the neurons [118], but their predictive

power for pattern direction, speed, and spatiotemporal frequency tuning was not

directly verified.

Rust et al. (2006) used hyperplaids (six gratings superimposed) to stimulate

MT neurons and then fit a version of the Simoncelli & Heeger (1998) cascade model

to the responses. Their model provided accurate predictions of pattern selectivity,

and they identified opponent suppression and V1 normalization as crucial features

mediating it. Given that their stimuli did not vary in spatial or temporal frequency,

they could not make any statement about the organization of MT receptive fields

in those dimensions.

Nishimoto & Gallant (2011) used “motion-enhanced” natural movies (movies of

natural scenes with rapidly-moving computer-generated shapes superimposed) to

stimulate MT neurons (figure 1.8). They characterized MT receptive fields in 3D

frequency space by fitting a version of the cascade model. They recovered “partial

ring”-shaped linear weights confined to the preferred velocity plane (figure 1.8).

These partial rings have narrower bandwidth in the direction domain than was

predicted by the original cascade models. Using hyperplaids to calculate STAs

in the frequency domain, Inagaki et al. (2016) recovered excitatory weights with

a similar, but somewhat less planar, structure and weaker suppressive weights

(figure 1.8). The difference in the shapes of the recovered weights is likely due to

the stimuli used by Nishimoto & Gallant (2011) being biased towards having a

planar structure, whereas no such bias exists in the Inagaki et al. (2016) stimuli.

In both of these studies, pattern selectivity was not directly verified, leaving the

3D frequency structure of pattern-selective MT receptive fields unresolved.
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Figure 1.8: Previous characterizations of MT spatiotemporal selectivity in 3D.
(top left) The motion-enhanced natural movie construction. (top right) Exam-
ple receptive fields recovered by Nishimoto & Gallant (2011). (bottom) Example
receptive fields recovered by Inagaki et al. (2016). Figures from [112, 78].
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Figure 1.9: Example idealized separable MT receptive fields.
Idealized component (left) and pattern selectivity (right), organized separably
along preferred velocity and preferred temporal frequency planes (top and bot-
tom, respectively).

We set out to assess spatiotemporal frequency selectivity in MT neurons, specif-

ically to ascertain if they are organized along a preferred velocity plane. In chapter

2, we address this question by introducing a simplifying assumption to the cascade

model: that MT receptive fields are separable in 3D frequency space.

Separability of tuning has been examined throughout the dorsal stream. In V1,

separability has been assessed in terms of spatial and temporal frequency [162, 16,

125], orientation and spatial frequency [31, 178, 81, 65, 168, 100], and direction and

disparity [10, 61]. Direction and disparity tuning has been shown to be separable

in MT [157] and inseparable in a subset (“almost 50%” [138]) of MSTd neurons

[137, 138]. In MT, separable tuning for spatial and temporal frequency tuning has

been proposed [67, 155] and tested in two dimensions [124, 125, 89], but not in

three.

We compared two versions of the cascade model, each separable in three dimen-
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sions of frequency space. One was separable about the preferred velocity plane,

the other about the preferred temporal frequency plane (figure 1.9). The latter

model, representing our null hypothesis, was chosen because tuning to spatial and

temporal frequency at earlier stages of visual processing (e.g., photoreceptors and

V1 simple cells) is separable [125].

In chapter 3, we presented hyperplaids and performed reverse correlation and

model fitting to resolve MT receptive fields in 3D frequency space, without any

assumption of separability. In both these chapters and in the final one, we exam-

ine the relationship between the recovered receptive field structures and pattern

selectivity.
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Chapter 2

A planar-separable model of MT
selectivity

2.1 Introduction

Visual motion is processed in multiple stages in the primate brain [4, 76, 41].

In the first stage, incoming visual signals are filtered in space and time. This

operation reveals the motion of local oriented elements in visual scenes and is

represented by the activity of neurons that are selective for direction of motion

in the primary visual cortex (V1). These neurons, considered in isolation, cannot

uniquely identify the coherent motion of a complex pattern containing multiple

oriented components, since its components could be moving independently and in

different directions. V1 neurons provide input to the extrastriate area MT (V5),

where the second stage of motion processing occurs. MT neurons compute complex

pattern motion, becoming more invariant to component orientation [105].

An influential model of MT computation proposes that selectivity for pattern

motion emerges by pooling responses of V1 neurons whose preferred stimulus di-

rection, spatial frequency, and temporal frequency are consistent with a common
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velocity [155]. This type of receptive field organization is ideally suited to analyze

rigidly moving objects, and there is some empirical evidence in support of this idea

[112, 124]. This conversion of information from V1 into a velocity-based represen-

tation in MT is the fundamental computation in the model that underlies MT’s

solution to the motion ambiguity problem. However, this is not the only kind of

receptive field organization consistent with known MT properties. An alternative

possibility is that MT neurons pool V1 responses with a common temporal fre-

quency preference determined independently from direction of motion. This type

of organization is consistent with neural selectivity observed earlier in the visual

processing hierarchy, such as V1 simple cell selectivity [125]. An MT neuron with

this type of organization would still be direction-selective, but in a manner that is

less invariant to pattern.

We compared these two models of MT computation by measuring the responses

of neurons in areas V1 and MT of anesthetized and awake macaques to a large

collection of sinusoidal gratings and plaids (superimposed gratings with differ-

ent orientations). We fit these responses with a linear-nonlinear model of MT

computation, in which the linear receptive field was constructed by either a joint

or an independent representation of motion direction and speed. We refer to

the former model as the velocity-based model and to the latter as the frequency-

based model. V1 neurons tended to be better described by the frequency-based

model. When probed with single sinusoids, MT responses were similarly well de-

scribed by both models. However, when probed with more complex plaid stimuli,

the velocity-based model systematically outperformed the frequency-based model

for pattern-selective neurons. Our results clarify how receptive field organization

changes throughout the visual hierarchy and demonstrate that stimulus complexity
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determines the effective complexity of neural computation.

2.2 Methods

2.2.1 Anesthetized recording procedures

We recorded from 7 anesthetized, paralyzed, adult male macaque monkeys (M.

fascicularis) and one adult female macaque (M. mulatta) using our standard pro-

cedures for surgical preparation and single-unit recording, as described previously

[25]. We maintained anesthesia and paralysis by intravenously infusing sufentanil

citrate (6-30 µg kg−1 h−1), and vecuronium bromide (Norcuron, 0.1 mg kg−1 h−1),

respectively, in isotonic dextrose-Normosol solution (4-10 mL kg−1 h−1). We con-

tinuously monitored vital signs (heart rate, lung pressure, electroencephalogram

(EEG), electrocardiogram (ECG), body temperature, urine flow and osmolarity,

and end-tidal CO2 partial pressure (pCO2)) and maintained them within appro-

priate physiological ranges. We applied atropine topically to dilate the pupils.

Gas-permeable contact lenses protected the eyes. We refracted them with sup-

plementary lenses chosen by direct ophthalmoscopy. Experiments typically lasted

5-7 days at the end of which the monkey was killed with an overdose of sodium

pentobarbital. We conducted all experiments in compliance with the US National

Institutes of Health Guide for the Care and Use of Laboratory Animals and with

the approval of the New York University Animal Welfare Committee.

The monkey was positioned so his eyes were 57-114 cm from the display. Grat-

ing and plaid stimuli each lasted for 1,000 ms and were presented in randomly

interleaved blocks. We used quartz-platinum-tungsten microelectrodes (Thomas

Recording) to make extracellular recordings in the brain through a craniotomy
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and small durotomy. For each isolated unit, we determined eye dominance and

occluded the non-preferred eye.

2.2.2 Awake recording procedures

We also recorded from 2 awake, actively fixating, adult male macaques (one M.

mulatta and one M. nemestrina). We surgically implanted a headpost for head

stabilization using the design and methods described in [1]. In a second surgical

procedure, we implanted a chamber for chronic electrode recording over the su-

perior temporal sulcus (STS) of the left hemisphere, using the techniques and a

variant of the design described in [2]. Prior to surgery, we used structural MRI

and Brainsight software (Rogue Research, Canada) to design a chamber with legs

matched to the curvature of the monkey’s skull [79] above the STS.

We acclimated each monkey to his recording chair and experimental surround-

ings. After this initial period, he was head-restrained and rewarded for looking at

the fixation target with dilute juice or water. Meanwhile, we used an infrared eye

tracker (EyeLink 1000; SR Research, Canada) to monitor eye position at 1000Hz

via reflections of infrared light on the cornea and pupil. The monkey sat 57 cm

from the display.

The monkey initiated a trial by fixating on a small white spot (diameter 0.1◦),

after which he was required to maintain fixation for a random time interval between

2,350 and 4,350 ms. A grating or plaid stimulus would appear 100 ms after fixation

began and last for 250 ms. Stimulus conditions were presented in randomly inter-

leaved blocks. The monkey was rewarded if he maintained fixation within 1-1.75◦

from the fixation point for the entire duration of the stimulus. No stimuli were

presented during the 300 to 600 ms in which the reward was being delivered. If
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the monkey broke fixation prematurely, the trial was aborted, a timeout of 2,000

ms occurred, and no reward was given.

We used tungsten microelectrodes (FHC, Bowdoin, ME) to make extracellular

recordings. We identified area MT from gray matter-white matter transitions and

isolated neurons’ brisk, direction-selective responses.

2.2.3 Visual stimulation

We presented visual stimuli on a gamma-corrected CRT monitor (Eizo T966 (anes-

thetized experiments), HP P1230 (awake experiments); mean luminance, 33 cd/m2)

at a resolution of 1,280 × 960 with a refresh rate of 120 Hz. Stimuli were generated

and presented on an Apple Mac Pro using Expo software

(http://corevision.cns.nyu.edu).

For each isolated unit, we presented vignetted sinusoidal grating stimuli to map

each cell’s receptive field and determine its preferred size. We then characterized

neuronal selectivity for direction, spatial frequency, and drift rate. Thereafter,

stimuli were presented in a window of the preferred size at specific spatiotemporal

frequencies relative to the optimal spatiotemporal frequency. All receptive fields

were centered between 2◦ and 30◦ from the fovea.

For the single component study, 17 unique tuning curves were measured. All

featured single gratings presented at 100% contrast. Two direction tuning curves

from -90◦ to 90◦ relative to the preferred direction, in 15◦ intervals, were collected

along the optimal frequency-based path (keeping the optimal spatial and tempo-

ral frequencies constant) and along the optimal velocity-based path (keeping the

optimal velocity constant). Four direction tuning curves were collected at 18◦ in-

tervals from -90◦ to 90◦ relative to the preferred direction: one at a higher and
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one at a lower than optimal temporal frequency while fixing the optimal spatial

frequency, and two more at a high and a low spatial frequency while fixing the

optimal temporal frequency.

Two spatial frequency tuning curves, at 13 log-spaced values from 0.1 cy-

cles/degree to 10 cycles/degree, were collected along the optimal frequency- and

velocity-separable paths. Four spatial frequency tuning curves, at 11 log-spaced

values from 0.1 cycles/degree to 10 cycles/degree, were collected at a high and low

temporal frequency while maintaining the optimal direction. Two more were col-

lected at suboptimal directions, while maintaining the optimal temporal frequency.

One temporal frequency tuning curve, at 13 log-spaced values from 0.1 cy-

cles/second to 60 cycles/second, was collected at the optimal direction and spatial

frequency. Four temporal frequency tuning curves, at 11 log-spaced values from

0.5 cycles/second to 60 cycles/second, were collected at a high and low spatial fre-

quency while maintaining the optimal direction. Two more were collected at sub-

optimal directions, while maintaining the optimal spatial frequency. The “high”

and “low” non-preferred spatiotemporal frequencies used in suboptimal tuning

curves were chosen to maximally distinguish the frequency- and velocity-separable

models.

For the two-component study, four unique direction tuning curves at the op-

timal spatial frequency were measured (see figure 2.4(a,b)). The first two were

single, 50% contrast gratings, one with temporal frequency held constant at the

optimal value (frequency-based) at all directions in 30◦ intervals, and one with con-

stant, optimal velocity (velocity-based) from -90◦ to 90◦ relative to the preferred

direction, in 15◦ intervals. Since velocity represents both direction and speed, and

is uniquely represented as a tilted plane in frequency space, the velocity-based
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gratings vary in temporal frequency with the cosine of the direction. This ensures

that the velocity-based gratings presented are always on the optimal velocity plane.

The two main differences between these and the first two direction tuning curves of

the single component study were: (1) the gratings were at 50% contrast instead of

100%, and (2) the constant temporal frequency gratings spanned the whole range

of directions rather than just the semicircle of directions centered at the preferred

one.

The last two tuning curves consisted of 120◦ “plaids”, or two superimposed

gratings with orientations 120◦ apart. Their component gratings each had 50%

contrast, making each plaid’s contrast 100%. The plaids were presented with the

mean angle of their two gratings matched to the directions of the single grating

tuning curves.

In response to the single component study, we recorded single-unit responses

of 12 V1 neurons and 39 MT neurons (all anesthetized). For the two-component

study, we recorded 20 V1 neurons (all anesthetized) and 111 MT neurons (54

anesthetized, 30 from awake monkey A, and 27 from awake monkey LW). For 29 of

the 54 anesthetized MT neurons in the two-component study, the single component

study was also run. All of the 12 V1 neurons from the simgle component study

are in the set of 20 V1 neurons in the two-component study.

2.2.4 Analysis of neuronal response

Following stimulus onset, we counted spikes in either a 1,000 ms window (anes-

thetized experiments) or a 250 ms window (awake experiments). We estimated

the latency of each cell by maximizing the sum of variances of its responses for all

stimulus conditions [25] and shifted the spike count window accordingly.

29



To characterize MT cell selectivity for pattern motion, we used standard meth-

ods to compute each cell’s “pattern index” [105, 156]. First, we computed partial

correlations between the actual response to (constant temporal frequency) plaids

with idealized predictions of pattern and component direction selectivity (rp and rc,

respectively). We then converted these values to Z-scores to stabilize the variances

of the correlations (Zp and Zc). Finally, the pattern index is the difference of these

two quantities: Zp−Zc. Cells were classified as pattern selective if Zp−Zc > 1.28,

or component-selective if Zc − Zp > 1.28. Both thresholds correspond to a signifi-

cance of P = 0.90. Confidence intervals on pattern index were computed from the

standard deviation of 100 bootstrapped estimates [44, 141].

2.2.5 The frequency- and velocity-based models

The MT linear weighting functions for both the frequency- and velocity- based

models are defined in terms of a separable product of tuning functions wd, ws, and

wt in the direction, spatial frequency, and temporal frequency dimensions. These

functions operate independently on the ith stimulus component’s direction (di),

spatial frequency (si), or temporal frequency (ti) There is either one component

for a grating or two for a plaid. The frequency-separable linear weighting on the

ith component, Fi, is defined as follows:

Fi (di, si, ti) = wd (di) · ws (si) · wt (ti) (2.1)

Direction tuning is represented above by a von Mises function:

wd (d) = eσdcos(d−µd)

2πI0(σd)
(2.2)
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where µd and σd represent the direction preference and bandwidth, respectively,

and I0() is the modified Bessel function of order 0 (which normalizes the inte-

gral of the von Mises). Spatial frequency is represented by a Gaussian function,

N (x |µ, σ), in log2 coordinates, with spatial frequency preference µs and band-

width σs:

ws (s) = N (log2(s) | log2(µs), σs) = 1
σs
√

2π
e−(log2(s)−log2(µs))2/2σ2

s (2.3)

Temporal frequency is represented by a Gaussian in coordinates which are linear

at low frequencies and logarithmic at higher ones, determined by the function g(t):

wt (t) = N (g (t) | g (µt) , σt) = 1
σt
√

2π
e−(g(t)−g(µt))2/2σ2

t (2.4)

where g(t) is

g (t) = sgn(t) log2

(
|t|
τ

+ 1
)

(2.5)

where sgn() is the sign function. Using this functional form for temporal frequency

tuning allows for the function to be logarithmic at high temporal frequencies, but

also be defined as zero-valued and continuous at zero temporal frequency. Here τ

determines the temporal frequency at which the function transitions from linear to

logarithmic, and µt and σt are the temporal frequency preference and bandwidth,

respectively.

The velocity-separable linear weighting function, Vi, is defined as follows:

Vi (di, si, ti) = wd (di) · ws (si) · vt (di, si, ti) (2.6)

31



where the velocity-separable temporal frequency function, vt, is defined as a Gaus-

sian, again linear at low frequencies and logarithmic at higher ones:

vt (d, s, t) = N (g (t) | g (P (d, s)) , σt) (2.7)

= 1
σt
√

2π
e−(g(t)−g(P (d,s)))2/2σ2

t

The only difference between wt(t) (equation 2.4) and vt(d, s, t) (equation 2.8) is

that in the latter, temporal frequency tuning is separable about the preferred speed

plane P (d, s):

P (d, s) = s
µt
µs
cos (d− µd) (2.8)

Since the components of the plaid stimuli are always 120◦ apart, the compo-

nent orientations are too far apart for cross-orientation effects in V1 to significantly

modulate responses. Additionally, since component contrasts are all 50%, we as-

sume the effects of V1 normalization are negligible. Therefore, the MT neurons

in this model sum the V1 responses to each stimulus component separately. In

the following equation, the Fi and Vi terms represent the frequency- and velocity-

separable MT linear weightings of V1 responses. The nonlinear response of the

MT neuron is the weighted V1 responses passed through the MT nonlinearity, to

yield the predicted firing rates for the frequency- and velocity-based models (Rf

and Rv, respectively):
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Rf (di, si, ti, tmax) = α0 + α1n
(1−2β)/3 (∑n

i Fi (di, si, ti))
β

α2 +∑n
i Ni (ti, tmax)

(2.9)

Rv (di, si, ti, tmax) = α0 + α1n
(1−2β)/3 (∑n

i Vi (di, si, ti))
β

α2 +∑n
i Ni (ti, tmax)

The two MT nonlinearities, Rf and Rv, are identical except for their linear weight-

ing functions (Fi and Vi, respectively). The α0 and α1 parameters represent the

spontaneous and maximum discharge rates of the cell.

The MT nonlinearity consists of an exponentiation and divisive normaliza-

tion, conceptually following prior versions of the cascade model [155, 141]. In the

original Simoncelli & Heeger (1998) cascade model, the MT normalization stage

was implemented by simulating a population of MT neurons. Simulating an en-

tire MT population in the context of fitting the cascade model to data would be

prohibitively computationally intensive. Therefore, we approximated the effects of

tuned normalization in MT with a simple functional form, based on the assumption

that a normalization in MT would be strongest at lowest temporal frequencies.

To understand the rationale for this assumption, let us consider the distribution

of overlap of tuning for a population of MT neurons which fills frequency space.

We will examine this separately for three types of selectivity in the context of the

separable models: component selectivity, frequency-based pattern selectivity, and

velocity-based pattern selectivity. Component neurons are simulated as having

narrow tuning. Therefore, a population of component-selective neurons will have

overlap of tuning only among neurons with adjacent spatiotemporal tuning pref-

erences. As a consequence, the tuning overlap will be distributed evenly across

frequency space.
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Frequency-based pattern selective neurons have broad direction tuning, so their

overlap will occur most strongly in direction. The overlap, however, will be sepa-

rable in spatial and temporal frequency, so for any subpopulation with the same

spatial and temporal frequency tuning at all directions, the overlap will be confined

to a donut-shaped region centered on those spatial and temporal frequencies. Since

we assume the population of frequency-based pattern selective neurons are evenly

distributed all preferred spatial and temporal frequencies, the tuning overlap will

also be evenly distributed.

Finally, velocity-based pattern selective MT neurons will have strong overlap

at zero and low temporal frequencies, at all directions. This is due to the fact

that they are organized along tilted planes which pass through the origin. For any

given direction, neurons tuned to high and low speeds will overlap at zero and low

temporal frequencies.

Intermediate cells under both models will feature the same overlap as their

pattern-selective counterparts, but to a lesser extent. Since the overlap at low

temporal frequencies is the only overlap of tuning across all cell types, it is this

configuration which we used to approximate tuned normalization.

The effects of divisive normalization for both models are approximated by Ni

in equation 2.9. Suppression for the ith grating is modeled by a power function

dependent on temporal frequency. The pool is maximally active at zero temporal

frequency, with a value of 1, and minimally active at the cell’s (experimentally

determined) preferred temporal frequency, tmax, with a value of γ0. The exponent

of the power function is γ1:

Ni (ti, tmax) = (1− γ0)
(

1− ti
tmax

)γ1

+ γ0 (2.10)
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We chose this functional form because it is a simple parameterization that: (1)

ensures there is no suppression at the preferred temporal frequency, (2) can be

completely disabled by setting γ0 = 1, and (3) can be sub-linear, linear, or super-

linear.

The relative gains of responses to grating and plaid are controlled by the

n(1−2β)/3 term in the numerator in equation (2.9), where n is the number of com-

ponents in the stimulus.

Since there was only one component present at any given moment during the

single-component study and all gratings were presented at full contrast, the full

nonlinearity in the model is unconstrained. This is because the exponent in the

MT stage governs how plaid components interact to create pattern tuning. For

single gratings, the MT exponent β forms a degeneracy in the model with all three

separable tuning widths σd, σs, and σt because they are exponents within Fi and

Vi (see equations 2.2, 2.3, 2.4, and 2.8). Therefore, a reduced version of the model

is fit with only a fixed quadratic nonlinearity:

R′f (di, si, ti) = α0 + α1Fi (di, si, ti)2 (2.11)

R′v (di, si, ti) = α0 + α1Vi (di, si, ti)2

2.2.6 Estimating model parameters for individual cells

In total, the model has 9 free parameters for the single-grating study and 10 for

the two-component study. For the former, they are: the direction preference and

bandwidth (µd and σd), spatial frequency preference and bandwidth (µs and σs),

temporal frequency preference, bandwidth, and log-linear transition (µt, σt, and

τ), and the spontaneous and maximum firing rate (α0 and α1). For the latter
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experiment, µs, σs, and µt are unconstrained by the data and are therefore held

fixed at experimentally determined values, but the exponent (β), semi-saturation

constant (α2), and normalization parameters (γ0 and γ1) are free. To avoid model

fits producing spuriously wide temporal frequency tuning, we included temporal

frequency tuning data in the fitting of the two-component dataset. That tempo-

ral frequency tuning data, along with the two-component stimuli which sample

different directions, constrain µd, σd, and σt. In each study, the frequency- and

velocity-based models have the same parameters, and only differ in the coordinate

system of their linear weighting functions, Fi and Vi (see equations (2.1) and (2.6)).

For each cell, we optimized the model parameters by minimizing the negative

log-likelihood (NLL) over the observed data, assuming spike counts arise from a

modulated Poisson model. An additional parameter, σG, describes across-trial

fluctuations in neural response gain [60] and was optimized to the data indepen-

dently from the frequency- and velocity-based models and held constant during

model fitting. We performed the optimization in successive steps, using optimal

values from one step as initialization values for the next. First, we fit τ , then added

the rest of the MT linear weighting parameters, and then in the case of the two-

component experiment, the MT parameters controlling the MT nonlinearity. For

the two-component experiment, we also included data from a temporal frequency

tuning experiment collected immediately prior to constrain the parameter search

to realistic temporal frequency bandwidth values. We used a simplex algorithm

(the Matlab function ‘fmincon’) to do the (constrained) parameter search. In or-

der to avoid overfitting and obtain estimates of parameter stability (i.e., the error

bars in figures 2.6(a,b) and 2.7), we fit the model on 100 bootstraps of the data.

Bootstrapping was done on a per stimulus-condition basis–that is, trials within
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each stimulus condition were sampled with replacement. This was to ensure that

there were no stimulus conditions without data.

2.3 Results

2.3.1 A separable model of direction selectivity in the Fourier domain

Any set of moving images can be completely described as a combination of the

vertical and horizontal spatial frequencies within each image and the temporal

frequencies present across images. The presence of frequencies within these three

dimensions can be measured by applying the Fourier transform. Together, they

constitute the “Fourier domain,” which can alternatively be represented in polar

coordinates as orientation, spatial frequency, and temporal frequency. Thus, the

Fourier domain is a natural way to represent the sets of moving images for which

individual V1 and MT neurons are selective.

A single point in the Fourier domain represents, in the image domain, a drift-

ing sinusoid with a unique orientation, spatial frequency, and temporal frequency

(figure 2.1(a)). V1 neurons tend to be sharply selective for only a small set of

frequencies near the preferred stimulus, so V1 selectivity is best approximated by

a ball in the Fourier domain.

A tilted plane in the Fourier domain, going through the origin, represents in

the image domain a set of dots moving at the same velocity (figure 2.1(b)). Fur-

thermore, any rigidly moving object or texture can be represented by all of its

spatial frequencies projected onto a tilted plane, the slope of which is equal to the

object’s velocity. A previous model of MT computation proposed that MT neu-

rons are specialized for analyzing rigid motion, and therefore are organized along
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just such a plane with slope equal to a preferred velocity (figure 2.1(c), “velocity

model”, in red) [155, 177]. Alternatively, MT direction selectivity could treat spa-

tial and temporal frequency independently, leading to organization along a plane

with constant temporal frequency (figure 2.1(c), “frequency model”, in blue).

To examine MT receptive field organization in the Fourier domain, we fit two

modified versions of a previously published model of MT direction selectivity to the

responses of individual neurons. Both models have the same structure: they have

two stages, each with a linear weighting followed by a nonlinearity (figure 2.1(d)).

The first (V1) stage consists of narrowly-tuned direction-selective complex cells,

simulated with a linear weighting of a narrow band of frequencies, followed by a

squaring point nonlinearity. The second (MT) stage also contains linear weight-

ing on its V1 inputs, followed by squaring. This second linear weighting in the

MT stage represents the computation crucial to computing pattern motion. It is

parameterized by the separable product of three tuning curves. The first two, di-

rection and spatial frequency tuning, are common to both models. In the frequency

model, the third separable tuning function is temporal frequency tuning, indepen-

dent of the other two dimensions. In the velocity model, temporal frequency tuning

co-varies with spatial frequency tuning such that their ratio is held constant at the

preferred velocity of the neuron. This difference in temporal frequency tuning

parameterization is the only difference between the two models.
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Figure 2.1 (previous page): Frequency and velocity model predictions in Fourier
space.

(a) The Fourier domain is a three dimensional representation of moving images,
with two spatial frequency axes and one temporal frequency axis. It can alterna-
tively be expressed in terms of orientation, spatial frequency, and temporal fre-
quency. A single point in the Fourier domain represents a single, unique drifting
grating. (b) A plane in the Fourier domain corresponds to a set of dots drifting
together with identical direction and speed. (c) Two possible hypotheses for MT
selectivity in the Fourier domain. The velocity-based model (red) predicts spa-
tial and temporal frequency tuning are jointly determined along a tilted, preferred
velocity plane. The frequency-based model (blue) predicts spatial and temporal
frequency tuning are independent. (d) The separable model. A stimulus is passed
through a narrowly tuned V1 linear weighting, then squared. V1 output is then
passed to the MT neuron, which applies either a frequency- or velocity-based linear
weighting, then squares the output. Finally, spikes are generated by a modulated
Poisson process. (e-g) Stimuli for three “classical” tuning experiments (light gray
lines) containing the optimal stimulus (light gray ball) and suboptimal stimuli
(dark gray): constant-frequency direction and constant-velocity direction tuning
(e), optimal and low-temporal frequency spatial frequency tuning (f), and optimal
and low-spatial frequency temporal frequency tuning (g). (h-j) The two models
are matched to give identical predictions for “classical” stimuli (light gray). The
frequency model (blue) has narrower constant-velocity direction tuning (h) and
unchanging spatial (i) and temporal frequency (j) tuning preferences. The peaks
of the velocity model’s (red) spatial and temporal frequency tuning for suboptimal
stimuli are shifted away from the peak tuning for optimal stimuli. Specifically,
the peaks will be lower than optimal when tuning is measured at frequencies lower
than optimal ((i) and (j)), and higher for measurements done at higher frequencies.

2.3.2 Single gratings do not differentiate model predictions

To distinguish the two different models, we presented a sequence of full contrast

sinusoidal gratings at different orientations and spatial and temporal frequencies

designed to sample the Fourier domain as efficiently and meaningfully as possible.

The sampling was tailored to each individual neuron based on its tuning preferences

and consisted of three tuning experiments containing the optimal grating, as well
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as twelve suboptimal tuning experiments chosen to maximally distinguish the two

models (see methods for details).

The two example models (figure 2.1(c)) have the same “classical” tuning prop-

erties: direction, spatial frequency, and temporal frequency tuning stimuli (stimuli

shown in figure 2.1(e-g), light gray line) centered around the cell’s preferred fre-

quency (light gray ball) produce the same responses (figure 2.1(h-j), gray). Sub-

optimal tuning stimuli (figure 2.1(e-g), dark gray) yield quite different predictions

(red and blue, figure 2.1(h-j)). Constant velocity direction tuning (left) is narrower

for the frequency model (blue). Spatial and temporal frequency tuning preferences

do not change between the optimal and suboptimal tuning experiments. The ve-

locity model (red) predicts that the preferred spatial frequency, indicated by the

peak of the tuning curve, increases when stimuli are presented at a higher temporal

frequency (figure 2.1(i)), compared to the preference when measured at the opti-

mal temporal frequency (gray). This same increase in tuning preference holds true

when evaluating temporal frequency tuning evaluated at a higher than optimal

spatial frequency (figure 2.1(j)).

We fit the frequency and velocity models to data from all 17 tuning experi-

ments simultaneously. We used the optimized models to predict responses to each

trial and generated predicted tuning curves for each tuning experiment. Figure

2.2(a-d) shows tuning curves for two example MT component cells 2.2(a, b) and

two MT pattern cells 2.2(c, d). For clarity, only four of the 17 tuning curves are

shown, corresponding to the four which exhibited the greatest difference between

the frequency and velocity model predictions on average across the population.

Overall, both models can account for the tuning curve shapes and, for most stim-

ulus conditions, changes in relative response gain.
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Figure 2.2: Comparison of actual and model-predicted responses to gratings for
four example cells.
(a,b) Two example component cells, one better fit by the frequency model (a) and
one better fit by the velocity model (b). (c,d) Two example pattern cells, one
better fit by the frequency model (c) and one better fit by the velocity model (d).
Measured spike rate mean and s.e.m. are shown in black. Velocity model predicted
spike rates are shown in red, frequency model predictions in blue. Means are
indicated by the dark lines, s.e.m. by the lighter shaded areas. In the rightmost
column, each point in the scatter plots represents how well the frequency and
velocity models predict the mean firing rate for a given stimulus condition (NLLF
and NLLV , respectively). Goodness of fit is expressed in terms of log likelihood
under the modulated Poisson process, where values closer to zero indicate a better
fit.
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Each point in the scatter plots in figure 2.2 corresponds to the goodness of fit

of the two models for a single stimulus condition from all 17 tuning experiments.

For example, tuning peaks in figure 2.2(a) appear to remain constant, consistent

with the frequency model prediction. In figure 2.2(b) and 2.2(d), tuning peaks

shift in a manner consistent with the velocity prediction—peaks are higher when

measured at higher frequencies (second and third columns). The peaks shift for

some, but not all tuning experiments in figure 2.2(c). This range of behavior was

observed across the population. In general, V1 cells were slightly better fit by

the frequency model (the mean difference in negative log-likelihoods between the

velocity and frequency models was −0.08, P = 0.016 Wilcoxon signed rank test).

Some MT neurons were clearly better fit by one model or the other, but overall,

neither model was significantly better.

Neither model consistently performed better than the other, despite the fact

that spatiotemporal frequency space was sampled with single gratings that should

have distinguished the two separable models. This was a surprising finding be-

cause the tuning of speed to gratings had previously been reported [119, 152, 124,

125], and the responses overall are well fit by a simple model. This led us to won-

der whether examining the subset of gratings presented at the preferred direction

would reveal velocity separability. We simply asked whether temporal frequency

preference did or did not change when changing grating spatial frequency (figure

2.3a). Normalizing spatial and temporal frequency to the optimal spatiotemporal

frequency for each neuron, we fit lines, constrained to go through that optimal

value, to the measured preferences at non-optimal spatial frequencies. Most MT

neurons (red) had a non-zero slope (0.36 ± 0.03 s.e.m., red shaded area), con-

sistent with the predictions of the velocity-based model (figure 2.3c). However,
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V1 neurons (blue) had slopes close to zero (0.06± 0.04 s.e.m., blue shaded area),

consistent with the frequency-based model. Performing the same analysis for the

spatial frequency preferences as a function of stimulus temporal frequency (figure

2.3b,d) showed even higher slopes in MT (0.50 ± 0.07 s.e.m.) and more variable,

but similar on average, slopes in V1 (−0.02± 0.26 s.e.m.).

When confining the analysis to stimuli at the preferred direction, MT neu-

rons appear to be velocity-based and V1 neurons appear to be frequency-based.

When including stimuli at non-preferred directions, neither model better explains

the data in either area. We wondered whether single grating stimuli adequately

constrain the models. The primary feature that distinguishes direction selectivity

between V1 and MT is selectivity to pattern motion, which cannot be fully as-

sessed using single gratings. In other words, single gratings do not fully exercise

MT neurons’ nonlinearities. To address this, we designed a second set of stimuli

to characterize pattern motion selectivity in both constant frequency and constant

velocity coordinates.

2.3.3 Compound stimuli reveal velocity-based organization in MT

We ran a second study, in which gratings and 120◦ plaids were presented at a

given neuron’s optimal spatial frequency and its optimal temporal frequency or

optimal velocity (figure 2.4(a,b)). These stimuli can be equivalently described

as gratings and 120◦ plaids drifting either along the circular mean component

direction orthogonal to their orientation(s) (constant frequency, figure 2.4(a)) or

in the preferred direction of the cell (constant velocity, figure 2.4(b)).

The two models required additional nonlinear elements to be able to simulta-

neously account for MT neural responses to all four stimulus conditions. First,
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Figure 2.3: For single gratings moving in the optimal direction, V1 is frequency-
based and MT is velocity-based.
(a) Data from temporal frequency tuning curves at optimal and non-optimal spa-
tial frequencies. The abscissa represent the log10 ratio of the spatial frequencies
of the TF tuning curves and the preferred spatial frequency. The ordinate repre-
sents the best fit temporal frequency for each tuning curve. Each point is for a
suboptimal tuning curve for one cell. Each line is the best fit line to the data, in-
cluding the optimal spatial and temporal frequency (the origin), to which all other
points are aligned. Lines and points are shaded by the pattern index correspond-
ing to each individual cell. Red corresponds to MT neurons, with darker shades
corresponding to higher pattern index, and blue corresponds to V1 neurons, with
darker shades corresponding to lower pattern index. (b) Same as (a), but based on
spatial frequency tuning curves at optimal and suboptimal temporal frequencies.
(c) Same as (a), but data and best fit lines are aligned to the offsets of the best
fit lines. (d) Same as (c), but based on spatial frequency tuning curves at optimal
and suboptimal temporal frequencies. (e) Histograms of the slopes of the best fit
lines in (a) and (c), for V1 (blue) and MT (red). (f) Same as (e), but based on
spatial frequency tuning curves at optimal and suboptimal temporal frequencies.
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Figure 2.4: Two-component “planar plaid” experiment design.
Constant-velocity and constant-frequency direction tuning experiments were done
with gratings (see figure 2.1(e)) and plaids (a,b). Constant-velocity plaids (a) were
constructed by superimposing two gratings 120◦ apart and drifting at a temporal
frequency determined by the optimal velocity plane. Constant-frequency plaids (b)
were two gratings 120◦ apart superimposed and drifting at the optimal temporal
frequency. The example plaids shown contain the same orientations, but have
different perceived drift directions. (c) For the two models matched in constant-
frequency plaid direction tuning (light gray), the velocity model (red) predicts a
high response rate to all constant-velocity plaids. The frequency model (blue) is
more narrowly tuned. (d) Constant-frequency plaids drift (gray arrows) in the
direction of the circular mean of the component orientations. Constant-velocity
plaids drift (black arrows) in the preferred direction of the neuron.
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the exponent on the responses of MT linear weights became a free parameter.

An additional divisive suppression step followed, which included both stimulus-

independent and temporal frequency-dependent suppression terms (see Methods).

The spatial frequency preference and bandwidth and temporal frequency prefer-

ence parameters were unconstrained by this data, and therefore fixed to values

determined in tuning measurements done prior. In total, there was one additional

free parameter fit compared to the previous dataset.

Qualitatively, the models predict that direction tuning bandwidth should be

wider when the coordinate system of the model matches that of the stimuli. Figure

A.1 shows measured and predicted responses for four example cells. Two features

of the data stand out. First, constant frequency and constant velocity direction

tuning curves to gratings are nearly indistinguishable for all cells. Second, the

pattern selective MT neuron (figure A.1(d)) exhibits much wider direction tuning

bandwidth for constant velocity plaids as opposed to constant frequency plaids,

while the other cells show more similar tuning. For all cells, both models capture

grating data well. However, the frequency model cannot account for the pattern

selective neuron’s responses to both types of plaids simultaneously (fig A.1(d)).

The best it can do is pick a compromise direction tuning bandwidth that is too

wide for constant frequency plaids and too narrow for constant velocity plaids. The

velocity model, on the other hand, is able to account for all the data simultaneously,

including the different plaid tuning bandwidths. This pattern cell is the only one

of the four example cells that has large differences in the frequency- and velocity-

based model predictions. It is clearly better fit by the velocity model, as can be

seen in both the predicted tuning curves and scatter plots.
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Figure 2.5: Comparison of actual and model-predicted responses to gratings and
plaids for four example cells.
Neurons are ordered, from top to bottom, with increasing pattern index: (a) an
example V1 component-selective neuron, (b) an MT component neuron, (c) an
MT intermediate neuron, and (d) an MT pattern-selective neuron. Scatter plots
of goodness of fit per stimulus condition. See figure 2.2 details. Renderings of
the frequency and velocity model linear weightings for each example cell (right-
most column). Differences in between the two models become more apparent with
increasing pattern selectivity.
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2.3.4 Model comparison across the population

In the first study, both models described responses to single gratings well. For

most cells in the population, single gratings yielded spatial and temporal tuning

preferences that changed subtly across experiments and in ways that were not

exclusively consistent with either model. We assessed overall fit quality on a cell-

by-cell basis by normalizing the log likelihoods of the models to null and oracle

models. The null model assumes the cell has two possible response rates: one when

a stimulus is present and another when there is no stimulus. These are fixed to the

measured-mean spontaneous and stimulus-driven response rates, respectively. The

oracle model serves as an upper bound for the models’ performance. It is a lookup

table that uses the measured mean responses to each stimulus condition to predict

the neuron’s response to any future repeat of that stimulus. “Velocity superiority”

is the difference of the normalized log likelihoods of the velocity-based model and

the frequency-based model (figure 2.6(a,b)). For the single grating study, there

is no significant correlation between the difference of the two models’ normalized

log likelihoods for each cell and their pattern indices (figure 2.6(a)), for all cells

(Pearson’s r = 0.02, P = 0.91) or MT alone (r = 0.03, P = 0.85). There is,

however, a significant negative correlation for V1 (r = −0.76, P = 0.004). The

frequency-based model, on average, fit V1 data better (P = 0.016 Wilcoxon signed

rank test on “velocity superiority”). Neither model was better for MT neurons

(P = 0.16).

This trend is stable across the population, as shown by the running mean lines

(dark gray for MT, light gray for V1). The frequency-based model has a slight

advantage for V1 cells (62.4±5.6% of tuning curves were better fit by the frequency
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model), but not MT (53.4± 2.6% of tuning curves were better fit by the frequency

model). There was no relationship between pattern index and the number of tuning

curves per cell better fit by one model or the other (P = 0.57, Student’s t-test).

The population trend for predictions to the compound stimulus dataset is quite

different (figure 2.6(b)). First, there is little difference between the two models for

component cells, so neither model fits better. As the tuning curves (figure A.1, left

four columns) linear weighting renderings illustrate (figure A.1, rightmost column),

the models cannot be distinguished by narrowly tuned cells. As tuning bandwidth

increases in the intermediate cells, the models begin to diverge slightly, but there

is still no significant difference between the two models’ predictions (P = 0.76,

Wilcoxon signed rank test). Nearly every pattern cell, however, is better fit by the

velocity model (P < 0.00001, Wilcoxon signed rank test).

As a further evaluation of the models’ ability to account for the responses

to compound stimuli, we asked how well they could predict each cell’s pattern

selectivity. The velocity model accounts for the full range of pattern selectivity

across the population (figure 2.6(c), Pearson’s r = 0.80). The frequency model,

however, fails to produce any cells with pattern tuning (figure 2.6(d), Pearson’s r =

0.70), due to the compromises it must make when fitting both constant frequency

and constant velocity plaid responses simultaneously.

How does the velocity-separable model account for pattern selectivity? First,

direction tuning bandwidth is strongly correlated with pattern index (Pearson’s

r = 0.75, figure 2.7(a)) and the exponent in the nonlinearity (Pearson’s r = 0.71,

figure 2.7(b)). There is also a weak correlation between pattern index and the

exponent in the temporal frequency-dependent suppression term (Pearson’s r =

0.33, P = 0.0001, figure 2.7(c)).
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Figure 2.6: Compound stimuli reveal velocity-based organization for pattern cells.
(a,b) Velocity superiority, or the difference of normalized log likelihoods between
the velocity and frequency models, per cell as a function of pattern index. V1 cells
(n = 12) appear as open circles, MT closed (n = 39). Example cells featured in fig-
ures 2.2 and A.1 are highlighted in gray. Light and dark lines indicate the running
mean, with a window of ±1/3 of cells in each population. Error bars indicate ±1
standard deviation, calculated from model fits to bootstrapped data. On average,
neither model better explains the single grating MT data (a) for any class of cells.
The frequency model explains the V1 single grating data better (n = 20). Pattern
cell responses to the compound stimulus dataset (b) are clearly better explained
by the velocity model (n = 111). Observed and predicted pattern indices for each
cell, derived from the compound stimulus dataset, for the velocity model (c) and
frequency model (d). The velocity model can account for pattern index across
all cell types, whereas the frequency model fails to predict the pattern selectivity
(Pearson’s r = −0.01, P = 0.97) of neurons classified as pattern-selective based
on measured repsonses. Error bars indicate ±1 standard error, generated from
pattern indices calculated by bootstrapping measured and predicted spike trains.
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Figure 2.7: Relationship between velocity-separable model parameters and pattern
index.
Pattern index is strongly correlated with direction tuning bandwidth (a) and the
log of the MT nonlinearity exponent (b). (c) Pattern index is weakly correlated
with the log of the exponent in the temporal frequency-dependent suppression
term.

Taken together, the two datasets reveal important insights about MT compu-

tation. First, simple stimuli reveal a velocity-based organization in spatial and

temporal frequency, but are not sufficient to reveal the nonlinear behaviors that

distinguish direction selectivity observed in MT from that observed in V1. Second,

compound stimuli reveal that MT receptive fields are organized along a preferred

velocity plane.

2.4 Discussion

The representation of motion changes as one moves up the hierarchy of visual areas.

V1 complex cells are narrowly tuned detectors of moving edges. MT neurons are

jointly selective for the direction and speed of moving complex visual patterns. This

makes them ideal detectors of the velocity of rigidly moving objects, while being

invariant to the texture or shape of the object. A previous theoretical model [155]

predicted that this conversion from independent to joint selectivity is the crucial

computation that gives rise to motion direction selectivity and pattern invariance

52



in MT. For the first time, we directly verified this prediction by fitting modified

versions of that model to V1 and MT responses to drifting gratings and plaids. The

models were parameterized in the same manner, with the only difference being that

one represented direction and speed jointly, while the other represented direction

and speed independently.

Here we have shown that compound stimuli (such as plaids) are necessary to

reveal the structure of MT receptive fields. By presenting plaids and gratings on

frequency- and velocity-based rings (figure 2.4), pattern-selective neural responses

are unambiguously velocity-based (figure 2.6). Due to their narrower tuning, it

is not surprising that component and intermediate cells are not revealed to be

purely velocity-based, since the predicted receptive field structures of the velocity-

and frequency-based models become increasingly similar as tuning narrows. It

was initially puzzling, however, that pattern cells showed no change in direction

tuning bandwidth between frequency- and velocity-based gratings (figure A.1)—an

apparent violation of the assumptions of both the frequency- and velocity-based

models (figure 2.1). This led us to the conclusion that single gratings alone do

not constrain the nonlinear behavior of MT neurons in the way that plaids do.

Incorporating plaid stimuli allowed us to fit the model nonlinearity. We found its

exponent to be strongly correlated with pattern index (figure 2.7).

A higher exponent, followed by normalization, allows for shallower tuning to

single components and sharpened tuning for conjunctions of components. In the

case of pattern cells, these conjunctions are components consistent with a preferred

velocity. This could explain why pattern cell responses to single gratings, taken in

their entirety, do not favor either model (figures 2.2 and 2.6). Their selectivity to

single gratings appears more difficult to precisely resolve in the Fourier domain.
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Limiting the analysis to the tuning curves measured at the preferred direction (fig-

ure 2.3), however, reveals a velocity-based representation for the population of MT

neurons. This apparent inconsistency in predicted receptive field structure could

arise if the receptive fields are not perfectly separable in either frequency-based or

velocity-based coordinates—one of the simplifying assumptions we made to be able

to fit these models. Alternatively, the inconsistency could be the result of the MT

neuron selectively weighting a limited set of inputs that are strongly overlapping

on a preferred velocity plane without perfectly aligning to it. As a result, MT

receptive fields could display a diversity of volume shapes in the Fourier domain

when probed with single gratings; when multiple gratings are present, however, the

nonlinearity amplifies overlapping inputs, which are only on the preferred velocity

plane.

2.4.1 Relationship to previous models

The separable models we developed and tested are modified from previous mod-

els [155, 141]. The original cascade model [155], while not directly fit to data

from a population of single unit recordings, attempted to comprehensively simu-

late MT computation. The model simulated an entire population of V1 neurons

that linearly filtered incoming images and passed their outputs through rectifying

nonlinearities and divisive normalization. The second (MT) stage of the model

linearly weighted these incoming signals from V1 (along a plane) and again passed

the responses through a rectifying nonlinearity and divisive normalization. An

entire population of MT neurons was simulated for the final normalization step.

In order to fit this model to data, it was not feasible to simulate entire popu-

lations of V1 and MT neurons, so Rust et al. (2006) simplified the cascade model
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to focus on direction selectivity and pattern integration. First, stimuli were con-

fined to a frequency-based ring. Likewise, the model itself was effectively one-

dimensional—it focused solely on direction tuning to compound stimuli. The V1

stage was simplified to evaluate tuning based on a population of direction tun-

ing functions, the responses of which could be further modulated by tuned and

untuned normalization. The MT stage then linearly weighted the V1 inputs and

passed them through a nonlinearity. Rust et al. (2006) showed that opponent

suppression and tuned normalization shaped pattern selectivity.

We sought to characterize MT receptive field structure in all three dimensions

of the Fourier domain, but in order to do so, we had to further streamline the

model. The first study contained stimuli sampling all three dimensions, while the

second had stimuli varying in just direction and temporal frequency. Since we pre-

sented only gratings or 120◦ plaids, and kept all grating components at a constant

contrast, it was not necessary to simulate V1 tuned normalization. Therefore,

our model did not explicitly simulate the V1 stage; rather, it evaluated tuning

directly based on the separable product of tuning curves along three dimensions

in the Fourier domain. Since all three tuning curves are exponential functions,

the separable tuning volume and exponent approximately accounts for both the

linear weighting stages and exponential nonlinearities of V1 and MT. Temporal

frequency-dependent divisive suppression was a final addition to the model neces-

sary to simultaneously account for all direction tuning bandwidths in the second

study. This type of suppression is an approximation of the effects of MT normal-

ization (see methods for a detailed justificcation). Suppression for low temporal

frequencies has been observed previously [99].

More recent studies [112, 78] have explored MT selectivity in all three dimen-
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sions of the Fourier domain. Nishimoto & Gallant (2011) used “motion-enhanced”

natural movies to visualize 3D spectral receptive fields for the first time. They fit

a model in which stimuli were linearly filtered and passed through a compressive

nonlinearity and divisive normalization. They visualized the MT neuron’s linear

weights on those outputs, showing excitation organized along a partial ring on

the a plane that avoided low temporal frequencies. Suppression also appeared as

partial rings off the preferred velocity plane. Inagaki et al. (2016) performed lin-

ear regression directly on the frequences of the stimulus, which was comprised of

multiple superimposed gratings, each lasting for 237ms, beginning at 39ms offsets.

They observed 3D partial ring receptive fields in two pattern cells and observed

diffuse suppression off the preferred velocity plane. These provide indirect support

for our use of suppression at low temporal frequencies.

Both studies used stimuli that make interpretation of the receptive field struc-

tures more difficult. The spectral content of “motion-enhanced” natural movies

may not follow a Gaussian distribution, meaning a regression-based analysis will

yield biased results. Neither of these studies directly confirmed that their models

could produce pattern tuning, making the connection between the receptive field

structure they observed and pattern selectivity harder to interpret. Our model

is able to reproduce pattern tuning in both frequency- and velocity-based coor-

dinates, while making slightly different predictions of receptive field structure.

Pattern cells have excitation on a full ring on the preferred velocity plane, with

partially overlapping suppression at low temporal frequencies.

In earlier attempts to fit a version of the cascade model to our data, we tried

different configurations of the model and its free parameters. We found a par-

tial excitatory ring with subtractive suppression is not sufficient to simultaneously
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account for both the narrow and the wide tuning bandwidths we observed in re-

sponse to constant frequency and velocity plaids, respectively. Incorporating a

V1 normalization stage added more complexity but with very little gain in model

performance.

We also tried models which included subtractive suppression, defined as a sep-

arable volume in 3D Fourier space. In one instance, the volume’s shape was con-

strained in the same manner as the excitatory volume. In another instantiation of

the model with subtractive suppression, the shape of suppression was constrained

to be an exact copy of the excitatory volume, but rotated 180circ. In that case, only

the relative gain of excitation and suppression was fit. For both model versions,

subtractive suppression improved fits of both models to constant frequency plaids,

but was not sufficient for either model to explain the constant velocity plaid data.

Fitting the shape of a subtractive volume was also poorly constrained by the data.

The model we presented here is a minimal, parameterized model that, when used

with compound stimuli, exposes the core computation of MT direction selectivity.

We have shown that MT neurons perform a transformation on the stimulus rep-

resentation from local oriented edge motion in V1 to the rigid motion of patterned

objects. This change of basis represents a shift from sharper simpler selectivity to

a more complex selectivity that is also more invariant. In general, as one moves up

the hierarchy of a sensory system, invariance and complexity of selectivity increases

[139]. How does the separable model account for this? It is constructed based on

the idea of cascaded computation: the sequential repetition of similar computa-

tional structures that extract different stimulus features in each brain area. Our

separable model implements this in the form of a linear-nonlinear (LN) cascade,

in which inputs to each stage undergo a linear coordinate transformation, followed
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by a nonlinear rescaling of the input distribution in the new coordinates. Both the

linear and nonlinear components selectively emphasize and discard information.

In the case of our separable model, the MT linear weights selectively emphasize

any stimuli that have at least one component roughly consistent with a preferred

velocity plane; the nonlinearity discards compound stimuli that do not have all

components on the plane.

The cascaded LN framework is a powerful tool for testing targeted hypotheses

of computation in individual sensory areas. In order to most effectively explore

the space of possible models, stimuli must be complex enough to explore both the

selectivity and invariance of the area in question, but simple enough to quantify

and interpret without additional confounds or biases.
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Chapter 3

A non-parametric model of MT
selectivity

3.1 Introduction

We previously showed that MT receptive fields are organized along a preferred

velocity plane in 3D frequency space. This conclusion depended on the assump-

tion that MT receptive fields are separable along three frequency dimensions. We

compared two different hypotheses: that the receptive fields are separable along

either the temporal frequency or velocity axis.

Our stimuli were chosen to distinguish these two specific types of receptive field

organization. Probing the receptive fields with a limited set of single gratings does

reveal velocity separability (figure 2.3 and [124, 125]). However, model fits using

the entire set of single gratings in our stimulus set did not reveal any distinction

between the two separable models (figure 2.6) for any class of MT cells. This was

despite the fact that, for any given neuron, each separable model could fit nearly

all tuning curves well (figure 2.2).

This suggests that MT receptive fields, when probed with single gratings, are
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not strictly separable along either of the coordinate systems tested. While present-

ing plaids revealed velocity separability in pattern-selective neurons, many other

neurons were not distinguished by either model (figure 2.6). This could be a nat-

ural consequence of the fact the model predictions converge as tuning becomes

narrower, or it could be another indication that the receptive fields are not per-

fectly separable.

Another factor that could influence receptive field structure is the role of sup-

pression in the receptive field. Suppression in MT is poorly understood, and it is

not clear what the ideal configuration of suppression should be in 3D frequency

space.

We wondered, if allowed to take any arbitrary shape, what would MT receptive

fields look like? Will they be organized along a plane? What form will suppression

take?

Ideally, one would present every possible combination of gratings at all di-

rections and spatial and temporal frequencies. Since single unit recording time

is limited, typically to approximately one hour, there isn’t enough time to fully

sample all frequencies. Because stimuli in so much of the 3D space do not excite

the neuron, it is difficult to record enough spikes during the experiment to gain

sufficient statistical power to describe the neuron’s selectivity.

To overcome this obstacle, others have used stimuli rich in frequency content,

including natural movies [112] or hyperplaid stimuli limited to a sparsely sampled

lattice [78], to characterize MT receptive fields in 3D frequency space. Both studies

employing these stimuli had weaknesses, including a reliance on regularization

to smooth recovered receptive fields and a dearth of recorded pattern-selective

neurons. We sought to improve upon these methods to gain a more accurate
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description of excitatory and suppressive receptive field structure in 3D and link

3D structure more directly to pattern selectivity.

We presented hyperplaid stimuli that were tailored to each cell recorded from

and consisted of combinations of gratings continuously sampling 3D frequency

space. To more efficiently sample the space and maximize the dynamic range of

neural response, we concentrated the stimuli so that at least half of the hyperplaid

components occurred near the neuron’s preferred stimulus frequencies.

We show that single grating tuning is well captured by both a STA and a

nonlinear model. The nonlinear model improves fit quality and gives cleaner weight

estimates. Suppression is weaker in the nonlinear fits. Nonlinear neural behavior,

such as pattern selectivity, is not well described by either the STA or the nonlinear

model when trained on hyperplaids. Training the nonlinear model to the “planar

plaid” dataset from the previous chapter, however, captures pattern selectivity

well, but not responses to hyperplaid stimuli.

3.2 Methods

3.2.1 Recording procedures

We recorded from two anesthetized and paralyzed adult male macaque monkeys

(M. fascicularis), as well as the same two awake and actively fixating adult male

macaques (one M. mulatta and one M. nemestrina) referenced in the previous

chapter. We used the same standard procedures for surgical preparation and single-

unit recording as described in the previous chapter. The behavioral paradigm was

the same, with one exception; stimuli lasted for 133ms in both preparations, rather

than the 1,000ms and 250ms used in the anesthetized and awake preparations,
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respectively. This was done to maximize the number of spatiotemporal frequencies

we could present in a single experiment and is close to the 160ms duration of the

hyperplaid stimulus used by Rust et al. (2006).

3.2.2 Visual stimulation

For each isolated unit, we presented vignetted sinusoidal grating stimuli to map

each cell’s receptive field and determine its preferred size. We then characterized

neuronal tuning preferences and bandwidths for direction, spatial frequency, and

drift rate. Finally, “hyperplaid” stimuli were presented in a window of the preferred

size.

Each hyperplaid consisted of up to four simultaneous and superimposed sinu-

soidal gratings. The spatiotemporal frequency of each grating was drawn randomly

from within a hollow cylinder in 3D frequency space. The cylinder spanned all di-

rections, was bounded in spatial frequency between 0.1 and 10 cycles/degree, and

was bounded in temporal frequency between 0.1 and 50 cycles/sec.

The stimuli were distributed unevenly so that preferred spatiotemporal fre-

quencies would occur more frequently to ensure that the neuron would maintain a

higher level of excitation above baseline than would be expected if it was respond-

ing to truly random stimuli. Up to two gratings were drawn from a wedge-shaped

“excitatory” region near the preferred velocity plane, as determined from the single-

grating “basic characterization” experiments performed immediately prior (figure

3.1(a)). The directions, spatial frequencies, and temporal frequencies at which the

neural responses reached half the maximum response served as the bounds of the

excitatory wedge. For neurons with the half-maximum response occurring between

single grating stimulus samples, bound values were either linearly interpolated from
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raw tuning curves or extrapolated using descriptive fits to the data (a von Mises

function for direction tuning, a log-Gaussian for spatial frequency, and a difference

of exponentials for temporal frequency tuning [66]). The other two gratings were

drawn from the remaining “inhibitory” region inside the hollow cylinder exclud-

ing the excitatory wedge (figure 3.1(b)). Within the bounds of these two regions,

samples were drawn uniformly across direction and uniformly on a base-2 log scale

across spatial frequency and speed (figure 3.1(c-e)).

The contrast for each grating component was assigned pseudo-randomly, ac-

cording to the following criteria. First, the maximum summed contrast for the

excitatory and inhibitory gratings was chosen. The total excitatory contrast had

a uniform probability between 15% and 65%. The total inhibitory contrast had a

uniform probability between 15% and the total excitatory contrast. This ensured

that the total contrast would not exceed 100%. Next, the total excitatory contrast

was divided among the two excitatory gratings. The first grating could take, with

uniform probability, zero contrast, the total excitatory contrast, or any fraction

inbetween of the total excitatory contrast. The second grating’s contrast was set

to the remainder of the total excitatory contrast. The same process was used

to assign the inhibitory grating contrasts. Lastly, to vary the number of compo-

nents present during any given trial, some individual components’ contrasts were

randomly forced to be zero. This resulted in lower contrast stimuli with fewer com-

ponents, or blanks. The following criteria determined how many components were

shown: (1) there was a 10% chance neither excitatory component appeared, a 50%

chance one excitatory contrast appeared, and a 40% chance that both appeared,

and (2) a 33% chance that neither inhibitory contrasts appeared, a 22% chance

that one inhibitory contrast appeared, and a 45% chance that both appeared. The
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distributions of total hyperplaid contrast and the contrasts for each component are

shown in figure 3.1(f-j).
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Figure 3.1 (previous page): The hyperplaid stimulus.

In (a) and (b), each point represents a single spatiotemporal frequency that can
make up one of the (up to four) possible components in the hyperplaid stimu-
lus. (a) Randomly sampling 10,000 hyperplaid stimuli and plotting the excitatory
component spatiotemporal frequencies reveal the “excitatory wedge.” The wedge
is bounded by the directions, spatial frequencies, and speeds at which neural re-
sponses were at at least half their maximum response in preceding single grating
experiments. (b) The “inhibitory” components are in a hollow cylinder with the
excitatory wedge removed. (c-e) The distribution of directions (c), spatial fre-
quencies (d), and temporal frequencies (e) for all excitatory (red) and inhibitory
components (blue). (f) The distribution of the summed contrast of all components
in a given hyperplaid. (g-j) The distributions of contrast for the four individual
components in the hyperplaids.

We ran the stimulus with the goal of presenting 10,000 hyperplaid stimuli

(133ms each in duration) for each neuron; however, recording isolation did not

always permit this. Due to the difference in stimulus presentation timing between

the anesthetized and awake preparations, 10,000 hyperplaid stimulus conditions

corresponded to 22 minutes of anesthetized recording time and roughly 40 minutes

of awake recording time.

3.2.3 Analysis of neural responses

Spikes counted in a 133ms window, as well as latency and pattern index, were

calculated in the same way as described in the previous chapter. We also ran

the velocity- and frequency-separable “planar plaid” experiment presented in the

previous chapter on a subset of the neurons presented in this chapter (n = 43 out

of 135). These data are a subset of the dataset presented in the previous chapter.

The basic characterization data for these neurons are also the same.
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3.2.4 The V1-MT cascade model

The V1 stage

We fit a cascade model of MT motion computation similar in architecture to the

one presented in the previous chapter, but with crucial differences. Because the

hyperplaid stimuli had instances where components with similar orientations ap-

peared simultaneously, a V1 stage had to be explicitly simulated to account for

effects of normalization in V1. Each V1 complex neuron was simulated as the

squared sum of raised cosine filters in phase quadrature. The cosine filter response

function f is

f (x | x̄, x̂) = 1[x̄−x̂,x̄+x̂](x) cos
(
π (x− x̄)

2x̂

)
(3.1)

where x̄ and x̂ are the filter preference and bandwidth, respectively, and 1{−x̂,x̂}(x)

is the indicator function, taking a value of 1 when x is in the interval [x̄− x̂, x̄+ x̂],

and 0 elsewhere. This form of cosine filter allowed for nearly perfect tiling of

frequency space.

In order to have 3D spectrotemporal selectivity, the filter response of the vth

V1 neuron to the ith component, Svi, was the separable product of cosine filters,

modulated by each component’s stimulus contrast (ci), direction (di), and spatial

and temporal frequency (si and ti, respectively):

Svi (ci, di, si, ti) = cif
(
di | d̄v, d̂

)
f (log2(si) | log2(s̄v), ŝ) f

(
z(ti) | z(t̄v), t̂

)
(3.2)

where the V1 neurons are arranged in a cylindrical lattice at 16 directions, 9 spatial

frequencies, and 7 temporal frequencies. They are distributed such that they tile
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the frequency space, linearly in direction, and on a log2 scale in spatial frequency

(from 0.1 to 10cpd). z(x) is a warping function that allows the temporal frequency

response of the V1 population to perfectly tile [55] from 0 to 50cps by smoothly

transitioning from linear at 0 to logarithmic at higher values:

z (x) = 15 sgn(x) (log2(|x|+ 1)) (3.3)

As a consequence, the original temporal frequency preferences (t̄?), uniformly dis-

tributed on a linear scale before warping, will effectively be at the inverse of the

warping function applied to those values:

t̄ = z−1
(
t̄?
)

= sgn(t̄?)
(
2sgn(t̄?) t̄?/15 − 1

)
(3.4)

The tuning amplitudes of all filters are equal along any given dimension—the result

being that they always sum to 1 at any given part of the frequency space (i.e., they

tile the space evenly).

In order to create phase-invariant complex cell responses from phase-dependent

raised cosine filters, we evaluated four filters offset in phase by 90◦ (in quadrature)

at every frequency, for every frame of the stimulus. For the T th frame, if the ith

component has phase pi, the qth filter response is:

Fviq (ci, di, si, ti, pi, T ) = cos (pi + T + qπ/2)Svi (ci, di, si, ti) (3.5)

These filters sum the responses of each component, are half-squared, and then
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summed over the filter phase, which gives the instantaneous complex cell response:

Cv (c, d, s, t, p, T ) =
∑
q

⌊∑
i

Fviq (ci, di, si, ti, pi, T )
⌋2

(3.6)

where b·c = max(·, 0). Finally, the complex cells accumulate their responses over

all NT frames during the whole trial (133ms) and undergo untuned contrast nor-

malization:

Xv (c, d, s, t, p, T |σ) =

NT∑
T=1

Cv (c, d, s, t, p, T )

σ2 + (∑
i
ci)2 (3.7)

where σ is the semi-saturation contrast.

The MT stage

The output of the V1 stage is a V by N matrix, X, where V = 1008 is the number

of simulated V1 neurons (16 directions times 9 spatial frequencies times 7 temporal

frequencies), and N is the number of trials run. The MT neuron linearly weights

the V1 responses with a V -vector, w, relative to a baseline term, α, which is then

half-rectified and raised to a power, to yield its spike rate r̂:

r̂ (X |w, α, β) = g(α +Xw)◦β (3.8)

where x◦β is the element-wise power.

When fitting the model to the “planar plaid” stimulus set (§2.2.3), the sim-

ulated V1 neurons which are not stimulated at all are excluded from fitting and

analysis—the result is a smaller V .

Normalization in the MT stage was implemented in the original versions of the
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cascade model [67, 155] by simulating an entire population of MT neurons. Due to

the large number of parameters we are using to fit a single MT neuron, simulating

a whole population of simulated neurons at every iteration of the optimization

procedure is too computationally intensive for now. Furthermore, previous versions

of the cascade model were fit to data without including an MT normalization

stage [92, 141]. Implementing a simpler form of MT normalization amenable to

optimization is however, a goal for future versions of the model.

3.2.5 Estimating model parameters for individual cells

Spike-triggered average analysis

For the spike-triggered average (STA) analysis, g(x) in equation 3.8 is again

max(x, 0), α is fixed to the mean spike rate to all stimuli, β = 1, and σ = 0.05.

In order to correct for biases in the stimulus (e.g., the uneven distribution of hy-

perplaid components in both frequency and contrast—see §3.2.2), the responses of

each V1 neuron to all stimuli (X̂v) were first divided by uv, which represents the

probability that a given simulated V1 neuron was activated by a stimulus, then

“whitened”:

X ′vn = Xvn

uv
(3.9)

X̂v =
N

(
X ′vn − 1

N

N∑
n=1

X ′vn

)
N∑
n=1

(
X ′vn − 1

N

N∑
n=1

X ′vn

)2 (3.10)

The result is that each of the V columns of X̂ has zero mean and unit variance.

Applying a whitening transformation on V1 responses is biologically realistic inso-
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far as it normalizes, across the population, the maximum and minimum response

rates, and their variability, across all frequencies represented, based on the statis-

tics of the stimuli presented. In other words, it could be argued that this type of

whitening is analogous to assuming that over the course of the entire experiment,

neurons have adapted to the statistics of the stimuli. The STA was calculated by

averaging the whitened V1 responses, weighted by the measured spikes r:

wSTA = X̂T r (3.11)

Predicted spike rates were generated from the STA by substituting wSTA for w in

equation 3.8.

Nonlinear model

For the full model, α and β in equation 3.8 are free parameters, and a “softplus”

rectifier, a smooth approximation of max(x, 0), was used instead to avoid numerical

errors during optimization:

g (x) = log(ex + 1) (3.12)

The V1 semi-saturation contrast parameter, σ in equation 3.2, was also a free

parameter fit in the full model.

We minimized the summed squared error between the measured and predicted

spike rates for each trial:

E = (r̂− r)T (r̂− r) (3.13)
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We used the ‘interior-point’ algorithm as part of MATLAB’s fmincon function

to minimize the summed squared error. Because all the weights and the three

parameters of the nonlinearity had to be simultaneously estimated (up to a total

of 1011 parameters), analytic gradients needed to be calculated so that the opti-

mization procedure would converge in a reasonable amount of time. The partial

derivatives comprising the gradient are:

n = α + X̂w (3.14)
∂E

∂r̂
= 2 (r̂− r) (3.15)

∂r̂
∂α

= β g(n)β−1 � en

1 + en (3.16)

∂E

∂α
=
∑(

∂E

∂r̂
� ∂r̂
∂α

)
(3.17)

∂E

∂β
=
∑(

∂E

∂r̂
� r̂� log (g(n))

)
(3.18)

∂E

∂σ2 = −
∑

∂E∂r̂ � ∂r̂
∂α
� X̂w(

σ2 +∑
i
ci
)◦2

 (3.19)

∂E

∂w
= X̂T

(
∂E

∂r̂
� ∂r̂
∂α

)
(3.20)

where the numerator in equation 3.19 is element-wise divided by the denominator.

The weights were initialized to wSTA, computed from all trials.

Convergence of the fitting procedure was determined when any of the following

conditions were met: the objective function was evaluated 200,000 times, 20,000

iterations had passed, the per-iteration change in the objective function value was

less than 1e-4 (on average about 0.00005%), or the change in the estimate of w

was less than 1e-5 times the norm of w. Typically, convergence was achieved by
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one of the latter two criteria.

We ran several diagnostics on the optimization procedure to make sure it wasn’t

falling into local minima or overfitting. We used the DERIVEST function in

the DERIVESTsuite ( https://github.com/samuellab/MAGATAnalyzer-Matlab-

Analysis/tree/master/utility%20functions/DERIVESTsuite ) to numerically ver-

ify the analytic gradients. During optimization, we observed the objective func-

tion to decrease smoothly and monotonically. Furthermore, the optimization was

robust to different initial parameter values. For the results we report here, we

used the STA, β = 1, and α equal to the spontaneous firing rate of the neuron as

initial conditions, but using constant weights or different β values produced similar

results (that took longer to converge).

Assessing STA and nonlinear model prediction performance

Only simulated V1 neurons that were modulated by the stimulus in a given ex-

periment, and their corresponding weights, were included in the optimization. We

performed 12-fold cross-validation for both STAs and full model fits: the model

was divided randomly into twelve parts. For each “fold,” the model was trained on

11 of the 12 parts, and tested on the last, held-out part. This was done 12 times,

so that the model was tested (separately) on every twelfth of the data. The cor-

relation (r) values reported are the averages of the correlations between measured

and predicted spike rates for each held out data set across all 12 folds. This value

was meant to match those values reported in [112].

Due to differences in response gain across the basic characterization and hy-

perplaid recordings, which could occur as much as 40 minutes apart for a single

neuron, a separate gain and offset term were fit to the model’s spike rate pre-
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dictions for the held out basic characterization data. STA and nonlinear model

performance on these datasets is reported in terms of “goodness of fit” (r2), cal-

culated on the tuning curve values, to match those reported in [78]. However,

our r2 values include direction, spatial frequency, and temporal frequency tuning

experiments, while theirs only include direction tuning.

3.2.6 Interpreting estimated spatiotemporal frequency weights

Plane tuning maps

In order to visualize the interaction of direction and speed tuning, we calculated

the sum of weights inside slabs centered at planes of all directions and speeds. The

minimum thickness of the slabs used here was ±1 cycle/second, so we could visu-

alize planes going through weights on neurons preferring zero temporal frequency.

Thicker slabs smeared out weights centered at higher speed planes. The result-

ing “plane tuning” maps indicate the relative excitation or suppression elicited by

pattern motion at a given velocity, such as from drifting random dots.

For comparison, we generated plane tuning predictions for idealized pattern

and component cells. The pattern prediction was generated by calculating plane

tuning to points on a plane and its upper and lower slab bounds. The component

prediction was the result of assessing plane tuning to points on a sphere.

Plane fitting

We fit planes to all weights, both positive and negative simultaneously, as well as

positive and negative separately. In the former case, the planes were attracted to

positive weights and repelled by negative weights.

Some neurons’ direction tuning was narrow enough that the optimal plane
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would have its width axis in the spatial frequency rather than direction dimension.

Put another way, the optimal direction represented by the optimal plane was ro-

tated 90◦ away from the true direction preference of the neuron. To avoid this,

we used the same symmetry constraint during plane fitting as was used previously

[112, 78]. Briefly, we chose a direction for the best fit plane that minimized the

difference between two halves (mirror-reflected over direction) of the plane tuning

map.

Whereas previously the optimal speed represented by the plane was chosen by

hand [112, 78], we did so algorithmically. Given the plane tuning map, M , the

bounds on speed (Bs) were determined by the squared mean weight response for

the portion of the map where directions are ±90 degrees from the experimentally

determined preferred direction:

ms = 1
D

∑
d=−90:90

M2
sd (3.21)

where D is the number of directions in the plane map between ±90 degrees from

preferred. The bounds on the speeds are the smallest and largest speeds where ms

is greater than half of its maximum value:

b(s) =


1, if ms > max(ms)/2

0, otherwise
(3.22)

Bs = {arg min
s

b(s) = 1, arg max
s

b(s) = 1} (3.23)

The direction bounds were further narrowed (from the ±90 degrees direction bound

in equation 3.21) in the same manner, starting with the speed bounds just calcu-
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lated above.

Finally, to find the optimal plane, the weighted total least squares of the weights

was minimized, subject to the constraints above:

min
a
||wT X̂a||2 (3.24)

where a is the optimal plane normal vector.

On-plane ratio

In order to quantify how planar the weights are, we calculated the on-plane ratio,

as used previously [112, 78]. It expresses how many weights, as a proportion of

all weights, reside inside a “slab” centered on the plane. The slab was ±1 octave

thick, or ±5 cycle/second, whichever was greater. We calculated the on-plane ratio

for all weights (positive and negative) together, as well as separately.

3.3 Results

We presented hyperplaid stimuli to awake and anesthetized macaques and recorded

single-unit responses in MT. Each hyperplaid lasted for 133ms and had 1-4 su-

perimposed sinusoidal gratings (17-24 per trial; see figure 3.2(a)), which pseudo-

randomly sampled 3D frequency space in a manner designed to exercise the MT

neuron’s dynamic range as much as possible (see methods and figure 3.1).

We characterized MT responses in terms of a V1-MT cascade model (figure

3.2(b)). Briefly, each stimulus trial is filtered by a population of narrowly tuned,

complex, direction selective V1 neurons, whose responses are half-wave rectified,

squared, and subject to contrast normalization. The V1 responses form the input
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to the MT neuron, which linearly weights (figure 3.2(c)) and sums them, half-wave

rectifies the result, and raises it to a power to generate a predicted spike rate (figure

3.2(e)). Because the simulated V1 neurons tile spatial and temporal frequency in

the log domain (see §3.2.4), while the predicted organization of the weights on

these neurons is planar in the linear domain, we visualized the weights in terms of

isosurface level sets in the linear frequency domain (figure 3.2(d)).

3.3.1 Spike-triggered averages predict single grating tuning

A special case of the V1-MT cascade model assumes that the MT neuron’s re-

sponses are a (rectified) linear function of the simulated V1 responses. As the

simplest version of the model, it served as a natural starting point for our analy-

sis. We estimated the MT linear weights by computing the spike-triggered average

(STA) V1 response to hyperplaid stimuli.

In order to evaluate the predictive power of the STAs, we generated predicted

spike rates by evaluating the linear version of the cascade model with the weights

set to the STAs. We assessed spatiotemporal frequency selectivity by generating

spike rates to the basic (single-grating) characterization experiments that we had

run prior to the hyperplaid experiment. Since the STAs were not calculated on

these data, their predictions are not guaranteed to match the measured tuning.

The STAs capture spatiotemporal selectivity to single gratings well (figure

3.3(a-c)). Across the population, single grating goodness of fit was high for the

majority of cells (r2 = 0.82 ± 0.14, figure 3.3(d)). This performance is slightly

higher than was reported for single grating direction tuning [78]: 70% of cells have

a goodness of fit greater than 0.8. We also evaluated the STA predictions for

hyperplaid data by measuring the correlation coefficient between predicted and
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Figure 3.2: Hyperplaid stimuli and the V1-MT cascade model.
(a) An example hyperplaid. The excitatory and inhibitory components (and their
spatiotemporal frequencies) are show in red and blue, respectively. The hue in-
tensity corresponds to the contrast of each component. (b) The V1-MT cascade
model. The stimulus is filtered by direction-selective V1 complex cells, narrowly
tuned in the spatiotemporal frequency, and distributed on a cylindrical lattice.
The filter responses are half-squared, and subject to contrast normalization. The
output of the V1 stage forms the input to the MT neuron, which linearly weights
the V1 responses, half-wave rectifies the result and raises it to a power, which in
turn forms the predicted spike rate. (c) The linear weights from an example MT
neuron on its V1 inputs. Red indicates the neuron is excited by stimulus energy
captured by the corresponding weight, the selectivity of which is centered at that
spatiotemporal frequency. Blue indicates a suppressive influence. The area of each
point corresponds to the magnitude of the weight. The MT weights (and V1 selec-
tivities) themselves are logarithmically spaced in the frequency domain, but can
be interpreted as volumes in the same domain, with isosurfaces shown in (d). (e)
A 60-trial sample of the measured spike rates (black) and those predicted by the
cascade model (green).
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Figure 3.3: STA performance on single grating tuning and hyperplaids.
Single grating tuning curves for spatial frequency (a), temporal frequency (b), and
direction (c) are shown for the measured responses (black) and those predicted by
the spike triggered average. None of these data were used to calculate the STA.
The shaded areas denote ±1 s.e.m. The goodness of fit for all three tuning curves
together is reported in terms of r2. (d) The distribution of goodness of fit to (held
out) single grating tuning curves for all cells in the population. (e) The distribution
of mean correlation coefficients (r) for all held out hyperplaid datasets for all cells.

measured spike rates on held out hyperplaid data (r = 0.40± 0.13, figure 3.3(e)).

The weights for five example cells are shown in figure 3.4, ordered from the

most component (a) to the most pattern selective (e). A feature common to all

cells is that they are slightly elongated in the temporal frequency domain; this

is not predicted explicitly by the Simoncelli-Heeger model [155], but does match

recorded temporal frequency tuning (e.g., see figure 3.3(b)) and is consistent with

the results reported in the previous chapter (c.f., figure A.1). Another feature

common to all cells is that suppression is weak relative to excitation. Where peaks

in suppression occur, they are localized in spatiotemporal frequency, at directions
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near the preference of the cell.
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Figure 3.4 (previous page): STA predictions for five example cells.

(a–e) Neurons are ordered by their pattern index, from the most component (a) to
the most pattern (e). The 3D linear weights are shown on the left. The first two
columns are side-by-side stereoscopic renderings of the weights. The third column
shows a “bird’s eye view” of the weights. The right-most column shows scatter plots
of measured and predicted spike counts for each trial in the hyperplaid experiment.
The overlaid green traces correspond to the mean predicted spike count for a given
observed spike count.

For the example cells, as pattern selectivity increases, the direction bandwidth

of the weights increases, albeit very subtly. Given the difference in pattern index in

the example cells, the difference in direction bandwidths is much lower than would

be expected. Consequently, the weights appear less planar than the Simoncelli-

Heeger model predicts they should be.

We sought to quantify the degree to which weights were confined to a common

velocity plane by calculating the on-plane ratio. This is the number of nonzero

weights within a “slab” ±1 octave or ±5 cycles/second, whichever is greater, over

the total number of nonzero weights (figure 3.5(a), as previously described in [112,

78]). We saw no relationship between on-plane ratio and pattern index (figure

3.5(b)), calculated on the positive or negative weights in isolation. Positive weights

tended to be larger than negative weights (figure 3.5(b) and (c)), and were very

strongly anti-correlated (r = −0.96, figure 3.5(c)). This relationship held if the on-

plane ratio was evaluated with planes fit separately to just the positive or negative

weights (r = −0.93, figure 3.5(d)).

We wondered how the cells might sum rigidly moving stimuli, based on the

weights given by their STAs. To generate a “map” of “plane tuning”, we summed

the weights in slabs centered on planes of all directions and speeds. An idealized

pattern cell, simulated with weights on a slab, has a plane tuning map with a peak
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Figure 3.5: On-plane ratio.
(a) The on-plane ratio is calculated by defining a “slab” (green shaded area), which
is ±1 octave or ±5 cycles/s, whichever is greater, relative to a given plane (green
line). A cross-section of the slab is shown. The ratio is the number of weights
within the slab (green points) divided by the total number of weights. (b) On-
plane ratio calculated on the positive weights (red points) and negative weights
(blue), along the best-fit plane to all weights, as a function of pattern index. (c)
The same on-plane ratios as in (b), but plotted against each other. (d) The on-
plane ratio for positive and negative weights, when calculated relative to planes
separately optimized for just the positive or just the negative weights, respectively.
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Figure 3.6: Predicted plane tuning for idealized pattern and component cells.
(a) In addition to having the strongest weighting at the optimal velocity plane, an
idealized pattern cell, with weights in a slab, has weight along low-speed planes at
all directions. (b) For an idealized component cell, with weights in a sphere, only
planes near the optimal velocity can capture its weights.

at its preferred direction and speed, which slowly tapers off as the direction repre-

sented by the plane moves away from that preferred (figure 3.6(a)). This tapering

occurs more sharply at and above the preferred speed; the sustained response to

planes of all directions at low speeds is a characteristic that distinguishes a pattern

and a component cell in this domain. An idealized component cell (figure 3.6(b)),

with its weights on a sphere, has a more localized, “U”-shaped plane tuning map.

The further a plane’s direction is from that preferred, the higher its speed must be

to be near the component cell’s weights, giving the tuning map a characteristic ‘U’

shape. Since it is not clear what specific volume, if any, suppression should take,

we make no attempt to simulate it here.

The plane tuning maps for the same cells as in figure 3.4(a) are shown in figure

3.7. The plane tuning maps are generally smoothly structured (with the exception

of the second cell) and become less “U”-shaped as pattern index increases. All the

cells are suppressed by planes away from the preferred one. The peak suppression

is often at a direction within ±90 degrees of the preferred direction, but with a
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nonoptimal speed. Noticeably absent in pattern cell plane tuning maps is the

positive response to all low speed planes (figure 3.6(a)).

Figure 3.7(b) shows the value of each weight, as a function of its distance from

the optimal plane. The running means (green lines) show a similar trend as was the

case in the plane tuning maps: the closest weights to the plane are those with the

largest positive values; those with the largest negative values also occur relatively

close to the optimal plane, before the weights eventually taper off around zero at

the furthest distances.
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Figure 3.7 (previous page): Plane tuning for five example cells, predicted by their
STAs.

The example cells are the same as whose shown in figure 3.4. (a) The tuning
maps become less ‘U’ shaped as pattern selectivity increases. All neurons exhibit
suppression for all planes away from preferred. (b) The value of each weight is
plotted as a function of its (orthogonal) distance from the optimal plane (black
points). The green line corresponds to the running mean of the weights, over
a window of 1/10th of the weights. Weights in the range of ±0.0001% of the
maximum are not plotted.
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Figure 3.8: STA predictions fail to account for pattern selectivity.
Direction tuning curves to gratings (a) and plaids (b). Measured responses are
shown in black, predicted in green. (c) Observed and predicted pattern index, for
each cell in the population.

So far, evidence that weights obtained by calculating the STA are planar is

weak. They appear to be somewhat planar, but are not nearly broad enough

in the direction domain or close enough to low speed planes to conform to the

predictions made by Simoncelli & Heeger [155]. Thus, we wondered how well

these predictions reproduced pattern motion selectivity. Direction tuning to plaids

typically appeared as it does in figure 3.8(b): bimodal, and thus consistent with

component selectivity. Across the population, all cells’ pattern selectivity was

consistently underestimated, with no cells being predicted as pattern-selective.
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3.3.2 Nonlinear model fits have weaker suppression

While the STAs and linear model could predict single grating tuning well, they

lacked the ability to generate pattern selectivity. This led us to wonder whether the

weights were indeed capturing the linear aspect of MT selectivity while a rectifying

nonlinearity was insufficient to account for the nonlinear aspect of MT selectivity

(i.e., pattern selectivity). We hoped to address this by allowing the linear responses

to be raised to a power to generate better predictions. We fit the weights, MT

exponent, and V1 semi-saturation contrast simultaneously and separately for each

cell.

Performance improves for nearly every cell when testing on held out hyperplaid

data (figure 3.9(a)). The mean validation performance was r = 0.54±0.13, similar

to the nonlinear model performance reported in [112] (mean r = 0.52). The

nonlinear model goodness of fit for single grating tuning is mixed when compared

to the STAs, but they are on average slightly, but significantly, better than the

STA predictions (P = 0.00022, Wilcoxon signed rank test, figure 3.9).

Figure 3.10 shows the weights recovered from fitting the nonlinear model to the

same example cells as shown before (figures 3.4 & 3.7). Overall, the positive weights

are more saturated in intensity (the isosurfaces are closer together) than those given

by the STA. The negative weights are weaker when compared to the STAs (see also

figure 3.11(a)). In the nonlinear fits, the suppression ratio is strongly correlated

with the maximum suppressive weight, normalized to the maximum excitatory

weight (figure 3.11(b)).
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Figure 3.9: Relative performance of the STA linear model and the nonlinear model
fits.
(a) Performance is in terms of the mean correlation coefficients (r) between the
measured and predicted spikes, calculated on held out hyperplaid data and aver-
aged across validation folds. (b) Goodness of fit of single grating tuning curves, in
terms of r2.
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Figure 3.10 (previous page): Example nonlinear model predictions for five example
cells.

Weights and spike counts predicted by nonlinear model fits to hyperplaids. See
figure 3.4.
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Figure 3.11: Suppression in the nonlinear model fits is weaker.
The suppression ratio is the negative sum of all negative weights over the sum of all
positive weights. (a) Suppression ratio is lower in nonlinear model fits than in the
STA for most cells. (b) In the nonlinear model fits, as suppression ratio increases,
so does the absolute value of the maximum suppressive weight, normalized by the
maximum positive weight value.

The shapes of the weights predicted by the linear and nonlinear models appear

very similar overall. However, because the V1 selectivities and their correspond-

ing MT weights are spaced in the log-domain, differences in their weights at low

spatiotemporal frequencies are difficult to resolve. The plane tuning maps (figure

3.12(a)) provide insight into effects of tuning in that region of frequency space.

Component cells retain their characteristic “U” shape, and the second example

cell’s map is much cleaner than that generated from its STA (c.f. figure 3.7). Most

cells also exhibit more positive weightings on lower speed planes, with the most

pattern-selective cell’s map closely resembling the idealized pattern cell prediction

(3.6(a)). Intriguingly, the most component-selective cell exhibits both the “U”

shape and positive weights on low speed planes.
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The weaker level of suppression in the nonlinear fits, relative to the STAs, is

also evident in weight value vs distance from the optimal plane scatter plots (figure

3.12(b)): there are fewer stongly negative points.

Despite performing better on held-out data, the nonlinear model still does not

generate pattern behavior (figure 3.13). This was unexpected, since we thought

stronger performance on the more complex stimulus set would translate to a more

substantial improvement on the relatively simple plaid stimuli. If the hyperplaid

stimulus is too complex, or complex in a manner that is not well described by

the cascade model, perhaps a simpler stimulus set could provide insights into the

cascade model’s behavior.

3.3.3 Nonlinear model fits to the planar plaid dataset predict pattern

selectivity

We fit the same nonlinear cascade model as described above (§3.3.2) to the velocity-

and frequency-based gratings and plaids as described in the previous chapter

(§2.2.3 and §2.3.3). Aside from being simpler than the hyperplaids, this dataset

has the advantage of containing two static gratings and two unikinetic plaids,

where the preferred velocity plane intersects the zero temporal frequency plane.

In principle, this should allow weights on V1 neurons that are selective for zero

temporal frequency to have nonzero values, which was not possible before.

Figure 3.14 shows the weights predicted by the nonlinear model fits to the

plaid data. The plaids are only presented at a single (preferred) spatial frequency.

Since simulated V1 neurons not engaged by the plaid data at all are excluded from

model fitting, the weights are tightly localized to those spatial frequencies. For

that reason, the suppression that was broad in spatial frequency seen in previous
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Figure 3.12: Plane tuning predicted by the nonlinear model for five example cells.
See figure 3.7.
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Figure 3.13: Nonlinear model predictions fail to account for pattern selectivity.
Direction tuning curves to gratings (a) and plaids (b). Measured responses are
shown in black, predicted in green. (c) Observed and predicted pattern index, for
each cell in the population. See figure 3.8.

fits to hyperplaid data (figures 3.4 and 3.10) cannot be resolved by these plaids.

An important feature common to all but one example cell is the presence of

opponent suppression—indicated by the negative weights centered at directions

opposite to the directions at which the positive weights are centered. Not only is

the opponent suppression well localized and centered at the opponent direction,

but it is stronger than the suppression observed in previous fits.

Furthermore, the positive weights of the intermediate and pattern cells appear

to be on the velocity plane. The scatter plots of observed and predicted spike

counts for hyperplaid data (rightmost column in 3.14) show that these fits do not

perform as well on the hyperplaid dataset.
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Figure 3.14 (previous page): Example nonlinear model predictions, for five example
cells, trained on plaids.

See figures 3.4 and 3.10.

Plane tuning for these weights (figure 3.15(a)) is substantially different from

those observed in the STAs and nonlinear model fits to hyperplaids. The dark red

region in the maps correspond to the range of planes that have a large positive

sum of weights near them. The region is smaller for all cells, most likely due to the

narrowed spatial and temporal frequency profile of these weights. Almost every

cell exhibits some opponent suppression. The transition from “U”-shaped tuning

in component cells to diffuse and low-speed tuning at all directions in the pattern

cells is still present and appears more consistent.

Since the suppression is predominantly in the opponent direction, the positive

and negative weights are well segregated in terms of the planes that intersect them

(figure 3.15(a)). This segregation is also visible in (figure 3.15(b)), where positive

weights and negative weights occur at nearly distinct distances from the optimal

plane. Furthermore, the strongest negative weights are much closer in magnitude

to the strongest positive weights than was seen in previous fits.

The nonlinear model fits the frequency- and velocity-based plaid and grating

data well (figure 3.16), not only predicting pattern selectivity, but also successfully

predicting the flat tuning to velocity-based plaids characteristic to pattern cells

(figure 3.16(d)). The fits predict pattern index well for the majority of cells (figure

3.16(e)).
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Figure 3.15: Plane tuning predicted by the nonlinear model, for five example cells,
trained on plaids.
See figures 3.7 and 3.12. 97
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Figure 3.16: Nonlinear model fits to planar plaids predict pattern selectivity.
Direction tuning curves to frequency-based gratings (a) and plaids (b), and
velocity-based gratings (c) and plaids (d). Measured responses are shown in black,
predicted in green. (e) Observed and predicted pattern index, for each cell in the
population. See figures 3.8 and 3.13.

3.3.4 Comparing recovered elements of model fits

To better understand how the different model fits make different predictions of

grating and plaid direction selectivity, we examined the structure of the weights

from each model, collapsed onto the direction dimension. To do this, we summed

the weights for each neuron over spatial and temporal frequency and normalized

the resulting direction tuning curves by their maxima (figure 3.17, light traces).

By aligning those tuning curves by their peaks, and averaging them, we obtained

population tuning curves (figure 3.17, dark traces). The population was separated

into component, intermediate, and pattern cells (the top, middle, and bottom rows,

respectively).

There are a few noticeable differences between the weights given by the STA

and the nonlinear model fits to hyperplaid and plaid data (figure 3.17 left, middle,

98



and right columns, respectively). First, the direction bandwidth is larger when the

nonlinear model is fit to the planar plaid dataset, with bandwidth increasing with

increasing pattern selectivity. There does not appear to be a relationship between

pattern selectivity and bandwidth. Another difference is the consistency of tuning.

The STAs have noisier weight profiles than the nonlinear fits. Finally, a feature

that seems to be common to the different model fits is that the weights at the

opponent direction become less positive as pattern selectivity increases.

We examined the relationship between the nonlinear model’s performance and

its predicted exponent, separately for the fits to the two different datasets (figure

3.18). When trained on hyperplaids, the nonlinear model predictions to hyper-

plaids are best for exponents lower than 1 (figure 3.18(a), black points). These

same fits, however, yield high errors in predicted pattern index (figure 3.18(b)).

Conversely, the best fits to the planar plaid dataset yield the lowest pattern index

errors when the fit exponent is greater than 1 (figure 3.18(b), green points). Cor-

respondingly, the fits with the highest exponents above 1 tend to be the ones that

perform the worst on the hyperplaid dataset (figure 3.18(a)).

The exponent in the cascade model typically determines the interactions of the

individual components in a plaid, with exponents higher than 1 for pattern neurons.

This explains why it predicts pattern selectivity well when trained on the planar

plaid dataset. The exponent is clearly being used for a different purpose when fit

to hyperplaids: it is most likely being used to capture changes in contrast. Since

MT neurons’ contrast sensitivity typically saturates quickly, they are best captured

with an exponent lower than 1. This discrepancy in fit exponent values reveals a

fundamental computation of the nonlinear model’s being used in a different manner

based on the stimulus used to train it. It indicates that the current formulation

99



STA
C

om
po

ne
nt

 c
el

ls

−180 0 180

−1

0

1
Model fit to hyperplaids

−180 0 180

−1

0

1
Model fit to plaids

−180 0 180

−1

0

1
In

te
rm

ed
ia

te
 c

el
ls

N
or

m
al

iz
ed

 w
ei

gh
ts

−180 0 180

−1

0

1

−180 0 180

−1

0

1

−180 0 180

−1

0

1

Pa
tte

rn
 c

el
ls

−180 0 180

−1

0

1

Preferred direction (deg)

−180 0 180

−1

0

1

−180 0 180

−1

0

1
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Figure 3.18: Relationship between model performance and fit exponent.
(a) Nonlinear model performance on held out hyperplaid data, as a function of the
fit exponent, when trained on hyperplaids (black) and plaids (green). (b) Nonlin-
ear model performance on held out plaid data, as a function of the fit exponent,
when trained on plaids and hyperplaids. Model performance is quantified by the
correlation coefficient (r) in (a), and absolute difference between the observed and
predicted pattern index in (b).

of the model is likely insufficient to capture all the behaviors in both datasets

simultaneously.

Finally, we wondered how differences in the directionality of the positive and

negative weights could account for pattern selectivity. We quantified this in terms

of the absolute difference in the direction of the center of mass of the positive and

the negative weights. By using the center of mass, we make no assumptions about

the degree to which weights adhere to a plane. There is no relationship between

pattern index and the direction difference for the STAs and nonlinear model fits to

the hyperplaids (figure 3.19, (a) and (b), respectively). The direction differences

are relatively distributed across cells for these fits. There is a weak relationship

between direction difference and pattern index for nonlinear model fits to the planar

plaid dataset (figure 3.19(c)). This relationship is weaker when comparing to the

predicted pattern indices predicted by the model (Pearson’s r = 0.22, data not
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Figure 3.19: Relative excitatory and inhibitory direction tuning and pattern index.
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of at least 5% are included. Values of 180◦ correspond to opponent suppression.
Direction difference for weights generated from the STAs (a), and nonlinear model
fits to hyperplaids (b) and plaids (c), are plotted against pattern index.

plotted). Furthermore, the vast majority of cells exhibit opponent suppression,

as is demonstrated by the preponderance of cells with a nearly 180◦ direction

difference. All pattern cells have suppression at or near the opponent direction.

3.4 Discussion

We used a complex hyperplaid stimulus to characterize MT receptive fields in

the 3D frequency domain. By tailoring the stimulus to contain both excitatory

and suppressive elements simultaneously, and fitting a cascade model to the data,

we were able to visualize excitation and suppression in 3D. We did this without

imposing regularization [112] or smoothing the estimated weights [78].

We found that both linear and nonlinear variants of the cascade model could

capture tuning to single gratings along three cardinal dimensions in frequency

space. We found that excitatory weights tended to be more planar than the sup-

pressive weights for the majority of cells, consistent with previous findings [112,

78]. There was a very strong inverse relationship between these two quantities.
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The linear and nonlinear variants of the cascade model gave conflicting ac-

counts of the shape of suppression, depending on which variant was used, and the

dataset used to train the model. These conflicts reflect the sketchy accounts in

the literature as well. Nishimoto & Gallant (2011) reported suppression was off

the preferred velocity plane, and for 3 example cells, show suppression on veloc-

ity planes of the opponent direction. They did not characterize the shape of the

suppression further. Inagaki et al. (2016) also reported suppression away from

the preferred velocity plane, of varying strengths. A third of their cells showed

suppression that exceeded excitation. Their example cells also showed opponent

suppression.

We show suppression in STAs that tended to be localized to a region of fre-

quency space near the excitatory region, but weaker than the excitation. Across

the population, the suppression could be centered at any direction relative to pre-

ferred. In the nonlinear model fits to hyperplaids, suppression was weaker and

more diffuse. When fitting the nonlinear model to the planar plaid dataset, sup-

pression was strong and opponent for nearly all the cells, or nonexistent for the

remainder.

The recurring observation of opponent suppression suggests that this may be

a critical mechanism underlying MT selectivity. Indeed, it is a fundamental com-

ponent of the Rust et al. (2006) model of pattern selectivity. We observed an

increasing role of opponent suppression on direction tuning within the weights

in increasingly pattern selective cells (figure 3.17), which tracks what Rust et al.

(2006) observed (their figure 6).

The shape of the excitation also varied depending on the model. Weights

from the nonlinear model fits to the planar plaid dataset had wider direction
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tuning bandwidth, and the bandwidth had a more direct relationship to pattern

selectivity than was observed in the other fits. As a consequence of having wide

direction bandwidth and having weights organized along the preferred velocity

plane, some pattern cells had positive weights at zero temporal frequency. This

is in opposition to the other studies [112, 78], which showed no excitation at low

temporal frequencies.

The connection between the structure of the weights recovered by the models

and pattern selectivity remains unclear, given the different predictions the various

models and stimuli make in this study and in previous ones [112, 78]. The previous

studies could not make a strong link to pattern selectivity because they either did

not measure it directly [112] or had only two pattern cells in their population [78].

Since we recorded from a substantial number of pattern cells, and recorded their

responses to velocity plaids, these datasets have the potential to complement each

other in future efforts to probe MT selectivity and understand how the models

operate.

The following chapter will explore further the successes and failures of the

models we have presented, how the behavior of one model can inform interpretation

of the other, and how taken together, the models can point to future avenues of

exploration and model development.
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Chapter 4

Successes and failures of the two
models

We have examined motion processing in area MT through the lens of Fourier anal-

ysis. We recorded single unit V1 and MT responses to drifting sinusoidal gratings,

in isolation and in combinations spatially superimposed. We characterized neural

selectivity to these moving stimuli in terms of weights placed on volumes within

3D spatiotemporal frequency space.

In chapter 2, we began with a targeted question: are MT receptive fields best

described as having separable tuning with respect to a preferred velocity plane?

With this question in mind, we designed stimuli to maximally distinguish two

specific models of separable tuning in MT.

In chapter 3, we sought to characterize MT spatiotemporal selectivity more

generally, with excitation and suppression allowed to take any shape, without any

constraints on separability or even compactness. In particular, we hoped to re-

solve the suppressive elements of the receptive field. Consequently, the hyperplaid

stimuli were designed to sample 3D frequency space more broadly. In order to gain

more power in estimating the shape of suppression, we designed the hyperplaids to
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have, on average, half of their components at frequencies near the cell’s preferred

stimuli, and the other half at any other frequencies (away from the preferred stim-

uli).

To analyze and predict the responses of MT neurons to the different stimuli,

we fit variations of a V1-MT cascade model [67, 68, 155, 92, 141, 112], with

modifications that reflected the nature of the stimuli used and the questions asked.

To address the question of which separable receptive field organization is best,

we used two model variants that were parameterized to have either velocity- or

frequency-separable MT linear weighting functions. For the more general question

of the shape of excitation and suppression, we used a nonparametric version of

the model, where spatiotemporal frequency tuning could be represented by any

arbitrary combinations of weights of V1 inputs.

Using the parametric, separable models (chapter 2), we showed that a velocity-

based model better explained MT selectivity than a frequency-based model, which

treated spatial and temporal frequency independently. In order to properly con-

strain these models to distinguish their predictions and account for critical aspects

of MT behavior, such as pattern selectivity, we had to present compound stimuli

(part of the “planar plaid” dataset, see figure 2.4) to exercise the neurons’ non-

linearities. In other words, the complexity of the stimuli and models had to be

appropriately matched.

The nonparametric, general cascade model (chapter 3) could account for pat-

tern selectivity, but only when trained on the same planar plaid dataset used with

the parametric model. When trained on hyperplaids, degree of pattern selectivity

was associated with direction-independent tuning to low speeds, but ultimately did

not predict pattern behavior. Furthermore, the better the nonparametric model
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performed when fit to one dataset, the worse its predicted responses to the other

dataset were. This could be an indication that the complexity of the model and

stimuli are not appropriately matched.

This chapter aims to answer lingering questions from the previous chapters.

What have we learned from these parametric and nonparametric variations of

the V1-MT cascade model, and the different predictions they make on different

datasets? What mechanisms exist in each model to generate complex, nonlinear

behaviors?

4.1 The parametric and nonparametric model architectures

The separable models did not explicitly simulate the V1 stage, and as such did

not include any normalization of V1 responses. The models directly operated on

the spatiotemporal frequency energy of the stimuli, applying parameterized linear

weighting functions to them. The responses were summed and run through a

point nonlinearity, a half-wave rectified power function. The result was subject

to a temporal frequency-dependent divisive suppression term which simulated the

effects of MT normalization.

The nonparametric model, on the other hand, included a V1 stage in which a

population of simulated V1 complex cells with narrow spatiotemporal frequency

tuning tiled 3D frequency space. Their responses were subject to contrast normal-

ization before serving as inputs to the MT neuron. The MT neuron could then

apply any arbitrary configuration of weights, positive or negative, to these inputs.

As in the separable models, the responses are summed and run through a half-wave

rectified power function point nonlinearity. No MT normalization was applied.

The separable and nonparametric models operated under different noise mod-
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els [179] of spike variability. The separable models used the modulated Poisson

framework [60] to make more accurate predictions of spike rates. For computa-

tional tractability, the nonparametric model assumed a quadratic loss function.

4.2 Single gratings on one-dimensional paths through fre-

quency space are weak model constraints

One of the surprises in our studies of separable tuning was that responses to con-

stant frequency and constant velocity single grating direction tuning experiments

were nearly identical for the vast majority of neurons. This is an apparent viola-

tion of the linear predictions of both the frequency- and velocity-based separable

model variants, since direction tuning should be broader when the plane of the

stimuli and model match (figure 2.1(e) and (h)). However, when the (nonlinear)

separable models were fit to the grating responses, both models could account for

the different tuning widths, making their performance on these grating responses

indistinguishable (the two leftmost columns in figure 4.1).

Both spike-triggered averages and nonparametric model fits trained on hyper-

plaid data accurately predict single grating tuning along the principal dimensions

of 3D frequency space sampled in the “basic characterization” experiments done

immediately prior to the hyperplaid experiment (see §2.2.3 and figures 3.3 and 3.9).

Inagaki et al. (2016) also reported high goodness-of-fit for single grating direction

tuning curves.

These single grating tuning experiments all encompass excursions, along one

dimensional paths, from the stimulus with optimal spatiotemporal frequency. The

paths themselves are all along principal dimensions (direction, spatial frequency,
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Figure 4.1: Separable model fits, trained on gratings, for four example cells.
Two example component cells (a,b) and two example pattern cells (c,d). The
frequency- and velocity-separable models (blue and red, respectively) were trained
on constant frequency and constant velocity gratings (left two columns), as well
as data from the temporal frequency tuning experiment performed immediately
prior. The example cells are the same as shown in figure A.1; refer to it for more
details.
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temporal frequency). As a consequence, the dataset does not provide any con-

straint on whether these dimensions are jointly or independently represented [124,

125, 89]. MT responses along these paths through frequency space appear to be

roughly linear. As a result, there are many classes of models that can capture

responses to such stimulus sets.

4.3 Separability in 3D frequency space

The model proposed by Simoncelli & Heeger (1998) operated under the assumption

that pattern cells sum spatiotemporal frequency energy along a preferred velocity

plane. Rust et al. (2006) aimed to characterize pattern selectivity solely in the di-

rection domain and accordingly used stimuli with components confined to a single,

constant spatial and temporal frequency ring. By limiting the stimuli and model

to the direction domain, they showed that pattern selectivity could be simulated

without explicitly building a planar structure into the cascade model. Because

no assumptions were made about spatial and temporal frequency selectivity, they

showed that a frequency-separable model could also generate pattern tuning.

The planar plaid dataset we presented contained gratings and plaids on velocity-

and frequency-separable rings. Our initial attempts to fit the separable models to

this dataset gave a curious result: the velocity and frequency-separable models,

with a saturating nonlinearity, could both explain the data equally well. We re-

alized, upon closer inspection, that each model achieved this by predicting patho-

logically wide temporal frequency tuning. The higher the temporal frequency

bandwidth, the more similar the two separable models became. Our solution was

to include the data from the “basic characterization” temporal frequency tuning

experiment, performed immediately prior to the hyperplaid experiment, in the fit-
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ting procedure. The resulting fits were more functionally accurate and informative

in distinguishing the two models.

By more widely sampling frequency space, we could more directly address ques-

tions of 3D tuning structure and separability. Previous studies [124, 125] have

shown that the majority of MT neurons are tuned independently for speed and

spatial frequency, consistent with a velocity-separable model (but see [89]). We

presented single grating stimuli along multiple (optimal and suboptimal) paths to

assess how temporal frequency tuning preference changes as a function of spatial

frequency (figure 2.3(a,c,e)), and vice versa (figure 2.3(b,d,f)). Taken in isola-

tion, these data show that tuning preferences change in a manner consistent with

velocity-separable tuning in MT and frequency-separable tuning in V1.

Neither the frequency- nor the velocity-separable model consistently outper-

formed the other in MT when all the single grating tuning curves (such as direc-

tion tuning at optimal and suboptimal frequencies) in the dataset were included

(figures 2.2 and 2.6(a)). This is most likely because MT neurons are not perfectly

separable in either coordinate system. Figure 2.2(c) shows one such neuron—the

velocity model prediction is better in the leftmost plot, but worse in the other

three and overall (rightmost scatter plot).

4.4 Linear suppression in MT

Suppressed responses to directions opposite the neuron’s preference have been

consistently observed in a subset of MT neurons [99, 47, 135, 140, 141]. These

characterizations of suppression in MT, however, were limited to the single dimen-

sion of direction tuning. How suppression interacts with other stimulus dimensions

is less well understood. In response to complex optic flow stimuli, Cui et al. (2013)
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characterized MT receptive fields in terms of spatial subregions of excitatory and

suppressive direction-selective subunits, which could overlap to varying degrees.

In their model, the change in direction between the excitatory and inhibitory sub-

units varied across the population. Most cells had direction-selective suppression

centered at either the opponent or the preferred directions, but a smaller subset

exhibited suppression at orthogonal directions.

Similarly, suppression peaked at a range of directions in our STAs and nonpara-

metric model fits to hyperplaid stimuli (figure 3.19). When trained on the planar

plaid dataset, suppression in the nonparametric model was overwhelmingly oppo-

nent. Given that these fits predicted pattern index more accurately (figure 3.16),

it is likely that opponent suppression is a critical part of how the nonparametric

model achieves pattern selectivity.

By design, the separable models could not predict localized opponent suppres-

sion. This was because the planar plaid stimuli were limited to rings and therefore

did not constrain a separable suppressive volume. It was unclear what shape, if

any, should be assumed for suppression, other than perhaps a shape similar (or

identical) to the excitation. One way to incorporate suppression without making

assumptions about its shape is to assume it is untuned. This could be implemented

by subtracting the mean of the weights from the rest of the weights, as in the orig-

inal cascade model (see appendix in [155]). Our nonparametric model includes a

baseline term that performs a similar function in a less constrained manner (equa-

tion 3.8). Such a model would, however, introduce additional local minima to the

error surface, making optimization difficult.
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4.5 Nonlinear suppression in MT

Pattern selectivity is a nonlinear response behavior because it represents a failure

of superposition [105] of multiple components. In the absence of compound stimuli,

the nonlinear elements of the cascade model are unconstrained. This is evident in

the dismal predictions to plaid tuning generated by the separable models trained

on gratings (figure 4.1, third and fourth columns).

There are several mechanisms in the cascade model that can give rise to pattern

selectivity. In the original cascade model [155], half-squaring and subtractive and

divisive suppression acted at the MT stage to shape pattern selectivity. Rust et al.

(2006) realized a form of the cascade model that could produce pattern selectivity.

They attributed its ability to do so to the opponent suppression they observed in

the weights on simulated V1 inputs in their model, in conjunction with super-linear

(exponential) nonlinearities.

These are precisely the mechanisms that allow the nonparametric cascade

model to fit the planar plaid dataset well. Figure 4.2 shows how the nonparametric

model compares with the velocity-separable model for four example pattern cells.

The nonparametric model can account for the interesting behaviors (flat, elevated

velocity plaid responses and identical constant frequency and velocity grating re-

sponses) present in the data for some, but not all, cells. While the nonparametric

model also better captures the variety of shapes of constant velocity plaid tuning

(fourth column), its predictions to the other tuning curves are often noisier and

less smooth than the separable model predictions.

Since the frequency-separable model is a special case of the Rust et al. (2006)

model, we trained both separable models on the constant frequency stimuli in
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Figure 4.2: Velocity-separable and nonparametric model fits, trained on the planar
plaid dataset, for four example pattern cells.
The velocity-separable and nonparametric model predictions are shown in red and
green, respectively. See figure A.1 for details.
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the planar plaid dataset (confined to the same ring that they used) and temporal

frequency tuning data (figure 4.3). The frequency-separable model does produce

pattern tuning, even without opponent suppression. The velocity-separable model,

however, consistently outperforms the frequency-separable model because it better

predicts constant velocity plaid responses (fourth column).

In these example cells, the limitations of the models, as well as the stimuli on

which they were trained, are evident. First, the predicted constant velocity grating

responses (second column from the left) are the wrong bandwidth, consistent with

the linear predictions of both models (figure 2.1). Second, the predicted responses

of the frequency-separable model to constant frequency plaids (third column from

the left) tend to be overly broad. Third, the frequency-separable model cannot pro-

duce a flat response to constant velocity plaids (fourth column), while maintaining

the correct temporal frequency tuning bandwidth. This behavior was again pre-

dicted from idealized neurons (figure 2.4(c)). Including temporal frequency tuning

data was, once again, critical in keeping the two separable models realistic and

distinguishable.

How does the frequency-separable model achieve (an albeit limited form of)

pattern tuning without opponent suppression? The functional effects of oppo-

nent suppression may be achieved as a result of the temporal frequency-dependent

divisive suppression.

The divisive suppression term was added to the separable model to approxi-

mate the effects of normalization in MT. The assumption is that a population of

component and intermediate cells with tuning spanning all directions and speeds

provide a negligible tuned normalization signal. Their spatiotemporal frequency

tuning would be too narrow to systematically favor any particular region of fre-
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Figure 4.3: Separable model fits, trained on frequency-based gratings and plaids,
for four example pattern cells.
The frequency- and velocity-separable models (blue and red, respectively) were
trained on constant frequency gratings and plaids (first and third columns from
the left), as well as data from the temporal frequency tuning experiment performed
immediately prior. See figure A.1 for details.
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quency space; thus, they fill it in an unbiased manner.

A population of frequency-separable pattern cells would also have a negligible

impact on tuning because the effect of any pattern cell preferring one direction

and temporal frequency will be canceled out by a pattern cell preferring the op-

posite direction (and same temporal frequency). Velocity-separable pattern cells,

however, would represent frequency space in a biased manner, since they would all

have energy at zero and low temporal frequencies, where the slabs centered on their

preferred velocity planes would overlap. This is precisely what we simulated when

generating the predicted “plane tuning” of an idealized pattern cell (figure 3.6(a)),

which exhibits excitation for all directions at low speeds. The temporal frequency-

dependent suppression term has the added benefit of being consistent with both

separable models, since its effect on tuning is organized around the only plane that

is constant in both temporal frequency and velocity: the zero velocity/temporal

frequency plane.

Temporal frequency-dependent suppression is flexible enough to give rise to

opponent suppression under both separable models. At preferred directions and

speeds, excitation and suppression cancel, leaving suppression at opponent direc-

tion. This form of suppression, rather than the subtractive suppression used in

the Rust et al. (2006) model, was necessary to simultaneously account for the en-

tire planar plaid dataset and temporal frequency tuning. The crucial difference

between the two types of suppression is that the (divisive) temporal frequency-

dependent suppression is applied after the linear weight responses are raised to a

power. For the velocity-separable model, this means that suppressive effects are

stronger for single-component stimuli, which allows for narrow constant velocity

grating tuning while maintaining excitatory tuning weights wide enough to support

117



pattern tuning. For an equivalent frequency-separable model, tuning to constant

velocity gratings will already be narrower than tuning to constant frequency grat-

ings (figure 2.1(h)), so additional suppression at low temporal frequencies would

only exacerbate the discrepancy between predicted and actual direction tuning

bandwidth.

In the velocity-separable model, the temporal frequency-dependent suppression

is a more concise and accurate mechanism for shaping nonlinear neural selectivity.

It combines the linear, subtractive suppression terms and the nonlinear, divisive

normalization terms from previous versions of the model, and in doing so, makes

more specific predictions about neural behavior. To date, this is the first case

in which a normalization signal specifically arising in MT has been shown to be

necessary to explain the full manifestations of pattern selectivity.

Is temporal frequency-dependent suppression evident in neural responses to hy-

perplaids? Because this suppressive mechanism is nonlinear, it is difficult to say

definitively without explicitly including it in the model. The separable model al-

lows excitation and suppression to overlap in frequency space, which is not possible

in the nonparametric model.

We do observe, in the STAs, suppression at low temporal frequencies for several

cells (figure 3.4(a,b,d,e)), but the suppression tends to be direction-tuned. Sup-

pression is also common at low speed planes (figure 3.7). Suppression is weaker

in the nonlinear nonparametric model fits, possibly because excitation and sup-

pression are canceling each other out or because some of the effects of temporal

frequency-dependent suppression may be achieved by the baseline term (equation

3.8). A further difficulty in assessing suppression in this dataset is that the hyper-

plaid stimuli did not include components with zero temporal frequency.
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Suppression at low speed moving bars has been observed [99], in one case in as

much as 82% of cells recorded [101].

4.6 Gain control

The effects of contrast on MT responses were not explored because the grating

components in the planar plaid dataset were all presented at the same (50%)

contrast. This was a major reason why MT normalization was simulated in terms

of its effect on spatiotemporal frequency selectivity alone. The separable models

included an external gain factor, based on the MT exponent, which set the relative

gain between the half- and full-contrast stimuli (i.e., the gratings and plaids, see

equation 2.9).

The hyperplaid stimulus had a much more complex distribution of contrasts

and directions. We therefore had to simulate a V1 stage explicitly that included

contrast normalization. Mante (2000) and Rust et al. (2006) showed that including

self-normalization at the V1 stage enables the model to produce tuning which is

stronger to plaids than gratings (e.g., the rightmost cell in figure 1.4). We also

observed this phenomenon when fitting the nonparametric model, which included

V1 normalization, to the planar plaid dataset (figure 4.2). If the optimization is

feasible, this approach to gain control could replace the external gain factor in the

separable model. Doing so, however, would add an additional free parameter.

Accounts of gain control in MT differ, depending on the stimuli used. Using

gratings matched to the receptive field size, Sclar et al. (1990) reported contrast

sensitivity with similar slopes in V1 and MT (exponents of 2.4 and 3.0, respec-

tively), but much earlier saturation in MT (semi-saturation constants of c50 = 7%,

versus 20-33% in V1). Others [91, 175, 70] have found higher c50 values of 11-20%,
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often in response to smaller stimuli on the scale of V1 receptive fields [91, 70].

Since all our stimuli are matched to the classical receptive field size [25], we expect

gain control to manifest with mid-to-low semi-saturation constants. Regardless,

the semi-saturation constants in MT are lower than those in in V1 [147, 70, 91].

Nonparametric model fits to hyperplaids yield exponents in the MT nonlinear-

ity almost entirely below 0.5 (figure 3.18(a)). Conversely, when fit to the planar

plaid dataset, the majority of exponents were above 1. It is probably this discrep-

ancy that underlies the poor ability of the model, when trained on one dataset,

to predict responses in the other dataset. Contrast tuning is likely to be quickly

saturating, corresponding to exponents below 1, whereas pattern selectivity gen-

erally demands exponents higher than 1 [155, 140, 92]. A power function as the

sole nonlinear mechanism in the nonparametric model MT stage cannot handle

these simultaneous, conflicting behaviors. In this instance, the complexity of the

nonparametric model does not seem to be appropriately matched to that of the

hyperplaid stimulus. Resolving this mismatch will require new experiments with

different stimuli, changes to the model, or possibly both.

4.7 Proposed experiments

There are several changes that could be made to the hyperplaid stimulus to improve

model fits. The most important change, in light of the separable and nonparamet-

ric model fits to the planar plaid dataset, is to include zero temporal frequency

stimuli. Further, covariation in contrast and spatiotemporal frequency in the stim-

ulus should be reduced as much as possible. The effects of contrast gain control

mechanisms may be minimized by forcing all components to have equal contrast,

as some previous studies have done [141, 78].
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More can be done to reduce bias in the stimuli. The most direct approach is

to construct the hyperplaid stimulus to be spherically symmetric [27, 159, 153].

There are several variations that could meet this criterion. In all of them, the spa-

tiotemporal frequencies presented must be distributed in a spherically symmetric

arrangement, rather than the cylindrical one we used.

In the first candidate replacement stimulus, the frequencies lie on a spherical

lattice. Keeping constant the sum of all the squared component contrasts would

satisfy the spherical symmetry criterion.

In the second possibility, component frequencies and contrasts are indepen-

dently Gaussian distributed. This stimulus has the advantage of being amendable

to STC techniques, but its main problem is that they would most likely not elicit

enough spikes during an experiment to discern signals from noise. Furthermore,

hyperplaids with Gaussian distributed spatial frequencies would be dominated by

speeds too low to excite most MT neurons. Similarly, Gaussian distributed con-

trasts would yield many hyperplaids with very low contrasts.

While these stimuli would be highly informative in terms of distinguishing pat-

tern and component cell behaviors [92], they may make it difficult to characterize

the entire volume of MT spatiotemporal selectivity.

The hyperplaid stimulus we used had half of its components within the exci-

tatory region of spatiotemporal frequency space. This stimulus structure could

be kept to increase neural responsivity, but in that situation, tighter control of

contrast, such as keeping summed squared contrast constant, is recommended. In

a third stimulus variant, a higher level of excitation could maintained using an

elliptically symmetric sampling of spatiotemporal frequency space. This sampling

could readily be transformed to a spherically symmetric sampling, allowing unbi-
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ased estimation of the STA [153]. The width and height of the ellipsoid, in spatial

and temporal frequency, would be matched to the preferences of the neuron. The

radii of the spheres could also be customized for the neuron’s preferences, more

densely sampling near the neuron’s preferred spatial frequency.

A final advantage to all three of these stimulus variants, all spherically sym-

metric in frequency space, is that zero temporal frequency components would be

included.

We observed elevated responses to constant velocity plaids, showing that pat-

tern cells prefer compound stimuli on the preferred velocity plane. Therefore,

a fourth hyperplaid variant, forced to have all components be consistent with a

velocity plane, may be able to increase neural spiking to hyperplaids.

A final experiment, complementing these spatiotemporal frequency character-

ization experiments, could analyze natural movies and quantify the incidence of

local motions (in both space and time) in terms of their spatiotemporal frequency

content. Specifically, does motion in natural movies tend to have spatiotemporal

energy on a plane? Furthermore, would a sparse coding model of motion [116,

84, 82] generate planar spatiotemporal filters? Some attempts have been made to

characterize local motion statistics [50, 39, 77, 136, 20, 21, 64, 114], but none have

done so in the context of planar spatiotemporal frequency.

4.8 Proposed changes to the model

The nonlinear cascade model can be improved even if no new data is collected

with different stimuli. The most important issue to resolve is the discrepancy in

predicted exponents in the MT nonlinearity when fit to different datasets. Perhaps

the simplest modification to the model is to change the form of the MT nonlinearity
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to be a sigmoid, implemented with divisive self-normalization, rather than a power

function. This would have two advantages: (1) closer conformity to the original

Simoncelli & Heeger (1998) model, and (2) the model would become a true cascade

model in that the same general operations would be repeated in V1 and MT [68].

An initial attempt to implement this modification introduced local minima into

the error surface, which suggests that significant optimization challenges would

need to be overcome.

Alternatively, there may be formulations of the MT nonlinearity that treat

(contrast) gain control via a mechanism separate from the exponent that governs

spatiotemporal frequency selectivity. Wang & Movshon (2016) reported that there

was no relationship between pattern index and semi-saturation or slope of the

contrast response, supporting the idea that contrast and direction selectivity are

handled by separate mechanisms.

A third approach involves building opponent suppression explicitly into the

model. This could be done by creating a subtractive term that is identical to

the weights, but rotated 180 degrees and scaled down (to avoid canceling out

the excitation). A more elaborate version of this approach would be to impose

constraints on the shapes of the excitatory and suppressive weights. We observed

a tight inverse relationship between excitatory and suppressive weights, in terms

of the degree to which they were confined to a plane (figure 3.5). A built-in

opponent suppression constraint would force suppressive weights to be in a cone

centered at the opponent velocity, the width of which is inversely related to the

cone containing the excitatory weights (figure 4.4, top row). A variant of this

constraint, combines opponent and temporal frequency-dependent suppression by

aligning the suppression cone with the zero-temporal frequency plane (figure 4.4,
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Figure 4.4: Hypothetical constraint on excitatory and inhibitory weights.
The excitatory and inhibitory weights are constrained to be within cones of with
inversely related widths. The top row shows suppression centered at the opponent
velocity. The bottom row shows suppression bounded at zero temporal frequency.

bottom row).

Finally, to account for the lack of perfect separability observed in the single

grating study in chapter 2, a subunit model framework [167, 163, 142, 26, 171, 87,

170] may be adopted. In the simplest instantiation of this idea, a non-homogeneous

population of V1 neurons would serve as inputs to the MT neuron. Each would

have part of its spatiotemporal receptive field going through the MT neuron’s pre-

ferred speed plane, but would be poorly aligned to it. Given that antidromically

identified direction-selective inputs from V1 to MT were found to be broadly tuned

to spatial and temporal frequency [106], it is likely that V1 inputs contribute fre-

quency sensitivity far off the preferred plane. As a consequence, their receptive

fields would overlap in the frequency domain, but only near the preferred velocity

plane. If stimulating a single one of these inputs with a single grating would be
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Figure 4.5: Overlapping spatiotemporal subunits.
(a) A side view of V1 neurons tiled along a preferred velocity plane in spatiotem-
poral frequency space according to the Simoncelli & Heeger (1998) model. (b)
Proposed model in which V1 neurons with overlapping spatiotemporal frequency
preferences provide input to the MT neuron. All V1 inputs have some portion of
their receptive fields intersecting the preferred velocity plane, but they are poorly
aligned to it. Their overlap occurs only within a narrow band around the preferred
plane.

sufficient to excite the MT neuron, then its responses to single gratings would prob-

ably not be separable in either a frequency- or velocity-based coordinate system.

If the MT neuron only responded to conjunctions of V1 inputs when presented

with compound stimuli, then its responses would be velocity-separable.

A further extension of the subunit idea would create the equivalent of a complex

cell in MT. Under such a “LN-LN” model [171, 169, 170], multiple sets of over-

lapping weights, representing multiple inputs from other neurons in MT, would

be nonlinearly transformed, separately, before being linearly combined and passed

through a second nonlinearity. In principle, this could allow overlapping weight-

ings, such as planar excitation and temporal frequency-dependent suppression, to

emerge from nonparametric model fits.
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4.9 Conclusion

We observed that pattern cells in MT have narrow direction tuning to both con-

stant frequency and constant velocity gratings, as well as extremely broad tuning

to constant velocity plaids (figure A.1). This means that these cells are specialized

for detecting the rigid motion of objects and textures, as would be predicted for

detectors organized along a tilted plane in spatiotemporal frequency space [4, 177,

105, 155, 124, 125]. If they were simply summing energy along a preferred velocity

plane, however, these cells would be “fooled” by the constant velocity gratings

and would have shown extremely broad direction tuning. Instead, they treat the

constant frequency and constant velocity gratings in the same manner. Pattern

cells are therefore performing a computation that is both more complex than pre-

viously thought and more biologically relevant. MT pattern cells, in response to

constant velocity gratings, signal their direction of motion correctly, despite their

tuning to the pattern motion of compound stimuli. In short, they correctly solve

the aperture problem for both simple and compound stimuli.

In the experiments presented in this thesis, we employed several different stimuli

(single gratings, planar plaids, hyperplaids), some of which were presented to the

same cells. The overlap of these datasets proved invaluable in validating and

refining our models. The different levels of complexity within each stimulus set

allowed us to appropriately tune the complexity of the models. Employing stimuli

of varying levels of complexity is a useful strategy that can be applied generally to

aid in performing systems identification of sensory systems.

Area MT has been the subject of extensive study since its original functional

characterization 45 years ago [41]. Its study was highly influential in developing our
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understanding of the visual system, both in terms of functional architecture and

computation [13]. Because area MT has been so well characterized, it is tempting

to dismiss its continued study as “scraping the bottom of a barrel,” to quote a

colleague. It is precisely because of our depth of knowledge about MT, however,

that its study can further reveal to us the computations our brains use to process

our sensory world.
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Appendix A

Awake and anesthetized
recordings
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Figure A.1: Histograms of pattern indices for awake and anesthetized MT neurons.
The upper plot is a histogram of pattern indices (Zp - Zc) for all anesthetized MT
neurons recorded (n = 42). The upper plot is a histogram of pattern indices (Zp -
Zc) for all awake MT neurons recorded (n = 118). For anesthetized MT neurons,
the mean pattern index is 0.27 ± 2.7. For awake MT neurons, the mean pattern
index is −0.38± 2.7.
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