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Abstract
Self-supervised Learning (SSL) provides a strat-
egy for constructing useful representations of
images without relying on hand-assigned labels.
Many such methods aim to map distinct views of
the same scene or object to nearby points in the
representation space, while employing some con-
straint to prevent representational collapse. Here
we recast the problem in terms of efficient coding
by adopting manifold capacity, a measure that
quantifies the quality of a representation based on
the number of linearly separable object manifolds
it can support, as the efficiency metric to optimize.
Specifically, we adapt the manifold capacity for
use as an objective function in a contrastive learn-
ing framework, yielding a Maximum Manifold
Capacity Representation (MMCR). We apply this
method to unlabeled images, each augmented by a
set of basic transformations, and find that it learns
meaningful features using the standard linear eval-
uation protocol. Specifically, we find that MM-
CRs support performance on object recognition
comparable to or surpassing that of recently de-
veloped SSL frameworks, while providing more
robustness to adversarial attacks. Empirical analy-
ses reveal differences between MMCRs and repre-
sentations learned by other SSL frameworks, and
suggest a mechanism by which manifold compres-
sion gives rise to class separability.

1. Introduction
Biological visual systems learn complex representations of
the world that support a wide range of cognitive behaviors
without using a large number of labelled examples. The
efficient coding hypothesis (Barlow et al., 1961; Simoncelli
& Olshausen, 2001) suggests that this is accomplished by
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adapting the sensory representation to the statistics of the
input signal, so as to reduce redundancy or dimensional-
ity. Visual signals have several clear sources of redundancy.
They evolve slowly in time, since temporally adjacent in-
puts typically correspond to different views of the same
scene, which in turn are usually more similar than views of
distinct scenes. Moreover, the variations within individual
scenes often correspond to variations in a small number of
parameters, such as those controlling viewing and lighting
conditions, and are thus inherently low dimensional. Many
previous results have demonstrated how the computations of
neural circuits can be seen as matched to such structures in
naturalistic environments (Simoncelli & Olshausen, 2001;
Schwartz & Simoncelli, 2001; Laughlin, 1981; Kriegeskorte
& Kievit, 2013; Chung & Abbott, 2021; Fairhall et al., 2001).
Studies in various modalities have identified geometric struc-
tures in neural data that are associated with behavioral tasks
(Bernardi et al., 2020; DiCarlo & Cox, 2007; Hénaff et al.,
2021; Gallego et al., 2017; Nieh et al., 2021), and explored
metrics for quantifying these representation geometries.

Recently, a new theory which connects the geometry (size
and dimensionality) of neural representations to the linear
decoding capacity of those neural manifolds has been intro-
duced (”Manifold capacity theory” hereafter) (Chung et al.,
2018). This theory has been used to evaluate neural rep-
resentations from biological and artificial neural networks
across modalities (Chung & Abbott, 2021). However, these
geometrical approaches have remained largely descriptive
as a way of evaluating neural data and understanding brain
functions, and its constructive usage as a design principle
for building model representations has been under explored.
Motivated by these observations, we seek to learn a func-
tion that represents different views of the same scene with
manifolds that are both compact and low-dimensional while
simultaneously maximizing the separation between mani-
folds representing distinct scenes.

Here, we demonstrate for the first time that

• optimizing a network for manifold capacity (MMCR)
results in a representation that support high-quality ob-
ject recognition, when evaluated using the standard
linear evaluation paradigm (i.e., applying an optimized
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linear classifier to the output of the unsupervised net-
work) (Chen et al., 2020a). Specifically, we show that
performance is approximately matched to that of other
recently proposed SSL methods.

• examining the learning signal reveals the mechanism
underlying the emergence of semantically relevant fea-
tures from the data

• MMCR renders interpretable geometric properties that
result in increased robustness to adversarial attack, rel-
ative to that of other recently proposed SSL methods.

1.1. Related Work

Our methodology is closely related to and inspired by re-
cent advances in contrastive self-supervised representation
learning (SSL), but has a distinctly different motivation and
formulation. Many recent frameworks craft objectives that
are designed to maximize the mutual information between
representations of different views of the same object (Oord
et al., 2018; Chen et al., 2020a; Oord et al., 2018; Tian et al.,
2020; Bachman et al., 2019)). However, estimating mutual
information in high dimensional feature spaces has proven
difficult (Belghazi et al., 2018), and furthermore it is not
clear that more closely approximating mutual information in
the objective yields improved representations (Wang & Isola,
2020)1. By contrast, capacity estimation theories operate in
the regime of large ambient dimension as they are derived
in the “large N (thermodynamic) limit” (Chung et al., 2018;
Bahri et al., 2020). Therefore we examine whether one such
measure, which until now had been used only to evaluate
representation quality, is useful as an objective function for
SSL.

Operationally, a number of existing methods aim to mini-
mize some notion of distance between the representations
of different augmented views of the same image, while max-
imizing the distance between representations of (augmented
views of) distinct images either directly or by imposing
some constraint on the representation such as feature decor-
relation (these are thought of as encouraging alignment and
uniformity in the framework of Wang & Isola (2020)). The
limitations of using a single pairwise distance comparison
have been demonstrated on multiple occasions, notably in
the development of the “multi-crop,” strategy implemented
in SwAV (Caron et al., 2020) and in the contrastive multi-
view coding approach Tian et al. (2020)). Consistent with
this, our formulation is derived from an assumption that
different views of an image form a continuous manifold that

1Barlow Twins (Zbontar et al., 2021) notably avoids the curse
of dimensionality because the objective effectively estimates in-
formation under a Gaussian parameterization rather than doing
so non-parametrically as in the InfoNCE loss. Our method also
makes use of Gaussian/second order parameterizations, as detailed
below.

we aim to compress. Rather than using the mean distance or
cosine similarity between pairs of points, we characterize
each set of image views with the spectrum of singular values
of their representations, using the nuclear norm as a com-
bined measure of the manifold size and dimensionality. The
nuclear norm has been previously used to induce or infer
low rank structure in the representation of data (Hénaff et al.,
2015; Wang et al., 2022; Lezama et al., 2018). In particular,
Wang et al. (2022) employ the nuclear norm as a regularizer
to supplement an InfoNCE loss. Our approach represents a
more radical departure from the traditional InfoNCE loss, as
we will detail below. Rather than pair a low-rank prior with
a logistic regression-based likelihood, we make the more
symmetric choice of employing a high rank likelihood. This
allows the objective to explicitly discourage dimensional
collapse, a well known issue in SSL (Jing et al., 2021).

Another consequence of encouraging maximal rank over the
dataset is that the objective encourages the representation
to form a simplex equiangular tight frame (sETF). sETFs
have been shown to be optimal in terms of cross-entropy
loss when features lie on the unit hypersphere (Lu & Steiner-
berger, 2020), and such representations can be obtained in
the supervised setting when optimizing either the traditional
cross-entropy loss or a supervised contrastive loss (Papyan
et al., 2020; Graf et al., 2021). Recent work has shown
that many popular objectives in SSL can be understood as
different methods of approximating a loss function whose
minima form sETFs (Dubois et al., 2022). Our approach is
novel, in that it encourages sETF representations by directly
optimizing the distribution of singular values, rather than
minimizing a cross-entropy loss.

Recently HaoChen et al. (2021) developed a framework
based on spectral decomposition of the “population aug-
mentation graph,” which provides theoretical guarantees
for the performance of self-supervised learning on down-
stream tasks under linear probing. This work was extended
to provide insights into various other SSL objectives by
Balestriero & LeCun (2022), and we show below that lever-
aging this approach can lead to explicit conditions for the
optimality of representation under our proposed objective
as well.

2. Maximum manifold capacity
representations

2.1. Manifold Capacity Theory

Consider a set of P manifolds embedded in a feature space
of dimensionality D, each assigned a class label. Mani-
fold capacity theory is concerned with the question: what
is the largest value of P

D such that there exists (with high
probability) a hyperplane separating the random dichotomy
(Cover, 1965; Gardner, 1988)? Recent theoretical work has



Figure 1. Two dimensional illustrations of high and low capacity representations. Left: the capacity (linear separability) of a random
set of elliptical regions can be improved, either by reducing their sizes (while maintaining their dimensionalities), or by reducing their
dimensionalities (while maintaining their sizes). Right: the objective proposed in this paper aims to minimize the nuclear norm (product
of size and sqrt dimensionality) of normalized data vectors (ie., lying on the unit sphere). Before training the manifolds have a large extent
and thus the matrix of their corresponding centroid vectors has low nuclear norm. After training the capacity is increased. The manifolds
are compressed and repelled from each other, resulting in centroid matrix with larger nuclear norm and lower similarity.

demonstrated that there exists a critical value, dubbed the
manifold capacity αC , such that when P

D < αC the proba-
bility of finding a separating hyperplane is approximately
1.0, and when P

D > αC the probability is approximately 0.0
(Chung et al., 2018). Furthermore, αC can be accurately
predicted from three key quantities: (1) the manifold radius
RM , which measures the size of the manifold relative to
its distance from the origin, (2) the manifold dimensional-
ity DM which estimates the number of dimensions along
which a manifold has significant extent, and (3) the centroid
correlation (if the positions of manifolds are correlated with
each other they will be more difficult to separate). In par-
ticular, when the centroid correlation is low the manifold
capacity can be approximated by φ(RM

√
DM ) where φ(·)

is a monotonically decreasing function.

For manifolds of arbitrary geometry calculating the mani-
fold radii and dimensionalities involves an iterative process
that alternates between determining the set of “anchor points”
on each manifold that are relevant for the classification prob-
lem, and computing the statistics of random projections
of these anchor points (Cohen et al., 2020). This process
is both computationally costly and non-differentiable, and
therefore not suitable for use as an objective function. For
more detail on the general theory see Appendx C. However,
if the submanifolds are assumed to be elliptical in shape
there is an analytical expression for each of these,

RM =
√∑

i λ
2
i , DM =

(
∑

i λi)
2∑

i λ
2
i

, (1)

where the λ2i are the eigenvalues of the covariance matrix of
points on the manifold. For reference, for a batch of 100 128-
D manifolds with 100 points sampled from each, computing
these elliptical-assuming measures is approximately 500
times faster in terms of wall-clock time.

Using these definitions for manifold radius and dimension-
ality we can write the capacity as αC = φ(

∑
i σi) where σi

are the singular values of a matrix containing points on the
manifold (equivalently, the square roots of the eigenvalues
of the covariance matrix). In this form, the sum is the L1

norm of the singular values, known as the Nuclear Norm
of the matrix. When used as an objective function, this
measure will prefer sparse solutions (i.e., a small number of
non-zero singular values) corresponding to low dimension-
ality. It is worth comparing this objective to another natural
candidate for quantifying size: the determinant of the co-
variance matrix. The determinant is equal to the product of
the eigenvalues (which captures the squared volume of the
corresponding ellipse), but lacks the preference for lower
dimensionality that comes with the Nuclear Norm. Specifi-
cally, since the determinant is zero whenever one (or more)
eigenvalue is zero, it cannot distinguish zero-volume mani-
folds of different dimensionality. In Yu et al. (2020), lossy
coding rate (entropy) is used as a measure of compactness,
which simplifies to the log determinant under a Gaussian
model Ma et al. (2007). In that work, the identity matrix is
added to a multiple of the feature covariance matrix before
evaluating the determinant, which solves the dimensionality
issue described above.

2.2. Optimizing Manifold Capacity

Now we construct an SSL objective function based on man-
ifold capacity. For each input image (notated as a vector
xb ∈ RD) we generate k samples from the correspond-
ing manifold by applying a set of random augmentations
(each drawn from the same distribution), yielding a mani-
fold sample matrix X̃b ∈ RD×k. Each augmented image is
transformed by a Deep Neural Network, which computes
nonlinear function f(xb; θ) parameterized by θ, and the d-



dimensional responses are projected onto the unit sphere
yielding manifold response matrix Zb ∈ Rd×k. The cen-
troid cb is approximated by averaging across the columns
(response vectors). For a set of images {x1, ...,xB} we
compute normalized response matrices {Z1, ...,ZB} and
assemble their corresponding centroids into matrix C ∈
Rd×B .

Given the responses and their centroids, the loss function is
expressed as:

L = −||C||∗ + λ

(
1

B

B∑
b=1

||Zb||∗

)
(2)

where || · ||∗ indicates the nuclear norm and λ is a tradeoff
parameter. The first term maximizes the extent of the “cen-
troid manifold” to encourage separability while the second
term encourages object manifold compression .

Compression by Maximizing Centroid Nuclear Norm
Alone Interestingly, the first term also has a compressive
effect. This is because each centroid vector, as a mean of
unit vectors, has norm that is linearly related to the average
cosine similarity of vectors of said unit vectors. Specifically,

||cb||2 =
1

K
+

2

K2

K∑
k=1

k−1∑
l=1

zTb,kzb,l (3)

Here zb,i denotes the representation of the ith augmentation
of xb. Then because the nuclear norm is bounded below by
the Frobenius norm (Recht et al., 2010), ||C||∗ ≥ ||C||F =√∑B

b=1 ||cb||2, maximizing the centroid nuclear norm opti-
mizes an upper bound on the norms of centroid vectors, thus
encouraging intra-object manifold similarity. We can gain
further insight by considering how the distribution of singu-
lar vectors of a matrix depends on the norms and pairwise
similarities of the constituent column vectors. While no
closed form solution exists for the singular values of an arbi-
trary matrix, the case where the matrix is composed of two
column vectors can provide useful intuition. IfC = [c1, c2],
Z1 = [z1,1, z1,2], Z2 = [z2,1, z2,2], the singular values of
C and Zi are:

σ(C) =
1√
2
(||c1||2 + ||c2||2 ± ((||c1||2 − ||c2||2)2

+ 4(cT1 c2)
2)1/2

σ(Zi) =
√
1± zTi,1zi,2

So, ||σ(C)||1 = ||C||∗ is maximized when the centroid
vectors have maximal norms (bounded above by 1, since
they are the centroids of unit vectors), and are orthogo-
nal to each other. As we saw above the centroid norms

is a linear function of within-manifold similarity. Simi-
larly, ||σ(Zi)||1 = ||Zi||∗ is minimized when the within-
manifold similarity is maximal. So, both terms in the objec-
tive encourage object manifold compression (in the simple
case described above the effect is nearly mathematically
equivalent). Surprisingly, this implies the first term alone en-
capsulates both of the key ingredients of a contrastive learn-
ing framework, and we do observe that simply maximizing
||C||∗ is sufficient to learn a useful representation. This is
because the compressive role of “positives” in contrastive
learning is carried out by forming the centroid vectors, so the
objective is not positive-free even with λ = 0. For example,
if only a single view is used the objective lacks a compres-
sive component and fails to produce a useful representation.
In Appendix F we demonstrate empirically that this implicit
form effectively reduces ||Zb||∗ So, all three factors which
determine the manifold capacity (radius, dimensionality,
and centroid correlations) can be elegantly expressed in an
objective function with a single term, −||C||∗; therefore we
simply drop the second term from Eq. 2 entirely.

2.3. Conditions for Optimal Embeddings

Here we introduce a simplified version of the framework
developed by HaoChen et al. (2021), which is a slight
modification of the formulation in Balestriero & LeCun
(2022) in order to derive conditions for the optimal em-
beddings under the proposed loss. Given a dataset X′ =
[x1, ...,xN ]T ∈ RN×D′

we construct a new dataset by cre-
ating k randomly augmented views of the original data,
X = [view1(X

′), ..., viewk(X
′)] ∈ RNk×D. The advan-

tage of doing so is that we can now leverage the knowledge
that different views of the same underlying datapoint are se-
mantically related. We can express this notion of similarity
in the symmetric matrix G ∈ {0, 1}Nk×Nk with Gij = 1
if augmented datapoints i and j are semantically related
(and Gii = 1 as any datapoint is related to itself). We can
normalize G such that its rows and columns sum to 1 (so
rows ofG are k-sparse with nonzero entries equal to 1/k).

Now let Z ∈ RNk×d be an embedding of the augmented
dataset. Then we have GZ = [C, ...,C]T where C is the
matrix of centroid vectors introduced above, and the number
of repetitions of C is k. Then because σ([C, ...,C]) =√
kσ(C) we can write MMCR loss function as,

L = −||GZ||∗ (4)

This connection allows us to make the following statements
about the optimal embeddings Z under our loss, which we
prove in Appendix A:

Theorem: Under the proposed loss, the left singular vectors
of an optimal embedding, Z∗, are the eigenvectors of G,
and the singular values of Z are proportional to the top d



eigenvalues ofG.

Computational Complexity: Evaluating the loss for our
method involves computing a singular value decomposition
of C ∈ Rd×B which has complexity O(Bd×min(B, d)),
where B is the batch size and d is the dimensionality of the
output. By comparison contrastive methods that compute all
pairwise distances in a batch have complexity O(B2d) and
non-contrastive methods that involve regularizing the co-
variance structure have complexity O(Bd2). Additionally,
the complexity of our method is constant with respect to the
number of views used (though the feature extraction phase
is linear in the number of views), while pairwise similarity
metrics will have quadratic complexity with the number of
views.

3. Results
We tested our method on datasets of different size, includ-
ing CIFAR-10, STL-10, and CIFAR-100, ImageNet-1k and
ImageNet-100 (Krizhevsky et al., 2009; Coates et al., 2011).
We used a standard linear evaluation technique (Chen et al.,
2020a) to verify that our method extracts semantically rel-
evant features from the data. We report the top-1 accu-
racy of linear classifiers for ImageNet-1k in 3.2; results for
other datasets can be found in Appendix J. Additionally
we conduct a series of analyses to understand how learning
to compress object manifolds gives rise to class manifold
separability. Finally we investigate how the geometrical
differences between representations trained according to
different contrastive SSL methods impact adversarial robust-
ness. To reduce the computational requirements, this set
of analyses is carried out on models trained on the CIFAR-
10 dataset. We primarily compare our method to SimCLR
and Barlow Twins, popular examples from the contrastive
and “non-contrastive,” categories of self-supervised learn-
ing (Chen et al., 2020a; Zbontar et al., 2021). For details on
each specific analysis see Appendix E.

3.1. Implementation Details

Architecture. For all experiments we use ResNet-50 (He
et al., 2016) as a backbone architecture (for variants trained
on CIFAR we removed max pooling layers). Following
Chen et al. (2020a), we append a small perceptron with one
hidden layer to the output of the average pooling layer of
the ResNet so that zi = g(h(xi)), where h is the ResNet
and g is the MLP. For ImageNet-1k/100 we used an MLP
with dimensions [8192, 8192, 512] and for smaller datasets
we used [512, 128].

Optimization We employ the set of augmentations pro-
posed in (Zbontar et al., 2021). For ImageNet we used the
LARS optimizer with a learning rate of 4.8, linear warmup
during the first 10 epochs and cosine decay thereafter, with a

Table 1. Top-1 classification accuracies of linear classifiers for
representations trained with various objective functions for 100
epochs on ImageNet-1k. Results for other methods come from
Ozsoy et al. (2022), except for SwAV which is copied from Dubois
et al. (2022)

Method Accuracy (%)
Barlow Twins Zbontar et al. (2021) 68.7
SimCLR (Chen et al., 2020a) 66.5
SimSiam (Chen & He, 2021) 68.1
BYOL (Grill et al., 2020) 69.3
MoCo-V2 (Chen et al., 2020b) 67.4
VICReg (Bardes et al., 2021) 68.7
SwAV (Caron et al., 2020) 64.6
CorInfoMax (Ozsoy et al., 2022) 69.1
SwAV (w/ multi-crop)(Caron et al., 2020) 69.5
W-MSE (4 views) (Ermolov et al., 2021) 69.4
MMCR (2 views) 68.4
MMCR (4 views) 70.2
MMCR (8 views) 71.5

batchsize of 2048. For smaller CIFAR-10 we used a smaller
batch size and the Adam optimizer with fixed learning rate.
See Appendix D for exact details.

3.2. Performance

Figure 10 details the evolution of the representation during
the course of training. The centroid nuclear norm (Fig. 10b)
increases steadily as the centroids become increasingly or-
thogonal to each other (Fig. 10c) and grow in norm (Fig.
10d). The compression of individual augmentation mani-
folds is reflected in Fig. 2a. The downstream classification
accuracies are reported in Table 4. Note that though we
report results using a default batch size of 2048, a batch size
as low as 256 can be used to obtain reasonable results (1.2%
drop compared to batch 2048), see Appendix K for a sweep
of batch size parameter.

3.3. Representation geometric analysis

In figure 2 we show that our representation, which is opti-
mized using an objective that assumes elliptical manifold ge-
ometry, nevertheless yields representations with high mean
field manifold capacity (relative to baseline methods). For
completeness we also analyzed the geometries of class man-
ifolds, whose points are the representations of different ex-
amples from the same class. This analysis provided further
evidence that learning to maximize augmentation manifold
capacity compresses and separates class manifolds, leading
to a useful representation. Interestingly MMCRs seem to
use a different strategy than the baseline methods to increase
the capacity, namely MMCRs produce class/augmentation



Figure 2. Mean Field Manifold Capacity Analysis. The shared x-axis of all plots is the representational hierarchy, the leftmost entries
represent the inputs (pixels) and the rightmost the output of the encoder/learned representation. The top row shows the manifold radius,
the middle the dimensionality, and the bottom the resultant capacity. Shaded regions indicate a 95% confidence interval around the mean
(analysis was conducted with 5 different random samples from the dataset, see E).

manifolds with larger radii, but lower dimensionality (Fig.
2)

3.4. Emergence of neural manifolds via gradient
coherence

We hypothesize the class separability in MMCRs arises
because augmentation manifolds corresponding to exam-
ples from the same class are optimally compressed by more
similar transformations than those stemming from distinct
classes. To investigate this empirically, we evaluate the gra-
dient of the objective function for inputs belonging to the
same class. We can then check whether gradients obtained
from (distinct) batches of the same class are more similar to
each other than those obtained from different classes, which
would suggest that the strategy for compressing augmen-
tation manifolds from the same class are relatively similar
to each other. Figure 3 demonstrates that this is the case:
within class gradient coherence, as measured by cosine sim-
ilarity, is consistently higher than across class coherence
across both training epochs and model hierarchy.

3.5. Manifold subspace alignment

Within-class gradient coherence constitutes a plausible
mechanistic explanation for the emergence of class sep-
arability, but it does not explain why members of the same
class share similar compression strategies. To begin an-

swering this question we examine the geometric properties
of augmentation manifolds in the pixel domain. Here we
observe small but measurable differences between the distri-
butions of within-class similarity and across-class similarity,
as demonstrated in the top row of figure 4. The subtle differ-
ence in the geometric properties of augmentation manifolds
in the pixel domain in turn leads to the increased gradient
coherence observed above, which over training leads to a
representation that rearranges and reshapes augmentation
manifolds from the same class in a similar fashion (bottom
row of figure 4), thus allowing for the linear separation of
classes. Not only are centroids of same-class-manifolds in
more similar regions of the representation space than those
coming from distinct classes (Fig 4 third column bottom
row) but additionally same-class-manifolds have more simi-
lar shapes to each other (Fig 4 bottom row columns 1 and
2 show same-class-manifolds occupy subspaces with lower
relative angles and share more variance).

We next ask how the representation learned according to the
MMCR objective differs from those optimized for other self
supervised loss functions. While MMCR encourages cen-
troids to be as close to orthogonal to each other, the InfoNCE
loss employed in Chen et al. (2020a) benefits when negative
pairs are as dissimilar as possible, which is achieved when
the two points lie in opposite regions of the same subspace
rather than in distinct (orthogonal) subspaces. The Barlow
Twins (Zbontar et al., 2021) loss is not an explicit function



Figure 3. Gradient cosine similarity for pairs of single-class batches. We plot the mean pairwise similarity for pairs of gradients for
for different subsets of the model parameters (all parameters, and the first and last linear operators) obtained from single-class-batches
coming from the same or distinct classes over the course of training. To the left is a visualization of the fact that single-class gradients
flow backward through the model in more similar directions.

of feature vector similarities, but instead encourages individ-
ual features to be correlated across the batch dimension and
distinct features to be uncorrelated. In 5 we demonstrate
that these intuitions are borne out empirically: the MMCR
representation produces augmentation manifold centroids
that are significantly less similar to each other than the two
baseline methods.

3.6. Adversarial Robustness

Previous work using similar geometrically-motivated loss
functions such as the orthogonal low-rank embedding
(Lezama et al., 2018) and maximal coding rate reduction
(Yu et al., 2020) have reported have increased inter-class
margins and robustness to label noise. We therefore tested
whether the increased tendency to orthogonalize in MMCR
models leads to any benefit in terms of adversarial robust-
ness. In Fig. 6 we show that the MMCR model (and attached
classifier) is indeed more robust than either Barlow Twins or
SimCLR trained models against PGD attacks with a range of
strengths (Madry et al., 2018). We found similar results us-
ing the stronger AutoAttack protocol (Croce & Hein, 2020),
see H. Note that Barlow Twins models seem to be more
robust than SimCLR models. We speculate that this is a
result of the decorrelation encouraged by the Barlow Twins
objective (as opposed to the anti-correlation encouraged by
SimCLR) .

4. Discussion
We present a novel self-supervised learning algorithm in-
spired by manifold capacity theory. Most existing SSL
methods can be categorized as either “contrastive,” or “non-
contrastive,” depending on whether they avoid collapse by
imposing constraints on the embedding gram or covariance
matrix, respectively. Our framework strikes a compromise,
optimizing the singular values of the embedding matrix it-
self, leading to a “best of both worlds,” effect. Learning
MMCRs requires neither large batch size (as is typical of
instance constrastive methods), nor large embedding dimen-

sion (as is typical of feature constrastive methods). Finally
our method extends naturally to the multi-view case, offer-
ing improved performance (more samples leads to a better
estimate of each centroid vector) with minimal increases in
computational cost (evaluation time for our objective does
not grow with the number of views).

When trained on several datasets of unlabelled images, our
method yields representations whose downstream task per-
formance is comparable to or better than existing SSL meth-
ods. Furthermore we conducted a gradient-based analysis to
examine why the self-supervised learning signal is capable
of producing useful representations. Finally, motivated by
an empirical exploration of the geometrical differences be-
tween the representations produced by the three considered
methods, we demonstrate that MMCRs can offer improved
robustness to adversarial attacks.

Our formulation relies on a restricted form of manifold ca-
pacity, in which we approximate the manifold geometries
as elliptical. This significantly reduces the computation
required to calculate the geometric properties that dictate ca-
pacity, allowing its efficient use as a SSL learning objective.
Although representational manifold geometries are gener-
ally not elliptical, we have demonstrated that this approx-
imation can nonetheless produce a useful learning signal,
and leads to networks with high manifold capacity (Fig. 2).
Nevertheless, it would be interesting to consider other reduc-
tions of the mean field manifold capacity that can capture
non-elliptical structure of individual manifolds, perhaps by
computing higher order statistics of constituent points.

We were able to leverage manifold capacity analysis in
its full generality to gain insight into the geometry of the
MMCR networks. Intriguingly, our method produces aug-
mentation and class manifolds with lower dimensionality
but larger radius than either Barlow Twins or SimCLR (Fig.
2). Future work will seek to understand why this is the
case, but more generally this suggests that capacity analysis
can be a fruitful way to understand the different encoding
strategies encouraged by various SSL paradigms. Another



Figure 4. The distributions of various similarity metrics for augmentation manifolds from either the same and distinct classes. In the top
row we consider augmentation manifolds in the pixel domain, and in the bottom row we observe how these distributions are transformed
by the learned representation. To the left a schematic shows details the exemplar-augmentation manifold-class manifold structure of the
learned representation.

Figure 5. Centroid similarities for models trained according to different SSL objectives. The left panel shows the distribution of centroid
cosine similarities for augmentation manifolds for examples of the same class, while the right shows the same distribution for examples
from distinct classes.

Figure 6. Adversarial Robustness of SSL Models under PGD At-
tack. For each of the three SSL models with trained classifiers, we
apply Projected Gradient Descent (PGD) with `∞-norm perturba-
tion under 50 attack iterations. Inputs were scaled such that their
standard deviation was 1.0, so we report the raw attack strengths
on the x-axis. Additional details can be found in H

factor that distinguishes MMCRs from other models is a
tendency to orthogonalize augmentation manifold centroids
and thus form a representation that is globally high dimen-
sional. Given that the recent observations that the representa-
tions in visual cortex and high performing models of visual
cortex are surprisingly high dimensional (Stringer et al.,
2019; Elmoznino & Bonner, 2022), it may be interesting to
test how well MMCRs can predict neural activity.

In this study, we introduced one specific model of learning
using metrics based on a specific theory of representations:
self-supervised learning via maximizing neural manifold
capacity. With recent trends in neuroscience focused on
representation geometric observations in neural data, we
believe that this work lays foundations for future studies in
learning based on representation geometries informed by
new discoveries in neuroscience.
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A. Optimal Embeddings
Recall the setting of self supervised learning as described in Balestriero & LeCun (2022): given a dataset X′ =
[x1, ...,xN ]T ∈ RN×D′

we construct a new dataset by creating k randomly augmented views of the original data,
X = [view1(X

′), ..., viewk(X
′)] ∈ RNk×D. The advantage of doing so is that we can now leverage the knowledge that

different views of the same underlying datapoint are semantically related. We can express this notion of similarity in the
symmetric matrixG ∈ {0, 1}Nk×Nk withGij = 1 if augmented datapoints i and j are semantically related (andGii = 1
as any datapoint is related to itself). We can normalizeG such that its rows and columns sum to 1 (so rows ofG are k-sparse
with nonzero entries equal to 1/k).

Now let Z ∈ RNk×d be an embedding of the augmented dataset. Then we haveGZ = [C, ...,C]T where C is the matrix
of centroid vectors introduced above, and the number of repetitions of C is k. Then because σ([C, ...,C]) =

√
kσ(C) we

can write MMCR loss function as,

L = −||GZ||∗
= −||QΛQTUSV T ||∗
= −||ΛQTUS||∗

(5)

Where we have taken the eigendecomposition ofG which is real and symmetric and the SVD of Z, and then used the fact
that the singular value spectrum is invariant under left or right orthogonal transformations. We now show that a global
optima of this objective is achieved when the left singular vectors of Z are the eigenvectors ofG and the singular values
of Z are proportional to the eigenvalues ofG. Throughout we will assume that the size of the dataset is greater than the
dimensionality of the embedddings, N > d, as is the case in practical applications. First we prove a simple lemma about the
spectrum of matrices who are extended by zeros (i.e. embedded in a higher dimensional space).

Lemma A.1: ForA ∈ RN×N ,B ∈ RN×d with d < N , ||AB||∗ = ||AB̃||∗ where B̃ = [B,0] ∈ RN×N .

Proof: First note thatAB̃ = [AB,0] so it suffices to show that for arbitraryX that σ(X) = σ([X,0]). Taking the SVD
ofX ,

X =
[
U Ũ

] [ Σ
0

] [
V T

]
= UΣV T

Then a valid singular value decomposition for X̃ is

X̃ =
[
U Ũ

] [
Σ 0
0 0

] [
V T 0
0 I

]

Clearly then, ||X||∗ = ||X̃||∗
Theorem: The proposed loss achieves a global minimum when the left singular vectors of Z are the eigenvectors ofG, and
the singular values of Z are proportional to the top d eigenvalues ofG.

Proof: Let Z̃ = [Z,0] ∈ RN×N . By Lemma A.1 we have ||GZ||∗ = ||GZ̃||∗. Von Neumann’s trace inequality can be
used to show ||GZ̃||∗ ≤

∑Nk
i=1 σi(G)σi(Z̃) (see Marshall et al. (1979) for proof). Examining (4) it is clear that this bound

is achieved when U = Q. The problem can therefore be reduced to the constrained optimization problem,

min
σi(Z̃)

Nk∑
i=1

σi(G)σi(Z̃)

subject to
Nk∑
i=1

σi(Z̃)2 = Nk

where the constraint comes from the fact that columns of Z are unit vectors. Intuitively, we are maximizing the inner
product between a fixed vector σ(G) and a vector with fixed L2 norm. The solution of course is to align the two vectors as



closely as possible, i.e. when σi(Z̃) ∝ σi(G) for i = 1, ..., d. It is worth noting that by construction σi(Z̃) = 0 for i > d
and the columns of U associated with these zero valued singular values are unconstrained.

B. Pytorch Style Pseudocode for MMCR
1 # h: encoder
2 # g: projection head
3 # B: batch size
4 # K: number of augmentations
5 # D: projector output dimensionality
6 #
7 # lmbda: trade-off parameter
8 for x in loader:
9 # K randomly augmented views

10 x = multi_augment(x) # B x K x H x W
11

12 # push through encoder and projector
13 z = g(h(x)) # B x K x D
14

15 # project onto unitsphere
16 z = normalize(z, dim=-1)
17

18 # calculate centroids (mean over augmentation axis)
19 c = z.mean(dim=1) # B x D
20

21 # calculate singular values
22 U_z, S_z, V_z = svd(z) # batch svd
23 U_c, S_c, V_c = svd(c)
24

25 # calculate loss
26 loss = -1.0 * sum(S_c) + lmbda * sum(S_z) / B
27

28 # backward pass and optimization step
29 loss.backward()
30 optim.step()

C. Mean Field Theory Manifold Capacity Background Information
Mean Field Theory Recall the problem setting for manifold capacity analysis: given a set of P manifolds embedded in a
feature space of dimensionality D, each assigned a random binary class label (Chung et al., 2018). Manifold capacity theory
is concerned with the question: what is the largest value of P

D such that there exists (with high probability) a hyperplane
separating the two classes? In the thermodynamic limit, where P,D →∞ but P

D remains finite, the inverse capacity can be
written exactly,

α−1M = E~T [F (
~T )] (6)

where, F (~T ) = min~V

{
‖~V − ~T‖2 | gS(~V ) ≥ 0

}
, S is the set defining the manifold geometry (i.e. the set of vectors ~S that

are points on an individual manifold), ~T are random vectors drawn from a white multivariate Gaussian distribution, and
gS(~V ) = min~S{~V · ~S | ~S ∈ S}, is the concave support function.

The KKT equations for this convex optimization problem are:

~V − ~T − λS̃(~T ) = 0

λ ≥ 0

gS(~V )− κ ≥ 0

λ
[
gS(~V )− κ

]
= 0.

(7)



, where S̃(~T ) is a subgradient of the support function. When the support function is differentiable, the subgradient is unique
and equal to the gradient,

S̃(~T ) = ∇gS(~V ) = argmin
~S∈S

~V · ~S (8)

S̃(~T ) is the unique point in the convex hull of S that satisfies the first KKT equation, and is called the “anchor point” for S
induced by the random vector ~T .

Equivalent Interpretation of Anchor Points For a given dichotomy (random binary class labelling) the weight vector
of the maximum margin separating hyperplane can be decomposed into a sum of at most P vectors, with each manifold
contributing a single vector, which lies within the convex hull of the manifold. The position of said point point is a function
of the manifolds position relative to all of the other manifolds in the space and depends on the particular set of random
labels. Thus there exists a distribution of separating-hyperplane-determining-points for each individual manifold. Using
the “cavity” method it can be shown that these points are none other than the anchor points that are involved in solving the
optimization problem described above (Gerl & Krey, 1994).

Numerical Solution To solve the mean field equations numerically, one samples several random Gaussian vectors ~T , and
then for each ~T , ~V and ~S are determined by solving the quadratic programming program given above. The capacity is then
estimated as the mean value of F or the samples ~T .

Manifold Geometries The way the capacity varies in terms of the statistics of the anchor points can be simplified by
introducing two key quantities, the manifold radius RM and manifold dimensionality RM :

R2
M = E~T [||S̃(~T )||

2]

DM = E~T [
~T · Ŝ(~T )]

(9)

where Ŝ(~T ) is a unit-vector in the direction of the anchor point S̃. In particular as discussed in the main text, the manifold
capacity can be approximated by φ(RM

√
DM ) where φ is a monotonically decreasing function.

Elliptical Geometries In the case where the manifolds exhibit elliptical symmetries, the manifold radius and dimensionality
can be written in terms of the eigenvalues of the covariance matrix of the anchor points:

R2
M =

∑
i

λ2i

DM =
(
∑

i λi)
2∑

i λ
2
i

(10)

So, in this case RM is the total variability of the anchor points, and DM is a generalized participation ratio of the anchor
point covariance, a well known soft measure of dimensionality.

D. Additional Pre-training information
Settings for CIFAR/STL-10 We take the parameters of each augmentation directly from Zbontar et al. (2021), but for these
lower resolution images we omitted Gaussian blurring and solarization augmentations. All models were trained for 500
epochs using the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 1e− 3 and weight decay of 1e− 6. For all
three methods we used a one hidden layer MLP with hidden dimension of 512 and output dimension of 128 for the projector
head g. We swept batch size for each method and chose the one that resulted in the highest downstream task performance.
For both SimCLR and Barlow Twins we found that a batch size of 128 was optimal (among 32, 64, 128, 256, and 512) for
all 3 datasets. For MMCR there is a trade-off between batch size and the number of augmentations used, and the optimal
value of that trade-off is highly dataset dependent. For CIFAR-10 and CIFAR-100 we used batch size of 32 and 40 views,
and for STL-10 we used a batch of 64 with 20 views For Barlow Twins we used λ = 1

128 which normalizes for the number
of elements in the on-diagonal and off-diagonal terms in the loss. For SimCLR we used the recommended setting of τ = 0.5.
The overall performance of both baseline methods (and likely MMCR as well) could be increased with a more thorough



hyperparameter search and by employing methodology that more closely matches the original works. For example, both
methods would likely benefit from the combination of larger batch size, the use of the LARS optimizer (which is designed
for large batch optimization), a learning rate scheduler consisting of linear warm-up followed by cosine annealing, longer
training, and the use of more diverse augmentations (i.e. including solarization and gaussian blur). Additionally Barlow
Twins reports that the representation can benefit from using a much larger projector network than we use. Because our goal
was primarily to demonstrate that MMCR can produce representations that are comparable to these baselines rather than to
produce state-of-the-art results on small scale datasets we opted for simplifications wherever possible (using off the shelf
Adam for optimization with a fixed learning rate, and fixing architectural hyperparameters like the projector dimensionality).

Settings for ImageNet-100 For ImageNet we more closely match the pre-training procedures of previous works. We use
a batch size of 2048 and a smaller number of views for MMCR (4), and also use the full suite of augmentations from
Zbontar et al. (2021). For the sake of efficiency we train for a reduced number of epochs (200). For MMCR and SimCLR
we modified the projector hidden dimensionality to be 4096 for the projector head, following the original work (Chen
et al., 2020a). For Barlow Twins we used the recommended 2-layer MLP with hidden and output dimensions of 8192,
and set λ = 5e− 3, however these hyperparameters were optimal for the full ImageNet dataset, and not neccesarrily for
ImageNet-100. We were unable to achieve better downstream performance using a ResNet-50 backbone than what has
previously been reported in the literature for this dataset with a ResNet-18 backbone, therefore we report the ResNet-18
performance reported in (da Costa et al., 2022). For SimCLR we use τ = 0.1 which is the recommended setting for larger
batch sizes.

Settings for ImageNet-1k: For ImageNet-1k we use mostly identical settings to ImageNet-100, but we increased the
capacity of the projector network (using a 2 hidden layer MLP with hidden dimenisons of 8192 and output dimension
of 512). We scaled the learning rate linearly with batch size: lr = 0.6× batch size

256 . Additionally we reduce the number of
pretraining epochs to 100.

E. Details of Representational Analyses
E.1. Manifold Capacity Analysis

For each pre-trained model, we extract layer activations across the ResNet hierarchy after a forward pass of a set of images.
For class manifold analysis, the set of images contain 10 classes, where each class has 100 examples. Augmentation
manifolds instead have 100 exemplars with 100 examples each. Following (Cohen et al., 2020), we take activations from all
convolutional layers in ResNet-50 after a ReLU non-linearity. The specific extracted layers highlighted in bold fonts are
given by Table 2. The final analysis results are averaged over five data samplings with different random seeds and random
projections of intermediate features to lower-dimension spaces (default 5000 dimensions).

E.2. Gradient Coherence Analysis

In Fig 3, for each of the classes of CIFAR-10, we generate 100 batches of 32 augmentation manifolds of samples from
a specific class (with 40 augmentations each). We then measure the gradient of the loss function for each batch during
different stages of training, and compute the cosine similarity between every pair of gradients. Across all stages of training
the mean cosine similarity between gradients generated from batches of the same class is larger than those from distinct
classes (left column). This observation remains true when isolating the gradients of parameters from different stages of in
the resnet-50 hierarchy (center and right columns, respectively).

E.3. Manifold Subspace Alignment

For Fig. 4 we generated 100 samples from the augmentation manfiolds of 500 images in the CIFAR-10 dataset. We then
measure the mean subspsace angle (left column), fraction of shared variance (middle column) and centroid cosine similarity
between each pair of manifolds. The same procedure was used for generating the data for 5.

Subspace Angle. Besides measuring the size and dimensionality of individual object manifolds we also wish to characterize
the degree of overlap between pairs of manifolds. For this, we measure the angle between their subspaces (Knyazev &
Argentati, 2002), which is a generalization of the notion of angles that applies to subspaces of arbitrary dimension.

Shared Variance. Object manifolds will generally have a lower intrinsic dimensionality then the space they are embedded
in. Therefore, the data will have low variance along several of the principal vectors used to calculate the set of subspace



Table 2. A Total of 18 Extracted ResNet-50 Layers (in Bold) for MFTMA Analysis

Layer Type Conv2d Size (H×W× C)

pixel Input None

conv1

Conv2d
BatchNorm
ReLU

× 1
[
7× 7× 64

]
× 1

conv2 x

[Conv2d
BatchNorm

]
× 3

ReLU

× 3

1× 1× 64
3× 3× 64
1× 1× 256

× 3

conv3 x

[Conv2d
BatchNorm

]
× 3

ReLU

× 4

1× 1× 128
3× 3× 128
1× 1× 512

× 4

conv4 x

[Conv2d
BatchNorm

]
× 3

ReLU

× 6

1× 1× 256
3× 3× 256
1× 1× 1024

× 6

conv5 x

[Conv2d
BatchNorm

]
× 3

ReLU

× 3

1× 1× 512
3× 3× 512
1× 1× 2048

× 3

angles, and so many of the principal angles will have little meaning. To address this limitation we also compute the shared
variance between the linear subspaces that contain object manifolds.

F. Implicit MMCR Effectively Reduces Augmentation Manifold Nuclear Norm
To test whether or not implicit manifold compression actually reduces the mean augmentation manifold nuclear norm, we
can vary the value of λ. Below we see the evolution of bother terms of the loss for several different values of lambda during
training on CIFAR-10. For these experiments the batch size was 64 and the number of augmentations per image was 4.0. As
shown in 7, the level of compression of individual manifolds is nearly the same across all values of the tradeoff parameter
tested.

Figure 7. Validation loss values for different values of λ



G. Classification Evaluation Procedure
CIFAR and STL-10: During pre-training all models were monitored with a k-nearest neighbor classifier (k=200) and
checkpointed every 5 epochs. After pre-training, we trained linear classifiers on all checkpoints whose monitor accuracy
was within 1% of the highest observed accuracy, and select the model that achieves the highest linear classification accuracy.
Linear classifiers were trained using the Adam optimizer with batch size of 1024 and an initial learning rate of 0.1, which
decayed according to a cosine scheduler over the course of 50 epochs. For the linear classifier training, at train time we use
the same set of augmentations as during unsupervised pretraining, at test time we only use center cropping and random
horizontal flipping.

ImageNet-1k/100: For ImageNet datasets we closely followed the most widely adopted evaluation procedure. Following
pre-training we freeze the encoder weights and train a linear layer in a supervised fashion using SGD with a batch size of 256,
learning rate of 0.3, and weight decay of 1e-6 for 100 epochs. During linear classifier training the only data augmentations
are random cropping and random horizontal flips, and during evaluation inputs are center cropped.

H. Additional Details for Adversarial Robustness Analyses
In Figure 6, we choose 50 iterations for the PGD `∞-norm since it guarantees a robust accuracy value not far away from
asymptotically larger PGD attack iterations (Madry et al., 2018; Croce & Hein, 2020). In our experiment, we have shown
that the PGD attack indeed converges in a similar fashion (See Figure 8). However, the robust accuracy for MMCR tends to
converge at larger PGD attack iterations.

Figure 8. Convergence for different settings of adversarial attack strengths

We therefore also analyzed the robust accuracies for the three SSL methods with varying iterations across all epsilon attack
strength. Figure 9 shows MMCR exhibits a significantly higher robust accuracy compared to Barlow-Twins and SimCLR in
the low iterations regime.

Figure 9. PGD `∞-norm attack with varying iterations.

Aside from the standard PGD adversarial attack, we also tested three SSL methods under the AutoAttack protocol. The
`∞-norm AutoAttack accuracy is given by Table 3.



Table 3. AutoAttack `∞-norm Robust Accuracy
Method Clean Accuracy Eps = 40/255 Eps = 160/255

Barlow Twins (our repro.) 90.91 74.55 31.53
SimCLR (our repro.) 92.22 72.48 26.37

Implicit MMCR (ours) 93.53 75.88 32.47

Table 4. Top-1 classification accuracies of linear classifiers for representations trained with various datasets and objective functions. Note:
for Barlow Twins on ImageNet-100 we report the result from da Costa et al. (2022) which uses a ResNet-18 backbone, as we were
unable to obtain better performance. For MMCR on ImageNet-100 we tested both 2 views (matched to baselines) and 4 views, results are
formatted (2-view)/(4-view)

[t]

Method CIFAR-10 CIFAR-100 STL-10 ImageNet-100

Barlow Twins (our repro.) 90.91 67.91 89.96 80.38∗

SimCLR (our repro.) 92.22 70.04 91.11 79.64
MMCR (λ = 0.0) 93.53 69.87 90.62 81.52/82.88

MMCR (λ = 0.01) 93.39 70.94 90.77 81.28/82.56

I. Training Metrics
In the Fig. 10 below we monitor the evolution of both the objective (second panel), the mean augmentation manifold nuclear
norm, the centroid norm, and the mean centroid similarity evaluated on the test set over the course of training.

Figure 10. Evolution of various metrics during training. Geometric measures are evaluated on a set of 200 manifolds, each defined by an
image drawn from the CIFAR-10 dataset, along with 16 augmentations. Shaded regions indicate a 95% confidence interval around the
mean.

J. Classification Performance on Smaller Datasets
In Table 4 below we report the performance of both our method as well as Barlow Twins and SimCLR when trained using a
ResNet-50 backbone on smaller datasets.

K. Batch Size Dependence
One of the most cited drawbacks of contrastive SSL methods has been that training with large batch sizes is necessary to
achieve strong performance on downstream tasks, while non-contrastive methods such as VICReg and Barlow Twins (Zbontar
et al., 2021; Bardes et al., 2021) that place constraints on the cross-correlation/covariance matrices of the embeddings are
much more amenable to smaller batch training. It is also worth noting that the need for large batch sizes in contrastive
methods can be alleviated in various ways such as by maintaining a memory bank as in Wu et al. (2018) or by employing a
slowly updating momentum encoder as in He et al. (2020). Given that our method is neither wholly contrastive nor non-



contrastive as it acts on the spectrum of the embedding matrix directly we wondered whether its performance as a function
of training batch size would exhibit more similarity to one category of SSL or another in terms of batch size dependency.
We pretrained on ImageNet-1k using batch size in 256, 512, 1024, 2048, 4096 and evaluate the linear classification accuracy
for each. Encouragingly we observe only a modest decrease in performance for the smallest batch size tested, but strangely
there is a dip at batch size of 512. Given this we tested two additional batch sizes of 320 and 768. The results of this sweep
in comparison to Barlow Twins and SimCLR are shown in in Fig. 11 Future work should endeavor to better understand the
impact of various hyperparameters on the quality of learned representations. Note that for these runs we used two views and
the linear learning rate scaling as described in Appendix D.

Figure 11. Plotted on the y-axis is the relative drop in performance from the top setting for three methods (viewing downstream accuaracy
as a function of batch size, plotted is: Accuracy(Batch Size) - Max(Accuracy(Batch Size))). Data for both Barlow Twins and SimCLR are
inherited from Zbontar et al. (2021).


