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Abstract 
 
The retina transmits visual signals to the brain in the spiking activity of retinal ganglion cells 
(RGCs). This signal is necessarily imperfect: some visual information is lost in 
phototransduction and retinal processing. To quantify the transmitted visual signal, we 
developed a Bayesian method to reconstruct images from the simultaneously recorded spikes 
of hundreds of macaque RGCs of the four dominant types. The algorithm combines a stochastic 
likelihood model for RGC light responses that is fitted to spiking data, with a prior model for 
natural images implicitly embedded within an artificial neural network trained for image 
denoising. When applied to retinal population responses to both flashed images and images 
jittered to emulate fixational eye movements, the method provided reconstruction performance 
exceeding or matching all previous reconstruction algorithms, in an interpretable analytical 
framework that provided insight into the neural code. Reconstructions improved with increasing 
jitter amplitude over a behaviorally relevant range (even when the jitter trajectory was unknown), 
revealing that fixational eye movements improve rather than degrade the retinal signal. 
Reconstructions were degraded by artificial perturbation of spike times as small as 5 ms, 
revealing a temporal encoding precision finer than expected from previous studies. Ablating cell-
to-cell interactions in the encoding model substantially reduced reconstruction quality, indicating 
the importance of stimulus-evoked correlations in representing the visual scene. Thus, fixational 
eye movements contribute to highly precise retinal population activity, enabling more accurate 
transmission of visual signals to the brain. 
 
Introduction 
 
Vision begins with the retina, which transforms incoming light into electrical signals, processes 
these signals, and transmits them to the brain in the spiking activity of retinal ganglion cells 
(RGCs). This encoding process has been studied for nearly a century, with contemporary 
models capturing the details of RGC responses with a high degree of precision. But quantifying 
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coding precision does not directly reveal how effectively the visual scene is conveyed by RGCs 
to the brain, nor how that effectiveness depends on spike timing and cell-to-cell correlations. 
Nor does it elucidate the degree to which the RGC code is specialized for the stimulus 
conditions that the visual system evolved to analyze: naturally-occurring patterns of light, with 
global image shifts arising from eye movements.  
 
To probe the retinal code under these conditions, we develop and apply a novel method for 
reconstructing natural images and movies from the spiking activity of complete populations of 
RGCs recorded in the primate retina. Rather than fitting a model to directly map recorded RGC 
spikes to images [Warland 1997; Kim 2020, Brackbill 2020], we use a Bayesian formalism – 
combining a likelihood obtained from the retinal spikes with separately-acquired prior 
information about the statistical structure of natural images. Specifically, images are 
reconstructed by numerical optimization of the posterior density, arising from the product of (1) 
an image likelihood obtained from an encoding model fitted to RGC data [Pillow 2008] that 
captures the stochastic responses of RGCs to visual stimuli, and (2) a natural image prior 
implicit in an artificial neural network pre-trained on a natural image database to perform 
Gaussian denoising [Zhang 2021]. This approach confers unique advantages for analysis and 
interpretation of the retinal signals. We demonstrate that the method achieves state-of-the-art 
reconstruction performance, and then use it to demonstrate for the first time the importance of 
fixational eye movements, spike timing precision, and cell-to-cell correlations in the retinal code 
for natural visual stimuli. 
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Figure 1. Reconstruction of flashed natural images from RGC spikes. (a) Example macaque retinal data. 
Receptive field mosaics for the major RGC types (ON parasol, OFF parasol, ON midget, OFF midget). Natural 
images are flashed for 100ms, and spikes recorded from all 691 cells over a 150 ms interval (gray region) were 
used for LNBRC model fitting and reconstruction. (b) LNBRC encoding model. Model cell responses are computed 
from the spatio-temporally filtered visual stimulus, combined with filtered spike trains from the cell and neighboring 
cells. These filtered spiking inputs capture both spike train temporal structure and cell-to-cell correlations. (c) 
Bayesian reconstruction. The likelihood computed using the LNBRC encoding model is combined with a separately 
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trained natural image prior to produce a posterior density for the stimuli given observed spike trains. (d) Half-
quadratic variable splitting algorithm for approximate MAP optimization. The method alternates between optimizing 
the likelihood (a convex minimization problem, solved using gradient descent), and optimizing the prior probability 
(by applying an artificial neural network pre-trained to perform Gaussian denoising on natural images). (e) 
Visualization of the optimization path for a highly-simplified two-dimensional toy problem (red lines are likelihood 
steps, blue lines are prior steps). The contours indicate level sets of the posterior, with mode of posterior (purple 
star), likelihood (red dot) and prior (blue x). The step size progressively decreases, corresponding to increasing 
values of schedule hyperparameter ⍴. (f) Example reconstructions comparing LNBRC-dCNN with stimulus, 
benchmarks, and alternative models. Columns: Stimulus, the image presented to the retina; Linear reconstruction, 
a simple benchmark; ANN, direct artificial neural network reconstruction [Kim 2020]; LNBRC-dCNN, our Bayesian 
method; LNBRC-1F, Bayesian method with the dCNN image prior with a simpler 1/F Gaussian image prior; and 
LNP-dCNN, replacing the LNBRC likelihood with a simpler LNP likelihood.  

 
Results 
 
To characterize the visual signals evoked by natural images, we recorded light responses of 
RGCs in isolated macaque retina with a large-scale multi-electrode array [Litke 2004]. This 
method captured the activity of nearly complete populations of several hundred RGCs of the 
four numerically dominant types (ON midget, OFF midget, ON parasol, OFF parasol), which 
comprise roughly 70% of RGC axons projecting to the brain [Field 2007]. Spatiotemporal white 
noise stimuli were used to identify cells and map their receptive fields [Field 2007, Rhoades 
2019].  
 
Bayesian reconstruction of flashed images  
 
We first examined reconstruction of images presented in brief flashes to the retina. Although the 
dynamics of the flashed stimulus differ markedly from natural vision, the simplicity of the 
stimulus enabled evaluation of the image reconstruction approach and comparison to previous 
methods. Thousands of grayscale photographic images from the ImageNet database [Fei-Fei 
2009] were presented, for a duration of 100 ms with consecutive trials separated by 400 ms of 
uniform gray screen (Fig. 1a, also see Methods).  
 
Flashed natural images were reconstructed from evoked RGC activity using an Bayesian 
approximate maximum a posteriori (MAP) algorithm (see [Wu 2022]). The posterior density 
(probability of an image given observed spikes) is the product of two separately defined and 
estimated components: (1) a likelihood model of the natural image stimulus 𝑦 evoking the 
measured spiking response 𝑠, 𝑝( 𝑠 ∣∣ 𝑦 ), computed using a probabilistic encoding model of RGC 
spiking in response to natural image stimuli; (2) a prior model of natural images, 𝑝(𝑦), obtained 
implicitly from a Gaussian-denoising neural network (Fig. 1c). The likelihood was computed from 
an encoding model that summed the effects of the visual input, spike history, and spike trains of 
nearby neurons (to capture spike train temporal structure and cell-to-cell correlations) and then 
transformed the output with an instantaneous sigmoidal nonlinearity to provide a firing 
probability for a Bernoulli spike generator (Fig. 1b). This model generalizes the commonly-used 
linear-nonlinear-Poisson (LNP) cascade model, replacing Poisson spiking with Bernoulli spiking 
(equivalent at fine time scales) and incorporating recursive feedback and coupling filters [Pillow 
2008] – we refer to it as the Linear-Nonlinear-Bernoulli with Recursive Coupling (LNBRC) 
model. Model parameters (stimulus, feedback, and coupling filters, and an additive constant) 
were jointly fitted to recorded RGC data by maximizing the likelihood of observed spikes given 
the stimulus, augmented with regularization terms to induce sparsity in the filter weights (see 
Methods). Separately, an implicit image prior was obtained by training a denoising convolutional 
neural network (dCNN) to remove additive Gaussian noise from a large collection of natural 
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images [Zhang 2021]. Such priors underlie the “diffusion models” [Sohl-Dickstein 2015] that 
represent the current state-of-the-art in machine learning for image synthesis [Song 2019, Ho 
2020] and inference [Kadkhodaie 2020, Cohen 2021, Kawar 2021].  
 
With these two components, the reconstruction procedure maximized the posterior by 
alternating between an encoding likelihood optimization step (solved with unconstrained convex 
minimization) and a prior optimization step (solved with a single forward pass of the denoiser 
[Venkatakrishnan 2013, Zhang 2021]) (Fig. 1d,e, see Methods), yielding an estimate of the most 
probable image given the RGC spikes and natural image statistics. 
 
The performance of the MAP reconstruction algorithm was characterized qualitatively with visual 
image comparison and quantitatively with MS-SSIM [Wang 2004], a commonly used measure of 
perceptual image quality. Example reconstructions are shown in Fig. 1f. Reconstruction 
performance was qualitatively and quantitatively more accurate than that obtained using linear 
reconstruction [Rieke 1997, Warland 1997, Brackbill 2020] (mean MS-SSIM of 0.685, 0.652, 
0.660, and 0.652 for LNBRC-dCNN MAP reconstructions in the four preparations tested, 
compared to 0.624, 0.616, 0.578, and 0.575 for linear reconstruction). Performance was 
comparable to state-of-the-art neural networks trained to nonlinearly recover the high spatial 
frequency components of images [Kim 2020] (mean MS-SSIM of 0.689, 0.683, 0.651, and 
0.653, respectively). In addition to reconstruction quality, the MAP approach provided greater 
interpretability by separating the likelihood and prior components of estimation, and broader 
usability with limited retinal data (the retinal encoding models contained ~1.5 million parameters, 
in comparison with ~240 million parameters for the benchmark direct neural network method).  
 
To examine the importance of the encoding and prior models, MAP reconstruction performance 
with the full model (labeled LNBRC-dCNN) was compared to that achieved with a simpler 
spectral Gaussian image prior (LNBRC-1F) or with a likelihood corresponding to a simpler LNP 
encoding model (LNP-dCNN). Images reconstructed using the full approach had sharper and 
more detailed image structure (edges, contours, textures) than those reconstructed using the 
1/F prior, and contained more fine spatial detail than those reconstructed using the LNP 
encoding model (Fig. 1f). Quantitatively, reconstructions produced using LNBRC-dCNN 
exhibited greater similarity to the original image than those produced with the simpler 1/F prior 
or the simpler LNP encoding model (mean MS-SSIM of 0.685, 0.652, 0.660, and 0.652 across 
preparations using LNBRC-dCNN, in comparison with 0.612, 0.573, 0.577, and 0.565 using 
LNBRC-1/F, and 0.635, 0.613, 0.597, and 0.603 using LNP-dCNN). Thus, both the dCNN image 
prior and the LNBRC encoding model contribute substantially to producing high-quality natural 
image reconstructions. 
 
Bayesian reconstruction of images displayed with fixational eye movements 
 
Fixational jitter (drift), the small but incessant eye movements that occur when fixating a visual 
target, is a fundamental component of natural vision in primates. These eye movements have 
been hypothesized to enhance visual resolution by sampling the image at many spatial phases 
relative to the lattice of RGC receptive fields [Patrick 2017, Ratnam 2017, Anderson 2020], 
and/or by modulating high frequency spatial details into the temporal domain [Rucci 2007, 
Kuang 2012]. However, psychophysical studies [Murakami 1998, Poletti 2010, Ratnam 2017] 
suggest that the visual system may not have precise knowledge of the eye position, opening the 
possibility that positional uncertainty could instead degrade the retinal signal [Packer 1992] (but 
see [Rucci 2015]). Although simulation studies [Pitkow 2007, Burak 2010, Ahissar 2012, 
Anderson 2020] have explored the possibility of using the retinal signal alone to compensate for 
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fixational eye movements, it remains uncertain whether unknown eye jitter enhances or 
degrades the retinal representation. We directly characterized the effects of jitter eye 
movements by reconstructing images from the experimentally-recorded responses of RGCs to 
jittered natural stimuli.  
 
We measured RGC responses to movies consisting of images from the ImageNet database 
[Fei-Fei 2009], presented with randomly jittered spatial offsets in each frame to emulate 
fixational eye movements. Images were displayed for 500 ms, with each 8.33 ms frame spatially 
shifted relative to the previous frame according to a discretized sample from a 2D Gaussian 
distribution with a standard deviation of 10 µm (Fig 2ab), approximately matching the diffusion 
constant for fixational jitter eye movements in humans [Kuang 2012, Rucci 2015] and macaques 
[Z.M. Hafed and R.J. Krauzlis, personal communication, June 2008]. The LNBRC model was 
fitted to RGC responses to jittered stimuli by maximizing likelihood. Model fit quality was 
assessed by comparing the model-simulated spikes with recorded data (Fig. 2c), and by 
computing the fraction of response variance explained by the model. Although some small 
systematic deviations from the data were observed (Fig. 2c), in general the LNBRC model 
effectively captured responses to natural stimuli with fixational eye movements (Extended Data 
Fig 1). 
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Figure 2. Reconstruction of jittered natural images from RGC spikes. (a) Example stimulus image (masked to 
include only the region covered by recorded cells), with an example jitter eye movement trajectory overlaid (red). 
(b) Example ON parasol receptive field mosaic (left) and ON midget mosaic (right), with example jitter trajectory 
(red). The simulated eye movements were typically comparable to the size of a midget RGC receptive field. (c) 
Top: comparison of spikes recorded from an example ON parasol RGC to repeated presentations of the same 
stimulus (black ticks) with simulated responses of the fitted LNBRC model (red ticks). Bottom: average spike rates 
over time corresponding to the above rasters. (d) Schematic of the joint-LNBRC-dCNN reconstruction algorithm: 
the algorithm alternates between an image estimation update step (left), in which the stimulus is reconstructed by 
using the LNBRC model and denoiser CNN image prior to maximize the expected log-posterior over a variational 
distribution for eye movements, and an eye movements update step (right), in which the variational distribution for 
eye movements is updated given the reconstructed image. (e) Example reconstructions for the eye movements 
stimulus, using LNBRC encoding model and dCNN prior. Columns: Stimulus, the image presented to the retina; 
Known-LNBRC-dCNN, MAP reconstruction with known eye movements; Zero-LNBRC-dCNN, MAP reconstruction 
with the (incorrect) assumption of zero eye movements; and Joint-LNBRC-dCNN, joint estimation of image and eye 
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movements. (f) Left: Performance comparison between joint-LNBRC-dCNN and zero-LNBRC-dCNN. 
Reconstruction quality using joint-LNBRC-dCNN exceeded was better than that of zero-LNBRC-dCNN for nearly 
every image. Right: performance of joint-LNBRC-dCNN and known-LNBRC-dCNN. Reconstruction quality lies near 
the line of equality, with known-LNBRC-dCNN slightly outperforming joint-LNBRC-dCNN. (g) Performance of joint 
estimation procedure joint-LNBRC-dCNN, normalized relative to zero-LNBRC-dCNN (y=0, solid line) and known-
LNBRC-dCNN (y=1, dashed line). The box in the plot marks the median and the inter-quartile range (IQR), while 
the whiskers extend to 1.5 times the IQR. Outliers are marked with a +. For all three preparations, the relative 
reconstruction quality for joint-LNBRC-dCNN was typically near 1 (mean values: 0.976, 1.02, and 0.793), the 
performance with known eye movements. 

 
The fitted LNBRC was combined with the dCNN natural image prior for simultaneous estimation 
of the stimulus image and eye position using a modified approximate MAP procedure. To avoid 
marginalization over the eye movement trajectories, an expectation-maximization (EM) 
algorithm [Anderson 2020] was used to alternate between reconstructing the intermediate 
image that maximized the expected log posterior over an estimated distribution of eye 
movement trajectories, and using that intermediate image to update the eye movement 
distribution (Fig. 2d, also Methods and Supplement). 
 
The effectiveness of this procedure (labeled joint-LNBRC-dCNN) at compensating for unknown 
eye movements was evaluated by comparing reconstruction quality to the case in which eye 
movements were known exactly (known-LNBRC-dCNN), and the case in which eye movements 
were incorrectly assumed to be zero (zero-LNBRC-dCNN). Reconstruction quality for joint-
LNBRC-dCNN exceeded that of zero-LNBRC-dCNN (mean MS-SSIM of 0.677, 0.652, and 
0.638 for each preparation for joint-LNBRC-dCNN, in comparison with 0.642, 0.617, and 0.615 
for zero-LNBRC-dCNN) and approached that of known-LNBRC-dCNN (mean MS-SSIM 
of  0.685, 0.656, and 0.646 for the same respective preparations). Notably, this held true for 
nearly every image evaluated, for every preparation (Fig. 2f-g). Qualitative comparisons (Fig. 
2e) revealed that the joint solution recovered substantially more image structure and fine spatial 
detail than the one that ignored eye movements, and produced reconstructions that were similar 
in content and quality to those produced with known eye movements. These results 
demonstrate that compensation for jitter eye movements is critical for recovering fine spatial 
detail in the visual scene, and that the RGC spikes alone are sufficient to perform this 
compensation. 
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Figure 3. Effects of jitter magnitude on reconstruction quality. (a) Image reconstruction performance for three 
preparations (colors) as a function of the magnitude of eye movements simulated during the stimulus presentation, 
for joint-LNBRC-dCNN (solid line), known-LNBRC-dCNN (dashed line), and zero-LNBRC-dCNN (dotted line). In all 
preparations, reconstruction quality for joint-LNBRC-dCNN as well as known-LNBRC-dCNN increased with eye 
position jitter, up to (but not including) the largest eye movements tested. Reconstructions for zero-LNBRC-dCNN 
were less accurate than both known-LNBRC-dCNN and joint-LNBRC-dCNN, and further decreased with increasing 
eye movements. Error bars in all panels correspond to the standard deviation of the sample mean. (b) Eye position 
estimation error as a function of the magnitude of movement, for the same experimental preparations. When eye 
movements were ignored (zero-LNBRC-dCNN, dotted line), the error in estimated eye position increased linearly, 
as expected with a 2D Brownian motion. When eye movements were jointly estimated (joint-LNBRC-dCNN; solid 
lines), the error increased, but more gradually. (c) Parasol-only (solid line) and midget-only (dashed line) joint-
LNBRC-dCNN image reconstruction performance as a function of the magnitude of movement, for the same 
experimental preparations. In all preparations, reconstruction quality increased with eye position jitter for both 
parasol-only and midget-only reconstructions. Midget-only reconstructions had systematically better quality than 
parasol-only reconstructions in all preparations. (d) Parasol-only (solid line) and midget-only (dashed line) eye 
position estimation error, for the same experimental preparations. For both parasol-only and midget-only 
reconstructions, the eye position estimation error increased more slowly than if eye movements were ignored 
(dotted line). 

 
Fixational eye movements enhance the retinal visual signal 
 

a bImage quality vs. jitter magnitude Position error vs. jitter magnitude

c dPopulation-specific image
quality vs. jitter magnitude

Population-specific position error 
vs. jitter magnitude
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To test whether jitter eye movements improve or degrade retinal coding of natural images, 
reconstruction quality was examined as a function of eye jitter magnitude. In all three 
preparations, when simultaneously estimating both the image and eye positions, the mean 
reconstructed image quality increased with the magnitude of jitter over nearly the entire 
naturalistic range tested (Fig. 3a, solid). The same was true when reconstructing with known 
eye positions (Fig. 3a, dashed), demonstrating that the improvement was due to an improved 
retinal signal. Validation with the LPIPS perceptual distance measure [Zhang 2018] yielded 
similar results (Extended Data Fig. 4). Thus, fixational jitter eye movements enhance, rather 
than degrade, the retinal representation. 
 
The benefits of fixational jitter could in principle arise from an overall increase in spike rates, 
because RGCs are responsive to intensity changes over time, which are increased in the 
presence of jitter. Indeed, the mean number of spikes increased with increasing eye movement 
magnitude: Pearson correlation coefficients were 0.940, 0.988, and 0.884 for three experimental 
preparations. Thus, at least some of the improvement in reconstructed image quality could be 
attributed to increased RGC firing. 
 
Image reconstruction could also potentially be improved by more accurate estimation of the jitter 
trajectory with larger eye movements. This did not appear to be the case: the accuracy of eye 
trajectory reconstruction declined with increasing magnitude of eye position jitter, albeit much 
more slowly than for the model that assumed zero movement (Fig. 3b). Thus, the improved 
image reconstruction with increasing magnitude of eye movements was attributable to a more 
faithful encoding of the stimulus in RGC spikes rather than a more precise implicit signal about 
eye position. 
 
The potentially distinct impacts of fixational jitter eye movements on each of the parasol and 
midget RGC representations of the stimulus were examined by reconstructing with one 
population at a time. Midget-only reconstructions had systematically higher quality than parasol-
only reconstructions and contained greater fine spatial detail (Fig. 3c, also Extended Data Fig. 
5), demonstrating that midget cells encoded a greater fraction of the stimulus than parasol cells. 
Reconstruction quality improved with increasing jitter magnitude for both the parasol-only and 
midget-only reconstructions, demonstrating that jitter eye movements tended to improve 
representations of the stimulus in both populations. Also, for both populations, the error in 
estimated eye position increased much more slowly than if eye movements were ignored (Fig. 
3d), showing that both cell groups were informative of the eye movement trajectory. However, 
the position error was substantially smaller in the midget-only case, suggesting that the midget 
RGCs were largely responsible for encoding fine eye movements. 
 
Fixational eye movements evoke more precisely timed spikes 
 
Previous work in the turtle retina has revealed greater temporal precision of RGC spikes in the 
presence of simulated fixational eye movements [Greschner 2002]. To test whether this could 
enhance natural image reconstruction, the observed RGC spikes were randomly perturbed in 
time according to Gaussian distributions with increasing standard deviation (0, 1, 2, 5, 10, 20, 
and 40 ms), and reconstruction was performed with the perturbed spikes. To ensure optimal 
reconstruction with the perturbed spikes, the LNBRC models used for estimating likelihood were 
refitted to perturbed data. Spike time perturbation had two effects on the retinal signal. First, it 
disrupted the spike train temporal structure, resulting in reduced strength of the fitted LNBRC 
feedback filter (not shown). Second, because the spike times of each cell were shifted 
independently, it reduced the spiking synchrony between neighboring cells, resulting in reduced 
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strengths of the LNBRC coupling filters (not shown). For the flashed stimuli, reconstruction 
quality declined slowly with spike time perturbations up to about 10 ms, and then declined more 
sharply for larger perturbations, indicating that spike time structure finer than 10 ms was 
relatively unimportant (Fig. 4a). However, for jittered stimuli, reconstruction quality deteriorated 
more rapidly as a function of spike time perturbation, and was affected more than the flashed 
reconstructions by perturbations on the order of 5 ms (see Discussion). This was true 
regardless of whether eye movements were jointly estimated (Fig. 4b, solid lines) or known a 
priori (Fig. 4b, dashed lines). Repeating the analysis with the LPIPS perceptual distance 
measure yielded similar results (Extended Data Fig. S7). Thus, eye movements encode the 
spatial structure of natural images into the fine temporal structure of spikes, and exploiting this 
encoding enhances decoding. 
 

 

Figure 4. Effects of spike timing precision on reconstruction quality. (a) Reconstruction performance for 
flashed images as a function of spike timing perturbation, in four experimental preparations (colors). Error bars in 
all panels correspond to the standard deviation of the sample mean. Reconstruction degraded modestly up to 
spike time perturbations of ~10 ms. (b) Reconstruction performance for jittered images. Blue and green lines 
correspond to the same-colored preparations in (a). Dashed lines correspond to estimation with known eye 
movement trajectories, solid lines to joint estimation of the image and eye trajectory. In both cases, performance 
declined smoothly starting at a jitter of ~2-5 ms. 

 
Correlated firing between RGCs contributes to reconstructed image quality 
 
Although previous work [Pillow 2008, Ruda 2020] has demonstrated that correlated firing of 
RGCs affects the visual information transmitted by the retina for simple stimuli, the importance 
of such correlations in retinal representations of naturalistic stimuli is less certain [Nirenberg 
2001, Meytlis 2012, Schneidman 2003], as are the distinct roles of stimulus-dependent (signal) 
and stimulus-independent (noise) correlations. To better understand the role of correlations in 
visual signaling by the retina, natural image reconstruction was performed with a readout that 
ignored all correlations, or with data shuffled to eliminate noise correlations.  
 
To probe the overall role of correlations, LNBR (“uncoupled”) encoding models were fitted to the 
experimental data, and the resulting natural image reconstructions were compared to the results 
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obtained with the full LNBRC (“coupled”) model, similar to previous analyses for white noise 
stimuli [Pillow 2008]. The uncoupled models lacked the ability to represent correlated firing 
between RGCs beyond linear filtering of the shared visual stimulus, and were fitted and used to 
compute reconstructions in an identical manner to the coupled models. For both the flashed and 
jittered stimuli, the reconstructions computed using the coupled models were significantly more 
accurate than those computed using the uncoupled models. For the flashed stimuli (Fig. 5a), the 
mean MS-SSIM differences between coupled and uncoupled reconstructions were 0.023, 0.024, 
0.037, and 0.023, (p-values < 1·10-10, coupled > uncoupled, Wilcoxon signed rank test, N=1500, 
N=1750, N=750, and N=750, respectively), and for the jittered stimuli (Fig. 5b) the differences 
were 0.020, 0.010, and 0.038 (p-values < 1·10-10, coupled > uncoupled, Wilcoxan signed rank 
test, N=1992 for all) . Thus, for naturalistic stimuli, knowledge of correlated firing properties of 
RGCs beyond that which could be explained by linear filtering of the shared stimulus was 
necessary to effectively decode image content.  
 
The impact of correlated firing on natural image reconstruction could not be attributed to noise 
correlations alone, in contrast to what was seen in prior work using white noise stimuli [Pillow 
2008]. While the cross-correlograms simulated with the coupled LNBRC model (Fig. 5e, red) 
accurately matched both real data (black) and data shuffled across repeats to remove noise 
correlations (blue), the cross-correlograms simulated with the uncoupled LNBR model (green) 
often differed markedly from both. This indicates that the coupled model better represented 
signal correlations in RGC firing than the uncoupled model. The coupled model also explained a 
systematically greater fraction of firing variation than the uncoupled model (Fig. 5f).  
 
To probe whether noise correlations contributed significantly to the retinal signal, images were 
reconstructed from synthetic data created by shuffling the recorded responses of each cell 
across repeated presentations of the same stimulus. Shuffling removed trial-specific noise 
correlations between cells, but preserved the firing properties of each cell and stimulus-driven 
signal correlations between cells. Using the LNBRC fitted to the unshuffled data (i.e. with full 
knowledge of noise correlations), reconstructions were obtained for both the real (unshuffled) 
repeats as well as the shuffled data. For the flashed stimuli, the reconstructions computed from 
unshuffled spikes were marginally more accurate than those computed from the shuffled spikes, 
for all preparations tested, with mean difference values of 7.4·10-3, 6.6·10-3, 5.1·10-3, and 3.4·10-

3 (p-values < 1·10-10, data > shuffled, Wilcoxon signed rank test, N=150 for all) respectively. For 
the jittered stimuli, the effect was similar: the difference was significant for two of the three 
preparations tested, with mean values 1.5·10-4, 1.5·10-3, and 7.8·10-3, (p-values 0.35, 1.4·10-3, 
and 2.3·10-14, data > shuffled, Wilcoxan signed rank test, N=149 for all). While statistically 
significant, the effect was substantially smaller than that of removing the coupling filters, 
suggesting that the contributions of noise correlations to the retinal representation of natural 
stimuli were modest. Analysis using the LPIPS perceptual distance measure yielded similar 
results (Extended Data Fig. 7). Furthermore, comparison of the raw and shuffled repeat cross-
correlograms (black and blue lines in Fig. 5e for data and shuffled, respectively) and cross-
correlogram peak height (Fig. 5h) showed that noise correlations were substantially smaller than 
signal correlations. These striking differences compared to reconstruction performed previously 
using white noise stimuli [Pillow 2008] highlight the importance of understanding visual encoding 
of naturalistic scenes with eye movements. 
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Figure 5: Effects of coupling. (a) Differences in reconstruction quality between the coupled model (LNBRC) and 
uncoupled model (LNBR) for flashed natural images. Mean differences for four preparations (left to right): 0.023, 
0.024, 0.037, and 0.023 (all p-values < 1·10-10, Wilcoxon one-sided ranked sign test). For all boxplots (panels a-d), 
the box marks the median and the inter-quartile range (IQR), while the whiskers extend to 1.5 times the IQR. 
Outliers are marked with a +. (b) Same as (a), for jittered image reconstruction, using the joint approach. Mean 
differences for three preparations (left to right) of 0.020, 0.010, and 0.038 (all p-values < 1·10-10). The blue and 
green boxes in (b) correspond to the same experimental preparations as the blue and green boxes in (a). (c) 
Differences in reconstruction quality between the unshuffled and shuffled trials for flashed image reconstructions, 
using LNBRCs fitted to unshuffled data, for the same four preparations as (a). Mean differences (left to right): 
7.4·10-3, 6.6·10-3, 5.1·10-3, and 3.4·10-3 (all p-values < 1·10-10). While significant, these differences were 
substantially smaller than those in (a). (d) Differences in reconstruction quality between unshuffled and shuffled 
trials for jittered image reconstructions, using LNBRCs fitted to unshuffled data, for the same three preparations as 
(b). Mean differences (left-to-right): 1.5·10-4, 1.5·10-3, and 7.8·10-3 (p-values 0.35, 1.4·10-3, and 2.3·10-14). The 
differences were substantially smaller than those in (b). (e) Example homotypic (same cell type) nearest-neighbor 
spike train cross correlograms, computed for the blue experimental preparation from panels (a-d) using repeat 
presentations of jittered natural image stimuli. Cross-correlograms for the data are shown in black, and for repeat-
shuffled data in red. Simulated cross-correlograms for the LNBRC (coupled) models and for the LNBR (uncoupled) 
models are shown in red and green, respectively. Cross-correlograms computed using the flashed natural image 
stimulus were similar. The cross-correlograms for unshuffled data, trial-shuffled data, and LNBRC-simulated spike 
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trains were similar, but the LNBR-simulated cross-correlograms did not match the data. (f) Comparison of the 
fraction of PSTH variance explained by the coupled and uncoupled LNBRCs using the jittered stimuli, for the same 
preparation as in (e). For each of the major cell types, for nearly every cell, the LNBRCs explained a greater 
fraction of the PSTH variance than the LNBRs. The same comparison was made for the flashed stimulus, with 
similar results (not shown). (g) Comparison of LNBRC-simulated cross-correlogram peak height with the peak 
height from data, a measure of the degree to which the encoding models accurately represent correlated firing 
using the jittered stimulus. While the LNBRCs sometimes overestimated the correlations in the data, the LNBRs 
systematically underestimated them. (h) Comparison of the cross-correlogram peak height for repeat data and 
shuffled repeat data, for the same preparation as (f-g), with the jittered stimulus. With the exception of the OFF 
parasol cells, peak heights were similar for the data and shuffled cross-correlograms, indicating that noise 
correlations were only weakly present. The flashed stimuli yielded similar results (not shown).  

 
Discussion 
 
We have presented a Bayesian method to invert the retinal code, reconstructing visual images 
from the spiking responses of a population of RGCs. This reconstruction is not intended as a 
description of how the brain processes visual images [Dennett 1992], but as a tool for making 
explicit the content of the retinal signal in the form of an image, providing insight into the 
sensory content that is available in neural activity and the way this content is represented [Rieke 
1997].  
 
These analyses relied on both the performance and interpretability of the reconstruction 
method, leveraging both the sophistication of and separation between the likelihood and prior 
models. The likelihood, obtained from an LNBRC encoding model, effectively captured RGC 
responses to naturalistic stimuli with modular components that represented stimulus 
dependency, spike history dependence, and spike time correlations. Although it is not matched 
to the details of biological circuitry or cellular biophysics [Trong 2008, Vidne 2012], it is convex 
in its parameters, and thus reliably fit to spiking data and computationally feasible to use for the 
MAP reconstruction problem. Separately, natural image structure was captured using the prior 
implicit in a neural network trained to denoise images. Such implicit priors, related to the "score-
based generative models" or "diffusion models" that have recently emerged in the machine 
learning community, offer unprecedented power for capturing image properties while requiring 
relatively modest amounts of training data. Most importantly, the likelihood and prior 
components together provide a Bayesian formulation, which offers enhanced interpretability 
because the components can be independently altered to evaluate their contributions to the 
retinal representation. 
 
The reconstruction approach reveals that the retinal signal alone is sufficient for accurately 
decoding visual stimuli in the presence of unknown fixational eye movements, consistent with 
previous theories [Gibson 1954, Pitkow 2007, Burak 2010, Anderson 2020] and psychophysical 
studies [Murakami 1998, Poletti 2010, Arathorn 2013, Ratnam 2017]. Though previous 
computational investigations [Pitkow 2007, Burak 2010, Anderson 2020] have explored this 
possibility in simulation with simplified stimuli, the present work tested it empirically with efficient 
reconstruction of naturalistic stimuli using recorded RGC responses. Of course, the present 
findings do not exclude the possibility of additional extra-retinal signals that could help to 
compensate for fixational eye movements, as has been reported previously [Zhang 2023]. 
Indeed, the small gap in quality between images reconstructed by the joint algorithm and those 
reconstructed with full knowledge of the eye position suggests possible benefits of incorporating 
extra-retinal signals. 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2023. ; https://doi.org/10.1101/2023.08.12.552902doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.12.552902
http://creativecommons.org/licenses/by/4.0/


Increased fixational jitter was found to improve reconstruction quality. This provides additional 
evidence in support of the theory that fixational eye movements serve a useful function in visual 
processing, modulating high frequency spatial detail into time domain [Rucci 2007, Kuang 2012, 
Rucci 2015, Boi 2017] and/or enabling super-resolution imaging [Ratnam 2017, Anderson 
2020]. Furthermore, because this finding held even when the eye movements were unknown a 
priori, it demonstrates that jitter eye movements specifically improve the fidelity of the retinal 
representation of natural images.  
 
Precisely timed spikes were shown to play an important role in the retinal representation of jitter 
eye movements. Though RGCs can spike with temporal precision on the order of 1 ms [Berry 
1997, Reich 1997, Keat 2001, Uzzell 2004], previous studies have shown that longer integration 
times (~10 ms) provide the highest-fidelity readout of steady visual motion from RGCs 
[Chichilnisky 2003, Frechette 2005]. Consistent with these studies, and with previous flashed 
natural image reconstruction [Kim 2020, Brackbill 2020], we found that flashed image 
reconstruction was robust to spike train temporal perturbations up to 10 ms. However, in the 
presence of jitter eye movements, finer temporal precision (2-5 ms) was required for optimal 
reconstruction. This is consistent with work suggesting that the spike train temporal structure 
induced by fixational eye movements encodes high-frequency spatial detail [Greschner 2002, 
Poletti 2008, Kuang 2012].  
 
As in previous work on reconstruction of white noise stimuli [Pillow 2008, Ruda 2020], correlated 
RGC firing was critical for reconstructing jittered natural images (but see [Meytlis 2012]). 
Surprisingly, however, the effect for naturalistic stimuli was primarily attributable to stimulus-
driven correlations rather than the noise correlations that dominated the results in the prior work. 
The weak role of noise correlations in the present data matched the results obtained by 
reconstructing flashed natural images using more limited approaches [Brackbill 2020, Kim 2020] 
and results from decoding dynamically-varying artificial movies [Botella-Soler 2018]. 
 
Future work could extend the Bayesian reconstruction framework to characterize the function of 
spatio-temporal nonlinearities in the retinal representation of naturalistic stimuli. Though recent 
work with subunit [Freeman 2015, Liu 2017, Shah 2019] and neural network [McIntosh 2016] 
encoding models has demonstrated substantial improvements in accounting for RGC spiking, 
the roles of the spatio-temporal nonlinearities contained in these models for visual signaling 
remain unclear. Combining such encoding models with denoising image priors to draw samples 
from the posterior [Kadkhodaie 2021, Chung 2023, Zhu 2023] could more deeply probe the 
interplay between retinal coding and natural image statistics. 
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Methods 
 
Multi-electrode array recordings 
 
Large-scale electrophysiological recordings from ex vivo macaque monkey retina were 
performed using a 512-electrode multi-electrode array system [Litke 2004] with 60 μm pitch 
between electrodes and a 2x1 mm rectangular recording area. The retinas were obtained from 
terminally-anesthetized macaques used by other laboratories, in accordance with Institutional 
Animal Care and Use Committee requirements. A complete description of the experimental 
procedures can be found in Brackbill et al. [Brackbill 2020]. 
 
Spike sorting was performed with YASS [Lee 2020]. RGCs of the four numerically dominant 
types in macaque (ON parasol, OFF parasol, ON midget, OFF midget) were identified manually 
based on receptive fields and autocorrelation functions characterized with a spatio-temporal 
white noise stimulus according to previously described procedures [Rhoades 2019], and were 
matched to spike-sorted units from the natural scenes recordings by matching electrical images 
(voltage templates). Only identified RGCs of the four major cell types were used in the analysis. 
The four preparations used for the flashed reconstructions contained 691, 592, 704, and 677 
total cells, and the three preparations used for the jitter eye movements reconstructions 
contained 715, 604, and 775 total cells. 
 
Visual stimulus 
 
Flashed natural images from the ImageNet database were presented to the retina according to 
[Brackbill 2020]. Images were converted to grayscale, cropped to 256x160 resolution, and 
padded with gray borders. The stimulus extended beyond the boundaries of retinal preparation 
and fully covered all receptive fields. Each pixel in the image measured approximately 11 x 11 
μm when projected on the retina. Each image was displayed for 100 ms (12 frames at 120 Hz), 
and sequential images were separated by a 400 ms uniform gray screen. Additional details for 
the visual stimulus and setup are provided in Brackbill et al. [Brackbill 2020]. 
 
The natural movies with simulated fixational eye movements consisted of ImageNet images 
presented for 500 ms each (60 frames at 120 Hz), with no gray screen separation. For each 
image, eye movements were simulated by shifting the image during each frame transition 
according to a discretized 2D Brownian motion with diffusion constant of 10 μm2/frame, 
consistent with estimates of fixational eye movements in both human [Kuang 2012, Rucci 2015] 
and non-human primate [Z.M. Hafed and R.J. Krauzlis, personal communication, June 2008]. 
Simulated eye movements were drawn independently of the image. The movies were presented 
in sequence, with no gray screen between movies.  
 
The receptive fields of the recorded RGCs covered only a central region of the stimulus field, 
leaving a perimeter region for which no cells were recorded. To evaluate image quality only over 
regions of the stimulus corresponding to recorded cells, a valid region was constructed, 
consisting of the convex hull of the receptive fields of the full RGC population. Only pixels in this 
valid region were used to compute image quality. 
 
Fitting LNBRC models of RGC spiking 
 
The linear-nonlinear-Bernoulli with recursive coupling (LNBRC) is a modified form of the model 
presented in [Pillow 2008]. It generalizes the classical linear-nonlinear-Poisson (LNP) spiking 
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model by incorporating recursive feedback (spike history) and neighboring cell coupling filters to 
model spike train temporal structure and cell-to-cell correlations (Fig 1b). For RGC 𝑖, the 
LNBRC has the following parameters: (1) 𝐦!, the linear spatio-temporal stimulus filter; (2) 𝑓![𝑡], 
the recursive feedback filter; (3) 𝑐!

(#)[𝑡], the coupling filters to neighboring RGCs indexed by 𝑗. 
where neighboring cells were included if their receptive field centers fell within twice the median 
nearest neighbor distance for parasol cells and 2.5 times the median nearest neighbor distance 
for midget cells; and (4) 𝑏!, an additive bias. Let 𝐯[𝑡] denote a temporal window of the visual 
stimulus movie up to and including time 𝑡, ∗ a time-domain convolution, and 𝑠! the spike train of 
cell 𝑖. The instantaneous spiking probability for cell  is computed from the generator signal, 
𝑔![𝑡]: 

. 
 
All filters in the LNBRCs were strictly causal, so that the firing probability at time  depended 
only on the visual stimulus and observed spikes occurring strictly before time . Time was 
discretized in 1 ms bins, corresponding approximately to the duration of the refractory period of 
a neuron. Since at most one spike could occur in each time bin, a Bernoulli random process 
was used to model spiking, with a sigmoidal nonlinearity of the form %!

&'%!
 mapping the generator 

signal to an instantaneous firing probability, resulting in the encoding negative log-likelihood 
 

, 
 
which is jointly convex in the model parameters. The stimulus filter was assumed to be space-
time separable (rank 1), and the stimulus filter spatial component was additionally cropped to a 
rectangular region surrounding the cell’s receptive field and represented in terms of a 2D cubic 
spline basis [Huang 2021]. The feedback, coupling, and time component of the stimulus filter 
were each parameterized as linear combinations of low-rank 1D raised cosine basis functions 
[Pillow 2008].  
 
The models were fitted to recorded RGC spikes by maximizing the parameter likelihood, and 
were regularized with an L1 penalty to induce sparsity on the spatial component of the stimulus 
filter, and an L2,1 group-sparsity penalty on the cosine basis representation of the coupling filters 
to eliminate spurious cell-to-cell correlations. Because of the assumed space-time separability 
of the stimulus filter, the LNBRCs were fitted using coordinate descent, alternating between 
solving a spatial convex minimization problem in terms of the stimulus spatial filter, feedback 
filter, coupling filters, and bias, and solving a temporal convex minimization problem in terms of 
the stimulus time course filter, feedback filter, coupling filters, and bias. All optimization 
problems were solved using FISTA, an accelerated proximal gradient method [Beck 2009], 
using the formulation for the L2,1-regularized problem presented in [Liu 2009]. Optimal values for 
the weights placed on the L1 and L2,1 regularizers were found using a grid search to minimize 
the mean test negative log-likelihood over four randomly chosen cells of each cell type. Within 
each preparation, every RGC of a given type used the same hyperparameters. 
 
The LNBRCs were fitted separately for each cell, and required about 180 seconds of compute 
time per cell for the static stimulus models and 500 seconds of compute time per cell for the eye 
movements models on a single NVIDIA V100 GPU with 32 GB of VRAM. 
 
LNBRC simulated spike train generation 
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Simulated spike trains for evaluating model fit quality were generated from the LNBRC by 
computing the value of the generator signal from the stimulus and using simulated Bernoulli 
random variables to model random spike generation. The recursive feedback contribution to the 
generator signal was initialized using real observed spike trains, and subsequent generated 
spike trains were fed back into the model to compute the feedback contribution for future spikes. 
Because the firing probability computed with the coupled LNBRC was conditional not only on 
the visual stimulus and simulated cell spiking history, but also on the spike trains of nearby 
coupled RGCs, real spike trains from the experimental data were used to compute the coupling 
contribution to the generator signal. 
 
PSTH computation 
 
The peri-stimulus time histogram (PSTH) was computed using RGC responses to repeat 
presentations of the same visual stimulus, by binning the observed spikes into time bins with 1 
ms width, smoothing with a Gaussian kernel with standard deviation of 2 ms, and then 
computing the mean over all repeated presentations of the stimulus. 
 
Fitting benchmark LNP encoding models 
 
Benchmark linear-nonlinear-Poisson (LNP) encoding models were fitted in a similar manner to 
the LNBRCs.  The same spatial basis sets used for the LNBRCs were used for the LNP models. 
Spikes trains were binned into counts with 8.33 ms time bins, corresponding to one bin per 
stimulus frame. LNP models were parameterized by a spatio-temporal stimulus filter 𝐦!, and a 
bias 𝑏!, resulting in a generator signal of the form . An exponential 
nonlinearity was used, resulting in a encoding negative log-likelihood with form 
 

 
 
which is convex in the LNP model parameters. LNP spatio-temporal filters were assumed to be 
rank-1 space-time separable. An L1 penalty was used to induce sparsity in the spatial 
component of the stimulus filter, and the corresponding weight for that penalty was chosen by 
performing a grid search with encoding likelihood on the test partition as the objective. Models 
for each cell were fitted using FISTA. 
 
Reconstruction of flashed images with denoising CNN prior 
 
An iterative Plug-and-Play algorithm [Venkatakrishnan 2013, Teodoro 2019, Zhang 2021] was 
used to perform MAP reconstruction of flashed static natural images. Rather than solve the 
MAP problem directly, the algorithm used proximal variable splitting to divide the MAP objective 

into an encoding sub-problem 

 and a prior sub-problem 

 and iteratively alternated between the two. 
The encoding sub-problem was solved using unconstrained convex minimization. The prior sub-
problem has the form of a MAP estimation problem for images contaminated with additive 
Gaussian noise. As such, its solution was approximated using a single forward pass of a 
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convolutional neural network (CNN) pretrained for denoising with specified noise variance (
)(#)

 . 

Ten iterations of alternating optimization were used. ρ(*) was increased per iteration on a log-
spaced schedule [Zhang 2021], and hyperparameters λ, ρ(&) and ρ(&+) were found by performing 
a grid search on an 80-image subset of the test partition with reconstruction MS-SSIM as the 
objective. A detailed description of the algorithm can be found in [Wu 2023]. 
 
Exact MAP reconstruction with 1/F Gaussian prior 
 
Using the 1/F Gaussian prior, the MAP objective had the form 
 

 
where 𝑎*(𝑦) is the amplitude of the Fourier coefficient at frequency 𝑓*. Because both the 1/F 
prior term and the encoding negative log-likelihood are smooth and convex in the image, the 
MAP problem is an unconstrained convex minimization problem and hence was solved with 
gradient descent. The optimal value of the prior weight λ was found with a grid search with 
reconstruction MS-SSIM as the objective. 
 
Approximate MAP reconstruction with known eye movements with denoising CNN prior 
 
In the case that the eye movements 𝑤 are known a priori, the MAP objective can be simplified 
into the form  
 

 
 
which can be solved using the Plug-and-Play algorithm described above for the flashed case. 
Hyperparameters were found with a grid search with MS-SSIM as the objective. 
 
Joint estimation of image and unknown eye movements with denoising CNN prior 
 
The expectation-maximization (EM) algorithm was used to perform MAP estimation for joint 
estimation of images and eye movements. Letting 𝑤 denote the eye movement trajectory over 
all timesteps, the exact MAP problem with unknown eye movements has form 
 

 
which cannot be directly solved because the marginalization over all possible eye movement 
trajectories	𝑤 is intractable. MAP-EM offers an iterative approach for estimating the image 𝑦, 
and consists of alternating steps of: (1) finding the image that maximizes the sum of the 
evidence lower bound and natural image log prior 
 

 
over some variational distribution of the eye positions ; and (2) using the resulting 
estimate of the image 𝑦(!) to update the variational distribution. For computational tractability, 
we assumed 𝑞 had form  , where 𝑟 could be an arbitrarily 
chosen distribution. 𝑞 was represented approximately using a weighted particle filter with N=10 
particles. The particle filter was updated once for each frame transition (every 8.33 ms) using a 
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sequential importance resampling procedure [Liu 1998]. Specifically, at frame 𝑡, the trajectory 
represented by each particle was updated by sampling a new eye position from the 2D 
Gaussian transition probability distribution , and then reweighting each particle 

using the multiplicative weight  computed using the encoding likelihood model. 
Mathematical details for the resampling particle filter, including justification for the weight update 
rule, are provided in the Supplement. 
 
An initial guess for the image 𝑦(+) was reconstructed by assuming fixed eye position at the 
origin and performing ten alternating iterations of the algorithm used for the flashed 
reconstructions. At each intermediate timestep , updated estimates of the image 𝑦(!) were 
computed by performing a single encoding optimization step 

 using unconstrained convex 
minimization, followed by a single prior optimization step 

 using a single forward pass of the Gaussian 
denoiser. To speed computation, images were updated once for every five display frame 
transitions. Testing on a subset of data indicated that this did not negatively affect 
reconstruction quality.  
 
Reconstruction quality evaluation 
 
Reconstruction quality was evaluated using Multi-scale Structural Similarity (MS-SSIM) [Wang 
2004], a widely used metric for perceptual similarity. MS-SSIM was calculated over the valid 
region of the image (described above), ignoring non-informative regions of the stimulus for 
which no RGCs were recorded. For the jittered reconstructions, the absolute position of the 
reconstructed image was arbitrary (having been jointly estimated from many jittered input 
samples), and MS-SSIM was computed for a range of pixel-wise shifts of the reconstructed 
image, and the best value over all shifts was used. 
 
The results in the paper were also confirmed using the Learned Perceptual Image Patch 
Similarity (LPIPS) [Zhang 2018], an alternative measure of perceptual distance computed using 
pre-trained neural network classifiers. LPIPS has different working principles than MS-SSIM, 
and has been shown to align with human perceptual judgements. Only pixels within the valid 
region (described above) were used to compute LPIPS. 
 
Cross-validation data rotation for eye movements analysis 
 
Five-fold data rotation was used to maximize the number of stimulus images available for 
determining the effect of jitter eye movements on reconstructed image quality. Five different 
sets of LNBRCs were fitted, each corresponding to distinct and non-overlapping test and held 
out partitions, such that test-quality reconstructions could be produced for nearly every stimulus 
image presentation in the recorded dataset. 
 
Cell-type-specific reconstruction analysis 
 
The cell-type-specific analysis was performed by reconstructing the jittered eye movements 
stimulus using joint-LNBRC-dCNN. For simplicity, the LNBRC models used for this analysis only 
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modeled homotypic correlations, differing from the models used elsewhere in the work. Five-fold 
data rotation was used for this analysis. 
 
Spike time perturbation analysis 
 
The spike time perturbation analysis tested the temporal precision of the retinal code by shifting 
recorded spike times by random amounts drawn from a zero-mean Gaussian, with standard 
deviations of 1 ms, 2 ms, 5 ms, 10 ms, 20 ms, and 40 ms. To ensure optimal reconstruction at 
each level of perturbation, the LNBRCs were refitted to each condition. Images were 
reconstructed using the time-perturbed data and the time-perturbed LNBRCs using the 
algorithms described above. Optimal hyperparameters were found separately for each time 
perturbation condition by performing grid searches. 
 
Uncoupled (LNBR) model correlations analysis 
 
The LNBR (uncoupled) model removes the neighboring cell coupling filters of the LNBRC 
model, thus losing the ability to represent correlated firing between nearby RGCs. The LNBR is 
parameterized by a linear spatio-temporal stimulus filter, a recursive feedback filter, and a bias. 
Using the same notation as in the fully-coupled case, the generator signal for cell  in the 
uncoupled model is written as 
 

. 
 
The LNBRs were fitted with the same 1 ms time bins, sigmoidal nonlinearity, and Bernoulli 
random spiking model as the LNBRCs. Space-time separability of the stimulus filters was 
assumed, and the same alternating optimization procedure for fitting was used as in the LNBRC 
case. An L1 penalty was used to regularize the spatial component of the stimulus filters, and the 
optimal value of the corresponding hyperparameter was found using a grid search. 
 
Image reconstruction with LNBRs was done in an identical manner as with the LNBRCs. 
Reconstruction hyperparameters were found using a grid search. 
 
Noise correlations shuffled repeats analysis 
 
Noise correlations between RGCs were characterized using responses to repeated 
presentations of the same stimulus. Shuffled responses were constructed by randomly 
reordering recorded spike trains for each cell across the repeated trials, eliminating noise 
correlations while preserving single-cell spiking statistics and stimulus-induced correlations. 
Images were reconstructed for both the real (unshuffled) trials as well as the shuffled trials using 
LNBRCs fitted to the unshuffled data, using the reconstruction algorithms described above. The 
change in reconstructed image quality due to shuffling was then computed by taking the mean 
reconstruction quality across repeats of the same stimulus, and then subtracting the values 
computed for the shuffled repeats from the values computed for the data repeats. 
 
Cross-correlogram computation 
 
Cross-correlograms between cells were computed using repeat stimulus presentations by 
constructing histograms for the differences in spike times of the cells (with 1 ms bins), and 
taking the mean over all presentations of the same stimulus. Because the stimulus onset and 
offset frame transitions in the flashed stimuli and transitions between distinct images for the 
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jittered eye movements stimuli induced simultaneous firing of all cells independent of 
connectivity and shared input structure, a shift predictor correction to the cross-correlograms 
was applied [Perkel 1967]. This was done by shifting the spike times for the second cell such 
that the spike trains for that cell corresponded to the response to a different stimulus image, 
constructing the histogram for the differences in spike times for the cells, and then subtracting 
said histogram from the original raw cross-correlogram. This removed the component of the 
cross-correlogram that could be predicted by the trial structure alone, independent of either the 
spatial content of the stimulus or of noise correlations. 
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