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We argue that in many circumstances, human observers evaluate sensory evidence
simultaneously under multiple hypotheses regarding the physical process that has
generated the sensory information. In such situations, inference can be optimal if
an observer combines the evaluation results under each hypothesis according to
the probability that the associated hypothesis is correct. However, a number of ex-
perimental results reveal suboptimal behavior and may be explained by assuming
that once an observer has committed to a particular hypothesis, subsequent evalu-
ation is based on that hypothesis alone. That is, observers sacrifice optimality in
order to ensure self-consistency. We formulate this behavior using a conditional
Bayesian observer model, and demonstrate that it can account for psychophysical
data from a recently reported perceptual experiment in which strong biases in per-
ceptual estimates arise as a consequence of a preceding decision. Not only does
the model provide quantitative predictions of subjective responses in variants of
the original experiment, but it also appears to be consistent with human responses
to cognitive dissonance.

1 Motivation

Is the glass half full or half empty? In different situations, the very same perceptual evidence (e.g. the
perceived level of liquid in a glass) can be interpreted very differently. Our perception is conditioned
on the context within which we judge the evidence. Perhaps we witnessed the process of the glass
being filled, and thus would more naturally think of it as half full. Maybe it is the only glass on
the table that has liquid remaining, and thus its precious content would be regarded as half full. Or
maybe we simply like the content so much that we cannot have enough, in which case we may view
it as being half empty.

Contextual influences in low-level human perception are the norm rather than the exception, and
have been widely reported. Perceptual illusions, for example, often exhibit particularly strong con-
textual effects, either in terms of perceptual space (e.g. spatial context affects perceived brightness;
see [1] for impressive examples) or time (prolonged exposure to an adaptor stimulus will affect
subsequent perception, see e.g. the motion after-effect [2]). Data of recent psychophysical exper-
iments suggest that an observer’s previous perceptual decisions provide additional form of context
that can substantially influence subsequent perception [3, 4]. In particular, the outcome of a categor-
ical decision task can strongly bias a subsequent estimation task that is based on the same stimulus
presentation. Contextual influences are typically strongest when the sensory evidence is most am-
biguous in terms of its interpretation, as in the example of the half-full (or half-empty) glass.

Bayesian estimators have proven successful in modeling human behavior in a wide variety of low-
level perceptual tasks (for example: cue-integration (see e.g. [5]), color perception (e.g. [6]), visual
motion estimation (e.g. [7, 8])). But they generally do not incorporate contextual dependencies
beyond a prior distribution (reflecting past experience) over the variable of interest. Contextual
dependencies may be incorporated in a Bayesian framework by assuming that human observers,
when performing a perceptual task, test different hypotheses about the underlying structure of the
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sensory evidence, and arrive at an estimate by weighting the estimates under each hypothesis ac-
cording to the strength of their belief in that hypothesis. This approach is known as optimal model
evaluation [9], or Bayesian model averaging [10] and has been previously suggested to account for
cognitive reasoning [11]. It further has been suggested that the brain could use different neuro-
modulators to keep track of the probabilities of individual hypotheses [12]. Contextual effects are
reflected in the observer’s selection and evaluation of these hypotheses, and thus vary with exper-
imental conditions. For the particular case of cue-integration, Bayesian model averaging has been
proposed and tested against data [13, 14], suggesting that some of the observed non-linearities in
cue integration are the result of the human perceptual system taking into account multiple potential
contextual dependencies.

In contrast to these studies, however, we propose that model averaging behavior is abandoned once
the observer has committed to a particular hypothesis. Specifically, subsequent perception is condi-
tioned only on the chosen hypothesis, thus sacrificing optimality in order to achieve self-consistency.
We examine this hypothesis in the context of a recent experiment in which subjects were asked to
estimate the direction of motion of random dot patterns after being forced to make a categorical
decision about whether the direction of motion fell on one side or the other of a reference mark [4].
Depending on the different levels of motion coherence, responses on the estimation task were heav-
ily biased by the categorical decision. We demonstrate that a self-consistent conditional Bayesian
model can account for mean behavior, as well as behavior on individual trials [8]. The model has es-
sentially no free parameters, and in addition is able to make precise predictions under a wide variety
of alternative experimental arrangements. We provide two such example predictions.

2 Observer Model

We define perception as a statistical estimation problem in which an observer tries to infer the value
of some environmental variable s based on sensory evidence m (see Fig. 1). Typically, there are
sources of uncertainty associated with m, including both sensor noise and uncertainty about the
relationship between the sensory evidence and the variable s. We refer to the latter as structural
uncertainty which represents the degree of ambiguity in the observer’s interpretation of the physical
world. In cases where the structural possibilities are discrete, we denote them as a set of hypotheses
H = {h1, ..., hN}. Perceptual inference requires two steps. First, the observer computes their belief
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Figure 1: Perception as conditioned inference problem. Based on noisy sensory measurements
m the observer generates different hypotheses for the generative structure that relates m to the
stimulus variable s. Perception is a two-fold inference problem: Given the measurement and prior
knowledge, the observer generates and evaluates different structural hypotheses h i. Conditioned on
this evaluation, they then infer an estimate ŝ(m) from the measurement m.

in each hypothesis for given sensory evidence m. Using Bayes’ identity, the belief is expressed as
the posterior

p(H |m) =
p(m|H)p(H)

p(m)
. (1)

Second, for each hypothesis, a conditional posterior is formulated as p(s|m, H = h i), and the full
(non-conditional) posterior is computed by integrating the evidence over all hypotheses, weighted



by the belief in each hypothesis hi:

p(s|m) =
N∑

i=1

p(s|m, H = hi)p(H = hi|m) . (2)

Finally, the observer selects an estimate ŝ that minimizes the expected value (under the posterior)
of an appropriate loss function 1.

2.1 Decision leads to conditional estimation

In situations where the observer has already made a decision (either explicit or implicit) to select one
hypothesis as being correct, we postulate that subsequent inference will be based on that hypothesis
alone, rather than averaging over the full set of hypotheses. For example, suppose the observer
selects the maximum a posteriori hypothesis hMAP, the hypothesis that is most probable given the
sensory evidence and the prior distribution. We assume that this decision then causes the observer
to reset the posterior probabilities over the hypotheses to

p(H |m) = 1, if H = hMAP (3)

= 0, otherwise.

That is, the decision making process forces the observer to consider the selected hypothesis as
correct, with all other hypotheses rendered impossible. Changing the beliefs over the hypotheses
will obviously affect the estimate ŝ in our model. Applying the new posterior probabilities Eq. (3)
simplifies the inference problem Eq. (2) to

p(s|m) = p(s|m, H = hMAP) . (4)

We argue that this simplification by decision is essential for complex perceptual tasks (see Discus-
sion). By making a decision, the observer frees resources, eliminating the need to continuously
represent probabilities about other hypotheses, and also simplifies the inference problem. The price
to pay is that the subsequent estimate is typically biased and sub-optimal.

3 Example: Conditioned Perception of Visual Motion

We tested our observer model by simulating a recently reported psychophysical experiment [4].
Subjects in this experiment were asked on each trial to decide whether the overall motion direction
of a random dot pattern was to the right or to the left of a reference mark (as seen from the fixation
point). Low levels of motion coherence made the decision task difficult for motion directions close
to the reference mark. In a subset of randomly selected trials subjects were also asked to estimate the
precise angle of motion direction (see Fig. 2). The decision task was always preceding the estimation
task, but at the time of the decision, subjects were unaware whether they would had to perform the
estimation task or not.

3.1 Formulating the observer model

We denote θ as the direction of coherent motion of the random dot pattern, and m the noisy sensory
measurement. Suppose that on a given trial the measurement m indicates a direction of motion to
the right of the reference mark. The observer can consider two hypotheses H = {h 1, h2} about the
actual physical motion of the random dot pattern: Either the true motion is actually to the right and
thus in agreement with the measurement, or it is to the left but noise has disturbed the measurement
such that it indicates motion to the right. The observer’s belief in each of the two hypotheses based
on their measurement is given by the posterior distribution according to Eq. (1), and the likelihood

p(m|H) =
∫ π

−π

p(m|θ, H)p(θ|H)dθ . (5)

The optimal decision is to select the hypothesis hMAP that maximizes the posterior given by Eq. (1).
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Figure 2: Decision-estimation experiment. (a) Jazayeri and Movshon presented moving random
dot patterns to subjects and asked them to decide if the overall motion direction was either to the
right or the left of a reference mark [4]. Random dot patterns could exhibit three different levels of
motion coherence (3, 6, and 12%) and the single coherent motion direction was randomly selected
from a uniform distribution over a symmetric range of angles [−α, α] around the reference mark. (b)
In randomly selected 30% of trials, subjects were also asked, after making the directional decision,
to estimate the exact angle of motion direction by adjusting an arrow to point in the direction of
perceived motion. In a second version of the experiment, motion was either toward the direction of
the reference mark or in the opposite direction.

3.2 Model observer vs. human observer

The subsequent conditioned estimate of motion direction then follows from Eq. (4) which can be
rewritten as

p(θ|m) =
p(m|θ, H = hMAP)p(θ|H = hMAP)

p(m|H = hMAP)
. (6)

The model is completely characterized by three quantities: The likelihood functions p(m|θ, H),
the prior distributions p(θ|H) of the direction of motion given each hypothesis, and the prior on the
hypotheses p(H) itself (shown in Fig. 3). In the given experimental setup, both prior distributions
were uniform but the width parameter of the motion direction α was not explicitly available to
the subjects and had to be individually learned from training trials. In general, subjects seem to
over-estimate this parameter (up to a factor of two), and adjusting its value in the model accounts
for most of the variability between subjects. The likelihood functions p(m|θ, H) is given by the
uncertainty about the motion direction due to the low motion coherence levels in the stimuli and the
sensory noise characteristics of the observer. We assumed it to be Gaussian with a width that varies
inversely with the coherence level. Values were estimated from the data plots in [4].

Figure 4 compares the prediction of the observer model with human data. Trial data of the model
were generated by first sampling a hypothesis h ′ according to p(H), then drawing a stimulus direc-
tion from p(θ|H = h′). then picking a sensory measurement sample m according to the conditional
probability p(m|θ, H = h′), and finally performing inference according to Eqs. (1) and (6). The
model captures the characteristics of human behavior in both the decision and the subsequent es-
timation task. Note the strong influence of the decision task on the subsequent estimation of the
motion direction, effectively pushing the estimates away from the decision boundary.

We also compared the model with a second version of the experiment, in which the decision task
was to discriminate between motion toward and away from the reference [4]. Coherent motion of
the random dot pattern was uniformly sampled from a range around the reference and from a range
around the direction opposite to the reference, as illustrated by the prior distributions shown in Fig. 5.
Again, note that these distributions are given by the experiment and thus, assuming the same noise
characteristics as in the first experiment, the model has no free parameters.

1For the purpose of this paper, we assume a standard squared error loss function, in which case the observer
should choose the mean of the posterior distribution.
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Figure 3: Ingredients of the conditional observer model. The sensory signal is assumed to be
corrupted by additive Gaussian noise, with variance that varies inversely with the level of motion
coherence. Actual variances were approximated from those reported in [4]. The prior distribution
over the hypotheses p(H) is uniform. The two prior distributions over motion direction given each
hypothesis, p(θ|H = h1,2), are again determined by the experimental setup, and are uniform over
the range [0,±α].

3.3 Predictions

The model framework also allows us to make quantitative predictions of human perceptual behavior
under conditions not yet tested. Figure 6 shows the model observer’s behavior under two modifi-
cations of the original experiment. The first is identical to the experiment shown in Fig. 4 but with
unequal prior probability on the two hypotheses. The model predicts that a human subject would
respond to this change by more frequently choosing the more likely hypothesis. However, this hy-
pothesis would also be more likely to be correct, and thus the estimates under this hypothesis would
exhibit less bias than in the original experiment.

The second modification is to add a second reference and ask the subject to decide between three
different classes of motion direction (e.g. left, central, right). Again, the model predicts that in such
a case, a human subject’s estimate in the central direction should be biased away from both decision
boundaries, thus leading to an almost constant direction estimate. Estimates following a decision in
favor of the two outer classes show the same repulsive bias as seen in the original experiment.

4 Discussion

We have presented a normative model for human perception that captures the conditioning effects
of decisions on an observer’s subsequent evaluation of sensory evidence. The model is based on
the premise that observers aim for optimal inference (taking into account all sensory evidence and
prior information), but that they exhibit decision-induced biases because they also aim to be self-
consistent, eliminating alternatives that have been decided against. We’ve demonstrated that this
model can account for the experimental results of [4].

Although this strategy is suboptimal (in that it does not minimize expected loss), it provides two
fundamental advantages. First, self-consistency would seem an important requirement for a stable
interpretation of the environment, and adhering to it might outweigh the disadvantages of perceptual
misjudgments. Second, framing perception in terms of optimal statistical estimation implies that the
more information an observer evaluates, the more accurately they should be able to solve a percep-
tual task. But this assumes that the observer can construct and retain full probability distributions
and perform optimal inference calculations on these. Presumably, accumulating more probabilistic
evidence of more complex conditional dependencies has a cost, both in terms of storage, and in terms
of the computational load of performing subsequent inference. Thus, discarding information after
making a decision can help to keep this storage and the computational complexity at a manageable
level, freeing computational resources to perform other tasks.

An interesting avenue for exploration is the implementation of such an algorithm in neural substrate.
Recent studies propose a means by which population of neurons can represent and multiply proba-
bility distributions [15]. It would be worthwhile to consider how the model presented here could be
implemented with such a neural mechanism. In particular, one might expect that the sudden change



-20 -10 0 10 20

-20 -10 0 10 20

-20

-10

0

10

20

-20 -10 0 10 20

3 %
6 %
12 %

coherence level

-20 -10 0 10 20

1

0.5

0

data model

true direction [deg]

e
st

im
at

e
d

 d
ir

e
ct

io
n

 [
d

e
g

]
fr

ac
ti

o
n

 m
o

ti
o

n
 

ri
g

h
t o

f r
e

fe
re

n
ce

 

true direction [deg]

data model

-20 0 20-10 10 -20 0 20-10 10

-20

0

20

40

-40

-20

0

20

40

-40

-20

0

20

40

-40

e
st

im
at

e
d

 d
ir

e
ct

io
n

 [
d

e
g

] 3 %3 %

6 %6 %

12 %12 %

Figure 4: Comparison of model predictions with data for a single subject. Upper left: The two pan-
els show the percentage of observed motion to the right as a function of the true pattern direction,
for the three coherence levels tested. The model accurately predicts the subject’s behavior, which
exhibits a decrease in the number of false decisions with decreasing noise levels and increasing dis-
tance to the reference. Lower left: Mean estimates of the direction of motion after performing the
decision task. Clearly, the decision has a substantial impact on the subsequent estimate, producing
a strong bias away from the reference. The model response exhibits biases similar to those of the
human subjects, with lower coherence levels producing stronger repulsive effects. Right: Grayscale
images show distributions of estimates across trials for both the human subject and the model ob-
server, for all three coherence levels. All trials are included (correct and incorrect). White dashed
lines represent veridical estimates. Model observer performed 40 trials at each motion direction (in
1.5 degrees increments). Human data are replotted from [4].

in posterior probabilities over the hypotheses associated with the decision task would be reflected in
sudden changes in response pattern in such populations [16].

Questions remain. For the experiment we have modeled, the hypotheses were specified by the two
alternatives of the decision task, and the subjects were forced to choose one of them. What hap-
pens in more general situations? First, do humans always decompose perceptual inference tasks
into a set of inference problems, each conditioned on a different hypothesis? Data from other,
cue-combination experiments suggest that subjects indeed seem to perform such probabilistic de-
composition [13, 14]. If so, then how do observers generate these hypotheses? In the absence of
explicit instructions, humans may automatically perform implicit comparisons relative to reference
features that are unconsciously selected from the environment. Second, if humans do consider dif-
ferent hypotheses, do they always select a single one on which subsequent percepts are conditioned,
even if not explicitly asked to do so? For example, simply displaying the reference mark in the
experiment of [4] (without asking the observer to report any decision) might be sufficient to trigger
an implicit decision that would result in behaviors similar to those shown in the explicit case.

Finally, although we have only tested it on data of a particular psychophysical experiment, we be-
lieve that our model may have implications beyond low-level sensory perception. For instance, a
well-studied human attribute is known as cognitive dissonance [17], which causes people to ad-
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Figure 5: Comparison of model predictions with data for second experiment. Left: Prior distri-
butions for second experiment in [4]. Right: Grayscale images show the trial distributions of the
human subject and the model observer for all three coherence levels. White dashed lines represent
veridical estimates. Note that the human subject does not show any significant bias in their estimate.
The trial variance appears to increase with decreasing levels of coherence. Both characteristics are
well predicted by the model. Human data replotted from [4] (supplementary material).

just their opinions and beliefs to be consistent with their previous statements or behaviors. 2 Thus,
self-consistency may be a principle that governs computations throughout the brain.
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