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Abstract

We introduce a new family of distributions, called Lp-nested symmetric distri-
butions, whose densities are expressed in terms of a hierarchical cascade of Lp-
norms. This class generalizes the family of spherically and Lp-spherically sym-
metric distributions which have recently been successfully used for natural im-
age modeling. Similar to those distributions it allows for a nonlinear mechanism
to reduce the dependencies between its variables. With suitable choices of the
parameters and norms, this family includes the Independent Subspace Analysis
(ISA) model as a special case, which has been proposed as a means of deriv-
ing filters that mimic complex cells found in mammalian primary visual cortex.
Lp-nested distributions are relatively easy to estimate and allow us to explore the
variety of models between ISA and the Lp-spherically symmetric models. By fit-
ting the generalized Lp-nested model to 8 × 8 image patches, we show that the
subspaces obtained from ISA are in fact more dependent than the individual fil-
ter coefficients within a subspace. When first applying contrast gain control as
preprocessing, however, there are no dependencies left that could be exploited by
ISA. This suggests that complex cell modeling can only be useful for redundancy
reduction for larger image patches.

1 Introduction

Finding a precise statistical characterization of natural images is an endeavor that has concerned
research for more than fifty years now and is still an open problem. A thorough understanding of
natural image statistics is desirable from an engineering as well as a biological point of view. It
forms the basis not only for the design of more advanced image processing algorithms and compres-
sion schemes, but also for a better comprehension of the operations performed by the early visual
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system and how they relate to the properties of the natural stimuli that are driving it. From both
perspectives, redundancy reducing algorithms such as Principal Component Analysis (PCA), Inde-
pendent Component Analysis (ICA), Independent Subspace Analysis (ISA) and Radial Factorization
[11; 21] have received considerable interest since they yield image representations that are favorable
for compression and image processing and at the same time resemble properties of the early visual
system. In particular, ICA and ISA yield localized, oriented bandpass filters which are reminiscent
of receptive fields of simple and complex cells in primary visual cortex [4; 16; 10]. Together with the
Redundancy Reduction Hypothesis by Barlow and Attneave [3; 1], those observations have given
rise to the idea that these filters represent an important aspect of natural images which is exploited
by the early visual system.

Several result, however, show that the density model of ICA is too restricted to provide a good model
for natural images patches. Firstly, several authors have demonstrated that filter responses of ICA
filters on natural images are not statistically independent [20; 23; 6]. Secondly, after whitening, the
optimum of ICA in terms of statistical independence is very shallow or, in other words, all whitening
filters yield almost the same redundancy reduction [5; 2]. A possible explanation for that finding is
that, after whitening, densities of local image features are approximately spherical [24; 23; 12; 6].
This implies that those densities cannot be made independent by ICA because (i) all whitening filters
differ only by an orthogonal transformation, (ii) spherical densities are invariant under orthogonal
transformations, and (iii) the only spherical and factorial distribution is the Gaussian. Once local
image features become more distant from each other, the contour lines of the density deviates from
spherical and become more star-shaped. In order to capture this star-shaped contour lines one can
use the more general Lp-spherically symmetric distributions which are characterized by densities of
the form ρ(y) = g(‖y‖p) with ‖y‖p = (

∑
|yi|p)1/p and p > 0 [9; 10; 21].

p=0.8 p=2 p=1.5
p=0.8

Figure 1: Scatter plots and marginal histograms of neighboring (left) and distant (right) symmetric whitening
filters which are shown at the top. The dashed Contours indicate the unit sphere for the optimal p of the best
fitting non-factorial (dashed line) and factorial (solid line) Lp-spherically symmetric distribution, respectively.
While close filters exhibit p = 2 (spherically symmetric distribution), the value of p decreases for more distant
filters.

As illustrated in Figure 1, the relationship between local bandpass filter responses undergoes a grad-
ual transition from L2-spherical for nearby to star-shaped (Lp-spherical with p < 2) for more distant
features [12; 21]. Ultimately, we would expect extremely distant features to become independent,
having a factorial density with p ≈ 0.8. When using a single Lp-spherically symmetric model for
the joint distribution of nearby and more distant features, a single value of p can only represent a
compromise for the whole variety of iso-probability contours. This raises the question whether a
combination of local spherical models, as opposed to a single Lp-spherical model, yields a better
characterization of the statistics of natural image patches. Possible ways to join several local models
are Independent Subspace Analysis (ISA) [10], which uses a factorial combination of locally Lp-
spherical densities, or Markov Random Fields (MRFs) [18; 13]. Since MRFs have the drawback
of being implicit density models and computationally very expensive for inference, we will focus
on ISA and our model. In principle, ISA could choose its subspaces such that nearby features are
grouped into a joint subspace which can then be well described by a spherical symmetric model
(p = 2) while more distant pixels, living in different subspaces, are assumed to be independent. In
fact, previous studies have found ISA to perform better than ICA for image patches as small as 8×8
and to yield an optimal p ≈ 2 for the local density models [10]. On the other hand, the ISA model
assumes a binary partition into either a Lp-spherical or a factorial distribution which does not seem
to be fully justified considering the gradual transition described above.
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Here, we propose a new family of hierarchical models by replacing the Lp-norms in the Lp-spherical
models by Lp-nested functions, which consist of a cascade of nested Lp-norms and therefore allow
for different values of p for different groups of filters. While this family includes the Lp-spherical
family and ISA models, it also includes densities that avoid the hard partition into either factorial
or Lp-spherical. At the same time, parameter estimation for these models can still be similarly
efficient and robust as for Lp-spherically symmetric models. We find that this family (i) fits the data
significantly better than ISA and (ii) generates interesting filters which are grouped in a sensible way
within the hierarchy. We also find that, although the difference in performance between Lp-spherical
and Lp-nested models is significant, it is small on 8× 8 patches, suggesting that within this limited
spatial range, the iso-probability contours of the joint density can still be reasonably approximated
by a single Lp-norm. Preliminary results on 16× 16 patches exhibit a more pronounced difference
between the Lp-nested and the Lp-spherically symmetric distribution, suggesting that the change in
p becomes more important for modelling densities over a larger spatial range.

2 Models

Lp-Nested Symmetric Distributions Consider the function

f(y) =

( n1∑
i=1

|yi|p1

) p∅
p1

+ ...+

 n∑
i=n1+...+n`−1+1

|yi|p`


p∅
p`


1

p∅

(1)

=
∥∥∥ (‖y1:n1‖p1 , ..., ‖yn−n`+1:n‖p`

)>
∥∥∥

p∅
.

We call this type of functions Lp-nested and the resulting class of distributions Lp-nested symmetric.
Lp-nested symmetric distributions are a special case of the ν-spherical distributions which have a
density characterized by the form ρ(y) = g(ν(y)) where ν : Rn → R is a positively homogeneous
function of degree one, i.e. it fulfills ν(ay) = aν(y) for any a ∈ R+ and y ∈ Rn [7]. Lp-
nested functions are obviously positively homogeneous. Of course, Lp-nested functions of Lp-
nested functions are again Lp-nested. Therefore, an Lp-nested function f in its general form can be
visualized by a tree in which each inner node corresponds to an Lp-norm while the leaves stand for
the coefficients of the vector y.

Because of the positive homogeneity it is possible to normalize a vector y with respect to ν and
obtain a coordinate respresentation x = r · u where r = ν(y) and u = y/ν(y). This implies that
the random variable Y has the stochastic representation Y .= RU with independent U and R [7]
which makes it a generalization of the Gaussian Scale Mixture model [23]. It can be shown that
for a given ν, U always has the same distribution while the distribution %(r) of R determines the
specific ρ(y) [7]. For a general ν, it is difficult to determine the distribution of U since the partition
function involves the surface area of the ν-unit sphere which is not analytically tractable in most
cases. Here, we show that Lp-nested functions allow for an analytical expression of the partition
function. Therefore, the corresponding distributions constitute a flexible yet tractable subclass of
ν-spherical distributions.

In the remaining paper we adopt the following notational convention: We use multi-indices to index
single nodes of the tree. This means that I = ∅ denotes the root node, I = (∅, i) = i denotes
its ith child, I = (i, j) the jth child of i and so on. The function values at individual inner nodes
I are denoted by fI , the vector of function values of the children of an inner node I by fI,1:`I

=
(fI,1, ..., fI,`I

)>. By definition, parents and children are related via fI = ‖fI,1:`I
‖pI

. The number of
children of a particular node I is denoted by `I .

Lp-nested symmetric distributions are a very general class of densities. For instance, since every Lp-
norm ‖ · ‖p is an Lp-nested function, Lp-nested distributions includes the family of Lp-spherically
symmetric distributions including (for p = 2) the family of spherically symmetric distributions.
When e.g. setting f = ‖ · ‖2 or f = (‖ · ‖p2)1/p, and choosing the radial distribution % appropriately,
one can recover the Gaussian ρ(y) = Z−1 exp

(
−‖y‖22

)
or the generalized spherical Gaussian

ρ(y) = Z−1 exp (−‖y‖p2), respectively. On the other hand, when choosing the Lp-nested function
f as in equation (1) and % to be the radial distribution of a p-generalized Normal distribution %(r) =
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Z−1rn−1 exp (−rp∅/s) [8; 22], the inner nodes f1:`∅ become independent and we can recover an
ISA model. Note, however, that not all ISA models are also Lp-nested since Lp-nested symmetry
requires the radial distribution to be that of a p-generalized Normal.

In general, for a given radial distribution % on the Lp-nested radius f(y), an Lp-nested symmetric
distribution has the form

ρ(y) =
1

Sf (f(y))
· %(f(y)) =

1
Sf (1) · fn−1(y)

· %(f(y)) (2)

where Sf (f(y)) = Sf (1) ·fn−1(y) is the surface area of the Lp-nested sphere with the radius f(y).
This means that the partition function of a general Lp-nested symmetric distribution is the partition
function of the radial distribution normalized by the surface area of the Lp-nested sphere with radius
f(y). For a given f and a radius f∅ = f(y) this surface area is given by the equation

Sf (f∅) = fn−1
∅ 2n

∏
I∈I

1
p`I−1

I

`I−1∏
k=1

B

[∑k
i=1 nI,k

pI
,
nI,k+1

pI

]
= fn−1
∅ 2n

∏
I∈I

∏`I

k=1 Γ
[

nI,k

pI

]
p`I−1

I Γ
[

nI

pI

]
where I denotes the set of all multi-indices of inner nodes, nI the number of leaves of the subtree
under I and B [a, b] the beta function. Therefore, if the partition function of the radial distribution
can be computed easily, so can the partition function of the multivariate Lp-nested distribution.

Since the only part of equation (2) that includes free parameters is the radial distribution %, maximum
likelihood estimation of those parameters ϑ can be carried out on the univariate distribution % only,
because

argmaxϑ log ρ(y|ϑ)
(2)
= argmaxϑ (− logSf (f(y)) + log %(f(y)|ϑ)) = argmaxϑ log %(f(y)|ϑ).

This means that parameter estimation can be done efficiently and robustly on the values of the Lp-
nested function.

Since, for a given f , an Lp-nested distribution is fully specified by a radial distribution, changing
the radial distribution also changes the Lp-nested distribution. This suggests an image decomposi-
tion constructed from a cascade of nonlinear, gain-control-like mappings reducing the dependence
between the filter coefficients. Similar to Radial Gaussianization or Lp-Radial Factorization algo-
rithms [12; 21], the radial distribution %∅ of the root node is mapped into the radial distribution of
a p-generalized Normal via histogram equalization, thereby making its children exponential power
distributed and statistically independent [22]. This procedure is then repeated recursively for each
of the children until the leaves of the tree are reached.

Below, we estimate the multi-information (MI) between the filters or subtrees at different levels of
the hierarchy. In order to do that robustly, we need to know the joint distribution of their values. In
particular, we are interested in the joint distribution of the children fI,1:`I

of a node I (e.g. layer 2
in Figure 2). Just from the form of an Lp-nested function one might guess that those children are
Lp-spherically symmetric distributed. However, this is not the case. For example, the children f1:`∅
of the root node (assuming that none of them is a leaf) follow the distribution

ρ(f1:`∅) =
%∅(‖f1:`∅‖p∅)

S‖·‖p∅
(‖f1:`∅‖p∅)

`∅∏
i=1

fni−1
i . (3)

This implies that f1:`∅ can be represented as a product of two independent random variables

u = f1:`∅/‖f1:`∅‖p∅ ∈ R`∅
+ and r = ‖f1:`∅‖p∅ ∈ R+ with r ∼ %∅ and

(
u

p∅
1 , ..., u

p∅
`∅

)
∼

Dir
[
n1/p∅, ..., n`∅/p∅

]
following a Dirichlet distribution (see Additional Material). We call this

distribution a Dirichlet Scale Mixture (DSM). A similar form can be shown for the joint distribution
of leaves and inner nodes (summarizing the whole subtree below them). Unfortunately, only the
children f1:`∅ of the root node are really DSM distributed. We were not able to analytically cal-
culate the marginal distribution of an arbitrary node’s children fI,1:`I

, but we suspect it to have a
similar form. For that reason we fit DSMs to those children fI,1:`∅ in the experiments below and
use the estimated model to assess the dependencies between them. We also use it for measuring the
dependencies between the subspaces of ISA.
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Fitting DSMs via maximum likelihood can be carried out similarly to estimating Lp-nested distri-
butions: Since the radial variables u and r are independent, the Dirichlet and the radial distribution
can be estimated on the normalized data points {ui}mi=1 and their respective norms {ri}mi=1 inde-
pendently.

Lp-Spherically Symmetric Distributions and Independent Subspace Analysis The family of
Lp-spherically symmetric distributions are a special case of Lp-nested distributions for which
f(y) = ‖y‖p [9]. We use the ISA model by [10] where the filter responses y are modelled by
a factorial combination of Lp-spherically symmetric distributions sitting on each subspace

ρ(y) =
K∏

k=1

ρk(‖yIk
‖pk

).

3 Experiments

Given an image patch x, all models used in this paper define densities over filter responses y = Wx
of linear filters. This means, that all models have the form ρ(y) = |detW |·ρ(Wx). The (n−1)×n
matrixW has the formW = QSP where P ∈ R(n−1)×n has mutually orthogonal rows and projects
onto the orthogonal complement of the DC-filter (filter with equal coefficients), S ∈ R(n−1)×(n−1)

is a whitening matrix and Q ∈ SOn−1 is an orthogonal matrix determining the final filter shapes
of W . When we speak of optimizing the filters according to a model, we mean optimizing Q over
SOn−1. The reason for projecting out the DC component is, that it can behave quite differently
depending on the dataset. Therefore, it is usually removed and modelled separately. Since the DC
component is the same for all models and would only add a constant offset to the measures we use
in our experiments, we ignore it in the experiments below.

Data We use ten pairs of independently sampled training and test sets of 8× 8 (16× 16) patches
from the van Hateren dataset, each containing 100, 000 (500, 000) examples. Hyvärinen and Köster
[10] report that ISA already finds several subspaces for 8× 8 image patches. We perform all exper-
iments with two different types of preprocessing: either we only whiten the data (WO-data), or we
whiten it and apply an additional contrast gain control step (CGC-data), for which we use the radial
factorization method described in [12; 21] with p = 2 in the symmetric whitening basis.

We use the same whitening procedure as in [21; 6]: Each dataset is centered on the mean over
examples and dimensions and rescaled such that whitening becomes volume conserving. Similarly,
we use the same orthogonal matrix to project out the DC-component of each patch (matrix P above).
On the remaining n−1 dimensions, we perform symmetric whitening (SYM) with S = C−

1
2 where

C denotes the covariance matrix of the DC-corrected data C = cov [PX].
Evaluation Measures We use the Average Log Loss per component (ALL) for assessing the qual-
ity of the different models, which we estimate by taking the empirical average over a large ensemble
of test points ALL = − 1

n−1 〈log ρ(y)〉Y ≈ −
1

m(n−1)

∑m
i=1 log ρ(yi). The ALL equals the entropy

if the model distribution equals the true distribution and is larger otherwise. For the CGC-data, we
adjust the ALL by the log-determinant of the CGC transformation [11]. In contrast to [10] this al-
lows us to quantitively compare models across the two different types of preprocessing (WO and
CGC), which was not possible in [10].

In order to measure the dependence between different random variables, we use the multi-
information per component (MI) 1

n−1

(∑d
i=1H[Yi]−H[Y ]

)
which is the difference between the

sum of the marginal entropies and the joint entropy. The MI is a positive quantity which is zero
if and only if the joint distribution is factorial. We estimate the marginal entropies by a jackknifed
MLE entropy estimator [17] (corrected for the log of the bin width in order to estimate the differen-
tial entropy) where we adjust the bin width of the histograms suggested by Scott [19]. Instead of the
joint entropy, we use the ALL of an appropriate model distribution. Since the ALL is theoretically
always larger than the true joint entropy (ignoring estimation errors) using the ALL instead of the
joint entropy should underestimate the true MI, which is still sufficient for our purpose.
Parameter Estimation For all models (ISA, DSM, Lp-spherical and Lp-nested), we estimate the
parameters ϑ for the radial distribution as described above in Section 2. For a given filter matrix
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W the values of the exponents p are estimated by minimizing the ALL at the ML estimates ϑ̂
over p = (p1, ..., pq)>. For the Lp-nested distributions, we use the Nelder-Mead [15] method for
the optimization over p = (p1, ..., pq)> and for the Lp-spherically symmetric distributions we use
Golden Search over the single p. For the ISA model, we carry out a Golden Search over p for
each subspace independently. For the Lp-spherical and the single models on the ISA subspaces,
we use a search range of p ∈ [0.1, 2.1] on p. For estimating the Dirichlet Scale Mixtures, we use
the fastfit package by Tom Minka to estimate the parameters of the Dirichlet distribution. The
radial distribution is estimated independently as described above.

When fitting the filters W to the different models (ISA, Lp-spherical and Lp-nested), we use a
gradient ascent on the log-likelihood over the orthogonal group by alternating between optimizing
the parameters p and ϑ and optimizing for W . For the gradient ascent, we compute the standard
Euclidean gradient with respect to W ∈ R(n−1)×(n−1) and project it back onto the tangent space of
SOn−1. Using the gradient ∇W obtained in that manner, we perform a line search with respect to
t using the backprojections of W + t · ∇W onto SOn−1. This method is a simplified version of the
one proposed by [14].

Experiments with Independent Subspace Analysis and Lp-Spherically Symmetric Distribu-
tions We optimized filters for ISA models with K = 2, 4, 8, 16 subspaces embracing 32, 16, 8, 4
components (one subspace always had one dimension less due to the removal of the DC component),
and for an Lp-spherically symmetric model. When optimizing for W we use a radial Γ-distribution
for the Lp-spherically symmetric models and a radial χp distribution (‖yIk

‖pk
pk

is Γ-distributed) for
the models on the single single subspaces of ISA, which is closer to the one used by [10]. After
optimization, we make a final optimization for p and ϑ using a mixture of log normal distributions
(logN ) with K = 6 mixture components on the radial distribution(s).

Lp-Nested Symmetric Distributions As for theLp-spherically symmetric models, we use a radial
Γ-distribution for the optimization ofW and a mixture of logN distributions for the final fit. We use
two different kind of tree structures for our experiments with Lp-nested symmetric distributions. In
the deep tree (DT) structure we first group 2×2 blocks of four neighboring SYM filters. Afterwards,
we group those blocks again in a quadtree manner until we reached the root node (see Figure 2A).
The second tree structure (PNDk) was motivated by ISA. Here, we simply group the filter within
each subspace and joined them at the root node afterwards (see Figure 2B). In order to speed up
parameter estimation, each layer of the tree shared the same value of p.

Multi-Information Measurements For the ISA models, we estimated the MI between the filter
responses within each subspace and between the Lp-radii ‖yIk

‖pk
, 1 ≤ k ≤ K. In the former case

we used the ALL of an Lp-spherically symmetric distribution with especially optimized p and ϑ, in
the latter a DSM with optimized radial and Dirichlet distribution as a surrogate for the joint entropy.
For the Lp-nested distribution, we estimate the MI between the children fI,1:`I

of all inner nodes
I . In case the children are leaves, we use the ALL of an Lp-spherically symmetric distribution as
surrogate for the joint entropy, in case the children are inner nodes themselves, we use the ALL of
an DSM. The red arrows in Figure 2A exemplarily depict the entities between which the MI was
estimated.

4 Results and Discussion

Figure (2) shows the optimized filters for the DT and the PND16 tree structure (we included the
filters optimized on the first of ten datasets for all tree structures in the Additional Material). For
both tree structures, the filters on the lowest level are grouped according to spatial frequency and
orientation, whereas the variation in orientation is larger for the PND16 tree structure and some
filters are unoriented. The next layer of inner nodes, which is only present in the DT tree structure,
roughly joins spatial location, although each of those inner nodes has one child whose leaves are
global filters.

When looking at the various values of p at the inner nodes, we can observe that nodes which are
higher up in the tree usually exhibit a smaller value of p. Surprisingly, as can be seen in Figure 3
B and C, a smaller value of p does not correspond to a larger independence between the subtrees,
which are even more correlated because almost every subtree contains global filters. The small value
of p is caused by the fact that the DSM (the distribution of the subtree values) has to account for
this correlation which it can only do by decreasing the value of p (see Figure 3 and the DSM in

6



A B

Layer 1

Layer 2
Layer 3

p 1
=0

.7
70

71

p 2
=0

.8
43

8

p 3
=2

.2
76

p 1
=0

.8
41

3

p 2
=1

.6
93

Figure 2: Examples for the tree structures of Lp-nested distributions used in the experiments: (A) shows
the DT structure with the corresponding optimized values. The red arrows display examples of groups of filters
or inner nodes, respectively, for which we estimated the MI. (B) shows the PND16 tree structure with the
corresponding values of p at the inner nodes and the optimized filters.

the Additional Material). Note that this finding is exactly opposite to the assumptions in the ISA
model which can usually not generate such a behavior (Figure 3A) as it models the two subtrees to
be independent. This is likely to be one reason for the higher ALL of the ISA models (see Table 1).

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

||y
1:32

||
p

1

 sampled

||y
32

:6
3

|| p
2 s

am
pl

ed

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

||y
1:32

||
p

1

||y
32

:6
3

|| p
2

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

f
1

f 2

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

f
1
 sampled

f 2 s
am

pl
ed

A B C D

Figure 3: Independence of subspaces for WO-data not justfied: (A) Subspace radii sampled from ISA2, (B)
subspace radii of natural image patches in the ISA2 basis, (C) subtree values of the PND2 in the PND2 basis, and
(D) samples from the PND2 model. While the ISA2 model spreads out the radii almost over the whole positive
quadrant due to the independence assumption the samples from the Lp-nested subtrees are more concentrated
around the diagonal like the true data. The Lp-nested model can achieve this behavior since (i) it does not
assume a radial distribution that leads to independent radii on the subtrees and (ii) the subtree values f1 and f2
are DSM[n1/p∅, n2/p∅, ] distributed. By changing the value of p∅, the DSM model can put more mass towards
the diagonal, which produces the ”beam-like” behavior shown in the plot.

Table 1 shows the ALL and the MI measurements for all models. Except for the ISA models on
WO-data, all performances are similar, whereas the Lp-nested models usually achieve the lowest
ALL independent of the particular tree structure used. For the WO-data, the Lp-spherical and the
ISA2 model come close to the performance of the Lp-nested models. For the other ISA models on
WO-data the ALL gets worse with increasing number of subspaces (bold font number in Table 1).
This reflects the effect described above: Contrary to the assumptions of the ISA model, the responses
of the different subspaces become in fact more correlated than the single filter responses. This can
also be seen in the MI measurements discussed below.

When looking at the ALL for CGC data, on the other hand, ISA suddenly becomes competitive.
This importance of CGC for ISA has already been noted in [10]. The small differences between all
the models in the CGC case shows that the contour change of the joint density for 8×8 patches is too
small to allow for a large advantage of the Lp-nested model, because contrast gain control (CGC)
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directly corresponds to modeling the distribution with anLp-spherically symmetric distribution [21].
Preliminary results on 16 × 16 data (1.39 ± 0.003 for the Lp-nested and 1.45 ± 0.003 for the Lp-
spherical model on WO-data), however, show a more pronounced improvement with for the Lp-
nested model, indicating that a single p does not suffice anymore to capture all dependencies when
going to larger patch sizes.

When looking at the MI measurements between the filters/subtrees at different levels of the hierarchy
in the Lp-nested, Lp-spherically symmetric and ISA models, we can observe that for the WO-data,
the MI actually increases when going from lower to higher layers. This means that the MI between
the direct filter responses (layer 3 for DT and layer 2 for all others) is in fact lower than the MI
between the subspace radii or the inner nodes of the Lp-nested tree (layer 1-2 for DT, layer 1 for all
others). The highest MI is achieved between the children of the root node for the DT tree structure
(DT layer 1). As explained above this observation contradicts the assumptions of the ISA model and
probably causes it worse performance on the WO-data.

For the CGC-data, on the other hand, the MI has been substantially decreased by CGC over all levels
of the hierarchy. Furthermore, the single filter responses inside a particular subspace or subtree are
now more dependent than the subtrees or subspaces themselves. This suggests that the competitive
performance of ISA is not due to the model but only due to the fact that CGC made the data already
independent. In order to double check this result, we fitted an ICA model to the CGC-data [21] and
found an ALL of 1.41 ± 0.004 which is very close to the performance of ISA and the Lp-nested
distributions (which would not be the case for WO-data [21]).

Taken together, the ALL and the MI measurements suggest that ISA is not the best way to join
multiple local models into a single joint model. The basic assumption of the ISA model for natural
images is that filter coefficients can either be dependent within a subspace or must be independent
between different subspaces. However, the increasing ALL for an increasing number of subspaces
and the fact that the MI between subspaces is actually higher than within the subspaces, demonstrates
that this hard partition is not justified when the data is only whitened.

Family Lp-nested
Model Deep Tree PND2 PND4 PND8 PND16

ALL 1.39± 0.004 1.39± 0.004 1.39± 0.004 1.40± 0.004 1.39± 0.004
ALL CGC 1.39± 0.005 1.40± 0.004 1.40± 0.005 1.40± 0.004 1.39± 0.004
MI Layer 1 0.84± 0.019 0.48± 0.008 0.7± 0.002 0.75± 0.003 0.61± 0.0036

MI Layer 1 CGC 0.0± 0.004 0.10± 0.002 0.02± 0.003 0.0± 0.009 0.0± 0.01
MI Layer 2 0.42± 0.021 0.35± 0.017 0.33± 0.017 0.28± 0.019 0.25± 0.025

MI Layer 2 CGC 0.002± 0.005 0.01± 0.0008 0.01± 0.004 0.01± 0.006 0.02± 0.008
MI Layer 3 0.28± 0.036 - - - -

MI Layer 3 GCG 0.04± 0.005 - - - -
Family Lp-spherical ISA
Model - ISA2 ISA4 ISA8 ISA16

ALL 1.41± 0.004 1.40± 0.005 1.43± 0.006 1.46± 0.006 1.55± 0.006
ALL CGC 1.41± 0.004 1.41± 0.008 1.39± 0.007 1.40± 0.005 1.41± 0.007
MI Layer 1 0.34± 0.004 0.47± 0.01 0.69± 0.012 0.7± 0.018 0.63± 0.0039

MI Layer 1 CGC 0.00± 0.005 0.00± 0.09 0.00± 0.06 0.00± 0.04 0.00± 0.02
MI Layer 2 - 0.36± 0.017 0.33± 0.019 0.31± 0.032 0.24± 0.024

MI Layer 2 CGC - 0.004± 0.003 0.03± 0.012 0.02± 0.018 0.0006± 0.013

Table 1: ALL and MI for all models: The upper part shows the results for the Lp-nested models, the lower
part show the results for the Lp-spherical and the ISA models. The ALL for the Lp-nested models is almost
equal for all tree structures and a bit lower compared to the Lp-spherical and the ISA models. For the whitened
only data, the ALL increases significantly with the number of subspaces (bold font). For the CGC data, most
models perform similarly well. When looking at the MI, we can see that higher layers for whitened only data
are in fact more dependent than lower ones. For CGC data, the MI has dropped substantially over all layers due
to CGC. In that case, the lower layers are more independent.

In summary, our results show that Lp-nested symmetric distributions yield a good performance on
natural image patches, although the advantage over Lp-spherically symmetric distributions is fairly
small, suggesting that the distribution within these small patches (8× 8) is captured reasonably well
by a single Lp-norm. Furthermore, our results demonstrate that—at least for 8 × 8 patches—the
assumptions of ISA are too rigid for WO-data and are trivially fulfilled for the CGC-data, since
CGC already removed most of the dependencies. We are currently working to extend this study to
larger patches, which we expect will reveal a more significant advantage for Lp-nested models.
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