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We present an embedded image coder based on a statistical
characterization of natural images in the wavelet transform
domain. We describe the joint distribution between pairs of
coefficients at adjacent spatial locations, orientations, and
scales. Although the raw coefficients are nearly uncorrelated,
their magnitudesare highly correlated. A linear magnitude
predictor, coupled with both multiplicative and additive un-
certainties, provides a reasonable description of the condi-
tional probability densities. We use this model to construct
an image coder called EPWIC (Embedded Predictive Wavelet
Image Coder), in which subband coefficients are encoded one
bit-plane at a time using a non-adaptive arithmetic encoder.
Bit-planes are ordered using a greedy algorithm that consid-
ers the MSE reduction per encoded bit. We demonstrate the
quality of the statistical characterization by comparing rate-
distortion curves of the coder to several standard coders.

The popularity of the World Wide Web and the development
of large image databases have created a demand for flexi-
ble embedded image representations. Orthonormal wavelet
pyramids, in which images are decomposed using basis func-
tions localized in spatial position, orientation, and spatial fre-
quency (scale), have proven to be extremely effective for im-
age compression. We believe there are several statistical rea-
sons for this success. The most widely known of these is
that wavelet transforms are reasonable approximations to the
Karhunen-Loève expansion for fractal signals [1], such as
natural images [2]. The resulting redistribution of variance
leads to a reduction in the total entropy of the wavelet coeffi-
cients relative to the entropy of the original image pixels.

First-order Model

In addition to redistributing variance, wavelet transforms pro-
duce coefficients with significantly non-Gaussian marginal
statistics [e.g., 3, 4, 5, 6]. This observation should be con-
trasted with frequency-based decompositions, which produce
marginals that are much closer to Gaussian. Since the Gaus-
sian is the maximal-entropy density for a given variance,
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wavelet-based coders can achieve higher degrees of compres-
sion than frequency-based coders such as JPEG.

Figure 1 shows histograms of a horizontal wavelet subband
for several images. Compared to a Gaussian, these densities
are more sharply peaked at zero, with more extensive tails.
To quantify this, we give the sample kurtosis (fourth moment
divided by squared second moment) below each histogram.
The estimated kurtoses of all of the subbands are significantly
larger than the value of three expected for a Gaussian distri-
bution. Also shown in the figure are two-parameter model
density functions of the form [3, 6]:

P(c) / e�jc=sjp : (1)

The density parametersfs; pg are chosen by minimizing the
relative entropy (also known as the “Kullback-Leibler diver-
gence”) between a discretized model distribution and the 256-
bin coefficient histogram. We make no claim of uniqueness
or optimality here: for example, Zhu et. al. used a different
class of density functions to characterize these statistics [7].
Note that by describing the statistics in this simplistic fash-
ion, we are assuming both independence and stationarity of
the subband coefficients, both of which are generally incor-
rect. We will continue to assume stationarity, but we address
the independence issue next.

Joint Model

The coefficients of wavelet subbands are nearly uncorrelated.
Nevertheless, casual inspection illustrates that wavelet coef-
ficients arenot statistically independent. Specifically, large-
magnitude coefficients tend to occur at the same relative lo-
cations in subbands at adjacent scales [8]. Such dependen-
cies have been utilized implicitly in a number of image com-
pression schemes. Shapiro [9] developed the Embedded Ze-
rotree Wavelet (EZW) coder, which takes advantage of the
observation that a zero coefficient of a subband is likely to
indicate a tree of zero coefficients at the same location in
all finer scale subbands. Several authors [10, 11, 12] have
used vectorized lookup tables to predict blocks of fine coeffi-
cients from blocks of coarse coefficients. Schwartz et. al. [13]
used adaptive entropy coding to capture conditional statistics
of coefficients based on the most significant bits of each of
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Figure 1. Examples of 256-bin coefficient histograms (solid lines) for vertical bands of four images, plotted in the log
domain. Also shown (dashed lines) are fitted densities corresponding to equation (1). Below each histogram is the sample
kurtosis (fourth moment divided by squared variance), and the relative entropy. The CTscan histogram was the worst fit
(in terms of relative entropy) in our image set.

the eight spatial neighbors and the coefficient at a coarser
scale. Said and Pearlman [14] used a predictive scheme to
give high-quality zerotree coding results. Chrysafis and Or-
tega [15] switched between multiple probability models de-
pending on values of neighboring coefficients, and Wu and
Chen [16] have extended the EZW coder to use local coeffi-
cient “contexts”.

We wish to characterize these statistical relationships ex-
plicitly. Consider two coefficients representing horizon-
tal information at adjacent scales, but the same spatial lo-
cation. Figure 2A shows the log-domain conditional his-
togramH (log

2
(C)j log

2
(P )), whereP is the magnitude of

the coarse-scale (“parent”) coefficient andC is the magnitude
of the finer-scale (“child”) coefficient. Observe that the right
side of the distribution is unimodal and concentrated about a
unit-slope line, indicating thatC is roughly proportional to
P . Furthermore, vertical cross sections (i.e., the histogram
conditioned on a fixed value ofP ) have roughly the same
shape for different values ofP . The left side of the distribu-
tion is concentrated about a horizontal line, suggesting that
C is independent ofP in this region. We suspect that these
low-amplitude coefficients are dominated by quantization and
other “noise” sources.

The form of the histogram shown in figure 2A is surprisingly
robust across a wide range of images. We have used this
statistical relationship between adjacent-scale coefficients in
a previous coder implementation [8]. In the current paper,
we incorporate a further observation: the qualitative form of
these joint statistical relationships also holds for pairs of co-
efficients at adjacent spatial locations (which we call “sib-
lings”), adjacent orientations (“cousins”), and adjacent orien-
tations at a coarser scale (“aunts”).

Given the linear relationship between large-amplitude coeffi-
cients and the difficulty of characterizing the density of a co-
efficient conditioned on its neighbors, we decided to examine
a linear predictor for coefficient magnitude. Figure 2B shows
a conditional histogram forC given a linear combination of

the magnitudesQk of eight adjacent coefficients in the same
subband, two coefficients at other orientations, and a coef-
ficient at a coarser scale. The linear combination is chosen
to be optimal in a least-squares sense. The distribution has
a similar appearance to the single-parent distribution of fig-
ure 2A. But the linear region is extended, and the conditional
variance is significantly reduced.

In order to determine which coefficients to include in the con-
ditioning setfQkg, we calculated the mutual information be-
tweenC andl( ~Q) for a variety of choices of interband and in-
traband coefficients. Rather than exhaustively explore all pos-
sible neighbor subsets, we used a greedy algorithm to choose
the five conditioning neighbors yielding the largest reduction
in entropy.

The fact that the conditional histograms seem to have a con-
stant shape that shifts linearly with the predictor in the log do-
main suggests a model of multiplicative uncertainty. In partic-
ular, we use the following model for the conditional density:

C 0 =M � l( ~Q) +N; (2)

whereC 0 is the signed coefficient (i.e.,C = jC 0j), l( ~Q) is
the linear magnitude predictor described previously, andM

andN are two mutually independent zero-mean random vari-
ables. Note thatC 0 will be uncorrelated with each of the con-
ditioning coefficients,Qk.

The distribution ofM is empirically determined. We con-
structed a lookup table for the conditional cumulative dis-
tribution in the log domain by averaging the mean- and
variance-normalized conditional histograms of three training
images (Lena, Boats, Baboon), at two scales (levels 2 and 3)
and all three orientations. We assumeN is independent ofM ,
and Gaussian distributed. Thefwkg are chosen to be least-
square optimal, and the variances ofM (in the log domain)
andN are chosen to minimize the relative entropy between
the joint model density and the joint histogram. Figure 2C
shows the model density that best fits the density of figure 2B.
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Figure 2. Conditional histograms of a coefficient in a horizontal subband of the “Boats” image. Intensity corresponds to
probability, except that each column has been independently rescaled to fill the full range of intensities.A: Conditioned
on a coefficient in a coarser-scale horizontal subband.B: Conditioned on an linear combination of coefficient magnitudes
from adjacent spatial positions, orientations, and scales.C: Model of equation (2) fitted to the conditional histogram in B.
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Figure 3. Comparison of encoding cost using the condi-
tional probability model of equation (2), and the encod-
ing cost using the first-order histograms, as a function of
the encoding cost using a256�256-bin joint histogram.
Points are plotted for 6 bands (2 scales, 3 orientations)
of the 13 images in our sample set.

An entropy calculation shows the value and quality of the
model. Figure 3 shows a scatterplot comparing encoding cost
based on the joint probability model of equation (2) vs. the
encoding cost assuming accurate knowledge of a256� 256-
bin histogram. Also included is a comparison to the encoding
cost using the first-order histograms of figure 1. The condi-
tional model typically falls short of the ideal by less than 0.5
bit/coefficient, but typically outperforms the first-order model
by more than 0.5 bit/coefficient.

Coder Implementation and Results

We have implemented two versions of an image compression
algorithm called EPWIC (Embedded Predictive Wavelet Im-
age Coder). Both coders are based on a separable QMF de-
composition using 9-tap symmetric (linear phase) filters [17].
Convolution boundaries are handled by symmetric reflection
of the image about the edge pixels. EPWIC-1 uses the two-
parameter first-order probability model of equation (1) to de-
scribe each subband. EPWIC-2 uses the joint linear predic-
tive model of equation (2). We use a non-adaptive arithmetic
coder to encode coefficients one bit-plane at a time. The coder
uses the probability model to determine the probability of
each bit being non-zero, conditioned on the bits already sent.
The receiver uses the model to compute a conditional mean
estimate for the coefficients, given the bits received thus far.

Bit-planes are ordered using a greedy algorithm which deter-
mines the bit-plane with the largest MSE reduction per en-
coded bit. The sign of each coefficient is sent only when
needed (immediately after the first non-zero magnitude bit)
as in [13]. Lowpass coefficient bit-planes are run-length en-
coded. The encoded bitstreams include an identification tag
(2 bytes), the image width and height (2 bytes each), the
number of pyramid levels (1 byte), quantization binsizes (2
bytes/subband), and the model parameters (9 bytes/subband),
and bit-plane identification tags (1 byte/bit-plane). Full de-
tails may be found in [18].

Figure 4 shows a rate-distortion comparison of several coders,
averaged over 13 example images. Included are the JPEG
coder1, the EZW coder2 [9], EPWIC-1, and EPWIC-2. The
example image set includes several landscapes, several faces,
texture images, two medical images, and a synthetic image.

1Independent JPEG Group’s CJPEG, version 5b.
2We thank the David Sarnoff Research Center for their assistance in the

EZW comparisons.
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Figure 4. Relative rate-distortion tradeoff for four image coders (JPEG, EZW, EPWIC-1, and EPWIC-2).Left : PSNR
values (in dB), relative to EPWIC-1 (dotted horizontal line), as a function of the number of encoded bytes.Right: Number
of bytes necessary to achieve a given PSNR, relative to EPWIC-1 (dotted horizontal line). All curves are averages over the
set of13 images (of size512� 512) in our collection.

EPWIC-1 outperforms EZW for most compression ratios by
about 0.3dB, and EPWIC-2 outperforms EZW by 0.5dB at
1Kbyte, and nearly 1.5dB at 16Kbytes and above. Also
shown in figure 4 is the encoding size (relative to that of
EPWIC-1) as a function of target PSNR. This gives a sense of
how long one would wait during a progressive transmission
for an image of a given quality. For example, EZW would
have a transmission time roughly 30% higher than EPWIC-2
for an image quality of 25dB.

We have presented a statistical model for images in the
wavelet transform domain, and have demonstrated the power
of the model by using it explicitly in an image coder imple-
mentation. The compression results are quite good, especially
given the simplicity of the encoding scheme and the fact that
we did not utilize the statistical properties of the coefficient
signs. The model should prove useful in other wavelet-based
applications, such as image enhancement and texture synthe-
sis.
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