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Image denoising methods are often based on estimators cho-
sen to minimize mean squared error (MSE) within the sub-
bands of a multi-scale decomposition. But this does not guar-
antee optimal MSE performance in the image domain, un-
less the decomposition is orthonormal. We prove that de-
spite this suboptimality, the expected image-domain MSE re-
sulting from a representation that is made redundant through
spatial replication of basis functions (e.g., cycle-spinning) is
less than or equal to that resulting from the original non-
redundant representation. We also develop an extension of
Stein’s unbiased risk estimator (SURE) that allows minimiza-
tion of the image-domain MSE for estimators that operate on
subbands of a redundant decomposition. We implement an ex-
ample, jointly optimizing the parameters of scalar estimators
applied to each subband of an overcomplete representation,
and demonstrate substantial MSE improvement over the sub-
optimal application of SURE within individual subbands.

Index Terms— denoising, Bayes least squares, SURE, over-
complete, redundant, translation invariance, cycle spinning

1. INTRODUCTION

Image denoising has undergone dramatic improvement over
the past decade, due to both the development of linear decom-
positions that simplify the statistical characteristics of the sig-
nal, and to new estimators that are optimized for those charac-
teristics. A standard methodology proceeds by linearly trans-
forming the image, operating on the transform coefficients
with pointwise nonlinear functions, and then applying the in-
verse linear transformation. If the pointwise nonlinearity is
chosen from a parametric family, Stein’s unbiased risk es-
timator (SURE) [1] may be used to select the estimator that
minimizes the mean squared error (MSE) [2]. The most popu-
lar transforms are multi-scale decompositions, and withinthis
family, empirical evidence indicates that redundant represen-
tations are more effective than orthonormal representations
[3, 4, 5]. This fact is somewhat mysterious since the estima-
tors are usually optimized for MSE in the transform domain,
which, for an overcomplete basis, is not the same as the MSE
in the image domain.

In this paper we extend the SURE methodology to the image-
domain MSE that results from denoising in an overcomplete
basis. We use this to prove that application of a given de-
noising function to a basis made overcomplete through cycle-
spinning or elimination of decimation is guaranteed to be no
worse in MSE (and is in practice typically better) than ap-
plying the same function in an orthonormal basis. We also
use this extension of SURE to optimize two example point-
wise estimators, operating on undecimated wavelet subbands,
to minimize MSE in the image domain. We show through
simulations that this can result in significant performanceim-
provements.

2. STEIN’S LEMMA FOR OVERCOMPLETE BASES

Given a noisy imageY , we wish to compute an estimate of
the form

x̂(Y ) = Y + g(Y )

by selectingg ∈ G that minimizes the expected squared error:

gopt = arg min
g∈G

E
{

|X − (Y + g(Y ))|2
}

whereX is the original (clean) image1. Stein’s Lemma [1]
implies that, for additive Gaussian noise, the MSE may be
rewritten without reference toX:

gopt = arg min
g∈G

E
{

|g(Y )|2 + 2σ2(∇ · g)(Y )
}

. (1)

Given a single vector-valued sampleY (e.g., an image),gopt

can be approximated by minimizing the expression in braces,
which is (up to an additive constant) Stein’s unbiased risk es-
timator (SURE) [1]. This result can be generalized to non-
Gaussian noise, as well as a variety of non-additive corruption
processes [6].

It is common to apply estimators to a linearly transformed
version of the image, in which the statistical properties are
simplified. Stein’s Lemma is readily extended to this situa-
tion. Suppose we have a family of estimators{u + gu(u) :

1From a frequentist perspective,X is fixed but unknown, and the expec-
tation is taken overY . One may also consider bothX andY as random,
taking the expected value over both.



gu ∈ GU} which act onU = WY , a transformed version of
the imageY . HereW can be a complete or overcomplete lin-
ear transformation (anm by n matrix,m ≥ n, wheren is the
dimension of image space), that has a left inverseW †. The
estimate is computed by transforming withW , applyinggu,
and inverse transforming withW †:

x̂(Y ) = W †(WY + gu(WY ))

= Y + W †gu(WY ). (2)

To optimize this for MSE, we replaceg(Y ) by W †gu(WY )
in Eq. (1), and after a bit of calculus obtain:

gu,opt =

arg min
gu∈GU

E

{

|W †gu(U)|2 + 2σ2tr

(

WW † ∂gu

∂u
(U)

)}

wheretr(·) indicates the trace of a matrix. As before, the
expression in braces is an unbiased estimate of risk and can
be optimized even over a single sample ofY . For simplicity,
in what follows we will assume that the transform is a tight
frame, for whichW † = WT . This includes orthonormal,
cycle-spun and undecimated wavelet transforms, as well as
other overcomplete transforms such as the steerable pyramid
[3].

3. POINT ESTIMATORS ON SUBBANDS

Suppose now thatgu consists of functionsgi that operate
pointwise on (i.e., on each element of)U . The unbiased risk
estimator becomes

|WT gu(U)|2 + 2σ2
∑

i

niig
′
i(Ui)

wherenii are the diagonal elements ofWWT (the squared
norms of the basis functions). Typically, the transform coef-
ficients are partitioned into subbands{Sk; k = 1, 2, . . . K},
corresponding to shifted versions of the same basis function,
all of which are are assumed to have the same marginal sta-
tistical properties. In this case, the same estimator will be
applied to all coefficients within a subband, and the unbiased
risk estimator becomes

|WT g(U)|2 + 2σ2
∑

k

nk

∑

i∈Sk

g′k(Ui) (3)

wherenk is the common value ofnii for i ∈ Sk. For a sin-
gle transformed imageU = WY , this expression provides a
criterion for choosing{gk}K

k=1 so as to minimize the MSE in
the image domain.

4. REDUNDANCY IMPROVES PERFORMANCE

Equation (3) allows us to explain why the performance of
marginal denoising in orthonormal wavelet bases can be im-
proved by adding redundancy to the transform through cycle

spinning or elimination of decimation [4, 5] For didactic pur-
poses, we will consider cycle spinning. ForW an orthonor-
mal wavelet decomposition, the unbiased estimate of the risk
given in Eq. (3) may be written

∑

k

∑

i∈Sk

gk(Ui)
2 + 2σ2

∑

k

nk

∑

i∈Sk

g′k(Ui). (4)

Thenk are all identically one in this case. Since both terms
are summed overk, eachgk can be independently optimized
over the data from the corresponding subband,Sk.

Cycle spinning corresponds to replicating each basis function
atN translated positions. Each subband will containN times
as many coefficients, relative to to the orthonormal represen-
tation, each reduced by factor of

√
N . As such, the coef-

ficients in each band will have the same marginal statistics2,
when rescaled by a factor of

√
N . We can thus rewrite Eq. (4),

the unbiased estimator of risk for the orthonormal transform,
in terms of thecycle-spun coefficients,U c

i :

∑

k

1

N

∑

i∈Sk

gk(
√

NU c
i )2 + 2σ2

∑

k

nk

N

∑

i∈Sk

g′k(
√

NU c
i ). (5)

If we are usinggk as the marginal function to denoise the co-
efficients in the wavelet representation, the scaling of theco-
efficients and the assumption that the redundant coefficients
in a band have the same marginal statistics as the original or-
thonormal coefficients implies that

hk(u) =
1√
N

gk(
√

Nu)

is the marginal function that should be applied to the coeffi-
cients in the cycle-spun representation. Equation (5) may thus
be rewritten as:

∑

k

∑

i∈Sk

hk(U c
i )2 + 2σ2

∑

k

nc
k

∑

i∈Sk

h′
k(U c

i ) (6)

wherenc
k = nk/N , since the norms of the cycle-spun ba-

sis vectors are a factor of
√

N less than those of the original
orthonormal basis.

Now we wish to compare this with the unbiased estimate
of the risk in denoising the cycle spun transform, which by
Eq. (3) is

|(W c)T h(U c)|2 + 2σ2
∑

k

nc
k

∑

i∈Sk

h′
k(U c

i ). (7)

If W c is the overcomplete cycle-spun transformation matrix,
then(W c)T is a projection operator. This means that

|(W c)T u|2 ≤ |u|2
2We have taken the view that coefficients of the original, noiseless sub-

band are drawn from a random distribution. If, instead, we adopt a frequentist
view that the image is fixed but unknown, we must assume that the histogram
of coefficient values for an orthonormal subband is a good approximation to
the histogram for the corresponding subband of the cycle-spun representa-
tion.
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Fig. 1. Two families of pointwise estimator functions,gθ(y). Left:
soft threshold. Right: linear basis of “bump” functions.

Orthonormal wavelet Undecimated wavelet
thresh bumps thresh bumps

subband im subband im
23.3 23.5 24.2 24.3 24.1 24.5

Table 1. Comparison of various denoising methods, expressed as
PSNR, applied to the “Barbara” image. In the undecimated cases,
we subdivide into two cases: one with the estimator independently
optimized to minimize the MSE of each subband, and the other with
the estimators jointly optimized to minimize MSE in the image do-
main. Noisy PSNR is 15.2 dB (σ=44.4).

for any vectoru, which in turn implies that

∑

k

∑

i∈Sk

hk(U c
i )2 ≥ |(W c)T h(U c)|2 (8)

whereh is the function that applieshk to each of the bandsSk.
Comparing Eq. (6) and Eq. (7), we see that the MSE estimate
for the orthonormal case is always greater than or equal to
that for the cycle-spun case. The result may be extended to
undecimated wavelets, in which the number of coefficients in
each band will be multiplied by a different factor.

5. SIMULATIONS

Equation (3) may be used to jointly optimize a set of estima-
tors,gk, to be applied to the subbandsSk. In this section we
will discuss two families of estimators, illustrated in Fig. 1.
The first consists of soft thresholding functions:

gθ(y) =

{

−y, |y| ≤ θ
−sgn(y)θ, |y| > θ

The second is constructed from a basis of “bump” functions:

gθ(y) =
∑

k

θkbk(y), (9)

where

bk(y) = y cos2
(

1

α
sgn(y) log2 (|y|/σ + 1) − kπ

2

)

.

5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

UDW−im

OW

UDW−sb

Input PSNR (dB)

P
S

N
R

 im
pr

ov
em

en
t (

dB
)

Fig. 2. Comparison of denoising results for three estimators. Each
group of lines (indicated by gray regions) shows results for one esti-
mator. Each line within a group indicates improvement in PSNR
(dB) of the denoised image relative to SUREshrink with undeci-
mated wavelets (optimized within subbands[4]), as a function of in-
put PSNR, for one of eight images. Bottom group: SUREbumps
with orthonormal wavelets; middle group: SUREbumps with un-
decimated wavelets, optimized within subbands; top group: SURE-
bumps, with undecimated wavelets, optimized for image-domain
MSE.

We used Eq. (4) to optimize the selection of soft-thresholds
for orthonormal wavelet subbands, a method known as SURE-
shrink [7]. We used the same equation to optimize estimators
constructed from the bumps basis, a method which we will
refer to as SUREbumps (a similar method, using a different
basis, was used with orthonormal wavelets in [8]). As can be
seen in Table 1, SUREbumps gives some improvement over
SUREshrink in an orthonormal basis. Next, we used Eq. (4)
to optimize parameters for the soft-threshold (as in [4]) and
the bumps in an undecimated wavelet transform. The estima-
tor for each subband was chosen to minimize the MSE for that
subband, producing a suboptimal result in the image domain
(since the transform is overcomplete). As expected from the
proof of section 4, this gives improvement for both methods.
But whereas SUREbumps is the superior method for denois-
ing on an orthonormal wavelet decomposition, SUREshrink
is superior when optimized on subbands of the redundant ba-
sis. Finally, we used Eq. (3) to optimize parameters for both
methods in the image domain. This produces improvement in
both methods, but the improvement for SUREbumps is more
substantial, and it now surpasses the thresholding results. We
note that while optimizing Eq. (3) for bumps in an overcom-
plete basis is a relatively simple least squares problem, opti-
mizing for the thresholds is a nonconvex optimization prob-
lem, and so our solution may represent a local minimum. As
such, it might be possible to improve the result for optimizing
thresholding in the image-domain in Table 1.



Figure 2 illustrates the performance of these methods over
a wide range of noise levels and for a number of images.
The graph shows the improvement in PSNR of three SURE-
bumps estimators (applied to orthonormal wavelets, undeci-
mated wavelets optimized within subbands, and undecimated
wavelets optimized in the image domain) relative to the SURE-
shrink estimator on the undecimated wavelet optimized within
subbands. We did not include comparisons to thresholding
optimized in the image domain because of the uncertainty in
finding the globally optimimum solution, but our experiments
indicate that SUREbumps generally outperforms SUREshrink
when applied in an orthonormal wavelet basis. As can be seen
in the figure, using SUREbumps on an undecimated wavelet
improves its performance substantially, compared to the or-
thonormal wavelet case. This performance generally falls
slighly short of the behavior of SUREshrink optimized within
subbands of the undecimated wavelet. However, when opti-
mized for image domain MSE, the behavior of SUREbumps
on undecimated wavelets consistently and significantly out-
performs SUREshrink on undecimated wavelets.

6. DISCUSSION

We have generalized Stein’s Lemma to examine overcom-
plete representations of a signal, and used this generalization
to prove that the expected MSE for marginal denoising in a
representation that is made redundant through spatial repli-
cation of basis functions (e.g. cycle-spinning, undecimated
wavelets) is never larger than in the original non-redundant
representation. We have used this extended SURE to design
estimators that are applied to subbands of an overcomplete
representation, but that are optimized for MSE in the image
domain. We have shown simulations demonstrating substan-
tial improvement over the suboptimal application of SURE in
each the subbands.

The results illustrate the importance of distinguishing between
the method of denoising (e.g., thresholding or bumps), the
decomposition to which it is applied (e.g., orthonormal vs.
redundant), and the domain in which it is optimized (sub-
bands vs. image). If we were to compare, say, SUREbumps
on an orthonormal wavelet and SUREshrink on an undeci-
mated wavelet, we might come to the erroneous conclusion
that thresholding is always superior to bumps, when in fact
the advantage is entirely derived from the overcompleteness
of the basis. In addition, while one method of marginal de-
noising may be superior to another on an orthonormal basis,
this benefit may be lost when applying the method to a redun-
dant basis.

The denoising results shown here are meant to illustrate the
use of Stein’s lemma in the overcomplete case. The method-
ology is simple, and one can imagine many improvements. In
the case of bumps, we have chosen a fixed number of bumps
for all bands in all simulations. This could be improved by

adapting the dimensionality of the basis both to the noise level
and to amount of data in each band. It is also likely that im-
provement could come from use of an oriented basis (e.g.,
steerable pyramid [3], complex wavelets [9], curvelets [10]).
Finally, the image-domain SURE methodology that we have
developed is relevant for any estimator that is applied to a
transformed version of the data. We are currently pursuing
the optimization of more complex estimators that operate on
clusters of coefficients, [11, 12].
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