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ABSTRACT
We describe a framework for quantifying color image distor-

tion based on an adaptive signal decomposition. Specifically, lo-
cal blocks of the image error are decomposed using a set of spatio-
chromatic basis functions that are adapted to the spatial and color
structure of the original image. The adaptive functions are chosen
to isolate specific distortions such as luminance, hue, and satura-
tion changes. These adaptive basis functions are used to augment
a generic orthonormal basis, and the overall distortion is computed
from the weighted sum of the coefficients of the resulting overcom-
plete decomposition, with smaller weights chosen for the adaptive
terms. A set of preliminary experiments show that the proposed dis-
tortion measure is consistent with human perception of color im-
ages subjected to a variety of different common distortions. The
framework may be easily extended to include any form of continu-
ous spatio-chromatic distortion.

Index Terms— color image quality assessment, adaptive signal
decomposition

1. INTRODUCTION

A perceptually accurate measure of color image distortion would be
useful in many real-world applications. Examples include evalu-
ating the quality of color prints and the effects of gamut mapping
in printers, and assessing the performance of algorithms for color
image restoration, compression, transmission, white balance correc-
tion, and demosaicing.

The simplest and most widely used distortion measure is the
mean squared error (MSE). But the average of MSE values com-
puted independently across three color channels does not correlate
well with human color perception [1]. This is partly due to the
fact that the RGB space used by most imaging devices is not well
matched to the color sensitivities of the human visual system. There
is an extensive literature on the perception of color, from both sci-
entific and engineering perspectives, that describes color spaces that
are more compatible with human perception than RGB. At present,
the most widely used of these is the CIELAB space, which is opti-
mized for quantifying perceived color differences of large uniform
targets [2].

A distortion measure based on MSE in CIELAB space can per-
form better than in the original RGB space, but still offers a poor
description of human perception, primarily because it does not take
into account human sensitivities to spatial structure. The spatial
CIELAB (S-CIELAB) metric [3] corrects this by incorporating spa-
tial contrast sensitivity weighting into each of the CIELAB color
bands, and provides good predictions of human performance in de-
tecting distortions in halftone color images [1, 4]. There have also

been attempts to extend other spatial-domain error measures by ap-
plying them to individual color channels and combining the results.
For example, the structural similarity (SSIM) approach [5] has been
shown to produce reasonable results when averaged over the chan-
nels in transformed color spaces [6,7].

Despite the successes of these recent attempts, it seems clear that
there is room for improvement. In particular, these methods treat er-
rors in the three color channels independently, and despite evidence
that humans exhibit such separability when tested with square-wave
stimuli [8] there are situations in which distortions can simultane-
ously affect several color channels. An example is a reduction in
saturation, in which all three color channels are affected simulta-
neously, and in different ways. In this paper, we propose a novel
approach for quantifying color image distortion based on an adap-
tive local spatio-chromatic signal decomposition. The methodology
is based on a previously-developed adaptive linear system frame-
work [9], in which signal-adaptive basis functions are used to sepa-
rate “non-structural” image distortions (those that do not affect the
perception of the structures of the objects in a visual scene) from
the remaining structural distortions. We develop spatio-chromatic
adaptive basis functions to capture changes in luminance, saturation,
and hue, and show a set of simple examples demonstrating that a
distortion measure based on these provides a better match to human
perception than S-CIELAB or color-extended SSIM.

2. ADAPTIVE BASIS FRAMEWORK

We begin with a brief overview of the adaptive basis framework for
grayscale image quality assessment developed in [9]. It is perhaps
easier to appreciate the intuition behind this framework by consid-
ering the distortion of an original imagex1 in two dimensions as
shown in Fig. 1. The two axes could be, for example, the grayscale
values of two neighboring pixels. An iso-quality contour around the
reference vectorx1 is a set of points in this space that represent dis-
torted versions ofx1 with the same visual quality. For example, if
human vision were well described by mean squared error, the iso-
quality contours would be circles, as illustrated in the Fig. 1.

The fundamental philosophy of the adaptive basis framework is
that there are certain directions that are less sensitive to distortions
than others, and thatthese directions generally depend on the origi-
nal image. As a simple example, consider scaling the vectorx such
that the distorted vector isy = ax. If x corresponds to an image,
this might arise from an increase or decrease in the ambient illumi-
nation. The human visual system discounts these small changes in
illumination (even when they are visible, they are far less objection-
able than changes that distort the spatial pattern of intensities, such
as additive white noise). Thus we can modify the iso-quality circle
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Fig. 1. The dotted circles represents a contour of equal MSE around
a vectorx. An adaptive basis that is insensitive to modest changes
in illumination strength can generate iso-quality contours that are
elongated in the direction of the reference vector. The size and shape
of the resulting ellipse can also change depending onx. See text.

aroundx1 to allow more distortion along the direction ofx than in
a direction perpendicular tox, as shown by the ellipse in Fig. 1.

Modifying the shape of the iso-quality circle by asserting that
certain axes in the image space are visually more relevant is embed-
ded in ideas such as the use of the contrast sensitivity function in sev-
eral image compression algorithms. However, what makes the adap-
tive basis framework different is that the direction and the shape of
the iso-quality ellipse changes depending on the direction of the ref-
erence vector, as can be seen by comparing the iso-quality contours
for the pointsx1 andx2. The art of the adaptive basis framework
lies in defining these special directions and the relative scaling of the
iso-quality surface along them. By doing so, we define an adaptive
subspace in which the errors are visually less objectionable. Signal-
dependent modification of the iso-quality ellipse can also be found
in other quality metrics [5,10].

We can quantify the adaptive basis distortion measure using
standard linear algebraic methods [9]. Given a reference signal,x

and a distorted version,y, we write the error,y − x, as a weighted
sum over a set of basis functions:

y − x = L(x)c = c1l1 + c2l2 + ... (1)

whereL(x) represents a matrix whose columns contain the basis
functionslk. The matrix is divided into two sub-matricesL(x) =
[A(x) | B], whereA(x) represents the collection of adaptive basis
vectors that depend onx. For example, the adaptive basis that dis-
counts for the illumination change in Fig. 1 is simply the vectorx.
The matrixB contains a set of fixed orthogonal basis vectors span-
ning the space of the input vector. The distortion measure is now
defined as a function of the coefficients,c. In particular,

D(x,y) = min
c:L(x)c=y−x

‖Wc‖2 (2)

where,W is a diagonal weight matrix, which can be used to de-
fine the shape of the iso-quality ellipse. SinceL(x) is overcomplete,
solving for the coefficients,c, is a least squares optimization prob-
lem. The total distortion can be shown to be
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∥

∥

∥

∥

W
−1

L(x)T

(

L(x)W−2
L(x)T

)

−1

(y − x)

∥

∥

∥

∥

2

(3)

Efficient implementations of (3) are discussed in [9].
This framework is related to methods that use a functionf(·) to

transform the reference and distorted images to a perceptual domain,
where distortion is measured as‖f(x)−f(y)‖2 [11]. Using a Taylor
series approximation, the Jacobian off(·) can be shown to produce
signal-dependent basis vectors for analyzing the error image [10]. In
these approaches,f(·) is usually designed using physiological [11]

or psychophysical models of human vision [2, 10]. In contrast, our
adaptive basis vectors are based on assumptions about the visual sys-
tem’s invariance to changes in imaging/viewing conditions.

3. COLOR ADAPTIVE BASIS

In this section, we describe our choice of the adaptive and fixed ba-
sis functions for measuring color distortions. We hypothesize that
human judgments of image quality are relatively insensitive to small
changes in the viewing or imaging conditions. For example, a slight
decrease or increase in the illumination level, even if visible, does
not cause a noticeable degradation in the appearance of the image.
Similarly slight shifts in the spectral properties of the illuminant, or
in the saturation of colors is likely to be discounted by the human
visual system when evaluating the quality of color images. Finally,
as suggested by the so-called MacAdam ellipses [12], minor hue
changes are discounted as well. Accordingly, we have developed six
adaptive basis functions to reflect these color features. Consider a
reference image,x, of sizeN pixels in the RGB space consisting of
a red channelr = [r1 ..rN ], a green channel,g = [g1 ..gN ], and a
blue channel,b = [b1 ..bN ]. The six adaptive basis are:

• Red, Green, & Blue: The column vectorsa1 = [r1 0 0 r2 0 0
...rN 0 0]T , a2 = [0 g1 0 0 g2 0 ...0 gN 0]T , anda3 =
[0 0 b1 0 0 b2 ...0 0 bN ]T , each of length3N are used to ac-
count for changes in the white balance of an image or changes
in the spectrum of the illuminant.

• Luminance: Define the luminance at pixelk to belk = (rk +
gk + bk)/3. The basisa4 = [l1 l1 l1 l2 l2 l2 ...lN lN lN ]T is
used to account for small changes to the luminance.

• Chroma: The basisa5 = x−a4 captures changes in chroma.
It is easy to visualize this vector in the HSV color space.

• Hue: In the HSV space, hue is measured as a circular vari-
able in a plane that contains the chroma vector and is nor-
mal to the luminance vector. We use a linear approximation
and define the hue adaptive basis,hk, for a pixel location,
k, as the cross product between, the chroma and the lumi-
nance of that pixel. The adaptive basis is defined as the vector
a6 = [h1 h2 ..hN ]T .

The six column vectors are rescaled to have unit norm, and com-
bined to form the matrixA = [a1 a2 a3 a4 a5 a6]. We then used
the identity basis of size3N × 3N for the fixed non-adaptive basis,
B. The weight matrices,WA andWB associated with adaptive
and fixed basis vectors respectively, control the relative amount of
energy captured by that basis. Here, we assumed a fixed weight of
0.1 for all the adaptive basis except the hue,a6, which was assigned
a weight of0.5. This is based on our intuition that changes in hue are
more noticeable than changes in the other adaptive basis directions.
The weights for the fixed basis functions were set to unity.

For our analysis, we compute the distortion metrics locally.
Given an original image,x and a distorted image,y, we ex-
tract a 3 × 3 window at each spatial location from the origi-
nal image to create the basis functions,L(x). The error vector,
y − x = [∆r1 ∆g1 ∆b1... ∆rN ∆gN ∆bN ]T at the corresponding
location is then analyzed to compute a local distortion value accord-
ing to (3). This results in a distortion map across the entire image,
which is then averaged to report an overall distortion value.

4. RESULTS

Although there exist color image databases such as the UTEXAS
LIVE (http://live.ece.utexas.edu/research/quality/) and Cornell A57



(a) Original

(b) Luminance (c) White Noise

(d) White Balance (e) JPEG 2000

(f) Chroma (g) JPEG

(h) Hue (i) Blur

(j) Large White Balance Offset (k) Gamut Mapping

Fig. 2. Examples of distortions to the ‘Peppers’ image. The left col-
umn shows distortions that do not interfere with local image struc-
tures. The right column shows distortions that can interfere with lo-
cal image structures. Distortion values for various metrics are shown
in Table. 1.

(http://foulard.ece.cornell.edu/dmc27/vsnr/vsnr.html), the distortion
types are mainly of a spatial nature. As a result we used two spe-
cific types of color and spatio-chromatic distortions to demonstrate
the performance of our method. First, we introduced global distor-
tions along the adaptive basis directions as shown in the left column
of Fig. 2. In particular, we simulated the following distortions: an
incorrect white balance setting, where the red, green, and blue chan-
nels were each multiplied by a different scalar; an overall reduction
in the brightness of the image; a slight decrease in the chroma of
each color; and finally a shift in the hue of each pixel. Most of
these distortions (except of the consistent hue shift) represent real
world scenarios. The second set of distortions involved modifying
the original image in directions that were not necessarily along the
six adaptive basis directions. In particular, as shown in the right col-
umn of Fig. 2, the original image was subjected to corruption by
white noise, blurring, JPEG/JPEG2000 compression. We also show
a practical example of gamut mapping in which the sRGB gamut of
the image was mapped to a printer’s smaller CMYK gamut.

Each of these distorted images were analyzed using four color
quality measures. First, we compute the mean squared error between
the original and the distorted image, averaged over all color chan-
nels. Second, we applied the grayscale SSIM metric [5] to each
color channel and used the geometric mean as an overall distortion
measure. The SSIM values are between 0 and 1, with larger values
indicating better quality. Third, we used S-CIELAB [3], with pa-
rameters set to match our viewing scenario. The mean value of the
resulting S-CIELAB map was used as the distortion metric. Finally,
we computed the adaptive basis error as given by (3). We also re-
port the amount of distortion captured by the adaptive basis,DA =
||WA cA||2,and those by the fixed basis,DB = ||WB cB||2. All
distortions (except the gamut mapping and large offset in white bal-
ance) were adjusted so that they had approximately the same mean
squared error. The results are shown in Table 1.

The “natural” distortions in the left column of Fig. 2 are, by
design, less visually noticeable than the “unnatural” distortions in-
troduced by white noise, JPEG and JPEG 2000 compression, and
blurring. The values reported by our method are consistent with
this observation for reasons that are easily understood by consider-
ing the relative values of the adaptive and non-adaptive components:
the errors for the natural distortions are largely represented using the
adaptive basis elements, which are then weighted by small values for
computing the overall distortion value. The errors for the unnatural
distortions are primarily represented using the fixed basis. For ex-
ample, in the case of white noise corruption, the error is decorrelated
with the image, and thus not well represented by the adaptive basis
functions. The gamut mapping example involved clipping/scaling of
the hue and saturation of the source gamut to simulate newspaper
prints, resulting in activity in both the adaptive and non-adaptive ba-
sis. However, the distortion is not as noticeable as other unnatural
distortions. On the other hand, the S-CIELAB values reported in
Table 1 are not consistent with these basic perceptual observation.
Specifically, the values are smallest for white noise, JPEG and JPEG
2000 artifacts, and blur. This is somewhat expected: as described
in [1], the method is not able to produce accurate predictions of er-
ror visibility in JPEG images. The color-extended SSIM index cor-
relates reasonably well with perception for most distortions, except
for white noise. The large change in the white balance (Fig. 2(j))
is an interesting example where the distortions exist along the adap-
tive red, green, and blue directions, but the changes are significant
enough to produce a large value even along the adaptive basis. Since
SSIM is computed on individual color channels, and the distortion
along each channel is smooth, the resulting SSIM value is large and



MSE SSIM S-CIELAB D (DA , DB )
Original 0 1.000 0.00 0.00 (0.00, 0.00)
Luminance 200 0.983 11.66 1.60 (1.59, 0.01)
White Balance 201 0.972 12.93 1.33 (1.31,0.02)
Chroma 203 0.921 5.99 0.68 (0.55, 0.12)
Hue 211 0.892 8.84 3.88 (1.31, 2.57)
Gamut 289 0.879 13.01 4.56 (1.86, 2.70)
Large White Balance 1129 0.908 25.26 8.31 (8.24, 0.07)
White Noise 199 0.558 2.72 39.72 (0.42, 39.31)
JPEG2000 194 0.733 6.26 59.95 (2.21, 57.74)
JPEG 206 0.720 6.14 61.95 (1.97, 59.98)
Blur 200 0.768 4.49 68.27 (2.91, 65.37)

Table 1. Distortion values for the images in Fig. 2 using various image quality metrics.The rightmost column shows the error captured by
our method with the error captured by the adaptive and fixed part shownin parenthesis. The rows are approximately ordered according to
decreasing visual quality in Fig. 2.

thus predicts a good quality for this distorted image.

5. CONCLUSION

We developed a new form of color image quality metric based on the
adaptive basis framework of [9] and showed that the framework is
effective at discounting distortions corresponding to naturally occur-
ring changes in viewing or illumination conditions, while still being
able to capture other distortions such as blurring, noise, and com-
pression artifacts. The framework is quite flexible: the basis func-
tions at each spatial location can be any function (linear or nonlinear)
of the reference image at that location. But at the same time, once the
basis has been computed from the reference image, the framework
provides a quadratic error metric that allows for easy optimization.
We expect this will prove invaluable when using this metric as an ob-
jective function for optimizing image processing applications such
as denoising or compression.

The examples shown here serve as an initial demonstration of
the feasibility of the method, but there is much room for refinement
in the choice of basis functions and weights. Incorporating other
adaptive basis directions is as easy as adding the appropriate signal
dependent basis function to the matrix,A(x) in (1). We envision
adding bases to account for spatio-chromatic distortions that occur
naturally as a result of changes in lighting or viewpoint, under the as-
sumption that the human visual system is designed to discount these
changes [5]. The non-adaptive basis could be replaced by Fourier
or wavelet type basis functions, and the associated weights could
be set to reflect the contrast sensitivity behavior of the human vi-
sual system. By using fixed weights,W, and unit norm vectors in
L(x), the iso-quality ellipse is constrained to be a fixed size. We
are currently developing a simple protocol for estimating the adap-
tive weights from perceptual measurements. We are also working
to develop a multiscale framework for adaptive bases that allows for
coarse-to-fine refinement in image distortion analysis.
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