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Abstract

Neural responses are highly variable, and some portion of this variability arises
from fluctuations in modulatory factors that alter their gain, such as adaptation,
attention, arousal, expected or actual reward, emotion, and local metabolic re-
source availability. Regardless of their origin, fluctuations in these signals can
confound or bias the inferences that one derives from spiking responses. Recent
work demonstrates that for sensory neurons, these effects can be captured by a
modulated Poisson model, whose rate is the product of a stimulus-driven response
function and an unknown modulatory signal [1]. Here, we extend this model,
by incorporating explicit modulatory elements that are known (specifically, spike-
history dependence, as in previous models [2, 11]), and by constraining the re-
maining latent modulatory signals to be smooth in time. We develop inference
procedures for fitting the entire model, including hyperparameters, via evidence
optimization [3], and apply these to simulated data, and to responses of ferret audi-
tory midbrain and cortical neurons to complex sounds. We show that integrating
out the latent modulators yields better (or more readily-interpretable) receptive
field estimates than a standard Poisson model. Conversely, integrating out the
stimulus dependence yields estimates of the slowly-varying latent modulators.

1 Introduction

One of the great mysteries of neuroscience is how the brain manages to perform stable and use-
ful computations using such apparently unreliable elements as neurons. One can present the same
stimulus to a sensory neuron over and over again, and the number of spikes it produces will differ
each time. While some of this variability arises from biophysical processes within neurons (e.g.,
synaptic transmission, diffusion processes within and across membranes), we have also known for
a long time that neural responses are affected by a huge array of contextual state variables: arousal;
attention; expected or actual reward; emotions; local metabolic resource availability; and the pres-
ence of stimulants, depressants or anesthetics. In turn, fluctuations in these variables can compound
the measured variability of neural responses [e.g., 12, 13, 14].

Although these sources of variability are well known in the neuroscience community, many of them
are difficult to control or measure. Experimentalists largely handle this variability by simple aver-
aging. In sensory systems, for example, stimuli are typically presented repeatedly for many trials;
the results are then averaged, in order to estimate the stimulus-dependent component of the neural
response. This approach has several major drawbacks. First, the need for many repeats is very
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resource-intensive. Second, it assumes that the variability can actually be removed by averaging,
which need not be true. Third, there are no widely agreed-upon means for assessing the contribution
of these unknown sources, before or after averaging.

If we wish to study a non-stationary brain, then it behooves us to consider more explicitly how these
unknown state variables manifest in neural responses. A more explicit model of their effect could,
in principle, have two major benefits: it might allow us to directly estimate the contextual influences
on neurons, and it could provide better methods to infer stimulus-response relationships.

To first approximation, the effect of these state variables is modulatory: they alter the gain or respon-
sivity of neurons, rather than directly cause the generation of spikes (Fig. 1). This idea has recently
proven useful as a structural constraint for a model of the desired form. Goris et al [1] describe
neural responses as arising from a Poisson process whose rate is a product of stimulus drive and a
latent gain signal. This model provides an accurate account of the variability of sensory neurons,
attributing a substantial fraction to fluctuations in modulatory influences. Here, we generalize this
modulated Poisson (MoP) model, providing it with a more explicit stimulus-dependent component,
and assuming that the unknown state variables driving the gain fluctuations change only slowly
in time. We develop statistical inference procedures for extracting both the latent gain signal, as
well as the parameters of the stimulus dependency. We test these procedures on simulated data, and
demonstrate the success of the model in explaining electrophysiological data obtained from auditory
neurons in the anesthetized ferret.

Figure 1: Neurons are subject to modulatory influences, which affect their spiking output. (a) Spike
counts recorded from a real V1 neuron, in the anesthetized macaque, from [6]. Stimuli (oriented
gratings) drive the firing of this neuron, but have dynamics on a timescale of seconds. Modulatory
influences on this cell create slow non-stationarities that are visible in its spiking output. (b) Two
epochs of low and high firing (labelled A and B). (c-d) the stimulus selectivity of the neuron in these
two epochs differs by a multiplicative gain factor.

2 Modulated Poisson Model

Our central abstraction is to build a generative model of neural responses that consists of three
components. First, there are the controlled or measured inputs to a neuron. For a sensory neuron,
this might be encapsulated as “the stimulus”. Second, there a slowly varying stochastic modulatory
process, that acts as a multiplier on the instantaneous firing rates. This component is not directly
observed. Third, there is the spike-generating point process (whose output is typically observed).

For more detail, we begin with the classical Poisson framework for describing the stimulus-driven
response of a sensory neuron (Fig. 2a). This asserts a simple generative model for producing spike
counts within a set of time windows, and contains only the input-rate and point-process components.
We assume here we have a collection of discrete time windows of identical duration, indexed by t,
and that the spike rate within each of these windows, µt, is a function, F , of the current stimulus,
xt (or, perhaps, the recent history of stimulation, which can be encapsulated in xt), and a set of
input-response parameters, k:

µt = F (xt;k) (1)

In turn, we assume that the spike count within each window, yt, is drawn from a Poisson distribution
with rate µt. We use the vector notation y to describe the set of scalars yt.

This class includes the Linear-Nonlinear-Poisson (LNP) models (where µt = F (xT
t k) ), the Gener-

alized Linear Model (GLM), where the input xt encapsulates a range of known time-varying signals,
such as the recent history of spike counts from the same and other neurons [2], and the Generalized
Quadratic Model (GQM), where F also includes quadratic operations on xt [7].
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In the Modulated-Poisson (MoP) model [1], we assume that the firing rate is additionally modulated
by a multiplicative interaction with a latent (unobserved) variable gt:

µt = gt · F (xt;k) (2)

We make two specific assumptions about the vector of time-varying modulator values, g. First, we
assume it is positive, by writing gt = exp(ht). This choice is not unique: other nonlinear functions
could also be used [10]. Second, we assume that it is slowly varying. The slow dynamic on h = [ht]
could take on any form appropriate to a given system (e.g. linear Gaussian, discrete Markov). Here,
for tractability and generality, we assume that h is multivariate Gaussian:

h ∼ N (0,C(θ)) (3)

where the smoothness is imparted by C(θ), the prior covariance matrix on h, via a set of hyperpa-
rameters θ. This structure is depicted in the schematic shown in Fig. 2b, and the graphical model
shown in Fig. 2c. Below, we motivate a particular choice of form for C(θ).

Figure 2: (a) The classical Poisson model, and (b) the Modulated-Poisson model for the generation
of spikes by a neuron. The latter adds a structured stochastic gain modulation. (c) Graphical model
representation of the MoP-model.

3 Inference

Suppose we have a set of neural data with stimuli X = [xt] and observed spike counts y. Our goal
is to infer the two unknown components of the model: the log-modulators h, and the parameters of
the input-response relationship, k. For generality, we maintain our central abstraction here, and split
the inference into separate stages for each of these two components.

More precisely, we approximate the joint posterior by p(h,θ,k|X,y) ≈ q(k|X,y) · q(h,θ|X,y),
and then solve iteratively for the two components. For brevity, we omit the conditioning on X
and y from the notation, and write these simply as q(k) and q(h,θ). Here, we shall remain ag-
nostic to the form of the input-response relationship (F ), and thus focus entirely on the modulator
component. Further, rather than solving jointly for the modulator h and its hyperparameters θ, we
follow the approach of [3], and split this inference into two parts: first, we calculate a maximum-
marginal-likelihood point estimate θ̂ = argmaxθ p(X,y|θ,k), and then we calculate a posterior
on h conditioned on θ̂. We concentrate on the latter problem first.

3.1 Inference on h

Suppose we have an estimate of q(k), and θ̂, a point estimate of θ. To solve for h given these, we
begin by writing the terms of the log joint, LJ = log p(h,θ,k;X,y) that depend on h, and then
we condition on our current estimates of q(k) and θ̂:

Eq(k),θ̂ [LJ ] = −ν̂T exp(h) + yTh− 1

2
hTC(θ̂)−1h + const (4)

where ν̂ is the vector of values ν̂t = Eq(k) [F (xt;k)], i.e. the expected stimulus-driven component
of the firing rate under our current estimate of q(k), and the exponential is applied elementwise.
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The number of elements of h is equal to the number of time windows, T . This is typically very
large. For example, an hour of continuous recording, with spike counts binned at 25 ms intervals
has T ≈ 105; at 5 ms resolution, this number exceeds 7×105. Performing inference onh is therefore
intractable: the objective is expensive to compute, and the number of variables to optimize is far too
large. We therefore reduce its dimensionality. Our strategy is to project h into a low-dimensional
space specified by the eigendecomposition of the prior covariance, C. Since we want h to be
slowly varying, the prior to be translation invariant, and the eigendecomposition and projection to be
inexpensive, a natural choice is forC to be circulant. In this way, the eigenvectors are sinusoids, the
prior is diagonalized to a Fourier power spectrum (in this case, low-pass) which can be parameterized
by θ, the transform can be quickly calculated through the FFT, and inference can proceed on the
Fourier coefficients of h within the pass-band.

More specifically, we write: C = QTLQ as the eigendecomposition; P as the (T ∗×T ) projection
operator which excises the low-eigenvalue dimensions, i.e. those with low prior power; P T as its
pseudoinverse, which imputes missing coefficients as zero; andR = PQ as the combined transform
to the reduced space. We consider the DFT matrix Q as an invertible real-valued transform, by
concatenating the real and imaginary parts of the transformed vectors; since h is real-valued, the
negative frequencies are redundant and can be omitted from the computation. We implement all
matrix operations that involveQ andR via an orthonormalized, real-valued, real-signal FFT.

As a result, we perform inference on the length-T ∗ vector h∗, corresponding to a reduced Fourier-
domain representation of the modulator, h. The transform back to the time domain is given by
h = RTh∗ = QTP Th∗.

In reduced Fourier space, the conditional log posterior on h∗, its Jacobian and its Hessian become:

LPh∗ = −ν̂T exp
(
RTh∗

)
+ yTRTh∗ − 1

2
h∗T(L∗)

−1
h∗ (5)

∂LPh∗

∂h∗ = R (y − µ) − (L∗)
−1
h∗ (6)

∂2LPh∗

∂h∗ ∂h∗T = −R diag (µ)RT − (L∗)
−1 (7)

where µ = ν̂ � exp(RTh∗) is the firing rate, � is the elementwise product, and the diagonal
matrix L∗ = RCRT = PLP T is the projected prior covariance on h∗. Since equation (5)
contains a sum of exponentials, a moment-matched exponential family form for q(h∗|θ) cannot be
tractably normalized. However, since µt ≥ 0, the Hessian is convex wrt. h∗, so we can solve for
a Laplace approximation of the conditional posterior instead, q(h∗|θ) = N (ĥ∗,Λ∗). In principle,
this reduced Fourier representation can be transformed back into the time domain, giving q(h|θ) =
N (ĥ,Λ) = N (RTĥ∗,RTΛ∗R), but since Λ is (T × T ), it is typically too large to fit in memory.
Sampling and conditional inference can nevertheless proceed with q(h∗) rather than q(h).

In order for the FFT to be an efficient tool, the time windows should be regularly sampled. It is
nevertheless straightforward to handle missing data at time points t′, by simply setting ν̂t′ = yt′ = 0.
In this way, imputed values of ht′ do not materially contribute to the likelihood terms in the objective
and its derivatives, and are constrained only by the smoothness and shrinkage terms from the prior.
This also provides a way of avoiding artefacts from circular boundary conditions imposed by the
Fourier transform: we pad h with an additional T values, for which the responses are unobserved.

Finally, the first term of the Hessian is expensive to compute directly, even via the FFT implementa-
tion. However, we note that this matrix is a selection of rows and columns from −Qdiag (µ) QT,
which, in turn, is a real-valued rearrangement of the real and imaginary parts of a complex-valued,
Hermitian, circulant matrix, with entries constructed from the Fourier transform of µ. This enables
a quick construction.

3.2 Inference on θ

We place a smoothness prior on h. For a given neural recording, the degree of smoothness, i.e. the
timescales over which the latent modulators vary, is itself unknown. We therefore build a hierarchical
model, wherein the smoothness is controlled by a set of hyperparameters, θ. In the Fourier domain,
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this amounts to parameterizing the prior power spectrum – i.e. the elements of the diagonal of L –
as a function of θ.

One potential form for a low-pass prior on h is the zero-mean ALDf prior (Automatic Locality
Determination in the frequency domain [3]). This parameterizes the elements of the diagonal of L
as a function of their respective Fourier frequencies, f(i), and two hyperparameters θ = {σ2, ρ}:

[L]ii = exp

(
−f(i)

2

2σ2
− ρ

)
(8)

In practice, there is considerable computational pressure to minimize the number of coefficients of
h∗ (see Section 4.1.1), which means we have to truncate this spectrum at some point. We find it
more practical to construct a low-pass prior covariance from a more compact windowing function,
such as a Blackman-Harris window, with hyperparameters θ = {Fc, ρ}:

[L]ii =

{
e−ρ

∑3
n=0(−1)nan cos (πn(1 + f(i)/Fc)) : f(i) ≤ Fc

0 : f(i) > Fc
(9)

where a = [0.35875, 0.48829, 0.14128, 0.01168]T. Compared with the truncated ALDf prior, this
has less flexibility in controlling the ripple in the estimate of h. Nevertheless, the difference in fitted
h values are typically very small for a modest speed improvement.

To choose values for the hyperparameters, we follow the approach of Park and Pillow [3, 4], and
solve for the maximum marginal likelihood value of θ, a procedure also known as evidence opti-
mization. The idea is to integrate out the values of h, and maximize the marginal likelihood of the
data as a function of θ. This gives a point estimate of θ, as θ̂. We refer the reader to these papers
for a complete description of this process.

3.3 Inference on k

In parallel to the approach in Section 3.1, we suppose we have an estimate of the modulators q(h,θ),
and wish to solve for the input-response parameters, q(k). The terms of the log joint containing k
are:

LJ = −F (xt;k)T exp(h) + yT logF (xt;k) + log p(k) + const (10)

where the exponential and logarithm are applied element-wise. Next, we condition on our current
estimate of q(h,θ). To do this, we need only replace exp(h) with its expectation under q(h,θ):

Eq(h,θ) [exp(h)] = exp

(
ĥ+

1

2
diagΛ

)
= exp

(
ĥ+

1

2

(
(RTΛ∗)�RT

)
1

)
(11)

where the latter expression avoids explicitly constructing Λ. We calculate RTΛ∗ via an IFFT on
the columns of Λ∗, and we build RT by taking the IFFT of the columns of P T. Inference on k
then proceeds in a manner appropriate to the specific form of the function F , e.g. by maximizing
Eq(h,θ) [LJ ] wrt. k.

In practice, we find that two to three iterations of solving for q(h,θ) given q(k), then q(k) given
q(h,θ), are sufficient for convergence.

4 Results

4.1 Simulations

4.1.1 Recovering the modulator

We start by asking how well this inference procedure recovers underlying modulators when we know
the ground truth. To answer this, we simulated a neuron’s spiking response to a stimulus ensemble.
We assumed a simple input: the model neuron’s expected response to a stimulus of value x was
described by a smooth tuning function f(x), which we discretized as a length-K vector, k. We
also subjected the model neuron to a slow gain fluctuation (Fig. 3a). We set the ground truth for
ktrue and θtrue, and sampled the modulator, htrue, and spikes, y, from the generative model, for
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Figure 3: Simulated data, illustrating inference on the latent modulator. (a) Top: we sampled a
modulator (blue) for a given θ, and applied it to a model neuron responding to a stimulus. From
the spiking output (bottom), we inferred q(h), which is overlaid on the top panel. Black: posterior
mode, ĥ; red: samples from the posterior, q(h). (b)-(c): Quality of recovery of htrue, measured as
sim(ĥ,htrue) = 100×(1−Var(ĥ−htrue)/Var(htrue)), improves with several factors: increasing
the cutoff frequency of the imposed modulators (abscissae); increasing the standard deviation of the
imposed modulator ((b); factors of 1/4, 1/2, 1, and 4); and increasing the firing rate ((c); factors
of 1/4, 1, and 4. (d) The computational cost of computing q(h|θ) as a function of θ (abscissa,
measured via the length of h∗), and the number of time windows (symbols).

T consecutive, pseudo-random presentations of the stimuli. We then performed complete inference
of k, h, and θ.

We reasoned that the quality of the modulator estimate would depend on how much data was avail-
able to estimate each phase of the modulator, as well as the quality of that data. We tested this in
three ways. First, for slow modulations, the posterior mode of the recovered modulator, ĥ was very
close to the ground truth, htrue; but when the imposed modulators were too fast, and approached
the sampling resolution of the time windows themselves, the fit quality declined. Second, when we
reduced the magnitude of the fluctuations in htrue, the estimates ĥ captured the slower modulations
only (and θ̂ was more conservative than θtrue). Finally, we observed the same result when we de-
creased the average firing rate (Fig. 3b-c). These results reflect an important feature of the inference
procedure: by maximizing the marginal likelihood of θ, we learn the fastest timescale of modulation
that the data are able to provide evidence for.

The scaling of the inference on h is constrained by two factors (Fig. 2d). First, as the number of
observations grows, the FFT operations become more costly, regardless of the value of θ. Second,
as the number of modulator coefficients (determined by θ) grows, the optimization of h∗ becomes
more expensive. This cost appears to dominate as the hyperparameter admits higher frequencies.
Since computation time is always limited, it is necessary to set some upper bound on the maximum
length of h∗, and hence on θ, for each dataset. Our experiments suggest that keeping the number of
modulator coefficients below about 1000–2000 is a reasonable goal. This, however, means that any
modulations at higher frequencies cannot be tractably learned using this algorithm.

4.1.2 Recovering the input-response relationship

Even if we are not interested in recovering the modulatory signal per se, including it in the model
can yield a substantial improvement in estimates of the input-response parameters, k.

To demonstrate this, we sampled from a simple generative model for the spiking responses of au-
ditory cortical neurons, based on the Generalized Linear Model (GLM, [2]; Fig. 3). The auditory
stimulus was a Dynamic Random Chord (DRC) ensemble as described in [5]. Briefly, this is a col-
lection of simultaneously-presented tones; the levels of each tone were drawn independently every
25 ms from a fixed distribution. We simulated neurons with a fixed set of parameters: a linear
spectro-temporal receptive field (STRF) that was localized in time and frequency, a pointwise ex-
ponential nonlinearity, and a spike feedback term that modulated the firing rate for a period of up
to 200 ms after every spike. In addition, we added gain modulations of different kinds. We then
fitted GLMs to the simulated spike trains, assuming an ALDs prior on the STRF, and an ALDsf
prior on the spike history term [3]. We also added latent modulators to the models. For brevity,
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we refer to the GLMs fitted without the latent modulators as P-GLMs, as the only stochastic source
in these models is the conditionally Poisson point process, while we refer to GLMs with the latent
modulators as MoP-GLMs, as they additionally have a stochastic modulator process.

In the absence of slow modulations, i.e. under conditions of stationary gain, the P-GLMs recovered
the ground truth STRFs and spike history terms with a high degree of accuracy (Fig. 4a). However,
when there was either a slowly varying gain (Fig. 4b) or a slow monotonic decrease in gain over time
(Fig. 4c), the fitted spike history term for the P-GLMs included a near-constant positive offset. This
artefact reflects the only means the model has to capture a slowly changing gain state: to smooth
the last few seconds’ spike counts as a proxy measure of the modulator signal, and leverage this to
change the predicted firing rate in the next time bin. Indeed, when we increased the speed of the
imposed gain modulations, the estimated spike feedback kernels differed wildly from the ground
truth (Fig. 4d). In all cases, switching to a MoP-GLM removed these biases, and recovered more
accurate estimates of the spike-feedback kernels.

Figure 4: Simulated data, illustrating inference on k with and without the latent modulator. (a)
Ground truth receptive field and spike-feedback kernel used to generate spikes according to a GLM
forward model. (b)-(d) Top row: modulators applied to simulated neurons (blue); estimates ĥ from
the MoP-GLM model showing excellent recovery (black/red). Bottom: comparison of P-GLM
(green) and MoP-GLM estimates (black/red) of spike-history kernels. Without accounting for the
modulator, the inference on k is biased.

4.2 Real neural data

4.2.1 Improved predictive power

To test the modulated-Poisson model in practice, we fit GLMs to real spiking data obtained from
extracellular recordings of auditory neurons in the primary auditory cortex and midbrain of anes-
thetized ferrets. The details of the data collection are described in [5, 9]. We fitted both P-GLMs
and MoP-GLMs, as per the previous section, to approximately an hour of spiking responses to ran-
dom chord stimulation from each of 339 recorded neurons. These data were recorded under typical
non-stationary physiological conditions; we note, for instance, that the depth of anesthesia in such
preparations is known to vary over time (though was not quantified here).

We trained the GLMs on 80% of the data. We constructed the held-out 20% test set by selecting
random 250 ms contiguous snippets from each recording, with a minimum of 250 ms training data
between each test snippet. By setting νt′ = yt′ = 0 for these snippets, inference on the training data
simultaneously yielded predictive distributions on the modulators for the test data. Since the test
snippets were very short in duration compared with the fastest tractable latent modulator timescale,
the values of h were almost constant over each test snippet. In particular, we emphasize that while
the MoP-GLMs have more fitted parameters than the P-GLMs, these extra parameters were fit ex-
clusively to the training dataset: we introduced no new latent variables to describe the held-out
data.

Since ground truth is unknown for these datasets, we simply compared the likelihoods on the test
datasets for the P-GLM and MoP-GLM model fits. For all 339 neurons, the MoP-GLMs produced
better predictions of the held-out data than the P-GLMs. The improvement scaled with the amount
of non-stationarity estimated in the spike train (Fig. 5a). Moreover, the model-estimated value of
the modulator hyperparameters, θ̂, appeared optimal for prediction: when we fixed the modulator
time constants to values higher or lower than the learned values, predictions were measurably worse
(Fig. 5b).
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Figure 5: Real data, showing the improved predictive power of a model which includes a latent
modulator. (a) Example multi-unit neural responses from auditory cortex [5]. Top left: spike counts.
Remaining panels show fits of the components of MoP-GLM to this cell. (b) Improved predictions
on held-out data from 339 units, measured as the likelihood ratio per second between the MoP-
GLM and the P-GLM. The difference was greatest for cells with more estimated modulation (r =
0.6). (c) Median improvement of MoP-GLM over Poisson-GLM across the population, when the
cutoff frequency was set to a value higher or lower than the learned optimum. This shows the local
sensitivity to mis-estimation of θ̂.

5 Discussion

We developed a modulated-Poisson model, that includes a smooth, latent modulatory signal, which
is combined multiplicatively with a stimulus-driven firing rate, as well as an inference procedure for
estimating all parameters given noisy neural data. Our application of this model to simulated data
indicates that the inference recovers an underlying modulator of the neuron’s firing rate, so long as
this modulator varies on a sufficiently slower time scale than the windows over which spikes are
counted. On the other hand, if we exclude the modulator from our models, our simulations show
that this can lead to substantial biases in the estimation of stimulus-response parameters. When we
apply this model to real data from the auditory midbrain and cortex of the ferret, we find that cross-
validated predictions of neural responses improve. We believe that the tools we have developed here
offer a principled solution to a long-standing problem in experimental neuroscience: how to build
analysis for a non-stationary brain.
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