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Abstract: Memories of the images that we have seen are thought to be reflected in the 
reduction of neural responses in high-level visual areas such as inferotemporal (IT) 
cortex, a phenomenon known as repetition suppression (RS). We challenged this 
hypothesis with a task that required rhesus monkeys to report image familiarity while 
ignoring variations in contrast, a stimulus attribute that is also known to modulate the 
overall IT response. The monkeys’ behavior was largely contrast-invariant, contrary to 
the predictions of the RS encoding scheme, which could not distinguish response   
familiarity from changes in contrast. However, the monkeys’ behavioral patterns were 
well predicted by a linearly decodable variant in which the total spike count is corrected 
for contrast modulation. These results suggest that the IT neural activity pattern that 
best aligns with single-exposure visual familiarity behavior is not RS but rather “sensory 
referenced suppression (SRS)”: reductions in IT population response magnitude, 
corrected for sensory modulation.  
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Introduction: 
 
Under the right conditions, we are very good at remembering the images that we have 
seen: we can remember thousands of images after viewing each only once and only for 
a few seconds 1, 2. How our brains support this remarkable ability is not well understood. 
The most prominent proposal to date suggests that visual familiarity is signaled in high-
level visual brain areas such as inferotemporal cortex (IT) and perirhinal cortex via 
adaptation-like reductions of the population response to familiar as compared to novel 
stimuli, a phenomenon referred to as repetition suppression (RS) 3-8. Repetition 
suppression exhibits the primary attributes needed to account for the vast capacity of 
single-exposure visual memory behavior: response decrements in subsequent 
exposures are selective for image identity (even after viewing an extensive sequence of 
other images), and last for several minutes to hours 4, 5, 9. RS has also been shown to 
account for behavior in an image familiarity task: a linear decoder with positive weights 
can predict single-exposure visual memory behavior from neural responses in IT cortex 
9.  
 
Despite the fact that the RS hypothesis is consistent with available evidence, it seems 
likely to be too simplistic an explanation for visual memory encoding. In particular, it is 
well-known that sensory neurons such as those of IT cortex are modulated not only by 
visual familiarity, but also by stimulus properties such as image contrast 10. It is thus 
unclear whether and how these stimulus-induced effects interfere with judgments of 
familiarity, and if they do not, how familiarity can be decoded from neural responses in a 
way that disambiguates it from changes in these stimulus properties. To investigate this, 
we measured behavioral and neural responses of monkeys trained to report whether 
images were novel or familiar while disregarding image contrast (Fig 1a).  
 
 
Results: 
 
The contrast-invariant visual memory task:  
 
Monkeys viewed sequences of grayscale images, each presented for 500 ms, and each 
presented exactly twice (initially novel, then familiar). Novel and familiar images were 
presented with equal probability in all possible combinations of high (H) and low (L) 
contrasts, including (novel, familiar): HH, LL, HL, LH. We refer to the former two cases 
as the “same-contrast” conditions and the latter two as the “mixed-contrast” conditions 
(Fig 1b). Monkeys were trained to report, on each trial, whether the observed image 
was novel or familiar, while disregarding image contrast (Fig 1a). After training, the 
monkeys were largely able to disambiguate changes in familiarity from changes in 
image contrast: they performed equally well for both same-contrast conditions, and they 
were only modestly impaired for the mixed-contrast conditions (Fig 1c). We quantified 
the degree of contrast invariance in the behavioral patterns with a measure in the range 
0-1, where 1 indicates a behavioral pattern that is perfectly contrast invariant and 0 
corresponds to the pattern that is maximally contrast dependent after taking into 
account the monkeys’ overall performance in each memory condition (see Fig 1c 
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insets). Behavioral contrast invariance values were high (combined data: 0.87; 
monkey1: 0.95, monkey2: 0.84; Supp Fig 1), indicating that the monkeys were able to 
judge image familiarity while largely disregarding image contrast.     
 

 
 

Figure 1. Visual memory behavior. (a) The contrast-invariant, single-exposure visual memory task. The 
monkeys viewed a sequence of images and reported whether they were novel (never seen before) or 
familiar (seen exactly once) while ignoring randomized changes in contrast. Monkeys were trained to 
saccade to one of two response targets to indicate their choice (red arrows). Images were repeated with a 
randomly chosen delay between the first and repeated presentation (‘n-back’). (b) Images were displayed 
at one of two contrast levels, yielding two conditions for novel images, high (H) and low (L), and four 
conditions for familiar images: HH (familiar H preceded by novel H), LL (familiar L preceded by novel L), 
HL (familiar L preceded by novel H), LH (familiar H preceded by novel L). The four familiar conditions 
were organized into “same-contrast” and “mixed-contrast” groups depending on whether the initial and 
repeated presentations were at the same or different contrasts, respectively. (c) Behavioral performance 
for the data pooled across monkeys in the task, where small black dots indicate average performance for 
an individual session and large colored dots indicate the average performance across sessions. A 
measure of contrast invariance, I, was computed as the ratio of the variance across contrast conditions 
and the variance with respect to the maximally contrast modulated pattern after taking overall 
performance into account, subtracted from one (see Methods). Insets illustrate the expected behavioral 
pattern with minimal (I = 0) and maximal (I = 1) contrast invariance. 
 

RS and optimally weighted linear decoders fail to predict behavior:  
 
As the monkeys performed the task, we recorded neural responses in IT. Because 
accurate estimates of population response magnitude require many hundreds of units, 
data were concatenated across sessions into a larger pseudopopulation in a manner 
that combined trials within the same experimental condition (see Methods). Spikes were 
counted in a window starting 100 ms after stimulus onset (to allow for the latency of 
visual signals arriving in IT) and ending 400 ms later, at the termination of the image 
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viewing period. The resulting pseudopopulation contained the responses of 856 units to 
180 images each presented twice, and distributed evenly (and randomly) within the four 
conditions (i.e. 45 images for each of HH, LH, HL, LL).   

 
We began by assessing the hypothesis that RS of IT responses can explain visual 
memory behavior. We instantiated this hypothesis with a total spike count decoder, in 
which familiarity was determined by comparing the total spike count with a threshold. 
The quality of the alignment between neural predictions of behavioral patterns and the 
monkeys’ actual behavior, termed ‘prediction quality (PQ)’, benchmarks the MSE 
between the actual behavioral patterns and neural predictions of behavior between the 
worst-possible and best-possible scenarios (see Methods). The upper bound of our 
measure, PQ = 1, reflects a neural prediction that perfectly replicates the actual 
behavioral pattern. A PQ = 0 reflects the worst possible predicted behavioral pattern 
that was matched in overall performance (e.g., a pattern that was modulated entirely by 
changes in contrast, analogous to the insets in Fig 1c). This ‘RS’ decoder confounded 
changes in familiarity with changes in contrast and produced a poor behavioral 
prediction (PQRS = 0.40; Fig 2a).  
 
 

 

Figure 2. Traditional linear decoders confuse familiarity and contrast and fail to map IT neural responses 
to behavior. Each panel reflects the monkeys’ actual behavioral patterns (dots) along with the predictions 
of a linear decoder applied to the recorded neural population (bars). (a) Total spike count decoder, 
motivated by RS. (b) Optimally weighted linear decoder, iFLD. Prediction quality (PQ) quantifies similarity 
between the neural predictions of behavior and the monkeys’ actual behavioral patterns (see Text).  
 

The RS decoder is a linear decoder with uniform weighting over the neural population, 
so we wondered whether more carefully chosen weights might yield a linear decoder 
that could match the behavioral responses. Specifically, an optimally-weighted linear 
decoder was previously shown to be effective at aligning IT neural responses with visual 
memory behavior in the absence of contrast modulation 9. We used this same Fisher 
Linear Discriminant, computed assuming independence of neural responses, that 
weights each unit proportional to its discriminability, d’ (iFLD; see Methods). The iFLD 
differs from RS in that it weights each unit according to the amount of task-relevant 
information that it carries, and these weightings are signed: should any units that exhibit 
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repetition enhancement (on average) exist, those would be appropriately combined with 
opposite sign with units that exhibit repetition suppression. Despite the fact that this 
decoder is optimized to extract familiarity information while disregarding contrast, we 
found that the iFLD also confused changes in familiarity with changes in contrast, and 
behavioral predictions were only slightly improved relative to RS (PQiFLD = 0.54; Fig 2b). 
Poor behavioral predictions for RS and iFLD were replicated for each monkey 
individually (Supp. Fig 2; monkey 1: PQRS = 0.61, PQiFLD = 0.66; monkey 2: PQRS = 
0.19, and PQiFLD = 0.53). We return to examine the underlying reasons for this failure 
below, in Figure 5.   
 
 
Sensory referenced suppression is a good predictor of behavior:  
 
We wondered whether the monkeys’ behavioral patterns could be explained by any 
linear decoder applied to the IT population. Given the substantial evidence in support of 
the repetition suppression hypothesis, we reasoned that the brain might be acting on a 
variant of this neural signature in which it corrects for the ambiguities in total spike count 
that are introduced by changes in contrast. Because this hypothetical decoding scheme 
operates by estimating and correcting for modulations in the total spike count due to 
variations in memory-irrelevant sensory attributes, we refer to this hypothesis as 
“sensory referenced suppression (SRS)”.   
 
What would be required for SRS to be an effective account of the mapping of IT neural 
signals to behavior, if such a decoding scheme were restricted to act only on the IT 
population response? Minimally, information about contrast would have to be reflected 
along a linear axis in IT that is at least partially non-overlapping with the total spike 
count. We found that this was indeed the case: an optimized decoding vector for 
contrast lies in a direction 69 degrees from the total spike count vector (labeled RS), 
indicating that information about contrast was largely non-overlapping but not quite 
orthogonal to RS (Fig 3a). Consider the family of linear discrimination vectors that live 
on the 2-D plane defined by RS and the contrast decoder. On this plane, we define 
angles of 0 degrees as the total spike count RS decoder with no contrast correction 
(see Fig 3a, top inset: ‘RS’). Vectors on this plane that are rotated in the clockwise 
direction (i.e. negative angles) can be interpreted as linear decoders that estimate and 
correct the total spike count for contrast, implemented as a weighted linear combination 
of the RS and contrast decoders to produce a new linear decoder. In comparison, 
positive angles exacerbate contrast modulation in the predicted behavioral patterns. 
Within this family of linear decoding schemes, we defined SRS as the decoder that was 
orthogonal to (i.e. 90 o from) the contrast decoder, and consequently minimized contrast 
modulation in the neural prediction of behavioral patterns. The SRS was -21o from RS 
for the data pooled across both monkeys (Fig 3b) and -23o and -18o for individual 
animals (Supp Fig 3).  
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Figure 3. Neural predictions of behavior for a family of weighted linear decoders that include RS, an 
optimized contrast decoder, and SRS. (a) Projections of IT neural response distributions for all 6 stimulus 
conditions onto the 2-D plane defined by weight vectors for the total spike count vector (‘RS’, which uses 
a weight vector of all ones) and for a linear decoder optimized for contrast (‘Contrast’). Ellipses depict 
95% confidence intervals for 2-D histograms of the projection of neural responses onto this plane (see 
Methods). Insets show 1-D histograms of the projections of the distributions onto the three linear 
decoders. (b) The quality of the neural predictions of monkeys’ behavioral patterns (PQ) for the family of 
linear decoders that lie within the plane. Negative PQ values reflect predicted behavioral patterns that 
could not be rescaled to match overall performance because one or more entries were pinned at 
saturation (e.g., as a consequence of extreme contrast modulation). Each decoder corresponds to a 
rotation of the total spike count decoder, or equivalently, the weighted combination of the total spike count 
decoder and the contrast decoder. Markers indicate: SRS (black), which has minimal contrast sensitivity 
(i.e., orthogonal to the contrast axis); RS (blue), the total spike count decoder with no contrast correction; 
and the best behavioral match (maximal PQ – gray). Insets above depict the corresponding neural 
predictions of behavior. (c-d) The alignment of the monkeys’ actual behavioral patterns (dots) and the 
neural predictions of behavior (bars) for (c) SRS and (d) the decoder with the best behavioral match. 
 
 
The SRS linear decoder did a very good job at predicting the monkeys’ behavioral 
patterns, both for the pooled data (PQSRS = 0.88; Fig 3c), and for each monkey 
individually (monkey 1: PQSRS = 0.87; monkey 2: PQSRS = 0.93; Supp Fig 3). It also 
provided a much better prediction of behavior than RS or the iFLD (pooled data: PQRS = 
0.40 & PQiFLD = 0.54; monkey 1: PQRS = 0.61 & PQiFLD = 0.66; monkey 2: PQRS = 0.19 & 
PQiFLD = 0.53). These results suggest that SRS provides a considerably better 
description of the relationship between IT neural activity and behavior than RS or iFLD 
under the challenge of sensory variation in population response magnitude (i.e. contrast 
modulation). Additionally, these results reveal that the sensory information required to 
perform the correction for contrast is linearly decodable from IT itself. 
 
 
The SRS decoder had better familiarity performance than RS: 
 
To better understand how memory and contrast were reflected in IT during these 
experiments, we shifted our focus away from the alignment between decoding 
predictions and behavior and toward overall performance in decoding familiarity. These 
issues are best conceptualized by considering discriminability (d’), rather than percent 
correct, as a measure of performance computed as the ratio of the difference between 
the means of the novel and familiar distributions divided by the square root of the 
average variance for those distributions (Fig 4a). In our experiments, the variance of 
each distribution can be further decomposed into two components: (1) modulations 
within each distribution by contrast (Fig 4a, ‘Contrast Var’), and (2) combined 
modulations arising from image identity and trial variability (which cannot be 
dissociated, due to the single-trial nature of these experiments; Fig 4a, ‘ID Var’).  
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Figure 4. The population geometry impacting overall familiarity performance for SRS and RS. (a) A 
schematic of linear decoder performance, computed as d’, for this task. Shown are 1-D histograms of the 

.CC-BY-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted July 2, 2020. . https://doi.org/10.1101/2020.07.01.182881doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.182881
http://creativecommons.org/licenses/by-nd/4.0/


 9 

projection of the IT population responses onto a linear decoding axis W. Discriminability for familiarity (d’) 
is computed as the difference between the means of novel and familiar distributions (!! − !") divided by 
the square root of the average total variance (total Var). (b) d’ as a function of angle on the 2-D plane 
defined in Fig 3a. (c-d) Decomposition of d’: (c) the numerator (difference between means), and (d) the 
square of the denominator, the total variance (Total Var), further broken down into the variance due to 
image identity and trial variability (ID Var) and contrast modulation (Contrast Var) – see Methods.  In b-d, 
open circles at the right side of each graph indicate the values for projections along the contrast decoder.  
 

We found that, in addition to being a better predictor of behavior (Fig 3b), the SRS 
decoder also had higher familiarity performance than RS (Fig 4b). This occurred despite 
the fact that novel and familiar means were actually closer together along the SRS 
direction than the RS direction (Fig 4c). These decreases in mean separation were 
offset by even larger decreases in variance (denominator of d’), plotted in Fig 4d.  
These decreases in variance could in turn be attributed entirely to the elimination of 
contrast modulation. In sum, the superior performance of SRS resulted from novel and 
familiar distributions whose means were slightly closer together, but whose variances 
decreased even more as a consequence of eliminating contrast modulation along the 
SRS linear decoding axis.  
 
 

Relationship between SRS and iFLD decoders: 
 
The results presented above demonstrate that while the largely contrast-invariant 
patterns reflected in monkeys’ behavior are linearly decodable from IT neural responses 
with the SRS decoder (Fig 3c), a linear decoder optimized for familiarity on our data (the 
iFLD) confuses changes in familiarity with changes in contrast (Fig 2b). What do these 
differences imply about the geometry by which familiarity and contrast are reflected in 
IT? To address these questions, we turned to simulations, where issues about 
population geometry can be investigated absent the constraints imposed by finite 
samples. To perform these simulations, we began by fitting a model to each single unit 
that we recorded. For each IT unit, the distribution of the visually-evoked firing rate 
response over stimuli was modeled as an exponential 11, familiarity and contrast were 
modeled as multiplicative modulations of the visually-evoked response, and trial-to-trial 
variability in spike counts was modeled as an independent Poisson process (see 
Methods). The four parameters fit for each unit included: (1) mean firing rate (the mean 
of the exponential), (2) the visually-evoked tuning bandwidth, (3) familiarity sensitivity, 
and (4) contrast sensitivity (see Methods). We found that ‘synthetic’ data from the 
resulting model population recapitulated all aspects of the physiological data that we 
have highlighted thus far, including contrast modulation in the RS predictions (Supp Fig 
4a, top inset), contrast-invariant SRS (Supp Fig 4a, middle inset), and overall d’ that 
was higher for SRS than RS as a consequence of eliminating contrast modulation 
(Supp Fig 4b-d).  
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Figure 5. The population geometry impacting overall performance for SRS and iFLD. To explore 
population geometry absent the constraints imposed by limited samples, a model was fit to each unit and 
model parameters were used to create synthetic data. (a) Projections of the synthetic data onto the 2-D 
plane defined by SRS and a linear decoder optimized for memory, ‘iFLD’. Ellipses depict 95% confidence 
intervals for 2-D histograms of the projection of neural responses onto this plane. Insets show 1-D 
histograms of the projections onto each linear axis. (b) d’ as a function of angle relative to SRS on the 2-
D plane defined in panel a. (c-d) Decomposition of d’ into (c) It’s numerator, the difference between the 
means of the novel and familiar distributions and (d) The square of its denominator, the total variance 
(Total Var), further broken down into the variance due to image identity and trial variability (ID Var) and 
contrast modulation (Contrast Var).  In b-d, values corresponding to SRS and iFLD are labeled by black 
and green markers, respectively. 
 

Next, to understand the relationship between SRS and the iFLD, and why the iFLD did 
not exhibit contrast invariance, we performed a set of analysis similar to those described 
for Figure 3-4 but within the plane spanned by SRS and iFLD (Fig 5a). The iFLD is 
optimal (under the assumption of Gaussian-distributed independent response), and 
indeed has higher discrimination performance than SRS (Fig 5b). Increased d’ for iFLD 
over SRS resulted from both an increase in the distance between the means of the 
novel and familiar distributions (i.e. the d’ numerator; Fig 5c) as well as a decrease in 
the variance between the novel and familiar distributions (i.e. the d’ denominator; Fig 
5d). Intriguingly, the overall reduction in total variance along the iFLD axis relative to 
SRS resulted from increases in contrast modulation that were offset by a larger 
decreases in identity modulation relative to SRS (Fig 5d). This was because identity 
modulations and contrast modulations were anti-correlated on this plane: decreases in 
one (e.g. identity modulation) were accompanied by increases in the other (e.g. contrast 
modulation; Fig 5d). In other words, the iFLD failed to predict contrast invariance in 
behavioral patterns because it could achieve higher familiarity performance by reducing 
identity variance, which is anti-correlated with contrast. 
 

 

Discussion 
 
Understanding the neural mechanisms that support the remarkable ability that humans 
and nonhuman primates have to remember the images that they have seen1, 2, 4, 5, 12 
requires pinpointing the neural activity patterns that reflect visual familiarity behavior. 
Here we challenged suggestions that visual familiarity is signaled in high-level visual 
brain areas such as IT via changes in population response magnitude, or repetition 
suppression (RS) 3-8, by manipulating another factor known to modulate IT neural 
responses, image contrast. The monkeys were largely able to report visual familiarity 
invariant to changes in image contrast (Fig 1) whereas the IT population response was 
modulated by contrast and consequently, behavioral invariance could not be reconciled 
with RS (Fig 2a). Behavioral invariance also could not be reconciled with our previous 
work suggesting that familiarity could be decoded from IT with an optimized linear 
decoding scheme that weights each neuron proportional to its d’, or equivalently, the 
amount and sign of the task-relevant information that it carries 9 (Fig 2b). However, the 
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monkeys’ behavioral patterns were linearly decodable from IT (Fig 3c), using a linear 
decoder that corrects the total spike count decoder by eliminating its contrast 
dependence. We call this linear decoding scheme sensory referenced suppression 
‘SRS’, because it can be understood as estimating familiarity from the total spike count 
after correcting for sensory modulation (Fig 3a).  
 
The hypothesis that visual familiarity is encoded in high-level visual cortex as RS has a 
mixed history, with some studies finding support for this hypothesis5, 7, 9, 13, 14 and others 
finding evidence against it15, 16. Our work suggests that modifications of RS are required 
to account for single-exposure visual memory behavior when factors other than 
familiarity modulate the magnitude of the population response. A number of factors 
other than contrast are known to modulate the IT population response in this way, 
including stimulus attributes such as object size10, and a diverse set of stimulus 
attributes that contribute to image memorability17-19,  as well as external factors such as 
surprise20, 21 and attention7, 22. The SRS decoding scheme that we have proposed 
could, in principle, provide a mechanism for the brain to disambiguate familiarity-
induced changes in IT population response magnitude from changes due to the 
combination of all of these other factors. Similarly, our results inform a broader 
understanding of how the brain might disambiguate any one of these magnitude-coded 
variables from the rest: for example, detecting when something surprising has 
happened across fluctuations in other variables. 
 
What is the origin of the IT magnitude variation that aligns with single-exposure 
familiarity-based behavior? It is likely to be the combined product of multiple sources. 
RS is found at all stages of visual processing from the retina to IT, and it strengthens in 
its magnitude as well as the duration over which it lasts as one ascends the visual 
cortical hierarchy 23. Consequently, a hierarchical cascade of feed-forward, adaptation-
like mechanisms may underlie RS measured in IT 24. There are also indications that RS 
within IT may arise from changes in synaptic weights between recurrently connected 
units within IT itself 24, 25. Finally, a component of RS in IT is likely to be fed back from 
higher brain areas such as perirhinal cortex or hippocampus. While the assertion that 
top-down processing contributes to RS in high-level visual cortex has been controversial 
24, 26-28, recent evidence from a patient with medial temporal lobe (MTL) damage 
supports a role for feedback from MTL structures to RS in high-level visual cortex29. 
Within the one MTL structure, the hippocampus, single-exposure familiarity behavior 
has been linked with repetition suppression 30, 31 as well as synchronizations between 
gamma oscillations and spikes 32. Because these evaluations were not been made in a 
manner that challenges RS with other factors that affect response magnitude, additional 
work will be required to determine whether SRS is a better description than RS of the 
neural signatures that reflect single-exposure visual familiarity behavior in MTL 
structures. 
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Supp Fig 1 
 

 

 
 

Supp. Fig. 1. Behavioral performance patterns for individual monkeys. (a-b) Figure 1c replotted for two 
animals. Small black dots indicate average performance for an individual session and large colored dots 
indicate the average performance across sessions (14 sessions per animal). The contrast invariance 
reflected in each behavioral pattern (I) is labeled in each plot. Insets correspond to behavioral patterns 
with maximal (I = 0) and minimal (I = 1) contrast confusion, matched for overall performance. 
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Supp Fig 2 
 

 
 

Supp. Fig. 2. Classic linear decoders fail to map IT neural responses to behavior for each monkey. (a, c) 
Fig 2a replotted for each animal. (b, d) Fig 2b replotted for each animal. In all panels, dots indicate the 
actual behavioral patterns and bars indicate the neural predictions of behavior for each type of linear 
decoder. Prediction quality (PQ) is indicated for each case. 
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Supp Fig 3 
 

 
 

Supp. Fig. 3. Neural predictions of behavior for a family of weighted linear decoders that include SRS, 
plotted for each monkey. (a, d) Fig 3b, plotted for each animal: prediction quality (PQ) for the family of 
linear decoders that lie on the plane spanned by RS and contrast axis (Fig 3a). Markers correspond to 
SRS (black), RS (blue), and the linear decoder with largest PQ (grey). (b, e) Fig 3c, plotted for each 
animal: the alignment of the actual behavioral pattern and the SRS prediction (c, f) Fig 3d, plotted for 
each animal: the alignment of the actual behavioral pattern and the decoder with the highest PQ on this 
plane. In b-f, dots indicate actual behavioral patterns and bars indicate the linearly decoded neural 
predictions of behavior. The decoder’s direction relative to RS, and prediction quality (PQ) are labeled for 
each case. 
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Supp Fig 4 
 

 
 

Supp. Fig. 4. Synthetic data generated from the 4-parameter model recapitulates the actual data. 
Simulations were performed for 650 units * 4K images (1K images/condition). All analyses were 
performed in the same manner as described for the physiological data. Plotted for the synthetic data (a) 
Fig. 3a (b-d) Fig. 4b-d. 
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Methods 
 
Experiments were performed on two adult male rhesus macaque monkeys (Macaca mulatta) 
with implanted head posts and recording chambers. All procedures were performed in 
accordance with the guidelines of the University of Pennsylvania Institutional Animal Care and 
Use Committee.  
 
The single-exposure, contrast-invariant visual memory task: 
 
All behavioral training and testing were performed using standard operant conditioning (juice 
reward), head stabilization, and high-accuracy, infrared video eye tracking. Stimuli were 
presented on an LCD monitor with an 85 Hz refresh rate using customized software 
(http://mworks-project.org).  
 
As an overview of the monkeys’ task, each trial involved viewing one image for 500 ms, after 
which the monkeys indicated whether it was novel (never seen before) or familiar (seen exactly 
once prior) with an eye movement to one of two response targets. Images were never 
presented more than twice during the entire training and testing period of the experiment. Trials 
were initiated when the monkey fixated on a small red square (0.25°) on the center of a gray 
screen followed by a 200 ms delay before a 4° image appeared within a circular aperture. The 
monkeys needed to maintain fixation of the stimulus for 500 ms, at which time the red square 
turned green (the go cue) and the targets appeared. The monkeys then made a saccade to a 
target indicating whether the stimulus was novel or familiar, and correct responses were 
rewarded with juice. Targets were positioned 8° above or below the stimulus. The association 
between the target (up vs. down) and the report (novel vs. familiar) was swapped between the 
two animals.   
 
The images used in these experiments collected via an automated procedure that gathered 
images from the internet. Images smaller than 96*96 pixels were not considered. Eligible 
images were cropped to be square and resized to 256*256 pixels. Duplicate images were 
removed. Colored images were converted to grayscale and were presented at two contrasts 
(“low (L)” and “high (H)”) in all possible combinations as novel and familiar (novel-familiar = low-
low (LL); high-high (HH); low-high (LH); high-low (HL)). Contrast modifications were applied in a 
manner that did not adjust image luminance (Lv), the mean pixel intensity. Images with Lv 
outside the range 0.25 – 0.75 were excluded. The computation of contrast began by first 
computing the median of the pixel intensities that fell above and below Lv, Lv-hi and Lv-lo. The 
native contrast for each image Cnative was computed as: 
    Cnative= (Lv-hi – Lv) + (Lv – Lv-lo) 
Each image was manipulated to produce a high contrast version (Chi = 0.4) and low contrast 
version (Clo = 0.2) via a procedure that maintained Lv for each image. Adjustments to contrast 
involved: 1) subtracting the mean pixel value, 2) rescaling the residual pixel values all by the 
same amount, and 3) adding back the mean. When the procedure resulted in the saturation of 
more than 10% of pixels beyond their maximal value (black and white), that image was 
excluded.  
 
Trial locations for novel images and their repeats were presented with a uniform distribution of 
the subset of n-back used in the experiment. The n-back distribution was adjusted for each 
monkey based on training history to approximately equate overall performance between the two 
animals: n-back = 1, 4, 16, and 32 for monkey 1, and n-back = 1, 2, 4, and 8 for monkey 2. The 
specific random sequence of images presented during each session was generated offline 
before the start of the session. Uniform n-back distributions were achieved by constructing a 
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sequence slightly longer than what was anticipated to be needed for the session, and by 
iteratively populating the sequence with novel images and their repeats at positions selected 
randomly from all the possibilities that remained unfilled. Because the longest n-back values (8 
or 32) were the most difficult to fill, a fixed number of those were inserted first. In the relatively 
rare cases that the algorithm did not converge, it was restarted. The result was a partially 
populated sequence in which 83% of the trials were occupied. Next, the remaining 17% of trials 
were examined to determine whether they could be filled with novel/familiar pairs from the list of 
possible n-back options. The very small number of trials that remained after all possibilities had 
been extinguished (e.g. a 3-back scenario) were filled with ‘off n-back’ novel/familiar image pairs 
and these trials were disregarded in later analyses.  
 
The monkeys’ behavioral patterns were computed for each condition after collapsing across n-
back. The degree of contrast invariance reflected in each monkey’s session-averaged 
behavioral patterns was computed as the mean of contrast invariance computed for the novel 
and familiar memory conditions separately. Within each memory condition M, contrast 
invariance (I) of the behavioral pattern X in either memory condition was defined by: 
 

I = 1 −  Var(X)
Var(X!"#)

 

(1) 
Where, Var(X) is the variance of pattern X, and Var X!"#  is the maximum possible variance 
associated with contrast in memory condition M given monkeys’ overall performance in the 
same memory condition M. For example, the X!"# for an overall performance across the 
familiar conditions of 85% would correspond to 70%, 100%, 100% and 70% for HH, LL, HL and 
LH, respectively.   
 
Neural recording:  
 
The activity of neurons in IT was recorded via a single recording chamber in each monkey. 
Chamber placement was guided by anatomical magnetic resonance images in both monkeys. 
The region of IT recorded was located on the ventral surface of the brain, over an area that 
spanned 5 mm lateral to the anterior middle temporal sulcus and 14-17 mm anterior to the ear 
canals. Recording sessions began after the monkeys were fully trained on the task and 
behavioral performance had plateaued. The depth and extent of IT was mapped within the 
recording chamber in a previous experiment 1. Combined recording and behavioral training 
sessions happened 2-5 times per week across a span of 4 weeks (monkey 1) and 6 weeks 
(monkey 2). Neural activity was recorded with 24-channel U-probes (Plexon, Inc.) with linearly 
arranged recording sites spaced with 100 µm intervals. Continuous, wideband neural signals 
were amplified, digitized at 40 kHz and stored using the Grapevine Data Acquisition System 
(Ripple, Inc.). Spike sorting was done manually offline (Plexon Offline Sorter). At least one 
candidate unit was identified on each recording channel, and 2-3 units were occasionally 
identified on the same channel. Spike sorting was performed blind to any experimental 
conditions to avoid bias. A multi-channel recording session was included in the analysis if: (1) 
the recording session was stable, quantified as the grand mean firing rate across channels 
changing less than 3-fold across the session; (2) over 50% of neurons were visually responsive 
(a loose criterion based on our previous experience in IT), assessed by a visual inspection of 
the rasters; and (3) the number of successfully completed novel/familiar pairs of trials exceeded 
100. In monkey 1, 19 sessions were recorded and five were removed (one based on criterion 1 
and four based on criterion 3). In monkey 2, 15 sessions were recorded and one was removed 
(based on criterion 1). The resulting data set included 14 sessions for monkey 1 (n = 427 
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candidate units), and 14 sessions for monkey 2 (n = 429 candidate units). The sample size 
(number of successful sessions recorded) was chosen based on our previous work 1.  
 
The data reported here correspond to the subset of images for which the monkeys’ behavioral 
reports were recorded for both novel and familiar presentations (e.g. trials in which the monkeys 
did not prematurely break fixation during either the novel or the familiar presentation of an 
image). Accurate estimate of population response magnitude requires many hundreds of units, 
and when too few units are included, magnitude estimates are dominated by the stimulus 
selectivity of the sampled units. To perform our analyses, we thus concatenated units across 
sessions to create larger pseudopopulations. When creating these pseudopopulations, we 
aligned data across sessions in a manner that preserved whether the trials were presented as 
novel or familiar and their experimental contrast condition. To prevent artificial correlations from 
influencing our results, analyses were performed after re-randomizing the responses within 
each condition for each unit to create many pseudopopulations. To deal with varying data sizes 
across sessions, the number of images included in the analysis was selected to balance 
incorporating data of equal sizes across sessions with not needlessly discarding data. NaNs 
were used as place holders for the more limited sessions in which data did not exist. The 
resulting pseudopopulations consisted of the responses to 180 images presented as both novel 
and familiar (i.e. 45 images per condition: HH, LL, HL and LH). Spikes were counted in a 
temporal window over the range 100-500 ms following stimulus onset.   
 
Linear population decoders: 
 
For all decoders, the population response was quantified as the vector ! containing spike 
counts on a given trial. To ensure that the decoder did not erroneously rely on visual selectivity, 
the decoder was trained on balanced pairs of novel/familiar trials in which monkeys viewed the 
same image (regardless of behavioral outcome or experimental contrast condition).   
 
Cross-validated training and testing: 
 
We applied the same, iterative cross-validated linear decoding procedure for each decoder. On 
each iteration of the resampling procedure, the responses for each unit were randomly shuffled 
within each experimental condition to ensure that artificial correlations (e.g. between the 
neurons recorded in different sessions) were removed. Each iteration also involved setting aside 
the responses to one randomly selected image within each contrast condition (presented as 
both novel and familiar, for 8 trials in total) for testing classifier performance. The remaining 
trials were used to train one of the linear decoders to distinguish novel versus familiar images 
invariant to contrast, where the novel and familiar classes included the data corresponding to all 
n-backs and all trial outcomes. A neural prediction of the proportion of trials on which “familiar” 
would be reported was computed as the proportion of each distribution that took on a value less 
than the criterion. Finally, the predicted response pattern was rescaled by a rescaling parameter 
(see below) as a proxy for adjusting the population size to consider.   
 
All decoders in this study took the general form of linear discriminators. The class 
(novel/familiar) of a population response vector, ! was determined by the sign of:  
 

! ! =  !. ! − ! 
(2) 

where w is the weight vector in the N-dimensional IT neural space (and N is the number of 
units), and b is decision criterion, given by: 
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! =  12!. !! + !!  

(3) 
Here !! and !! are the mean population response vectors across novel and familiar images in 
the training set, respectively. A population response vector ! was classified as “novel” if 
! ! > 0, and “familiar” if ! ! < 0.  
 
 
Spike count classifier (associated with repetition suppression, RS): 
 
Arguably the simplest classifier, the total spike decoder uses a homogeneous weight vector: 
 

!!" = ! = (1, 1,… , 1) 
(4) 

 
Fisher Linear Discriminant (iFLD): 
 
The iFLD used in this study follows our previous implementation1. The Fisher Linear 
Discriminant (FLD) is defined as: 
 

!!"# = Σ!! !! − !!  
(5) 

where Σ!! is the inverse of the mean covariance matrix across novel and familiar conditions: 
 

Σ = 1
2 (Σ! + Σ!) 

(6) 
The dimensionality of our neural populations is high enough that we do not have enough data to 
obtain reliable covariance estimates (we estimate the amount of data needed to estimate the 
off-diagonal entries is >10-fold what we collected in a single session). As such, we assume 
independence of the stimulus responses within conditions (i.e., we set the off-diagonal entries to 
zero). The resulting iFLD uses a weight for each unit that is proportional to its familiarity 
discriminability (d’): 
 

!!"#$ = !!  
µ!
(!) − µ!

(!)

σ!!
!

!!!
 

(7) 
where !! is the unit vector along i-th dimension (i-th unit’s response); N is the number of units; 
µ!
(!) and µ!

(!) are i-th unit’s mean responses to novel and familiar images, respectively; and !!! is 
the i-th unit’s average response variance across novel and familiar conditions:  
 

!!! =  12 σ!
(!)! + σ!

(!)!  
(8) 
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Family of contrast-corrected linear decoders: 
 
The family of contrast-corrected linear decoders are based on weight vectors that are rotated 
within the plane containing the RS decoder (!) and a contrast decoder, !!:  
 

!(!) = cos ! − cot ! sin ! !  + csc !  sin ! !! ;    ! ∈ γ − !, !  
(9) 

where, !(!), ! and !! are the unit vectors along the decoding axes, RS decoder, and contrast 
decoder, respectively. ! is the angle between the decoder axis (!(!)) and the RS axis (!), and 
! is the angle between the RS and contrast axes. The contrast weight vector !! was defined as:  
 

!! = !! − !!  
(10) 

Where !! and !! are the mean population response vectors across high and low contrast 
images in train set, respectively. This is a simple form of FLD that arises when the average 
covariance is a multiple of the identity, and is sometimes called a “prototype classifier”. We 
define the SRS decoder as the axis which is orthogonal to contrast, i.e. 
 

!!"! = ! − !2 
(11) 

Rescaling parameter and prediction quality (PQ): 
 
Comparing IT population decoding performance with behavior depends on the neural population 
size under consideration, and there is no good way to choose this a priori. We thus applied a 
fitting approach for each decoder. After confirming that performance using all recorded units in 
our dataset fell below saturation, we simulated increases in population size by fitting a single 
rescaling parameter (!) to minimize the MSE between the neural predictions and actual 
behavioral patterns. We emphasize that while this adjustment changed the overall performance, 
it did not impact the shape of the predicted behavioral patterns. The minimization of MSE yields 
an analytical solution for ! as: 
 

! = !!!!!
!!!

!!!!
!!!

 

(12) 
where !! and !! are the actual and neutrally predicted performance for condition i, respectively, 
and i corresponds to each of six conditions including HH, LL, HL, LH, H, and L. Next, to quantify 
the quality of the fit after rescaling the predicted pattern, we computed a measure of prediction 
quality (PQ): 
 

PQ = 1 − !"#
!"#!"#

 

(13) 
where MSE and MSEmax denote the mean square error of the rescaled predicted pattern and the 
pattern with maximum MSE that was matched in overall performance, respectively, i.e. 
 

!"# = 1
6 !! − !′! !

!

!!!
 

(14) 
and  
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!"#!"# = argmax
!!

1
6 !! − !! !

!

!!!
 

(15) 
!! and !′! are the actual and rescaled predicted performance for condition i, respectively, and i 
corresponds to each of six conditions including HH, LL, HL, LH, H, and L. !! could be either 1 
(highest performance) or 2! − 1 (lowest possible performance given the overall performance) 
depending on which one is larger. ! is the mean performance across all six conditions. The 
upper bound of PQ = 1 reflects a neural prediction that perfectly replicates the actual behavioral 
pattern. A PQ = 0 reflects the worst possible predicted behavioral pattern that was matched in 
overall performance. Negative PQ values reflect predicted behavioral patterns that could not be 
rescaled with ! to match overall performance because one or more entries were pinned at 
saturation (e.g., as a consequence of extreme contrast modulation). 
  
Covariance error ellipse: 
 
Error ellipses (shown in Fig 3a, 5a, and Supp Fig 4a) were computed by first projecting the 
neural response vectors onto the non-orthogonal discriminant axes ! and 
!!, producing coordinates !, ! .  These were transformed to orthogonal coordinates using a 
transformation matrix (derived from Eq. (9)): 

 

R = 1 0
− cot γ csc γ  

(16) 
where γ is the angle between the two discriminant axes: 
 

γ = ∠ !!,!! = acos !! ∙!!  
(17) 

 
We then rotate this coordinate system in the plane by angle !, using transformation matrix: 

 

R! =
cos! − sin!
sin! cos!  

(18) 
 
Combining Eq (16) and (18) gives an expression for the (x, y) coordinates of the projected 
neural responses: 

  
!
! = cos! − sin!

sin! cos! × 1 0
− cot γ csc γ × !

!  

(19) 
 
For each condition, the covariance matrix of the transformed data was computed, and the 
eigenvectors of this matrix provide the major and minor axes of the associated ellipse. To 
determine the dimensions of the ellipse, we multiplied the square root of the eigenvalues by a 
scale factor equal to the square root value of the cumulative chi-square distribution function 
(CDF) for 2-degrees of freedom evaluated at 95%. 
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Decomposition of total variance into variance due to identity/trial variability and contrast: 
 
For Figs 4, 5, and Supp Fig 4, we used the following equations to decompose the average 
variance across novel (N) and familiar (F) conditions, !!"#! = !

! !!! + !!! , into the variance 
due to image identity and trial variability (ID) and contrast (C): 
 

!!"#! =
1
2 !!"! + !!!  

Where: 

!!!! =
1
2 !!! + !!! + 14 !!!! + !!!! + !!"! + !!"!  

 

!!! =
1
2 !!! − !!! + !!! − !!! +⋯ 

1
4 !!!! − !!! + !!!! − !!! + !!"! − !!! + !!"! − !!!  

(20) 
In each condition, ! and ! denote the standard deviation and mean of the corresponding 
distribution, respectively.  
 
 
Fitting the four-parameter tuning model to each unit and synthesizing data: 
 
In Figure 5, we assessed the population geometry in the limit of infinite samples by fitting a 
model to each unit that we recorded, and then using these models to synthesize population 
data. A 4-parameter model was used to describe the mean spike count response of each unit: 
 

! !;!,! =  !.!. !. exp (−!") 
(21) 

 
where x is stimulus rank, M is image memory condition (novel or familiar), C is image contrast 
(high or low), A is amplitude, m is memory modulation (set to 1 for novel images, and a fitted 
value for familiar images), c is contrast modulation (set to 1 for high contrast images, and fitted 
value for low contrast), and a controls stimulus selectivity.  
 
We estimated each unit’s tuning curve parameters by maximizing the likelihood (MLE) of 
observing the spike count data from 100 ms to 500 ms relative to stimulus onset using the 
techniques introduced in ref. 2. If !!, !!,… , !!  is the spike count data for a unit in all six 
conditions (n trials in total), the log-likelihood of observing the data is given by: 
 

log ℒ !| !,!,!, ! = log ! !! !,!,!, !
!

!!!
 

(22) 
where 
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! ! !,!,!, ! =
1 + 1

!
−1 !!!!
!. !!  1 − !!!"

!

!!!
    ; ! = 0

1
!. !

!!!
!! !! !"!!!!!! − !!!!

!!!

!!!
; ! ≠ 0

 

(23) 
and 
 

!! =
!                                        ;!:H
!.!                                    ;  !: !
!.!                  ;!: !!, or !"
!. !.!                ;!: !!, or !"

 

(24) 
 

We estimated four tuning parameters of the unit by maximizing (22) with respect to the 
parameters A, a, m, and c. 
 
Goodness of fit was assessed by comparing the actual and predicted grand mean spike counts, 
and only accepting units whose predicted grand mean spike counts fell in the range 0.83-1.2x of 
the actual values. Of 856 units, 661 units fulfilled this criterion. 
 
Finally, we used the tuning parameters for each unit to synthesize the responses to 1000 
images per condition. For each unit, we sampled x in Equation 21 as 1000 draws from a uniform 
distribution between 0 and 1 and used those values to compute spike count rates, which were 
converted to spike counts by drawing from a Poisson process.  
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