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SUMMARY

Rainstorms, insect swarms, and galloping horses
produce ‘‘sound textures’’—the collective result of
many similar acoustic events. Sound textures are
distinguished by temporal homogeneity, suggesting
they could be recognized with time-averaged statis-
tics. To test this hypothesis, we processed real-world
textures with an auditory model containing filters
tuned for sound frequencies and their modulations,
and measured statistics of the resulting decomposi-
tion. We then assessed the realism and recogniz-
ability of novel sounds synthesized to have matching
statistics. Statistics of individual frequency channels,
capturing spectral power and sparsity, generally
failed to produce compelling synthetic textures; how-
ever, combining them with correlations between
channels produced identifiable and natural-sounding
textures. Synthesis quality declined if statistics were
computed from biologically implausible auditory
models. The results suggest that sound texture per-
ception is mediated by relatively simple statistics
of early auditory representations, presumably com-
puted by downstream neural populations. The syn-
thesis methodology offers a powerful tool for their
further investigation.

INTRODUCTION

Sensory receptors measure light, sound, skin pressure, and
other forms of energy, from which organisms must recognize
the events that occur in the world. Recognition is believed to
occur via the transformation of sensory input into representa-
tions in which stimulus identity is explicit (for instance, via
neurons responsive to one category but not others). In the audi-
tory system, as in other modalities, much is known about how
this process begins, from transduction through the initial stages
of neural processing. Something is also known about the
system’s output, reflected in the ability of human listeners to
recognize sounds. Less is known about what happens in the
middle—the stages between peripheral processing and percep-
tual decisions. The difficulty of studying thesemid-level process-

ing stages partly reflects a lack of appropriate stimuli, as the
tones and noises that are staples of classical hearing research
do not capture the richness of natural sounds.
Here we study ‘‘sound texture,’’ a category of sound that is

well-suited for exploration of mid-level auditory perception.
Sound textures are produced by a superposition of many similar
acoustic events, such as arise from rain, fire, or a swamp full of
insects, and are analogous to the visual textures that have been
studied for decades (Julesz, 1962). Textures are a rich and varied
set of sounds, and we show here that listeners can readily recog-
nize them. However, unlike the sound of an individual event, such
asa footstep, or of the complex temporal sequences of speechor
music, a texture is defined by properties that remain constant
over time. Textures thus possess a simplicity relative to other
natural sounds that makes them a useful starting point for
studying auditory representation and sound recognition.
We explored sound texture perception using a model of bio-

logical texture representation. The model begins with known
processing stages from the auditory periphery and culminates
with the measurement of simple statistics of these stages. We
hypothesize that such statistics are measured by subsequent
stages of neural processing, where they are used to distinguish
and recognize textures. We tested the model by conducting
psychophysical experiments with synthetic sounds engineered
to match the statistics of real-world textures. The logic of the
approach, borrowed from vision research, is that if texture per-
ception is based on a set of statistics, two textures with the
same values of those statistics should sound the same (Julesz,
1962; Portilla and Simoncelli, 2000). In particular, our synthetic
textures should sound like another example of the correspond-
ing real-world texture if the statistics used for synthesis are
similar to those measured by the auditory system.
Although the statistics we investigated are relatively simple

and were not hand-tuned to specific natural sounds, they
produced compelling synthetic examples of many real-world
textures. Listeners recognized the synthetic sounds nearly as
well as their real-world counterparts. In contrast, sounds synthe-
sized using representations distinct from those in biological
auditory systems generally did not sound as compelling. Our
results suggest that the recognition of sound textures is based
on statistics of modest complexity computed from the re-
sponses of the peripheral auditory system. These statistics likely
reflect sensitivities of downstream neural populations. Sound
textures and their synthesis thus provide a substrate for studying
mid-level audition.
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RESULTS

Our investigations of sound texture were constrained by three
sources of information: auditory physiology, natural sound
statistics, and perceptual experiments. We used the known
structure of the early auditory system to construct the initial
stages of our model and to constrain the choices of statistics.
We then established the plausibility of different types of statistics
by verifying that they vary across natural sounds and could thus
be useful for their recognition. Finally, we tested the perceptual
importance of different texture statistics with experiments using
synthetic sounds.

Texture Model
Our model is based on a cascade of two filter banks (Figure 1)
designed to replicate the tuning properties of neurons in early
stages of the auditory system, from the cochlea through the thal-
amus. An incoming sound is first processed with a bank of 30
bandpass cochlear filters that decompose the sound waveform
into acoustic frequency bands, mimicking the frequency selec-
tivity of the cochlea. All subsequent processing is performed on
the amplitude envelopes of these frequency bands. Amplitude
envelopes can be extracted from cochlear responses with a
low-pass filter and are believed to underlie many aspects of
peripheral auditory responses (Joris et al., 2004).When the enve-
lopes are plotted in grayscale and arranged vertically, they form
a spectrogram, a two-dimensional (time versus frequency) image
commonly used for visual depiction of sound (e.g., Figure 2A).
Perceptually, envelopes carry much of the important information
in natural sounds (Gygi et al., 2004; Shannon et al., 1995; Smith
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Figure 1. Model Architecture
A sound waveform (top row) is filtered by a

‘‘cochlear’’ filterbank (gray stripe contains two

example filters at different frequencies, on a log-

frequency axis). Cochlear filter responses (i.e.,

subbands) are bandlimited versions of the original

signal (third row), the envelopes of which (in gray)

are passed through a compressive nonlinearity

(gray stripe, fourth row), yielding compressed en-

velopes (fifth row), from which marginal statistics

and cross band correlations are measured. En-

velopes are filtered with a modulation filter bank

(gray stripe, sixth row, containing two example

filters for each of the two example cochlear chan-

nels, on a log-frequency axis), the responses of

which (seventh row) are used to compute modu-

lationmarginals andcorrelations.Red iconsdenote

statistical measurements: marginal moments of

a single signal or correlations between two signals.

et al., 2002), and can be used to recon-
struct signals that are perceptually indis-
tinguishable from the original in which
the envelopes were measured. Cochlear
transduction of sound is also distin-
guished by amplitude compression (Rug-
gero, 1992)—the response to high inten-
sity sounds is proportionally smaller than

that to low intensity sounds, due to nonlinear, level-dependent
amplification. To simulate this phenomenon, we apply a com-
pressive nonlinearity to the envelopes.
Each compressed envelope is further decomposed using

a bank of 20 bandpass modulation filters. Modulation filters are
conceptually similar to cochlear filters, except that they operate
on (compressed) envelopes rather than the sound pressure
waveform, and are tuned to frequencies an order of magnitude
lower, as envelopes fluctuate at relatively slow rates. A modula-
tion filter bank is consistent with previous auditory models
(Bacon and Grantham, 1989; Dau et al., 1997) as well as reports
of modulation tuning in midbrain and thalamic neurons
(Baumann et al., 2011; Joris et al., 2004; Miller et al., 2002;
Rodrı́guez et al., 2010). Both the cochlear and modulation filters
in our model had bandwidths that increased with their center
frequency (such that they were approximately constant on a log-
arithmic scale), as is observed in biological auditory systems.
From cochlear envelopes and their modulation bands, we

derive a representation of texture by computing statistics (red
symbols in Figure 1). The statistics are time-averages of nonlinear
functions of either the envelopes or the modulation bands. Such
statistics are in principle suited to summarizing stationary sig-
nals like textures, whose properties are constant over some
moderate timescale. A priori, however, it is not obvious whether
simple, biologically plausible statistics would havemuch explan-
atory power as descriptors of natural sounds or of their percep-
tion. Previous attempts to model sound texture have come
from the machine audio and sound rendering communities
(Athineos and Ellis, 2003; Dubnov et al., 2002; Saint-Arnaud
and Popat, 1995; Verron et al., 2009; Zhu and Wyse, 2004) and
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have involved representations unrelated to those in biological
auditory systems.

Texture Statistics
Of all the statistics the brain could compute, whichmight be used
by the auditory system? Natural sounds can provide clues: in
order for a statistic to be useful for recognition, it must produce
different values for different sounds. We considered a set of
generic statistics and verified that they varied substantially
across a set of 168 natural sound textures.

We examined two general classes of statistic: marginal
moments and pairwise correlations. Both types of statistic
involve averages of simple nonlinear operations (e.g., squaring,
products) that could plausibly bemeasured using neural circuitry
at a later stage of neural processing. Moments and correlations
derive additional plausibility from their importance in the repre-
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Figure 2. Cochlear Marginal Statistics
(A) Spectrograms of three sound excerpts, gen-

erated by plotting the envelopes of a cochlear filter

decomposition. Gray-level indicates the (com-

pressed) envelope amplitude (same scale for all

three sounds).

(B) Envelopes of one cochlear channel for the

three sounds from (A).

(C) Histograms (gathered over time) of the enve-

lopes in (B). Vertical line segments indicate the

mean value of the envelope for each sound.

(D–G) Envelope marginal moments for each

cochlear channel of each of 168 natural sound

textures. Moments of sounds in (A–C) are plotted

with thick lines; dashed black line plots the mean

value of each moment across all sounds.

sentation of visual texture (Heeger and
Bergen, 1995; Portilla and Simoncelli,
2000), which provided inspiration for our
work. Both types of statistic were
computed on cochlear envelopes as
well as their modulation bands (Figure 1).
Because modulation filters are applied to
the output of a particular cochlear
channel, they are tuned in both acoustic
frequency and modulation frequency.
We thus distinguished two types of
modulation correlations: those between
bands tuned to the same modulation
frequency but different acoustic frequen-
cies (C1), and those between bands
tuned to the same acoustic frequency
but different modulation frequencies (C2).

To provide some intuition for the
variation in statistics that occurs across
sounds, consider the cochlear marginal
moments: statistics that describe the
distribution of the envelope amplitude
for a single cochlear channel. Figure 2A
shows the envelopes, displayed as spec-
trograms, for excerpts of three example

sounds (pink [1/f] noise, a stream, andgeese calls), and Figure 2B
plots the envelopes of one particular channel for each sound. It is
visually apparent that the envelopes of the three sounds are
distributed differently—those of the geese contain more high-
amplitude and low-amplitude values than those of the stream
or noise. Figure 2C shows the envelope distributions for one
cochlear channel. Although the mean envelope values are nearly
equal in this example (because they have roughly the same
average acoustic power in that channel), the envelope distribu-
tions differ in width, asymmetry about the mean, and
the presence of a long positive tail. These properties can be
captured by the marginal moments (mean, variance, skew, and
kurtosis, respectively). Figures 2D–2G show these moments for
our full set of sound textures. Marginal moments have previously
been proposed to play a role in envelope discrimination (Lorenzi
et al., 1999; Strickland and Viemeister, 1996), and often reflect
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the property of sparsity, which tends to characterize natural
sounds and images (Field, 1987; Attias and Schreiner, 1998).
Intuitively, sparsity reflects the discrete events that generate
natural signals; these events are infrequent, but produce a burst
of energy when they occur, yielding high-variance amplitude
distributions. Sparsity has been linked to sensory coding (Field,
1987; Olshausen and Field, 1996; Smith and Lewicki, 2006), but
its role in the perception of real-world sounds has been unclear.
Each of the remaining statistics we explored (Figure 1)

captures distinct aspects of acoustic structure and also exhibits
large variation across sounds (Figure 3). The moments of the
modulation bands, particularly the variance, indicate the rates
at which cochlear envelopes fluctuate, allowing distinction
between rapidly modulated sounds (e.g., insect vocalizations)
and slowly modulated sounds (e.g., ocean waves). The correla-
tion statistics, in contrast, each reflect distinct aspects of coor-

dination between envelopes of different channels, or between
their modulation bands. The cochlear correlations (C) distinguish
textures with broadband events that activate many channels
simultaneously (e.g., applause), from those that produce nearly
independent channel responses (many water sounds; see
Experiment 1: Texture Identification). The cross-channel modu-
lation correlations (C1) are conceptually similar except that
they are computed on a particular modulation band of each co-
chlear channel. In some sounds (e.g., wind, or waves) the C1
correlations are large only for low modulation-frequency bands,
whereas in others (e.g., fire) they are present across all bands.
The within-channel modulation correlations (C2) allow discrimi-
nation between sounds with sharp onsets or offsets (or both),
by capturing the relative phase relationships between modula-
tion bands within a cochlear channel. See Experimental Proce-
dures for detailed descriptions.
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Figure 3. Modulation Power and Correlation Statistics
(A) Modulation power in each band (normalized by the variance of the corresponding cochlear envelope) for insects, waves, and stream sounds of Figure 4B. For

ease of display and interpretation, this statistic is expressed in dB relative to the same statistic for pink noise.

(B) Cross-band envelope correlations for fire, applause, and stream sounds of Figure 4B. Each matrix cell displays the correlation coefficient between a pair of

cochlear envelopes.

(C) C1 correlations for waves and fire sounds of Figure 4B. Eachmatrix contains correlations betweenmodulation bands tuned to the samemodulation frequency

but to different acoustic frequencies, yielding matrices of the same format as (B), but with a different matrix for each modulation frequency, indicated at the top of

each matrix.

(D) Spectrograms and C2 correlations for three sounds. Note asymmetric envelope shapes in first and second rows, and that abrupt onsets (top), offsets (middle),

and impulses (bottom) produce distinct correlation patterns. In right panels, modulation channel labels indicate the center of low-frequency band contributing to

the correlation. See also Figure S6.
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Sound Synthesis
Our goal in synthesizing sounds was not to render maximally
realistic sounds per se, as in most sound synthesis applications
(Dubnov et al., 2002; Verron et al., 2009), but rather to test
hypotheses about how the brain represents sound texture, using
realism as an indication of the hypothesis validity. Others have
also noted the utility of synthesis for exploring biological auditory
representations (Mesgarani et al., 2009; Slaney, 1995); our work
is distinct for its use of statistical representations. Inspired by
methods for visual texture synthesis (Heeger and Bergen, 1995;
Portilla and Simoncelli, 2000), our method produced novel
signals thatmatched some of the statistics of a real-world sound.
If the statistics used to synthesize the sound are similar to those
used by the brain for texture recognition, the synthetic signal
should sound like another example of the original sound.

To synthesize a texture, we first obtained desired values of
the statistics by measuring the model responses (Figure 1) for
a real-world sound. We then used an iterative procedure
to modify a random noise signal (using variants of gradient
descent) to force it to have these desired statistic values (Fig-
ure 4A). By starting from noise, we hoped to generate a signal
that was as random as possible, constrained only by the desired
statistics.

Figure 4B displays spectrograms of several naturally occurring
sound textures along with synthetic examples generated from
their statistics (see Figure S1 available online for additional
examples). It is visually apparent that the synthetic sounds share
many structural properties of the originals, but also that the pro-
cess has not simply regenerated the original sound—here and in
every other example we examined, the synthetic signals were
physically distinct from the originals (see also Experiment 1:
Texture Identification [Experiment 1b, condition 7]). Moreover,
running the synthesis procedure multiple times produced exem-
plars with the same statistics but whose spectrograms were
easily discriminated visually (Figure S2). The statistics we
studied thus define a large set of sound signals (including the
original in which the statistics are measured), from which one
member is drawn each time the synthesis process is run.

To assess whether the synthetic results sound like the natural
textures whose statistics they matched, we conducted several
experiments. The results can also be appreciated by listening
to example synthetic sounds, available online (http://www.cns.
nyu.edu/!lcv/sound_texture.html).

Experiment 1: Texture Identification
We first tested whether synthetic sounds could be identified as
exemplars of the natural sound texture fromwhich their statistics
were obtained. Listeners were presented with example sounds,
and chose an identifying name from a set of five. In Experiment
1a, sounds were synthesized using different subsets of statis-
tics. Identification was poor when only the cochlear channel
power was imposed (producing a sound with roughly the same
power spectrum as the original), but improved as additional
statistics were included as synthesis constraints (Figure 5A;
F[2.25, 20.25] = 124.68, p < 0.0001; see figure for paired compar-
isons between conditions). Identifiability of textures synthesized
using the full model approached that obtained for the original
sound recordings.

Inspection of listeners’ responses revealed several results of
interest (Figures 5B and 5C). In condition 1, when only the
cochlear channel power was imposed, the sounds most often
correctly identified were those that are noise-like (wind, static,
etc.); such sounds were also the most common incorrect
answers. This is as expected, because the synthesis process
was initialized with noise and in this condition simply altered its
spectrum. A more interesting pattern emerged for condition 2,
in which the cochlear marginal moments were imposed. In this
condition, but not others, the sounds most often identified
correctly, and chosen incorrectly, were water sounds. This is
readily apparent from listening to the synthetic examples—water
often sounds realistic when synthesized from its cochlear
marginals, and most other sounds synthesized this way sound
water-like.
Because the cochlear marginal statistics only constrain the

distribution of amplitudes within individual frequency channels,
this result suggests that the salient properties of water sounds
are conveyed by sparsely distributed, independent, bandpass
acoustic events. In Experiment 1b, we further explored this
result: in conditions 1 and 2 we again imposed marginal statis-
tics, but used filters that were either narrower or broader than
the filters found in biological auditory systems. Synthesis
with these alternative filters produced overall levels of perfor-
mance similar to the auditory filter bank (condition 3; Figure 5D),
but in both cases, water sounds were no longer the most
popular choices (Figures 5E and 5F; the four water categories
were all identified less well, and chosen incorrectly less often,
in conditions 1 and 2 compared to condition 3; p < 0.01,
sign test). It thus seems that the bandwidths of biological audi-
tory filters are comparable to those of the acoustic events
produced by water (see also Figure S3), and that water sounds
often have remarkably simple structure in peripheral auditory
representations.
Although cochlear marginal statistics are adequate to convey

the sound of water, in general they are insufficient for recognition
(Figure 5A). One might expect that with a large enough set of
filters, marginal statistics alone would produce better synthesis,
because each filter provides an additional set of constraints on
the sound signal. However, our experiments indicate otherwise.
When we synthesized sounds using a filter bank with the band-
widths of our canonical model, but with four times asmany filters
(such that adjacent filters overlapped more than in the original
filter bank), identification was not significantly improved [Fig-
ure 5D; condition 4 versus 3, t(9) = 1.27, p = 0.24]. Similarly,
onemight suppose that constraining the full marginal distribution
(as opposed to just matching the four moments in our model)
might capture more structure, but we found that this also failed
to produce improvements in identification [Figure 5D; condition
5 versus 3, t(9) = 1.84, p = 0.1; Figure S4]. These results suggest
that cochlear marginal statistics alone, irrespective of how
exhaustively they are measured, cannot account for our percep-
tion of texture.
Because the texture model is independent of the signal length,

we could measure statistics from signals much shorter or longer
than those being synthesized. In both cases the results generally
sounded as compelling as if the synthetic and original signals
were the same length. To verify this empirically, in condition 7
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we used excerpts of 15 s signals synthesized from 7 s originals.
Identification performance was unaffected [Figure 5D; condition
7 versus 6; t(9) = 0.5, p = 0.63], indicating that these longer
signals captured the texture qualities as well as signals more
comparable to the original signals in length.

Experiment 2: Necessity of Each Class of Statistic
We found that each class of statistic was perceptually neces-
sary, in that its omission from the model audibly impaired the
quality of some synthetic sounds. To demonstrate this empiri-
cally, in Experiment 2a we presented listeners with excerpts
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Figure 4. Synthesis Algorithm and Example Results
(A) Schematic of synthesis procedure. Statistics are measured after a sound recording is passed through the auditory model of Figure 1. Synthetic signal is

initialized as noise, and the original sound’s statistics are imposed on its cochlear envelopes. The modified envelopes are multiplied by their associated fine

structure, and then recombined into a sound signal. The procedure is iterated until the synthesized signal has the desired statistics.

(B) Spectrograms of original and synthetic versions of several sounds (same amplitude scale for all sounds). See also Figure S1 and Figure S2.
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of original texture recordings followed by two synthetic
versions—one synthesized using the full set of model statistics,
and the other synthesized with one class omitted—and asked
them to judge which synthetic version sounded more like the
original. Figure 6A plots the percentage of trials on which the
full set of statistics was preferred. In every condition, this
percentage was greater than that expected by chance (t tests,
p < 0.01 in all cases, Bonferroni corrected), though the prefer-
ence was stronger for some statistic classes than others
[F(4,36) = 15.39, p < 0.0001].

The effect of omitting a statistic class was not noticeable for
every texture. A potential explanation is that the statistics of
many textures are close to those of noise for some subset of
statistics, such that omitting that subset does not cause the
statistics of the synthetic result to deviate much from the correct

values (because the synthesis is initialized with noise). To test
this idea, we computed the difference between each sound’s
statistics and those of pink (1/f) noise, for each of the five statistic
classes. When we reanalyzed the data including only the 30% of
sounds whose statistics were most different from those of noise,
the proportion of trials on which the full set of statistics was
preferred was significantly higher in each case (t tests, p <
0.05). Including a particular statistic in the synthesis process
thus tends to improve realism when the value of that statistic
deviates from that of noise. Because of this, not all statistics
are necessary for the synthesis of every texture (although all
statistics presumably contribute to the perception of every
texture—if the values were actively perturbed from their correct
values, whether noise-like or not, we found that listeners gener-
ally noticed).
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Figure 5. Experiment 1: Texture Identification
(A) Identification improves as more statistics are included in the synthesis. Asterisks denote significant differences between conditions, p < 0.01 (paired t tests,

corrected for multiple comparisons). Here and elsewhere, error bars denote standard errors and dashed lines denote the chance level of performance.

(B) The five categories correctly identified most often for conditions 1 and 2, with mean percent correct in parentheses.

(C) The five categories chosen incorrectly most often for conditions 1 and 2, with mean percent trials chosen (of those where they were a choice) in parentheses.

(D) Identification with alternative marginal statistics, and long synthetic signals. Horizontal lines indicate nonsignificant differences (p > 0.05).

(E and F) The five (E) most correctly identified and (F) most often incorrectly chosen categories for conditions 1–3. See also Figure S3 and Figure S4.
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We expected that the C2 correlation, which measures phase
relations between modulation bands, would help capture the
temporal asymmetry of abrupt onsets or offsets. To test this
idea, we separately analyzed sounds that visually or audibly
possessed such asymmetries (explosions, drum beats, etc.).
For this subset of sounds, and for other randomly selected
subsets, we computed the average proportion of trials in which
synthesis with the full set of statistics was preferred over that
with the C2 correlation omitted. The preference for the full set
of statistics was larger in the asymmetric sounds than in
99.96% of other subsets, confirming that the C2 correlations
were particularly important for capturing asymmetric structure.
It is also notable that omitting the cochlear marginal moments

produced a noticeable degradation in realism for a large fraction
of sounds, indicating that the sparsity captured by these statis-
tics is perceptually important. As a further test, we explicitly

forced sounds to be nonsparse and examined the effect on
perception. We synthesized sounds using a hybrid set of statis-
tics in which the envelope variance, skew, and kurtosis were
taken from pink noise, with all other statistics given the correct
values for a particular real-world sound. Because noise is non-
sparse (the marginals of noise lie at the lower extreme of the
values for natural sounds; Figure 2), this manipulation forced
the resulting sounds to lack sparsity but to maintain the other
statistical properties of the original sound. We found that the
preference for signals with the correct marginals was enhanced
in this condition [1 versus 2, t(9) = 8.1, p < 0.0001; Figure 6B],
consistent with the idea that sparsity is perceptually important
for most natural sound textures. This result is also an indication
that the different classes of statistic are not completely indepen-
dent: constraining the other statistics had some effect on the
cochlear marginals, bringing them closer to the values of the
original sound even if they themselves were not explicitly con-
strained. We also found that listeners preferred sounds synthe-
sized with all four marginal moments to those with the skew
and kurtosis omitted (t(8) = 4.1, p = 0.003). Although the variance
alone contributes substantially to sparsity, the higher-order
moments also play some role.

Experiment 3: Statistics of Nonbiological Sound
Representations
How important are the biologically inspired features of our
model? One might expect that any large and varied set of statis-
tics would produce signals that resemble the originals. As a test,
we altered our model in three respects: (1) removing cochlear
compression, (2), altering the bandwidths of the ‘‘cochlear’’
filters, and (3) altering the bandwidths of the modulation filters
(rows four, two, and six of Figure 1). In the latter two cases, line-
arly spaced filter banks were substituted for the log-spaced filter
banks found in biological auditory systems (Figure 6C). We also
included a condition with all three alterations. Each altered
model was used both to measure the statistics in the original
sound signal, and to impose them on synthetic sounds. In all
cases, the number of filters was preserved, and thus all models
had the same number of statistics.
We again performed an experiment in which listeners judged

which of two synthetic sounds (one generated from our biolog-
ically inspired model, the other from one of the nonbiological
models) more closely resembled the original from which their
statistics were measured. In each condition, listeners preferred
synthetic sounds produced by the biologically inspired model
(Figure 6D; sign tests, p < 0.01 in all conditions), supporting
the notion that the auditory system represents textures using
statistics similar to those in this model.

Experiment 4: Realism Ratings
To illustrate the overall effectiveness of the synthesis, we
measured the realism of synthetic versions of every sound in
our set. Listeners were presented with an original recording fol-
lowed by a synthetic signal matching its statistics. They rated the
extent to which the synthetic signal was a realistic example of the
original sound, on a scale of 1–7. Most sounds yielded average
ratings above 4 (Figures 7A and 7B; Table S1). The sounds
with low ratings, however, are of particular interest, as they are

0

20

40

60

80

100

5) C
2 Corr.

* * *
*

*

%
 P

re
fe

rr
ed

 F
ul

l S
ta

ts
.

4) C
1 Corr.

3) M
od. P

ower

1) C
och. M

arg.

2) C
och. C

orr.
0

20

40

60

80

100

%
 P

re
fe

rr
ed

 O
rig

. M
ar

g.

3) N
o Skew/Kurt.

2) N
o Marg.

1) N
oise Marg.

*

*

BA

0

20

40

60

80

100

%
 P

re
fe

rr
ed

 B
io

lo
gi

ca
l

3) Linear M
od.

1) N
o Comp.

2) Linear C
och.

D

*
*

*

*

Log-Spaced Filter Bank

Linearly-Spaced Filter Bank

A
tte

nu
ta

tio
n 

(d
B

)

C

Frequency (Hz)0 10000
-30

0

-30

0

4) Linear Filts., 

No Comp.

Figure 6. Experiments 2 and 3: Omitting and Manipulating Statistics
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omitted. In condition 1, the envelope mean was imposed, to ensure that the

spectrum was approximately correct. Asterisks denote significant differences

from chance, p < 0.01.

(B) Experiment 2b: sounds with the correct cochlear marginal statistics were

preferred over those with (1), the cochlear marginal moments of noise; (2), all

cochlear marginals omitted (as in condition 1 of [A]); or (3), the skew and

kurtosis omitted. Asterisks denote significant differences from chance or

between conditions, p < 0.01.

(C) Frequency responses of logarithmically and linearly spaced cochlear filter

banks.

(D) Experiment 3: sounds synthesized with a biologically plausible auditory

model were preferred over those synthesized with models deviating from

biology (by omitting compression, or by using linearly spaced cochlear or

modulation filter banks). Asterisks denote significant differences from chance,

p < 0.01.
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statistically matched to the original recordings and yet do not
sound like them. Figure 7C lists the sounds with average ratings
below 2. They fall into three general classes—those involving
pitch (railroad crossing, wind chimes, music, speech, bells),
rhythm (tapping, music, drumming), and reverberation (drum
beats, firecrackers); see also Figure S5. This suggests that the
perception of these sound attributes involves measurements
substantially different from those in our model.

DISCUSSION

We have studied ‘‘sound textures,’’ a class of sounds produced
by multiple superimposed acoustic events, as are common to
many natural environments. Sound textures are distinguished
by temporal homogeneity, and we propose that they are re-
presented in the auditory system with time-averaged statistics.
We embody this hypothesis in a model based on statistics
(moments and correlations) of a sound decomposition like that
found in the subcortical auditory system. To test the role of these
statistics in texture recognition, we conducted experiments with
synthetic sounds matching the statistics of various real-world
textures. We found that (1) such synthetic sounds could be accu-
rately recognized, andat levels far better than if only the spectrum
or sparsity was matched, (2) eliminating subsets of the statistics
in themodel reduced the realismof the synthetic results, (3)modi-
fying the model to less faithfully mimic the mammalian auditory
system also reduced the realism of the synthetic sounds, and
(4) the synthetic results were often realistic, but failed markedly
for a few particular sound classes.

Our results suggest that when listeners recognize the sound
of rain, fire, insects, and other such sounds, they are recog-
nizing statistics of modest complexity computed from the
output of the peripheral auditory system. These statistics are
likely measured at downstream stages of neural processing,
and thus provide clues to the nature of mid-level auditory
computations.

Neural Implementation
Because texture statistics are time averages, their computation
can be thought of as involving two steps: a nonlinear function
applied to the relevant auditory response(s), followed by an
average over time. A moment, for instance, could be computed
by a neuron that averages its input (e.g., a cochlear envelope)
after raising it to a power (two for the variance, three for the
skew, etc.). We found that envelope moments were crucial for
producing naturalistic synthetic sounds. Envelope moments
convey sparsity, a quality long known to differentiate natural
signals from noise (Field, 1987) and one that is central to many
recent signal-processing algorithms (Asari et al., 2006; Bell and
Sejnowski, 1996). Our results thus suggest that sparsity is repre-
sented in the auditory system and used to distinguish sounds.
Although definitive characterization of the neural locus awaits,
neural responses in the midbrain often adapt to particular ampli-
tude distributions (Dean et al., 2005; Kvale and Schreiner, 2004),
raising the possibility that envelope moments may be computed
subcortically. Themodulation power (also amarginal moment) at
particular rates also seems to be reflected in the tuning of many
thalamic and midbrain neurons (Joris et al., 2004).
The other statistics in our model are correlations. A correlation

is the average of a normalized product (e.g., of two cochlear
envelopes), and could be computed as such. However, a correla-
tion can also be viewed as the proportion of variance in one vari-
able that is shared by another, which is partly reflected in the vari-
ance of the sum of the variables. This formulation provides an
alternative implementation (see Experimental Procedures), and
illustrates that correlations in one stage of representation (e.g.,
bandpass cochlear channels) can be reflected in the marginal
statistics of the next (e.g., cortical neurons that sum input from
multiple channels), assuming appropriate convergence. All of
the texture statistics we have considered could thus reduce to
marginal statistics at different stages of the auditory system.
Neuronal tuning to texture statistics could be probed using

synthetic stimuli whose statistics are parametrically varied.
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Figure 7. Experiment 4: Realism Ratings
(A) Histogram of average realism ratings for each sound in our set.

(B) List of 20 sound textures with high average ratings. Multiple examples of similar sounds are omitted for brevity.

(C) List of all sounds with average realism ratings <2, along with their average rating. See Table S1 for complete list. See also Figure S5.
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Stationary artificial sounds have a long history of use in psycho-
acoustics and neurophysiology, with recent efforts to incorpo-
rate naturalistic statistical structure (Attias and Schreiner,
1998; Garcia-Lazaro et al., 2006; McDermott et al., 2011; Over-
ath et al., 2008; Rieke et al., 1995; Singh and Theunissen, 2003).
Stimuli synthesized from our model capture naturally occurring
sound structure while being precisely characterized within an
auditory model. They offer a middle ground between natural
sounds and the tones and noises of classical hearing research.

Relation to Visual Texture
Visual textures, unlike their auditory counterparts, have been
studied intensively for decades (Julesz, 1962), and our work
was inspired by efforts to understand visual texture using
synthesis (Heeger and Bergen, 1995; Portilla and Simoncelli,
2000; Zhu et al., 1997). How similar are visual and auditory
texture representations? For ease of comparison, Figure 8
shows amodel diagram of the most closely related visual texture
model (Portilla and Simoncelli, 2000), analogous in format to our
auditory model (Figure 1) but with input signals and representa-
tional stages that vary spatially rather than temporally. The vision
model has two stages of linear filtering (corresponding to LGN
cells and V1 simple cells) followed by envelope extraction (corre-
sponding to V1 complex cells), whereas the auditory model has
the envelope operation sandwiched between linear filtering
operations (corresponding to the cochlea and midbrain/thal-
amus), reflecting structural differences in the two systems. There
are also notable differences in the stages at which statistics are
computed in the two models: several types of visual texture
statistics are computed directly on the initial linear filtering
stages, whereas the auditory statistics all follow the envelope

Figure 8. Analogous Model of Visual
Texture Representation
Model is depicted in a format like that of the

auditory texture model in Figure 1. An image of

beans (top row) is filtered into spatial frequency

bands by center-surround filters (second row), as

happens in the retina/LGN. The spatial frequency

bands (third row) are filtered again by orientation

selective filters (fourth row) analogous to V1 simple

cells, yielding scale and orientation filtered bands

(fifth row). The envelopes of these bands are ex-

tracted (sixth row) to produce analogs of V1

complex cell responses (seventh row). The linear

function at the envelope extraction stage indicates

the absence of the compressive nonlinearity

present in the auditory model. As in Figure 1, red

icons denote statistical measurements: marginal

moments of a single signal (M) or correlations

between two signals (AC, C1, or C2 for autocor-

relation, cross-band correlation, or phase-

adjusted correlation). C1 and C2 here and in Fig-

ure 1 denote conceptually similar statistics. The

autocorrelation (AC) is identical to C1 except that it

is computed within a channel. This model is

a variant of Portilla and Simoncelli (2000).

operation, reflecting the primary locus of
structure in images versus sounds.
However, the statistical computations

themselves—marginal moments and correlations—are concep-
tually similar in the twomodels. In both systems, relatively simple
statistics capture texture structure, suggesting that texture
perception, like filling in (McDermott and Oxenham, 2008;
Warren et al., 1972), and saliency (Cusack and Carlyon, 2003;
Kayser et al., 2005), may involve analogous computations across
modalities.
It will be interesting to explore whether the similarities between

modalities extend to inattention, to which visual texture is
believed to be robust (Julesz, 1962). Under conditions of focused
listening, we are often aware of individual events composing a
sound texture, presumably in addition to registering time-aver-
aged statistics that characterize the texture qualities. A classic
example is the ‘‘cocktail party problem,’’ in which we attend to
a single person talking in a room dense with conversations (Bee
and Micheyl, 2008; McDermott, 2009). Without attention, indi-
vidual voices or other sound sources are likely inaccessible, but
we may retain access to texture statistics that characterize the
combined effect of multiple sources, as is apparently the case
in vision (Alvarez andOliva, 2009). This possibility could be tested
in divided attention experiments with synthetic textures.

Texture Extensions
We explored the biological representation of sound texture using
a set of generic statistics and a relatively simple auditory model,
both of which could be augmented in interesting ways. The three
sources of information that contributed to the present work—
auditory neuroscience, natural sound analysis, and perceptual
experiments—all provide directions for such extensions.
The auditory model of Figure 1, from which statistics are com-

puted, captures neuronal tuning characteristics of subcortical
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structures. Incorporating cortical tuning properties would likely
extend the range of textures we can account for. For instance,
cortical receptive fields have spectral tuning that is more
complex and varied than that found subcortically (Barbour and
Wang, 2003; Depireux et al., 2001), and statistics of filters
modeled on their properties could capture higher-order structure
that our current model does not. As discussed earlier, the cor-
relations computed on subcortical representations could then
potentially be replaced by marginal statistics of filters at a later
stage.

It may also be possible to derive additional or alternative
texture statistics from an analysis of natural sounds, similar in
spirit to previous derivations of cochlear and V1 filters from
natural sounds and images (Olshausen and Field, 1996; Smith
and Lewicki, 2006), and consistent with other examples of con-
gruence between properties of perceptual systems and natural
environments (Attias and Schreiner, 1998; Garcia-Lazaro et al.,
2006; Lesica and Grothe, 2008; Nelken et al., 1999; Rieke
et al., 1995; Rodrı́guez et al., 2010; Schwartz and Simoncelli,
2001; Woolley et al., 2005). We envision searching for statistics
that vary maximally across sounds and would thus be optimal
for recognition.

The sound classes for which the model failed to pro-
duce convincing synthetic examples (revealed by Experiment
4) also provide directions for exploration. Notable failures include
textures involving pitched sounds, reverberation, and rhythmic
structure (Figure 7, Table S1, and Figure S5). It was not obvious
a priori that these sounds would produce synthesis failures—
they each contain spectral and temporal structures that are
stationary (given a moderately long time window), and we antic-
ipated that they might be adequately constrained by the model
statistics. However, our results show that this is not the case,
suggesting that the brain is measuring something that the model
is not.

Rhythmic structure might be captured with another stage of
envelope extraction and filtering, applied to the modulation
bands. Such filters would measure ‘‘second-order’’ modulation
of modulation (Lorenzi et al., 2001), as is common in rhythmic
sounds. Alternatively, rhythm could involve a measure specifi-
cally of periodic modulation patterns. Pitch and reverberation
may also implicate dedicated mechanisms. Pitch is largely
conveyed by harmonically related frequencies, which are not
made explicit by the pair-wise correlations across frequency
found in our current model (see also Figure S5). Accounting for
pitch is thus likely to require a measure of local harmonic struc-
ture (de Cheveigne, 2004). Reverberation is also well understood
from a physical generative standpoint, as linear filtering of a
sound source by the environment (Gardner, 1998), and is used
to judge source distance (Zahorik, 2002) and environment prop-
erties. However, a listener has access only to the result of envi-
ronmental filtering, not to the source or the filter, implying that
reverberation must be reflected in something measured from
the sound signal (i.e., a statistic). Our synthesis method provides
an unexplored avenue for testing theories of the perception of
these sound properties.

One other class of failures involved mixtures of two sounds
that overlap in peripheral channels but are acoustically distinct,
such as broadband clicks and slow bandpass modulations.

These failures likely result because the model statistics are aver-
ages over time, and combine measurements that should be
segregated. This suggests a more sophisticated form of esti-
mating statistics, in which averaging is performed after (or in
alternation with) some sort of clustering operation, a key ingre-
dient in recent models of stream segregation (Elhilali and
Shamma, 2008).

Using Texture to Understand Recognition
Recognition is challenging because the sensory input arising
from different exemplars of a particular category in the world
often varies substantially. Perceptual systems must process
their input to obtain representations that are invariant to the vari-
ation within categories, while maintaining selectivity between
categories (DiCarlo and Cox, 2007). Our texture model incorpo-
rates an explicit form of invariance by representing all possible
exemplars of a given texture (Figure S2) with a single set of
statistic values. Moreover, different textures produce different
statistics, providing an implicit form of selectivity. However, our
model captures texture properties with a large number of simple
statistics that are partially redundant. Humans, in contrast, cate-
gorize sounds into semantic classes, and seem to have
conscious access to a fairly small set of perceptual dimensions.
It should be possible to learn such lower-dimensional represen-
tations of categories from our sound statistics, combining the
full set of statistics into a small number of ‘‘metastatistics’’ that
relate to perceptual dimensions. We have found, for instance,
that most of the variance in statistics over our collection of
sounds can be captured with a moderate number of their prin-
cipal components, indicating that dimensionality reduction is
feasible.
The temporal averaging through which our texture statistics

achieve invariance is appropriate for stationary sounds, and it
is worth considering how this might be relaxed to represent
sounds that are less homogeneous. A simple possibility involves
replacing the global time-averages with averages taken over
a succession of short timewindows. The resulting local statistical
measures would preserve some of the invariance of the global
statistics, but would follow a trajectory over time, allowing repre-
sentation of the temporal evolution of a signal. By computing
measurements averaged within windows of many durations,
the auditory system could derive representations with varying
degrees of selectivity and invariance, enabling the recognition
of sounds spanning a continuum from homogeneous textures
to singular events.

EXPERIMENTAL PROCEDURES

Auditory Model
Our synthesis algorithm utilized a classic ‘‘subband’’ decomposition in which

a bank of cochlear filters were applied to a sound signal, splitting it into

frequency channels. To simplify implementation, we used zero-phase filters,

with Fourier amplitude shaped as the positive portion of a cosine function.

We used a bank of 30 such filters, with center frequencies equally spaced

on an equivalent rectangular bandwidth (ERB)N scale (Glasberg and Moore,

1990), spanning 52–8844 Hz. Their (3 dB) bandwidths were comparable to

those of the human ear (!5% larger than ERBsmeasured at 55 dB sound pres-

sure level (SPL); we presented sounds at 70 dB SPL, at which human auditory

filters are somewhat wider). The filters did not replicate all aspects of biological
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auditory filters, but perfectly tiled the frequency spectrum—the summed

squared frequency response of the filter bank was constant across frequency

(to achieve this, the filter bank also included lowpass and highpass filters at the

endpoints of the spectrum). The filter bank thus had the advantage of being

invertible: each subband could be filtered again with the corresponding filter,

and the results summed to reconstruct the original signal (as is standard in

analysis-synthesis subband decompositions [Crochiere et al., 1976]).

The envelope of each subband was computed as the magnitude of its

analytic signal, and the subband was divided by the envelope to yield the

fine structure. The fine structure was ignored for the purposes of analysis

(measuring statistics). Subband envelopes were raised to a power of 0.3 to

simulate basilar membrane compression. For computational efficiency, statis-

tics were measured and imposed on envelopes downsampled (following low-

pass filtering) to a rate of 400 Hz. Although the envelopes of the high-frequency

subbands contained modulations at frequencies above 200 Hz (because

cochlear filters are broad at high frequencies), these were generally low in

amplitude. In pilot experiments we found that using a higher envelope sam-

pling rate did not produce noticeably better synthetic results, suggesting the

high frequency modulations are not of great perceptual significance in this

context.

The filters used to measure modulation power also had half-cosine fre-

quency responses, with center frequencies equally spaced on a log scale

(20 filters spanning 0.5–200 Hz), and a quality factor of 2 (for 3 dB bandwidths),

consistent with those in previous models of human modulation filtering (Dau

et al., 1997), and broadly consistent with animal neurophysiology data (Miller

et al., 2002; Rodrı́guez et al., 2010). Although auditory neurons often exhibit

a degree of tuning to spectral modulation as well (Depireux et al., 2001; Rodrı́-

guez et al., 2010; Schönwiesner and Zatorre, 2009), this is typically less pro-

nounced than their temporal modulation tuning, particularly early in the audi-

tory system (Miller et al., 2002), and we elected not to include it in our

model. Because 200Hzwas the Nyquist frequency, the highest frequency filter

consisted only of the lower half of the half-cosine frequency response.

We used a smaller set of modulation filters to compute the C1 and C2

correlations, in part because it was desirable to avoid large numbers of unnec-

essary statistics, and in part because the C2 correlations necessitated octave-

spaced filters (see below). These filters also had frequency responses that

were half-cosines on a log-scale, but were more broadly tuned (Q=
ffiffiffi
2

p
),

with center frequencies in octave steps from 1.5625 to 100 Hz, yielding seven

filters.

Boundary Handling
All filtering was performed in the discrete frequency domain, and thus

assumed circular boundary conditions. To avoid boundary artifacts, the statis-

tics measured in original recordings were computed as weighted time-aver-

ages. The weighting window fell from one to zero (half cycle of a raised cosine)

over the 1 s intervals at the beginning and end of the signal (typically a 7 s

segment), minimizing artifactual interactions. For the synthesis process, statis-

tics were imposed with a uniform window, so that they would influence the

entire signal. As a result, continuity was imposed between the beginning and

end of the signal. This was not obvious from listening to the signal once, but

it enabled synthesized signals to be played in a continuous loop without

discontinuities.

Statistics
We denote the kth cochlear subband envelope by sk(t), and the windowing

function by w(t), with the constraint that
P

t wðtÞ= 1. The nth modulation

band of cochlear envelope sk is denoted by bk,n(t), computed via convolution

with filter fn.

Cochlear Marginal Statistics

Our texture representation includes the first four normalized moments of the

envelope:

M1k =mk =
X

t

wðtÞskðtÞ;

M2k =
s2
k

m2
k

=

P
t wðtÞðskðtÞ $ mkÞ

2

m2
k

;

M3k =

P
t wðtÞðskðtÞ $ mkÞ

3

s3
k

;

and

M4k =

P
t wðtÞðskðtÞ $ mkÞ

4

s4
k

k˛½1.32& in each case:

The variance was normalized by the squared mean, so as to make it dimen-

sionless like the skew and kurtosis.

The envelope variance, skew, and kurtosis reflect subband sparsity. Spar-

sity is often associated with the kurtosis of a subband (Field, 1987), and prelim-

inary versions of our model were also based on this measurement (McDermott

et al., 2009). However, the envelope’s importance in hearing made its

moments a more sensible choice, and we found them to capture similar spar-

sity behavior.

Figures 2D–2G show the marginal moments for each cochlear envelope of

each sound in our ensemble. All four statistics vary considerably across natural

sound textures. Their values for noise are also informative. The envelope

means, which provide a coarse measure of the power spectrum, do not

have exceptional values for noise, lying in the middle of the set of natural

sounds. However, the remaining envelope moments for noise all lie near the

lower bound of the values obtained for natural textures, indicating that natural

sounds tend to be sparser than noise (see also Experiment 2b) (Attias and

Schreiner, 1998).

Cochlear Cross-Band Envelope Correlation

Cjk =
X

t

wðtÞ
"
sjðtÞ $ mj

#
ðskðtÞ $ mkÞ

sjsk
; j; k˛½1.32&

such that ðk $ jÞ˛½1; 2; 3;5; 8; 11; 16; 21&:

Our model included the correlation of each cochlear subband envelope with

a subset of eight of its neighbors, a number that was typically sufficient to

reproduce the qualitative form of the full correlation matrix (interactions

between overlapping subsets of filters allow the correlations to propagate

across subbands). This was also perceptually sufficient: we found informally

that imposing fewer correlations sometimes produced perceptually weaker

synthetic examples, and that incorporating additional correlations did not

noticeably improve the results.

Figure 3B shows the cochlear correlations for recordings of fire, applause,

and a stream. The broadband events present in fire and applause, visible as

vertical streaks in the spectrograms of Figure 4B, produce correlations

between the envelopes of different cochlear subbands. Cross-band correla-

tion, or ‘‘comodulation,’’ is common in natural sounds (Nelken et al., 1999),

and we found it to be to be a major source of variation among sound textures.

The stream, for instance, contains much weaker comodulation.

The mathematical form of the correlation does not uniquely specify the

neural instantiation. It could be computed directly, by averaging a product

as in the above equation. Alternatively, it could be computed with squared

sums and differences, as are common in functional models of neural compu-

tation (Adelson and Bergen, 1985):

Cjk =
X

t

wðtÞ
"
sjðtÞ $ mj + skðtÞ $ mk

#2$
"
sjðtÞ $ mj $ skðtÞ+mk

#2

4sjsk
:

Modulation Power

For the modulation bands, the variance (power) was the principal marginal

moment of interest. Collectively, these variances indicate the frequencies

present in an envelope. Analogous quantities appear to be represented by

the modulation-tuned neurons common to the early auditory system (whose

responses code the power in their modulation passband). To make the modu-

lation power statistics independent of the cochlear statistics, we normalized

each by the variance of the corresponding cochlear envelope; the measured

statistics thus represent the proportion of total envelope power captured by

each modulation band:

Mk;n =

P
t wðtÞbk;nðtÞ2

s2
k

; k˛½1.32&; n˛½1.20&:
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Note that the mean of the modulation bands is zero (because the filters fn are

zero-mean). The other moments of the modulation bands were either uninfor-

mative or redundant (see Supplemental Experimental Procedures) and were

omitted from the model.

The modulation power implicitly captures envelope correlations across

time, and is thus complementary to the cross-band correlations. Figure 3A

shows the modulation power statistics for recordings of swamp insects, lake

shore waves, and a stream.

Modulation Correlations

These correlations were computed using octave-spaced modulation filters

(necessitated by the C2 correlations), the resulting bands of which are denoted

by ~bk;nðtÞ.
The C1 correlation is computed between bands centered on the same

modulation frequency but different acoustic frequencies:

C1jk;n =

P
t wðtÞ ~bj;nðtÞ ~bk;nðtÞ

sj;nsk;n
; j˛½1.32&; ðk $ jÞ˛½1;2&; n˛½2.7&;

and

sj;n =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

t

wðtÞ ~bj;nðtÞ2
r

:

We imposed correlations between eachmodulation filter and its two nearest

neighbors along the cochlear axis, for six modulation bands spanning

3–100 Hz.

C1 correlations are shown in Figure 3C for the sounds of waves and fire. The

qualitative pattern of C1 correlations shown for waves is typical of a number of

sounds in our set (e.g., wind). These sounds exhibit low-frequency modula-

tions that are highly correlated across cochlear channels, but high-frequency

modulations that are largely independent. This effect is not simply due to the

absence of high-frequency modulation, as most such sounds had substantial

power at high modulation frequencies (comparable to that in pink noise,

evident from dB values close to zero in Figure 3A). In contrast, for fire (and

many other sounds), both high and low frequency modulations exhibit correla-

tions across cochlear channels. Imposing the C1 correlations was essential to

synthesizing realistic waves and wind, among other sounds. Without them, the

cochlear correlations affected both high and low modulation frequencies

equally, resulting in artificial sounding results for these sounds.

C1 correlations did not subsume cochlear correlations. Even when larger

numbers of C1 correlations were imposed (i.e., across more offsets), we found

informally that the cochlear correlations were necessary for high quality

synthesis.

The second type of correlation, labeled C2, is computed between bands of

different modulation frequencies derived from the same acoustic frequency

channel. This correlation represents phase relations between modulation fre-

quencies, important for representing abrupt onsets and other temporal asym-

metries. Temporal asymmetry is common in natural sounds, but is not cap-

tured by conventional measures of temporal structure (e.g., the modulation

spectrum), as they are invariant to time reversal (Irino and Patterson, 1996).

Intuitively, an abrupt increase in amplitude (e.g., a step edge) is generated

by a sum of sinusoidal envelope components (at different modulation frequen-

cies) that are aligned at the beginning of their cycles (phase – p/2), whereas an

abrupt decrease is generated by sinusoids that align at the cycle midpoint

(phasep/2), and an impulse (e.g., a click) has frequency components that align

at their peaks (phase 0). For sounds dominated by one of these feature types,

adjacent modulation bands thus have consistent relative phase in places

where their amplitudes are high. We captured this relationship with a

complex-valued correlation measure (Portilla and Simoncelli, 2000).

We first define analytic extensions of the modulation bands:

ak;nðtÞh ~bk;nðtÞ+ iH
$
~bk;nðtÞ

%
;

where H denotes the Hilbert transform and i =
ffiffiffiffiffiffiffi
$1

p
.

The analytic signal comprises the responses of the filter and its quadrature

twin, and is thus readily instantiated biologically. The correlation has the

standard form, except it is computed between analytic modulation bands

tuned to modulation frequencies an octave apart, with the frequency of the

lower band doubled. Frequency doubling is achieved by squaring the

complex-valued analytic signal:

dk;nðtÞ=
a2k;nðtÞ

kak;nðtÞk
;

yielding

C2k;mn =

P
t wðtÞd'

k;mðtÞak;nðtÞ
sk;msk;n

;

k ˛ [1.32], m ˛ [1.6], and (n $ m) = 1, where * and k,k denote the complex

conjugate and modulus, respectively.

Because the bands result from octave-spaced filters, the frequency

doubling of the lower-frequency band causes them to oscillate at the same

rate, producing a fixed phase difference between adjacent bands in

regions of large amplitude. We use a factor of 2 rather than something smaller

because the operation of exponentiating a complex number is uniquely

defined only for integer powers. See Figure S6 for further explanation.

C2k,mn is complex valued, and the real and imaginary partsmust be indepen-

dently measured and imposed. Example sounds with onsets, offsets, and

impulses are shown in Figure 3D along with their C2 correlations.

In total, there are 128 cochlear marginal statistics, 189 cochlear cross-corre-

lations, 640 modulation band variances, 366 C1 correlations, and 192 C2

correlations, for a total of 1515 statistics.

Imposition Algorithm
Synthesis was driven by a set of statistics measured for a sound signal of

interest using the auditory model described above. The synthetic signal was

initialized with a sample of Gaussian white noise, and was modified with an

iterative process until it shared the measured statistics. Each cycle of the

iterative process, as illustrated in Figure 4A, consisted of the following steps:

(1) The synthetic sound signal is decomposed into cochlear subbands.

(2) Subband envelopes are computed using the Hilbert transform.

(3) Envelopes are divided out of the subbands to yield the subband fine

structure.

(4) Envelopes are downsampled to reduce computation.

(5) Envelope statistics aremeasured and compared to those of the original

recording to generate an error signal.

(6) Downsampled envelopes are modified using a variant of gradient

descent, causing their statistics to move closer to those measured in

the original recording.

(7) Modified envelopes are upsampled and recombined with the unmodi-

fied fine structure to yield new subbands.

(8) New subbands are combined to yield a new signal.

We performed conjugate gradient descent using Carl Rasmussen’s ‘‘mini-

mize’’ MATLAB function (available online). The objective function was the total

squared error between the synthetic signal’s statistics and those of the original

signal. The subband envelopes were modified one-by-one, beginning with the

subband with largest power, and working outwards from that. Correlations

between pairs of subband envelopes were imposed when the second sub-

band envelope contributing to the correlation was being adjusted.

Each episode of gradient descent resulted in modified subband envelopes

that approached the target statistics. However, there was no constraint forcing

the envelope adjustment to remain consistent with the subband fine structure

(Ghitza, 2001), or to produce new subbands that were mutually consistent (in

the sense that combining them would produce a signal that would yield the

same subbands when decomposed again). It was thus generally the case

that during the first few iterations, the envelopes measured at the beginning

of cycle n + 1 did not completely retain the adjustment imposed at cycle n,

because combining envelope and fine structure, and summing up the sub-

bands, tended to change the envelopes in ways that altered their statistics.

However, we found that with iteration, the envelopes generally converged to

a state with the desired statistics. The fine structure was not directly con-

strained, and relaxed to a state consistent with the envelope constraints.

Convergence was monitored by computing the error in each statistic at the

start of each iteration andmeasuring the signal-to-noise ratio (SNR) as the ratio
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of the squared error of a statistic class, summed across all statistics in the

class, to the sum of the squared statistic values of that class. The procedure

was halted once all classes of statistics were imposed with an SNR of 30 dB

or higher or when 60 iterations were reached. The procedure was considered

to have converged if the average SNR of all statistic classes was 20 dB or

higher. Occasionally the synthesis process converged to a local minimum in

which it failed to produce a signal matching the statistics of an original sound

according to our criterion. This was relatively rare, and such failures of conver-

gence were not used in experiments.

Although the statistics in our model constrain the distribution of the sound

signal, we have no explicit probabilistic formulation and as such are not guar-

anteed to be drawing samples from an explicit distribution. Instead, we qual-

itatively mimic the effect of sampling by initializing the synthesis with different

samples of noise (as in some visual texture synthesis methods) (Heeger and

Bergen, 1995; Portilla and Simoncelli, 2000). An explicit probabilistic model

could be developed via maximum entropy formulations (Zhu et al., 1997),

but sampling from such a distribution is generally computationally prohibitive.

SUPPLEMENTAL INFORMATION
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Figures S1. Additional examples of synthetic textures. Spectrograms for 10 additional 

examples of synthetic textures and the real-world sound textures whose statistics they were 

generated from. Two-second excerpts are shown, to make the rapid temporal structure more 

visible.
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Figure S2. Multiple synthetic texture exemplars generated from the same statistics. Each of 

the four examples of each sound was generated from a new sample of random noise using the 

same set of statistics (measured from the same sound recording of swamp insects (a, c, e, g), or 

seaside waves (b, d, f, h)). Spectrograms of the full 5 second synthetic excerpt are shown to 

make the slow fluctuations of the waves visible. It is visually apparent that the examples have 

similar texture qualities, but are nonetheless physically distinct. The texture statistics thus 

describe a large set of sounds (united by their texture qualities), and the synthesis process 

generates a different member of the set each time it is run.
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Figure S3. Realism of synthesis with filters narrower or broader than those in the cochlea. 

Results shown are from conditions 1 and 2 of Experiment 1c. Listeners heard a real-world 

texture followed by two synthetic versions, and chose which was a more realistic example of the 

original sound. Both synthetic sounds were generated from “cochlear”  marginal moments, either 

using filters with bandwidths comparable to those in the cochlea, or filters four times narrower 

(cond. 1) or four times broader (cond. 2). See Supp. Methods for details. The graphs plot the 

proportion of trials on which the synthesis using cochlear bandwidths was preferred to that using 

either broader or narrower filters, subdivided according to sound class. Asterisks denote 

significant differences from chance, uncorrected. Because synthesis with marginal statistics 

generates sounds with largely independent bandpass events, the filter bandwidths that are 

preferred provide an indication of the bandwidths of the acoustic generative process. Water is the 

only sound class for which synthesis with the correct cochlear filter bandwidths was significantly 

preferred over that with both broader and narrower filters. The bandwidth of water events thus 

seems to be comparable to the bandwidths of cochlear filters. Other classes of sounds exhibit 

alternative patterns. Fire, for instance, as well as other sounds with broadband events (frying, 

applause, rustling paper, pouring coins, radio static) tend to sound better when synthesized with 

filters broader than those found in the ear. Noise-like sounds (e.g. machinery, cymbals), whose 

perception is dominated by the shape of the power spectrum, appear to be better synthesized with 

a larger number of narrower filters, which can better recreate the original spectrum.
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Figure S4. Realism of synthesis with four times as many filters or full marginal histograms. 

Results shown are from conditions 3 and 4 of Experiment 1c. Listeners heard a real-world 

texture followed by two synthetic versions, and chose which was a more realistic example of the 

original sound. One of the synthetic versions was synthesized from our canonical model. The 

other was synthesized from a model with four times as many filters with the same bandwidth, or 

from the canonical model, but using the full marginal histogram in addition to the marginal 

moments. See Supplementary Methods for details. Y-axis plots the percent of trials on which 

synthesis with the canonical model was preferred. Unlike in Fig. S3, there were not clear 

differences across sound classes, and thus the results are collapsed across classes to show the 

overall difference between synthesis conditions. Neither synthesizing from the marginal statistics 

of four times as many filters nor from the full marginal histogram produced noticeably better 

synthetic results. This further supports the conclusions of Experiment 1b – that the failure of 

marginal statistics to capture the sound of non-water sounds reflects the importance of 

qualitatively different statistics that capture dependencies over time and frequency. Simply 

adding more marginal constraints (as one might be inclined to, given that the ear contains 

roughly 3000 hair cells rather than the 30 that we simulate in our model) does not serve to better 

capture sound structure. 
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Table S1. Synthetic textures ranked by realism ratings. Table displays the complete results of 

Experiment 4, in which listeners compared the results of our synthesis algorithm to the original 

sounds from which their statistics were measured. All 168 sounds are ranked by the average 

realism rating of the resulting synthetic signals. It is apparent that a wide range of natural 

environmental sounds are well synthesized. The lowest rated sounds provide indications of 

sound qualities that are not well-captured by such statistics, and that likely implicate more 

sophisticated acoustic measurements.

6.57 ! Insects in swamp
6.57 ! Heavy rain on hard surface
6.53 ! Frogs
6.53 ! Rain
6.47 ! Applause ! big room
6.43 ! Radio static
6.43 ! Stream
6.43 ! Jungle rain
6.40 ! Air conditioner
6.40 ! Stream near small waterfall
6.37 ! Frogs
6.37 ! Frogs and insects
6.37 ! Frying eggs
6.33 ! Frogs
6.33 ! Wind ! blowing
6.33 ! Wind ! whistling
6.33 ! Insects during day in South
6.30 ! Radio static
6.30 ! Frogs
6.30 ! Heavy rain falling and dripping
6.27 ! Applause ! large crowd
6.27 ! River running over shallows
6.27 ! Construction site ambience
6.23 ! Waterfall
6.20 ! Sparrows ! large excited group
6.17 ! Pneumatic drills
6.17 ! Small river
6.17 ! Fast running river
6.17 ! Rain in woods
6.13 ! Water trickling into pool
6.10 ! Bathroom sink
6.10 ! Water running into sink
6.03 ! Frying bacon
6.03 ! Rain in ihe woods
6.00 ! Fire ! forest inferno
5.97 ! Birds in forest
5.90 ! Linotype
5.90 ! Bee swarm
5.90 ! Applause
5.90 ! Bath being drawn
5.90 ! Rustling paper
5.87 ! Train speeding down railroad tracks ! steam
5.87 ! Rattlesnake rattle
5.83 ! Fire ! burning room
5.83 ! Bubbling water
5.83 ! Fire ! burning room
5.83 ! Thunder and rain
5.73 ! Fire
5.70 ! Wind ! moaning
5.70 ! Bulldozer
5.70 ! Babble
5.70 ! Fire
5.70 ! Wind ! spooky
5.70 ! Water lapping gently
5.67 ! Shaking coins
5.67 ! Helicopter
5.67 ! Seagulls
5.63 ! Crunching cellophane
5.63 ! Sander
5.60 ! Radio static
5.60 ! Teletype ! city room
5.57 ! Steam shovel
5.53 ! Pigeons cooing
5.50 ! Metal lathe
5.47 ! Bee swarm
5.47 ! Lapping waves
5.43 ! Geese cackling
5.40 ! Train speeding down railroad tracks ! Diesel
5.30 ! Lake shore
5.30 ! Sanding by hand
5.30 ! Blender
5.30 ! Teletype
5.30 ! Birds in tropical forest
5.27 ! Drumroll
5.27 ! Surf hitting beach
5.23 ! Industrial machinery
5.20 ! Crowd noise
5.20 ! Rolling coin
5.20 ! Ducks quacking
5.20 ! WWII bomber plane
5.17 ! Applause
5.17 ! Idling boat
5.17 ! Jackhammer
5.10 ! Brushing teeth

5.10 ! Horse trotting on cobblestones
5.07 ! Scratching beard
5.07 ! Printing press
5.07 ! Writing with pen on paper
5.00 ! Train locomotive ! steam engine
5.00 ! Helicopter fly by
4.97 ! Pouring coins
4.97 ! Motorcycle idling
4.97 ! Fire
4.93 ! Crumpling paper
4.87 ! Ship anchor being raised
4.87 ! Jingling keys
4.87 ! Electric adding machine
4.80 ! Horse walking in snow
4.73 ! Cymbals shaking
4.70 ! Fire ! in chimney
4.67 ! Tambourine shaking
4.67 ! Pouring coins
4.63 ! Rhythmic applause
4.63 ! Cat lapping milk
4.57 ! Seaside waves
4.43 ! Rustling paper
4.37 ! Horse pulling wagon
4.37 ! Vacuum cleaner
4.37 ! Horse and carriage
4.30 ! Power saw
4.30 ! Tire rolling on gravel
4.27 ! Horse and buggy
4.27 ! Steam engine
4.23 ! Cement mixer
4.23 ! Power saw
4.23 ! Castanets
4.23 ! Ox cart
4.20 ! Battle explosions
4.17 ! Chickens squawking
4.10 ! Rubbing cloth
4.03 ! Rain beating against window panes
3.97 ! Typewriter ! IBM electric
3.90 ! Lawn mower
3.77 ! Gargling
3.77 ! Horse gallop on soft ground
3.73 ! Applause ! foreground clapper
3.67 ! Sawing by hand
3.67 ! Crumpling paper
3.60 ! Wolves howling
3.60 ! Fast breathing
3.57 ! Dogs
3.40 ! Out of breath
3.23 ! Windshield wipers
3.20 ! Pile driver
3.13 ! Silly mouth noise
3.10 ! Large diner
3.00 ! Filing metal
2.90 ! Typewriter ! manual
2.83 ! Fire alarm bell
2.83 ! Knife sharpening
2.83 ! Typewriter ! old
2.70 ! Pile driver
2.70 ! Clock ticking
2.67 ! Jogging on gravel
2.67 ! Castanets
2.57 ! Hammering copper
2.47 ! Laughter
2.47 ! Tapping rhythm
2.37 ! Running up stairs
2.27 ! Typewriter ! IBM selectric
2.17 ! Men marching together
2.00 ! Tapping on hard surface
1.93 ! Railroad crossing
1.90 ! Tapping 1!2
1.77 ! Wind chimes
1.77 ! Corkscrew against desk edge
1.70 ! Reverse drum beats ! snare
1.70 ! Tapping  1!2!3
1.67 ! Snare drum beats
1.63 ! Walking on gravel
1.60 ! Snare rimshot sequence
1.60 ! Music ! Apache drum break
1.50 ! Music ! mambo
1.50 ! Bongo loop
1.47 ! Firecrackers
1.40 ! Person speaking French
1.37 ! Church bells
1.20 ! Person speaking English

Realism Expmt ! Sounds Ranked By Realism Rating
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Figure S5. Spectrograms of original and synthetic versions of artificial  sounds. Format is as 

in Fig. S1. Two-second excerpts are shown for clarity. The structure of regularly spaced noise 

bursts (white noise modulated with a square wave) is largely replicated, as shown in the first row. 

Regular tone bursts are also largely captured so long as the pitch remains constant, as in the 

second row. However, when the pitch varies, as in the third row, the harmonic relations are lost, 

indicating that they are not captured by the model statistics. This result is consistent with the 

failures documented in Fig. 7 and Table S1 for textures containing pitched sounds. A slightly 

more complex patterns of rhythmic modulation (bottom row) is also not captured by the model 

statistics, and is again consistent with the failures of Fig. 7 and Table S1. We note that the 

synthesis process sometimes failed to completely converge for simple artificial examples, instead 

getting stuck in local optima in which the statistics were not sufficiently close to the desired 

values. This rarely happened for real-world sound recordings, but the symmetry and binary 

nature of some artificial sounds made them more prone to this behavior.
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Supplemental Experimental Procedures

Sparsity and cochlear marginal statistics

Because the envelope is positive-valued, its moments are not independent – increasing the 

variance and kurtosis generally increases the skew as well, as the envelope can be pushed 

arbitrarily high, but not arbitrarily low. We thus found that these three moments were correlated 

across sounds, but that all three were nonetheless necessary to replicate the shape of marginal 

histograms when synthesizing sounds. Moreover, removing any of the three impaired the quality 

of the synthesis of some sounds (see Fig. 6b).

Modulation band moments

In contrast to the cochlear marginal statistics, which included each of the first four normalized 

moments, the modulation band marginal statistics were restricted to include only the variance 

(power). The other moments were omitted because they were either uninformative or redundant 

with other statistics. Because the modulation bands are computed with bandpass filters, their 

mean is always zero, and conveys no information about sound content. However, the skewness 

of the bands generally varied from sound to sound, and we initially thought it could play a role in 

capturing temporal asymmetry. The reasoning was as follows: Because anti-symmetric bandpass 

filters may be viewed as computing derivatives (Farid and Simoncelli, 2004), the modulation 

bands can encompass derivatives of an envelope (at a particular time scale). Derivatives reflect 

asymmetry - an abrupt onset followed by a more gradual decay, for instance, produces large-

magnitude positive derivatives and small-magnitude negative derivatives, yielding a distribution 

that is positively skewed. The skewness of a signal’s derivative thus seemed a promising way to 

capture temporal asymmetry in sound. However, we found in pilot experiments that its effect on 

the synthetic results was weak, and that the C2 correlations were more effective. We thus omitted 

it from the model, keeping only the modulation band variance.

Alternative Statistics

Other statistics that (a priori) seemed plausibly important also failed to produce noticeable 

perceptual effects. For instance, in pilot studies we examined the effect of multi-band 

“correlations”  based on the expected product of three or more cochlear envelopes. Although 

these statistics varied across sounds, and although the synthetic and original sound signals often 

had different values of these statistics if they were not imposed, their inclusion failed to improve 

the synthesis of any of the sounds for which it was tested (as judged subjectively by the authors). 

This indicates that not every statistic that exhibits variation across sounds has noticeable 

perceptual consequences, and underscores the importance of testing the perceptual effect of 

statistics with the synthesis methodology.

Autocorrelation

Preliminary versions of our texture model were based strictly on subband statistics, and included 

the autocorrelation of each subband envelope (computed at a set of lags) as a means of capturing 

temporal structure (McDermott, Oxenham, & Simoncelli, 2009). The present model omitted the 

autocorrelation in lieu of modulation power statistics (computed from modulation bands not 

present in our earlier model). Because of the equivalence between the autocorrelation and power 

spectrum, these two types of statistic capture qualitatively similar information, and if the entire 

autocorrelation function and modulation power spectrum were used, their effect would be fully 
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equivalent. In our implementations, however, we used a smaller set of statistics to approximate 

the full function/spectrum - for the autocorrelation, we used a small subset of all possible lags, 

and for the modulation spectrum, we used the power in each of a small set of modulation 

frequency bands. Although not formally equivalent, the two formulations had similar effects on 

the synthesis of most sounds. Modulation bands were used in the present model both because 

they are consistent with the known neurobiology of the auditory system, and because they 

allowed additional acoustic properties to be captured via correlations between bands (C1 and 

C2).

Detailed explanation of C2 correlation

The C2 correlation has the standard form of a correlation coefficient: 
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H  is the Hilbert transform. Because the signals in the correlation 

are complex-valued, their product has four terms, two real and two imaginary:
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where the superscripts R and I denote real and imaginary parts. Because the real and imaginary 

parts of each signal are in quadrature phase, the temporal expectation of 
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This formulation is similar to that of a statistic developed by Portilla and Simoncelli (2000) to 

capture phase relations between image subbands.

Supplemental Figure 6a shows example subband envelopes for three types of abrupt events that 

are common in sound: an onset, an offset, and a transient. Plotted below (Fig. S6b) are two 

modulation bands of each envelope, tuned to frequencies an octave apart. The three types of 

events are characterized by alignment of the bands in amplitude and in phase. The amplitude 

alignment is common to all three event types. The phase alignment, however, distinguishes the 

three event types, because the bands become aligned at different phase values (evident in Fig. 

S6b as well as in the phase angles, shown in Fig. S6c). 
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It would seem natural to capture this phase alignment by computing a correlation between bands. 

However, because the bands oscillate at different rates, the phase alignment is momentary – the 

two bands align and then move away from the point of alignment at different rates (evident in the 

different slopes of the phase plots in Fig. S6c). 

The phase alignment can be transformed into a constant phase difference by doubling the 

frequency of the lower frequency band. This is accomplished by squaring the analytic version of 

the band (doubling its frequency and squaring its magnitude), and then dividing by the 

magnitude to preserve the frequency doubling but retain the original magnitude: 

! 

d
k,n
(t) =

a
k,n

2
(t)

a
k,n
(t)

Fig. S6d plots the original band, the magnitude of its analytic signal, and the real part of the 

frequency-doubled analytic signal. It is apparent that the magnitude is preserved but that the new 

signal oscillates at twice the rate.

Doubling the frequency of the low band alters its phase at the point of alignment, but because the 

two bands are an octave apart, the phase of the frequency-doubled low band now advances at the 

same rate as the high band. This produces a constant phase offset in the vicinity of the original 

event. 

Fig. S6e illustrates this relationship, plotting the phase of the original high frequency band along 

with that of the frequency-doubled low frequency band. Note that there is now an extended 

region in which the phase offset between the two signals is relatively constant, and that the offset 

is different for each of the three event types – a positive step, a negative step, and a brief pulse, 

respectively. The constant phase offset occurs in the region where the amplitude is high (plotted 

in Fig. S6f for each band). The phase offset can be made explicit through the product of the two 

complex signals: 
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(t) , which multiplies the amplitudes and subtracts the phases. When 

this complex product is plotted in polar coordinates (Fig. S6g), it  is apparent that  the high 

amplitudes occur at particular phase values that are different for each of the three event types. 

The time-average of this complex product thus yields different values in the three cases. When 

normalized by the band variances, this time-averaged complex product is the C2 correlation: 
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, the real and imaginary components of which are shown on the 

plots in parentheses. 

For comparison, Fig. S6h plots the same complex product but without the frequency doubling: 
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bands without doubling: 
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 thus yields the same values in each case (again 

shown on the plots). A standard correlation thus indicates phase alignment, but not the phase 
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value at the point of alignment that is needed to distinguish event types. Our C2 correlation, in 

contrast, reveals the structure of interest.

Figure S6. The stages involved in computing the C2 correlation (on next page). The stages 

are illustrated for cochlear channel 8 and modulation bands 2 and 3. (a) Schematic subband 

envelopes for three event types: an onset, an offset, and a transient. (b) Modulation bands 2 and 3 

(tuned to frequencies an octave apart). (c) The phase angles of each band. The location of the 

event is indicated by the thin black vertical line. (d) The frequency-doubled low band, plotted on 

top of the original (undoubled) band, and their magnitude. (e) The phase angles of the frequency-

doubled low frequency band, and the original high frequency band. The black bracket below the 

graph indicates the region in which there is a constant phase offset between the bands. (f) 

Magnitude of each band. (g) Polar plot of the complex product of the frequency-doubled low 

band and the original high band. The C2 correlation (the vector average of this product, 

normalized by the standard deviations of the two bands) is shown in parentheses on each plot. (h) 

The same product computed without frequency doubling, with the corresponding correlation 

shown in parentheses on each plot.
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Sounds

Our set of natural sound textures was a mix of in-house recordings made by the authors, files 

downloaded from online sound repositories, and excerpts from sound effects CDs. The main 

criterion for inclusion in the set was that the sounds be approximately stationary (as judged 

subjectively by the authors), because the algorithm was not expected to successfully synthesize 

non-stationary sounds. See Supp. Table 1 for the full list of sounds. We used 7 sec segments to 

measure statistics. All sounds were resampled with a sampling rate of 20 kHz and normalized to 

a fixed rms amplitude. 

Psychophysical Experiments

Subjects performed experiments seated in a sound-attenuating booth (Gretchken Industries). 

Sounds were presented diotically at 70 dB SPL over Sennheiser HD580 headphones, via a 

LynxStudio Lynx22 24-bit D/A converter with a sampling rate of 48 kHz. Sounds were 

synthesized to be 5 sec in duration. The middle 4 sec was excerpted for use in experiments, with 

10 ms half-Hanning windows applied to each end. The only exception to this was condition 7 of 

Experiment 1b, in which 15 sec sounds were synthesized, from which the middle 4 seconds was 

excerpted for use in the experiment. Multiple synthetic versions were generated for all 

experimental conditions, (two per condition for Experiments 1-3, and three for Experiment 4), 

one of which was randomly  chosen on each trial of an experiment (except for Experiment 4, in 

which listeners were presented with all three versions on separate trials). All participants were 

non-expert listeners and were naïve as to the purpose of the experiments.

Experiment 1a: Identification

On each trial, participants heard a 4 sec excerpt of either an original sound recording, or a 

synthetic signal with some subset of our model’s statistics matched to those of an original 

recording. They then selected a name for the sound from a list of five, by clicking a mouse. The 

sounds were drawn from a subset of 96 of the 168 sounds in our set, the sound of which we 

thought likely to be familiar to undergraduate subjects. These sounds were organized into groups 

whose sounds we thought were likely to be confusable (e.g. rain and river, WWII bomber plane 

and construction noise), and the incorrect choices on a trial were constrained not to be drawn 

from the sound’s confusion group. All sounds were used once per condition, for a total of 864 

trials completed in pseudo-random order. Ten subjects participated (9 female), averaging 22.2 

years of age. Subjects in Experiments 1a and 1b were not  given practice trials, and had not 

participated in any of our other experiments, such that  they had never heard any of the sounds or 

their synthetic versions prior to starting the experiment.

Experiment 1b: Identification, Part 2

The procedure for Experiment 1b was identical to that of Experiment 1a. Ten subjects 

participated (8 female) averaged 20.2 years of age.  

Experiments 1b and 1c utilized alternative models to test various hypotheses of interest. Two 

conditions featured sounds synthesized using a model with broader or narrower filters than those 

in our canonical model (whose filters were approximately matched to those of the human 
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auditory system). In these cases we used 7 and 120 filters, respectively, covering the same 

frequency range, again equally  spaced on an ERB scale, with adjacent filters overlapping by 

50%, and with lowpass and highpass filters on each end of the spectrum to assure perfect  tiling 

(and thus invertibility). Another condition used a model with the same filter bandwidths as the 

canonical model, but with neighboring filters that overlapped by 87.5%, producing four times as 

many filters over the same spectral range. These filter banks also had lowpass and highpass 

filters on the ends to produce perfect tiling. We also included a condition in both experiments in 

which our canonical texture model was supplemented with marginal histogram matching, using 

128 bins per histogram (Heeger and Bergen, 1995).

Experiment 1c: Realism of Synthesis with Alternative Marginal Statistics

Experiment 1c extended the identification results of Experiment 1b by comparing the realism of 

sounds synthesized with different kinds of marginal statistics – those measured from our 

canonical model, or from alternative models, either with different filters or with a more 

comprehensive description of the filter marginal distributions. The results are shown in Figs. S3 

and S4.

The procedure was identical to that of Experiments 2 and 3 (described in full below). On each 

trial, participants heard an excerpt of an original recording followed by two synthetic excerpts, 

and selected the synthetic example that sounded like a more realistic example of the original. All 

synthetic excerpts were synthesized by imposing the “cochlear” marginal statistics of the original 

recording. One of the synthetic examples was always generated using biologically faithful 

cochlear bandwidths and the four marginal moments of our canonical model. The other synthetic 

example was generated using filters four times narrower (condition 1), filters four times broader 

(condition 2), four times as many filters with the same bandwidth (condition 3), or the filters of 

the canonical model, but using the full marginal histogram in addition to the marginal moments 

(condition 4). 

Experiment 1c used a smaller subset of 48 sound recordings that were subjectively judged to lack 

strong temporal structure (because the marginal statistics did not greatly constrain temporal 

structure, and we wanted to avoid large numbers of trials where both synthetic examples bore 

little resemblance to the original sound). All sounds were used in all conditions, yielding 192 

trials, completed in random order. For the analysis of Fig. S3, sounds were grouped into 12 

classes, each containing at least two sounds. Ten subjects participated (8 female), averaging 23.7 

years of age.

Experiment 2a: Omission

On each trial, participants heard a 4 sec excerpt of an original sound recording followed by two 

synthetic versions, with 400 ms of silence between sounds. One synthetic version was 

synthesized with the full set of statistics, and the other with all but one class of statistics. In the 

marginal condition, the envelope variance, skew, and kurtosis were omitted (the mean was left in 

to ensure the correct  spectrum). The order in which the two versions were presented was 

randomized. Listeners selected which version sounded like a more realistic example of the 

original. Ninety-eight original sounds (and their synthetic versions) were used. Each sound was 
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presented once per condition, for a total of 490 trials, completed in random order. All subjects 

were given 20 practice trials prior to starting the experiment. Ten subjects participated (8 

female), averaging 24.4 years of age.

The sound set was slightly  different from that used in Experiment 1 – some of the multiple 

versions of certain sound classes were removed to reduce redundancy, replaced by sounds that 

were omitted from Experiment 1 for reasons of their unfamiliarity (e.g. a “teletype”, which most 

undergraduates are unfamiliar with, but  for which original and synthetic versions are readily 

compared). The asymmetric sounds included in the analysis of C2 correlation omission were: 

Typewriter – manual, Typewriter – IBM electric, Drumroll, Battle explosions, Tapping on hard 

surface, Hammering copper, Snare drum beats, Bongo loop, Reverse drum beats – snare, 

Teletype, Firecrackers, and Rhythmic applause. 30000 other randomly chosen subsets of sounds 

were evaluated for comparison. 

Experiment 2b :Marginal Variants

The trial format and set of sounds was identical to that of Experiment 2a. In every condition, one 

of the two synthetic versions was synthesized with the full set of statistics measured in the 

original sound. In condition 1, the other synthetic sound was given the envelope variance, skew 

and kurtosis of pink noise (measured from a 30 sec excerpt), with the other statistics taken from 

the original recording, including the envelope mean, which ensured that the spectrum was 

faithful to the original. The synthesis process succeeded in synthesizing signals with the desired 

statistics despite the artificial combination (as verified with the same SNR measurements used in 

other experimental stimuli). In condition 2, the marginal moments were omitted from synthesis 

but the other statistics were set to the values of the original sound (this conditions was equivalent 

to condition 1 of Experiment 2a, but was repeated because the subjects in the two experiments 

were different). In condition 3, only the skew and kurtosis were omitted from synthesis. Nine 

female subjects participated, averaging 24.1 years of age.

Experiment 3: Nonbiological Models

The format of this experiment was identical to that of Experiment 2a&b, and the same sounds 

were used. The participant group  had not participated in the other experiments, to avoid the 

possibility that participants might have learned the sound of our original model in previous 

experiments. Eight subjects participated (5 female), averaging 25 years of age. 

Linearly-spaced filters were substituted for the acoustic (cochlear) and modulation filterbanks in 

some of the conditions. The linear acoustic filterbank had the same number of filters as that in 

the original model, and was identically generated except that the frequency responses were half-

cosines on a linear scale rather than an ERB scale, with a fixed bandwidth of 321.9 Hz. The 

linearly-spaced filters thus tiled the spectrum as did the ERB filter bank, and produced the same 

number of statistical measurements, but divided up the spectrum differently.

The linear modulation filterbank also had 20 filters, with peak frequencies ranging from .5 to 200 

Hz in 10.5 Hz intervals. The frequency responses were half-cosines with a fixed bandwidth of 
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17.04 Hz, which produced the same degree of overlap between the passbands (defined by the 

3dB-down points) of adjacent filters (38.4%) as was present in the constant Q filterbank 

(averaging the overlap on the low and high end of a filter). The two lowest filters had a slightly 

different frequency response to avoid including DC – they increased with a cosine ramp from 0 

Hz to their peak frequency. The highest filter cut off at the peak of its frequency response; i.e. it 

was a quarter-cosine (this was to ensure that all modulation frequencies were represented in the 

bank).

Because the C2 correlations could only be computed with octave-spaced filters, it was not 

possible to alter the filter bank used to measure and impose them, and we omitted them from the 

conditions using a linear modulation filterbank (as well as in the comparison stimuli generated 

with the biologically plausible model). However, the C1 correlations presented no such 

limitation, and for them we used a linear filter bank that tiled the spectrum and had comparable 

overlap to the octave-spaced modulation filter bank in our standard model. The peak frequencies 

ranged from 3.1 to 167.2 Hz in steps of 32.8 Hz (half-cosine frequency responses with 

bandwidths of 32.8 Hz, except for the lowest frequency filter, which ramped from 0 to its peak 

frequency, again to avoid including DC). 

Note that the superior realism we observed for the biological texture model could not be 

explained simply by a difference in how well the biological and nonbiological statistics were 

imposed. SNRs were comparable between conditions. Synthesis with the nonbiological model 

averaged 36.26, 45.31, 33.64, and 45.06 dB (conditions 1-4), compared to 35.75 (condition 1) 

and 38.01 dB (conditions 2-4; no C2 correlations) for the original syntheses used as a 

comparison. 

The choice of which cochlear correlations (i.e., which offsets) to include in the model was 

informally  optimized in pilot tests using the biological model. It  might be argued that  different 

choices would be optimal for the nonbiological model with linearly  spaced filters, and that the 

chosen offsets, even if themselves imposed faithfully, would thus be less likely to instantiate the 

full correlation structure between channels. To address this possibility, we checked the fidelity 

with which the full correlation matrix was imposed for both models (in dB SNR). There was no 

significant difference (paired t-test, p=.06), and if anything, the SNR for the full correlation 

matrix was slightly  higher for the nonbiological model with the linearly  spaced filter bank than 

for our canonical biologically plausible model (18.04 dB vs. 18.60 dB, SE=.70 and .75). We 

performed the same sort of analysis for the C1 correlations, and obtained a similar result: slightly 

higher SNRs for the nonbiological model (8.75 dB vs. 10.36 dB, SE=.55 and .63; the lower 

SNRs here are due to the fact that only  two offsets were imposed for this statistic). Although we 

cannot exclude the possibility that some alternative non-biological model would produce better 

synthetic results, the differences in synthesis quality  we observed do not appear to be due to the 

choices that were made about the number of statistics to include.
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Experiment 4: Realism Ratings

On each trial, participants heard a 4 sec excerpt of an original sound recording followed by a 

synthetic version of the original, with 400 ms of silence between sounds. The synthetic version 

was synthesized with the full set of statistics. Participants were instructed to judge the extent to 

which the synthetic version sounded like another example of the original sound. They selected a 

rating on a scale of 1-7 by clicking a mouse, with 7 indicating the highest degree of realism and 1 

the lowest. The full set of 168 original sounds (and their synthetic versions) was used. The 

experiment cycled through the set of sounds three times, each time in a different random order 

and with a different synthetic exemplar. Ten subjects participated (7 female), averaging 20 years 

of age.
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