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ABSTRACT

We examine properties of perceptual image distortion models, computed as the mean squared
error in the response of a 2-stage cascaded image transformation. Each stage in the cascade is
composed of a linear transformation, followed by a local nonlinear normalization operation. We
consider two such models. For the first, the structure of the linear transformations is chosen
according to perceptual criteria: a center-surround filter that extracts local contrast, and a
filter designed to select visually relevant contrast according to the Standard Spatial Observer.
For the second, the linear transformations are chosen based on statistical criterion, so as to
eliminate correlations estimated from responses to a set of natural images. For both models,
the parameters that govern the scale of the linear filters and the properties of the nonlinear
normalization operation, are chosen to achieve minimal/maximal subjective discriminability
of pairs of images that have been optimized to minimize/maximize the model, respectively
(we refer to this as MAximum Differentiation, or “MAD”, Optimization). We find that both
representations substantially reduce redundancy (mutual information), with a larger reduction
occurring in the second (statistically optimized) model. We also find that both models are highly
correlated with subjective scores from the TID2008 database, with slightly better performance
seen in the first (perceptually chosen) model. Finally, we use a foveated version of the perceptual
model to synthesize visual metamers. Specifically, we generate an example of a distorted image
that is optimized so as to minimize the perceptual error over receptive fields that scale with
eccentricity, demonstrating that the errors are barely visible despite a substantial MSE relative
to the original image.

Keywords: Vision Models, Multi-layer Networks, Image Quality Metrics, Maximum Differen-
tiation, Redundancy Reduction, Visual Metamers.‡

Introduction

It is widely believed that visual perception emerges through a cascaded sequence of neural
transformations having a similar “canonical” form.1–4 It is thus natural to construct models
for image quality assessment using cascades, in which each stage analyzes factors of increasing
complexity (e.g. luminance, contrast, and structure).5–7 Critical to this endeavor is the problem
of parameter optimization: How can we select parameters of a multi-stage cascade model so as to
mimic human discrimination performance? Recent progress in object recognition has exploited
such cascaded constructions, along with new methods of supervised machine learning applied
to large databases of natural images, to achieve state-of-the-art results [e.g., 8–10]. But these

∗Image Processing Lab, Universitat de València, Spain
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machine learning methods rely on data sets (images, and category labels) that are many orders
of magnitude larger than what can be feasibly obtained in experiments with human subjects.

Here, we assume a cascade model in which each stage is a linear-nonlinear transformation.
The linear part is a convolution with one or more filters, and the nonlinear part implements
a local “divisive normalization” operation (see11 for review). Such representations have been
proposed previously for perceptual image distortion measures,5, 7, 12, 13 as well as other image
processing applications.14 We use perceptually or statistically motivated choices of the filters
for each stage.7, 13 Given these filters, we determine the remaining scalar parameters of the nor-
malization operations based on human subject responses in a Maximum Differentiation (MAD)
task.15 Specifically, subjects examine pairs of images synthesized with maximal/minimal dis-
tortion according to models with different parameter settings, and choose the image pairs that
are most easily differentiated. We refer to this as “MAD optimization”.

Preliminary results lead to models in which each transformation step provides a successively
more powerful measure of perceptual quality, as measured by its ability to synthesize images
with minimally visible distortion but with substantial mean squared error. Moreover, each step
reduces the statistical redundancy (mutual information) of natural images. Both models are
highly correlated with human quality scores from the TID2008 database.16 Finally, we show
that a “foveated” version of the perceptually-optimized model, in which filters grow in diameter
with eccentricity (as in the early visual system), can be used to synthesize images with minimally
visible distortions of even larger mean squared error.

Structure of cascaded models

We assume a model constructed as a cascade of stages:

x(0) T1−−−→ x(1) T2−−−→ x(2) (1)

where x(0) is a pixellated input (luminance) image containing d pixels, each Ti performs a
linear+nonlinear transformation on the vector x(i) to give the set of responses in the vector
x(i+1). The quality measure is simply the MSE measured on the output layer, x(2).

The high dimensionality of the signals can imply a large number of parameters in each
transformation Ti. For instance, a general linear operation preserving the dimensionality in the
i-th stage is parameterized by a matrix with d× d free parameters. The number of parameters
in the nonlinear part may be even bigger. In order to keep the number of parameters small, the
structure of the stages has to be constrained.

We assume the linear stages are convolutional,17 and choose the filters according to either
perceptual or statistical criterion. The resulting transforms are somewhat similar, as suggested
by the Efficient Coding Hypothesis.13, 18, 19

• Perceptual design The filters are chosen using well-known conventions in the perception
and image quality communities. The first stage computes the local contrast by subtracting
and normalizing by the local luminance (computed with a Gaussian kernel of width σ1):

x
(1)
k =

(
I −H

(1)
kl

)
x
(0)
l

b1 +H
(1)
kl x

(0)
l

(2)

where I is the identity matrix. The second stage applies a linear Contrast Sensitivity filter
and a masking nonlinearity:
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where HCSF is the convolution by the impulse response corresponding to the Contrast
Sensitivity Function of the Standard Spatial Observer CSF.20 Overall, we just have two
parameters in the first stage (σ1, b1) and three parameters in the second stage (σ2, b2 and
γ2).

• Statistical design. We set the linear part, H(i), to be a decorrelating transform (PCA),
over a database of natural images.21 On the other hand, we assume the nonlinear part is
a divisive normalization, which has been shown to reduce redundancy:13, 19, 22, 23
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The normalization pooling, corresponding to K(i), is computed with a Gaussian blur of
width σi, andD(i) is a diagonal matrix containing a weighting function with an exponential
decay in the diagonal, with characteristic length κi (i.e., it applies larger weights to the
first coefficients of the decomposition defined by H(i)). Since H(i) is chosen based on
image statistics (it is the eigenvector matrix of the covariance of samples at the (i− 1)-th
stage), there are only four unknowns per stage: the width, σi, the scalar parameters bi
and γi, and the width κi of the post-weighting.

Perceptual optimization of normalization parameters

To obtain perceptual estimates of the scalar parameters of either model, we used the Maximum
Differentiation (MAD) competition methodology.15 Specifically, for a given set of parameters,
we synthesize images that are maximal/minimal in the MSE of their model responses relative
to those of an original image, but have the same MSE in the image domain (again, relative to
the original image). Synthesis is achieved as follows. First we add white noise to the original
image to achieve a desired pixel-domain Euclidean distance (MSE). Then, we modify this initial
image through gradient ascent/descent on the MSE of the model response, while constraining
the image to lie on the sphere of desired image-domain MSE. The gradient is computed by
concatenating the Jacobian matrices corresponding to each stage of the transformation (i.e., the
“chain rule”).

We also implemented a more efficient calculation based on a a second-order approximation
of the model response distance.7, 13 Under this approximation, MAD competition reduces to
injecting noise into the subspace corresponding to low/high eigenvalues of the transformed Rie-
mannian metric. This subspace describes the least/most visible directions according to the
model. Interestingly, we observed that even for image-domain PSNR ∼ 25, this second or-
der approximation of the model response distance,7, 13 produces very similar results to the full
gradient-descent optimization.

According to the model with the selected parameter settings, the two synthesized images are
deemed the most perceptually different pair of images at that level of (image-domain) MSE. By
comparing image pairs synthesized for different parameter settings, a human observer can select
those that are most distinguishable, thereby indicating the choice of parameters that agrees best
with their perceptual judgements.

We developed an iterative psychophysical “coordinate descent” procedure to estimate the
scalar normalization parameters for both models. In an outer loop, we alternated between op-
timizing the parameters of the first stage (initially, assuming an unnormalized transformation
for the second stage), and then optimizing those of the second stage. Within each stage, we
optimized one parameter at a time, holding the others fixed at their current values. MAD



optimization of one parameter was achieved by showing observers pairs of extremal images syn-
thesized with six different values of that parameter (but with the same image-domain MSE) and
asking them ro specify which pair exhibited the largest difference in quality. After each trial,
new pairs were drawn, keeping the selected parameter value from the previous trial, but using
six different values of a different parameter. A staircase procedure in which the ranges of the
parameters were progressively reduced was used to search for the optimal value of each parame-
ter. This was repeated for multiple initial conditions and observers and the optima averaged to
obtain an overall estimate for the parameters. We looped over the set of parameters four times
when optimizing each stage, and we iterated over the two stages until stable results (within the
standard deviation of the parameters) were obtained. In the explored cases, this only required
two or three iterations. Experimental data were collected for two subjects, and original im-
ages were drawn from randomly chosen patches of standard images (Barbara, Einstein, Baboon,
Cameraman, Boats, Goldhill).

Perceptual properties: Differentiation of cascade stages

Figure 1 demonstrates the perceptual capabilities achieved by each model stage, for both models.
Specifically, each row shows sequences of images with identical MSE in the image domain,
but with minimal MSE at at each successive stage of the corresponding model cascade. As
expected, the visibility of errors in the perceptual model are progressively less noticeable, since
the model stages are optimized to represent perceptual distortion. More surprising is that this
approximately holds for the statistical model, despite the fact that its linear stages are optimized
solely to decorrelate their inputs, as derived from natural images.

Statistical properties: Redundancy reduction

Table 1 demonstrates the reduction of statistical redundancy achieved by successive model
stages, for both models. Specifically, we measured mutual information (in bits) between one
coefficient and 8 neighbors at different stages of the network. Specifically, we used the eight
adjacent coefficients of 3×3 spatial neighborhoods for the perceptual stages, and the eight adja-
cent frequencies in DCT-like domains arising in the statistical stages. We averaged these values
over different coefficients and across a set of 10000 patches of size 64× 64 from natural images
from a calibrated database.21 For both models, we see a significant reduction in redundancy.
Such a reduction is expected for the statistically optimized model, but consistent with ref.,19 it
is also found in the model that is perceptually derived, suggesting that it is a property of the
early visual system.

Model \ Stage Input Linear 1 Non-linear 1 Linear 2 Non-linear 2

Perceptual 0.579 0.155 0.152 0.270 0.228

Statistical 0.579 0.032 0.022 0.003 0.002

Table 1. Mutual information (in bits) between groups of neighboring coefficients at intermediate stages
of each hierarchical model.

Properties of the distance: Comparison to subjective quality ratings

We compared image quality predictions of our two models to human subject data from the
TID2008 database.16 Figure 2 shows the alignment between subjects’ Differential Mean Opinion
Scores (DMOS) and distances computed according to our MAD-optimized models (in blue) as



Figure 1. Example images synthesized to have minimal distortion according to successive model stages,
but identical MSE in the image domain (PSNR = 28.1). The sampling frequency used in the example
implies that images should subtend 1 deg. Left to right: output of first linear transform, output of first
normalization transform, output of second linear transform, output of final normalization transform.
Top: perceptual model. Bottom: statistical model. The distortion associated with one-layer linear
models (left) is similar to white noise because the corresponding metric is strictly the identity in the
statistical case and not far from the identity in the perceptual case.



Figure 2. Direct comparison of subjective image distortion data (DMOS) and distances computed ac-
cording to different distortion measures: our MAD-optimized models (scatter plots in blue) as well as
several models from the literature (red - from upper left: RMSE, SSIM,5 VIF,25 MSSIM,24 divNorm,7

FSIM26). The values of the Pearson, Spearman and Kendall correlations (rp, rs and rk, respectively)
are provided above each plot. The value of the RMSE of the best linear fit (in DMOS units), from
which rp is computed, is provided underneath each plot.

well as those of several other distortion measures (in red). We find that both models show
higher correlation with the human data than SSIM,5 MSSIM,24 VIF25 as well as those based
on divisive normalization on wavelets.7, 12 Moreover, it provides a more linear scatter plot and
more balanced residuals than the current state-of-the-art FSIM method.26

Perceptual properties: Synthesis of foveated visual metamers

The models proposed here are both based on spatially local computation. In the early visual
system, the receptive fields of neurons are localized, but grow approximately linearly with ec-
centricity away from the fovea. This suggests that a better model might be achieved by scaling
the spatial filters with eccentricity. A related approach has shown that a local representation
of visual texture, when suitably scaled with eccentricity, can generate highly distorted versions
of images that are perceptually indistinguishable from an original, when viewed under proper
fixation.27, 28

To demonstrate this concept, we modified the perceptual model by introducing an eccentric-
ity dependency in the widths of all the convolutional kernels in Eqs. 2-3 while keeping the other
parameters constant. In particular, for eccentricity smaller than 1 degree, the impulse response
widths were those found in the MAD experiment. For bigger eccentricities, widths were linearly



Figure 3. Minimally visible distortion, generated using a foveated version of the perceptual model. The
sampling frequency used in the example implies that images should subtend 8 deg. Top row show
images, and bottom row shows the difference between that image and the original. Left: original image.
Middle: original image corrupted by homogeneous white noise. Right: original image corrupted by
noise that is minimally visible, according to the foveated perceptual model. Mean squared error of the
two corrupted images is identical (image-domain PSNR = 28.1).

increased from their original values at a rate of 0.06 subtended degrees per eccentricity degree.
Then using the gradient-descent MAD procedure described above, we synthesized an image with
noise that is barely visible according to this foveated model.

Figure 3 shows an example, in comparison to an image corrupted by white noise of the same
average amplitude. Note that the perceptual model injects noise that is modulated over both
space and spatial frequency, depending on a combination of eccentricity and local image content.

Conclusion

We’ve developed an iterative psychophysical methodology, MAD-optimization, for selecting the
parameters of perceptual distortion models, and have used it to optimize two example models.
Both optimized models show successive reductions in statistical redundancy, as well as reduc-
tions in the visibility of distortions that they deem minimal, over each model transformation.
And both models show high correlation with human quality ratings. Armed with this optimiza-
tion methodology, we hope to extend these models with additional stages, thus mimicking the
hierarchical structure of the human visual system.
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