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Abstract—The local statistical properties of photographic images, when represented in a multiscale basis, have been described using

Gaussian scale mixtures. Here, we use this local description as a substrate for constructing a global field of Gaussian scale mixtures

(FoGSM). Specifically, we model multiscale subbands as a product of an exponentiated homogeneous Gaussian Markov random field
(hGMRF) and a second independent hGMRF. We show that parameter estimation for this model is feasible and that samples drawn

from a FoGSM model have marginal and joint statistics similar to those of the subband coefficients of photographic images. We
develop an algorithm for removing additive white Gaussian noise based on the FoGSMmodel and demonstrate denoising performance

comparable with state-of-the-art methods.

Index Terms—Image statistics, Markov random field, image denoising.

Ç

1 INTRODUCTION

MANY successful methods in image processing and
computer vision rely on statistical models for images

and it is of continuing interest to develop improved models,
both in terms of their ability to precisely capture image
structures and their practicality for use in applications. A
common method of constructing such statistical models is to
first identify statistical properties of photographic images
and then develop probabilistic models that capture these
properties. The first step in this process is to choose a
representation (typically, a linear basis) in which the
statistical properties are better revealed. Early research in
image statistics was based primarily on pixel and Fourier
representations. But over the past two decades, numerous
studies have demonstrated that linear image decompositions
based on multiscale oriented localized basis functions
(loosely referred to as “wavelets”) are particularly effective
in revealing statistical regularities of photographic images.
For instance,multiscale subband coefficients of photographic
images generally have highly kurtotic non-Gaussianmargin-
al distributions [1], [2], [3] and the amplitudes of nearby
coefficients are strongly correlated [4], [5], [6].

A variety of parametric models has been proposed to
capture these regularities, including the generalized Lapla-
cian [7], [8], [9], [10], the Bessel K [11], the multivariate
Student’s t-distribution [12], the !-stable family [13], and the
Cauchy distribution [14]. All of these non-Gaussian
statistical models can be unified under a flexible semipara-
metric density family known as Gaussian scale mixtures

(GSMs) [15], [16]. By definition, a GSM density is an infinite
mixture of zero-mean Gaussian variables with covariances
related by multiplicative scaling. GSM can emulate many of
the non-Gaussian statistical behaviors observed in local
groups of subband coefficients of photographic images. In
addition, the underlying Gaussian structure leads to
relatively simple parameter learning and inference proce-
dures. For these reasons, local image models based on GSM
have been highly successful when applied to image
denoising [17], [18].

Despite this success, it has proven difficult to extend the
local GSM description to a consistent global probability
model. One can partition the coefficient space into nonover-
lapping blocks and describe each of these using an indepen-
dent GSM. But, such amodel will ignore important statistical
dependencies between coefficients in adjacent blocks. The
inhomogeneities that arise from treating coefficients near
block boundaries differently from those in the center can, in
turn, lead to noticeable artifacts such as blockiness or aliasing
in applications such as denoising. This problem may be
somewhat ameliorated by using overlapping (e.g., convolu-
tional) blocks [17], [18]. But then, treating these blocks as
independent samples is not consistentwith anyglobalmodel.
Another option is to retain nonoverlapping coefficient blocks
but to capture the dependencies between these blocks by
linking the hidden scaling variables in a tree-structured
Markov model (e.g., [19], [20]). Although these models are
able to capture some global statistical dependencies, they still
produce artifacts due to the inhomogeneous treatment of
spatially proximal coefficients that are assigned to different
branches of the tree.

A naturalmeans of extending the local GSMdescription to
a homogeneous global description is through the use of
Markov random fields (MRFs). An MRF is a global model
uniquely determined by a set of local statistical descriptions.
A number of authors have developed MRF-based image
models in the pixel domain (e.g., [21], [22], [23], [24], [25], also
see [26] for anoverview). Inparticular, the recentlydeveloped
field of experts (FoE) model [27] has been used to achieve
impressive performance in denoising. However, these MRF-
based models usually involve learning and inference
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procedures that are generally computationally costly or
unstable.

In this paper, we take a different approach to embedding a
local GSM description within a global consistent MRF, by
modeling multiscale subbands as fields of Gaussian scale
mixtures (FoGSMs). Specifically, a FoGSM is formed by an
element-wise product of two mutually independent MRFs: a
homogeneous Gaussian MRF (hGMRF) and a positive-
valued MRF obtained by exponentiating a second hGMRF.
The former captures second-order dependencies, while the
latter characterizes the variability and dependencies of local
variance. Individual coefficients in the FoGSM model
marginally follow a GSM distribution, while the global
MRF structure generates dependencies beyond local neigh-
borhoods. We develop a parameter estimation procedure,
exploiting the computational advantages of the underlying
hGMRFs, and demonstrate that samples from FoGSMs share
important statistical properties of photographic images. As a
sample application, we develop a Bayesian denoising
methodologyusing FoGSMas apriormodel for clean images.
We show that the resulting denoising method achieves
performance comparable to state-of-the-art methods. Pre-
liminary results of this work have been presented in [28].

2 BACKGROUND

2.1 Photographic Image Statistics
Photographic images exhibit distinct statistical regularities
that are especially apparent when they are represented
using a multiscale oriented decomposition (loosely referred
to as a “wavelet” decomposition). To be more specific, the
multiscale coefficients of photographic images tend to have
highly kurtotic non-Gaussian marginal distributions [1], [2],
[3]. More importantly, even when they are second-order
decorrelated, there are higher order statistical dependencies
between coefficients at nearby locations, orientations, and
scales [5], [6], [16]. Fig. 1 shows the empirical joint and
conditional histograms for five pairs of subband coefficients
of the “boat” image, corresponding to basis functions with
spatial separations of ! ¼ f1; 4; 32g samples, two orthogo-
nal orientations, and two adjacent scales. For spatially

adjacent coefficients (first column), we observe an approxi-
mately elliptical joint distribution. This behavior was
originally reported for Hilbert-transform pairs of basis
functions [30] and later generalized to pairs at different
locations, orientations, and scales [5], [6]. The “bow-tie”
shaped conditional distribution indicates that the variance
of one coefficient depends on the value of the other. This is
a highly non-Gaussian behavior, since the conditional
variances of a jointly Gaussian density are always constant,
independent of the value of the conditioning variable. For
coefficients that are distant, the dependency becomes
weaker and the corresponding joint and conditional
histograms become more separable, as would be expected
for two independent random variables. Finally, although
the examples shown here were generated using a particular
multiscale oriented image representation, these statistical
properties are fairly robust to the specific choice of
decomposition as long as the basis functions are localized
and band-pass.

2.2 Gaussian Scale Mixtures

A GSM vector is defined as the product of a zero-mean
Gaussian vector and an independent positive scalar vari-
able. Specifically, a d-dimensional GSM vector x can be
constructed as x ¼

ffiffiffi
z

p
" u, where u is a d-dimensional zero-

mean Gaussian vector and z 2 Rþ is independent of x. The
density of x is determined by the covariance matrix, ", of
the Gaussian vector and the density of z:

pðxÞ ¼
Z

z
N xð0; z"ÞpzðzÞdz

¼
Z

z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2"zÞdj"j

q exp &xT"&1x

2z

" #
pzðzÞdz:

ð1Þ

As a family of probability densities, GSM includes many
common kurtotic distributions, including all those men-
tioned in Section 1 [15]. For instance, if z follows an inverse
gamma distribution, the resulting GSM density reduces to a
multivariate Student’s t-distribution [15], [31].
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Fig. 1. Histograms of pairs of subband coefficients from the steerable pyramid decomposition of the ‘‘boat’’ image. (a) Contour plots of joint
histograms, drawn at equal intervals of log probability. (b) Conditional histograms, computed by independently normalizing each column of the joint
histogram. Image intensities are proportional to probability, except that each column of pixels is independently rescaled so that the largest probability
value is white.



2.3 Homogeneous Gauss-Markov Random Fields
AMarkov random field (MRF) is a global joint distribution on
a mesh of nodes that is uniquely determined by the local
density of each node conditioned on the nodes in a
surrounding neighborhood. In particular, the MRF is the
maximal entropy density consistent with the local probabil-
istic constraints [26].AGaussianMRF(GMRF) isone inwhich
all of the local conditional (and, hence, joint) densities are
Gaussian. In this case, the inverse covariance matrix (also
known as the precisionmatrix) of the full set of nodes contains
a zero entry for all pairs of nodes that are not within each
other’s conditioning neighborhoods. The sparse form of the
precision matrix means that it usually provides a more
convenient parameterization of a GMRF than the full
covariance matrix. A homogeneous GMRF (hGMRF) is a
GMRF with local density parameters invariant to absolute
spatial location. In particular, when the hGMRF is defined
over a 2D lattice with circular boundary handling,1 its
precision matrix is block-circulant (see Appendix A for
details), determined by a generating kernel Q that captures
nonzero dependencies within each neighborhood. Given the
relatively small set of parameters, the block-circulant
structure, and the resulting close relationship with the
discrete Fourier transform (DFT; see Appendix A), hGMRFs
are significantlymore tractable thangeneralMRFs in terms of
parameter estimation, sampling, and inference. Learning and
samplingwithhGMRFsaredescribed inAppendicesBandC,
respectively, and a more detailed description of GMRFs and
hGMRFs may be found in [32].

3 FIELDS OF GAUSSIAN SCALE MIXTURES

The GSM model has been used successfully to describe the
statistics of local clusters of multiscale subband coefficients,
which can include spatial neighbors as well as coefficients
in adjacent scale and orientation subbands (e.g., [19]). But,
as mentioned in Section 1, extending local GSM model to a
global model of images without introducing either statis-
tical inconsistencies or inhomogeneities in the global model
structure is difficult. Here, we resolve this dilemma by
describing each subband as a homogeneous FoGSM.

We define a FoGSM as the element-wise product of two
mutually independent MRFs, u and

ffiffiffi
z

p
:

x ¼d u'
ffiffiffi
z

p
; ð2Þ

where the square root is applied toeachcomponentofz.Here,
u is a zero-mean GMRF, and z is a positive-valued MRF of
scaling variables. To eliminate the scaling ambiguity between
u and z, we assume that each component of u has unit
variance. TheFoGSMmodel inherits from theGSMmodel the
construction as a product of an independent Gaussian
variable and another positive random variable, and as
such, all 1D marginal densities of a FoGSM are GSMs. But,
unlike the local GSM model, in which a single z variable is
multiplied by every component of a multivariate Gaussian
variable u, the Gaussian components in FoGSM each have
their own z variable. This collection of z variables form a
second MRF, which can capture higher order statistical
dependencies.

To reduce the number of free parameters in the model,
we use homogeneous FoGSMs to model each subband in a
multiscale decomposition. Specifically, we assume u to be a
zero-mean hGMRF, with circular boundary handling:

pðuÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðQuÞj j

p
exp

&uTCðQuÞu
2

" #
; ð3Þ

where Qu is the generating kernel and CðQuÞ is the block-
circulant precision matrix formed from that kernel.
Furthermore, we assume that z is derived by applying a
point-wise exponential “link” function to a second hGMRF.
Equivalently, log z (where the log operator is applied
element-wise) is a zero-mean hGMRF with precision matrix
CðQzÞ:

pzðzÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðQzÞj j

p
Q

i zi
exp

&ðlog zÞTCðQzÞðlog zÞ
2

 !
: ð4Þ

The interdependencies between components of z may be
explicitly incorporated through the precision matrix CðQzÞ.
This lognormal random field is a natural extension of the
univariate lognormal density used previously for the scalar
multiplier in a local GSM model [33].

The density of x conditioned on z may be easily written
by substituting the element-wise quotient x(

ffiffiffi
z

p
for the

vector u in (6) and renormalizing:

pðxjzÞ /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðQuÞj jQ

i zi

s

exp
&ðx(

ffiffiffi
z

p
ÞTCðQuÞðx(

ffiffiffi
z

p
Þ

2

 !

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðQuÞj jQ

i zi

s

exp
&xTDð

ffiffiffi
z

p
Þ&1CðQuÞDð

ffiffiffi
z

p
Þ&1x

2

 !

;

ð5Þ

where Dð
ffiffiffi
z

p
Þ in the second line denotes a square diagonal

matrix generated from vector
ffiffiffi
z

p
. The resulting conditional

density on x is a zero-mean inhomogeneous GMRF, as its
precision matrix ½Dð

ffiffiffi
z

p
Þ&1CðQuÞDð

ffiffiffi
z

p
Þ&1* no longer has a

block-circulant structure.

3.1 Learning and Sampling FoGSMs

A FoGSM density on subband coefficients x is determined
by the generating kernels of the two constituent hGMRFs,
Qu and Qz. When fitting FoGSM to data, it is also desirable
to have an estimate of the field z. Thus, we formulate the
learning of FoGSM as simultaneous estimation of para-
meters Qz and Qu and variables fzigNi¼1, from a training set
of subbands fxigNi¼1, as

argmax
fzigNi¼1;Qu;Qz

log p fxigNi¼1; fzig
N
i¼1;Qu;Qz

$ %
: ð6Þ

Optimization of this objective function corresponds to a
combination of maximum likelihood estimation of the model
parameters ðQz;QuÞ and maximum a posteriori (MAP)
estimation of the hidden variables fzigNi¼1 from training
data fxigNi¼1.

We optimize (6) using a coordinate ascent scheme, which
alternates between maximizing each of fzigNi¼1, Qu, and Qz

while holding the remaining two fixed:
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1. Circular boundary handling is assumed in the definition of hGMRF.
As the dimensionality of the random field increases, the boundary handling
is less influential in the computation.



1: zðtþ1Þ
i ¼ argmaxz log p xi; zi;Q

ðtÞ
u ; QðtÞ

z

$ %
for i ¼ 1; . . . ; N;

2: Qðtþ1Þ
u ¼ argmaxQu log p xi; z

ðtþ1Þ
i

n oN

i¼1
;Qu;Q

ðtÞ
z

" #
;

3: Qðtþ1Þ
z ¼ argmaxQz log p xi; z

ðtþ1Þ
i

n oN

i¼1
;Qðtþ1Þ

u ; Qz

" #
:

ð7Þ

Running the three steps in (7) iteratively guarantees
convergence to a local maximum of the objective function
in (6).

The objective function in step 1 in (7) is more
conveniently expressed in terms of the element-wise inverse
square root of variable z. We define s ¼ 1(

ffiffiffi
z

p
, from which

z can be recovered using z ¼ 1( ðs' sÞ. The conditional
density of x given s may then be written as

pðxjsÞ /
Y

i

si exp
&ðx' sÞTCðQuÞðx' sÞ

2

 !

¼
Y

i

si exp
&sT DðxÞCðQuÞDðxÞ½ *s

2

" #
;

ð8Þ

and the density of s may be easily obtained by suitable
transformation of the density of z:

pðsÞ / 1Q
i si

exp &2ðlog sÞTCðQzÞ ðlog sÞ
$ %

: ð9Þ

Using these new definitions, step 1 in (7) may be rewritten as

ŝ ¼! argmax
s

log pðx; s;Qu;QzÞ

¼ argmax
s

log pðxjs;QuÞ þ log pðs;QzÞ

¼ argmax
s

1
2 s

T DðxÞCðQuÞDðxÞ½ *s
þ 2ðlog sÞTCðQzÞ ðlog sÞ:

( ð10Þ

This objective function may be optimized with conjugate
gradient descent [34]. Much of the computation involves
multiplying vectors by the precision matrix. Because the
precision matrix is block-circulant, these operations are
convolutions and may be efficiently implemented using the
fast Fourier transform. Empirically, we also found that the
conjugate gradient iteration converges quickly: After
roughly 300 steps of iteration for a 512 + 512 pixel image,
the successive relative changes in the objective function are
less than 10&13.

Steps 2 and 3 in (7) correspond to estimating model
parameters Qu and Qz given data fxi; zigNi¼1. Specifically,
step 2 may be simplified to

Q̂u ¼ argmax
Qu

log pðx; z;Qu;QzÞ

¼ argmax
Qu

log pðxjz;QuÞ

¼ argmax
Qu

log pðx( z;QuÞ;

ð11Þ

where the last line corresponds to a maximum likelihood
estimate of the generating kernel Qu of a zero-mean hGMRF
given N independent samples fxi (

ffiffiffiffi
zi

p gNi¼1.

Similarly, step 3 may be simplified as

Q̂z ¼ argmax
Qz

log pðx; z;Qu;QzÞ

¼ argmax
Qz

log pðz;QzÞ

¼ argmax
Qz

log pðlog z;QzÞ;

ð12Þ

which is themaximumlikelihood estimateofparameterQz in an
hGMRF on log z given independent samples flog zigNi¼1.
Again, both steps allow efficient computation based on the
properties of block-circulant matrices. The details of para-
meter estimation for hGMRFs are provided in Appendix B.

Sampling from FoGSM is simple and efficient. By
definition, a sample of FoGSM is formed by element-wise
multiplication of two independent samples of u and

ffiffiffi
z

p
.

The former is obtained by sampling from hGMRF u and the
latter is obtained by element-wise exponentiation of the
square root of a sample of hGMRF log z. Sampling from
each 2D hGMRF is implemented by linearly transforming a
sample of white Gaussian noise, which is again efficient due
to the computational advantages of block-circulant ma-
trices. We provide basic descriptions of these operations in
Appendix C and more information can be found in [32].

4 MODELING MULTISCALE IMAGE SUBBANDS WITH

FoGSMs

In this section, we investigate empirically how well an
FoGSM is able to account for the statistical properties of
subband coefficients of photographic images. We fit an
independent FoGSM model to each subband of a
photographic image and examine the properties of the
u and log z fields, as well as samples from the learned
FoGSM model.

4.1 Experimental Setup
Our data sets are multiscale subbands of a given orientation
and scale from five standard test images of size 512 + 512
pixels (known as “Lena,” “Barbara,” “boats,” “hill,” and
“baboon”). For image representation, we employed an
overcomplete tight frame representation known as the
steerable pyramid [29]. The basis functions of this linear
decomposition are spatially localized, oriented, and span
roughly one octave in bandwidth. They are polar separable
in the Fourier domain and are related by translation,
dilation, and rotation. We fit the FoGSM model to subbands
corresponding to the first scale and third orientation in an
eight-orientation decomposition (the peak orientation angle
of this band is at "=4 radians, relative to the horizontal axis).

The neighborhood sizes of the two component hGMRFs
of the FoGSMmodel (corresponding to variables u and log z)
were chosen by maximizing the cross-validated likelihood.
We cut each subband into equal-sized rectangular halves,
fitted the FoGSMmodel of a given neighborhood size to one
half of the subband, and then computed the likelihood on the
data from the other half of the subband using (6). The best
performance was observed for 5+ 5 neighborhoods, for both
hGMRFs. Once the neighborhood size was determined, the
generating kernels were optimized using the algorithm
described in the previous section. The vector z, which
represents the local signal variance, was initialized by
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computing the local variances estimated within each
overlapping 5 + 5 spatial window.

4.2 Decomposition and Parameters

Fig. 2a shows the results of decomposing a subband from the
“boats” image according to the fitted FoGSM model.
Specifically, the subband (left panel) is decomposed into
the product of the u field (middle panel) and the

ffiffiffi
z

p
field

(right panel, in logarithm) using the training algorithm
described in Section 3.1. Visually, we can see that the
changing spatial variances are captured by the estimated
log z and residual homogeneous structures are captured by
the estimated u. Fig. 2b shows the marginal histograms of
each field in the log domain, plotted against a Gaussian
density of the same variance. Note that the marginal
distribution of u is well approximated by a Gaussian, as
assumed in the FoGSM model. The marginal distribution of
log z, while unimodal, exhibits noticeable deviations from
Gaussianity. In particular, it is clearly asymmetric, and this
property seems to be consistent across a variety of different
subbands and images.

Fig. 2c shows the estimated 5 + 5 generating kernels Qu

and Qz. The former reflects the orientation anisotropy of
hGMRF u, which is matched to the orientation tuning of the
subband. On the other hand, Qz shows only weak
orientation preference. We could interpret this to indicate
that the MRF for log z is close to isotropic. However, visual
inspection of the log z field suggests that the MRF
frequently exhibits strongly oriented content, but that this
content is inhomogeneous (i.e., the orientation is different in
different image regions) and thus cannot be captured by an

hGMRF. Furthermore, one can see that the estimated u and
log z are not independent, as assumed by the FoGSMmodel,
but have aligned structures (typically arising from image
contours).

4.3 Statistics of FoGSM Samples
The statistical dependencies captured by the FoGSM model
can be further illustrated by examining marginal and joint
statistics of samples from the fitted model. Note that this is
achieved by fitting the global FoGSM statistical model to a
subband and then drawing samples from this model, not by
explicitly adjusting parameters to fit the marginal or joint
histograms (as was done in [16]).

We begin by comparing the marginal distributions of the
samples and the original subband. Fig. 3 shows empirical
histograms in the log domain of a particular subband from
four different photographic images (dashed line) and those
of the synthesized samples of FoGSM models learned from
each corresponding subband (solid line). For comparison, a
Gaussian with matching standard deviation is also dis-
played (thin dashed line). Note that the synthesized
samples have conspicuous non-Gaussian marginal charac-
teristics, exemplified by the high peak and heavy tails,
similar to the image subbands. On the other hand, the
synthesized coefficients are typically less kurtotic than the
real subbands. The shape of these marginal densities is
dictated by the z field, which is an hGMRF transformed
with a point-wise exponential link function. An alternative
choice of link function could be used to create distributions
closer to the observed multiscale subbands.

In addition to the marginal statistics, the FoGSM model
also has joint behaviors that are similar to those observed in

LYU AND SIMONCELLI: MODELING MULTISCALE SUBBANDS OF PHOTOGRAPHIC IMAGES WITH FIELDS OF GAUSSIAN SCALE MIXTURES 697

Fig. 2. (a) Decomposition of a subband (left) from image “boat” into an hGMRF u (middle) and the corresponding multiplier field log z (right). Each
image is rescaled individually to fill the full range of grayscale intensities. (b) Log marginal histograms of x, the estimated u, and the estimated log z.
Dotted lines correspond to Gaussian density of the same mean and variance. (c) 5 + 5 central nonzero regions for the hGMRF generating kernels of
the estimated u and log z fields.



multiscale coefficients of photographic images. Fig. 4 shows
the joint and conditional histograms of synthesized samples
from the FoGSM model estimated from the same subband
used to generate the histograms in Fig. 1. Note that
histograms of the synthesized samples have a dependence
on spatial proximity similar to those of the image data
shown in Fig. 1. This behavior arises directly from the
structure of the FoGSM model. The random field z is
smooth and, thus, nearby components have nearly identical
marginal variance, resulting in an elliptically contoured
joint density and strong dependency between coefficients.
This dependency is propagated from neighborhood to
neighborhood in the FoGSM model but weakens with
distance. On the other hand, note that the dependencies
between coefficients representing different orientations or
scales are not properly modeled because we have used an
independent FoGSM to model each subband. This is
evident when comparing the fourth and the fifth columns
of Figs. 4 and 1.

Finally, Fig. 5 shows samples of u, log z, and x drawn

according to an FoGSM model whose parameters were fit to

the subband shown in Fig. 2. The u field resembles that of

the subband, but the log z field is seen to lack the extended

structures seen in the data. Thus, the FoGSM model fails to

fully capture the inhomogeneous long-range interactions

that arise in images around contours or extended features.

5 APPLICATION TO IMAGE DENOISING

As a probability model for photographic images, FoGSM
may be used as a prior for Bayesian estimation of an image
given an observation corrupted by additive white Gaussian
noise of known variance. In addition to its practical
relevance, image denoising is a simple yet powerful test
for the effectiveness of an image model, providing a clear
quantitative test of how well the model can differentiate
photographic image content from noise.

5.1 Algorithm
We follow a conventional methodology, decomposing the
noise-corrupted image into multiscale subbands, comput-
ing an estimate of the coefficients of each subband using the
FoGSM model as a prior, and then generating the denoised
image by applying the inverse multiscale transform to the
denoised subbands. Since the multiscale decomposition is
linear, we may write y ¼ xþw for a multiscale subband of
the noisy image, where x is the clean subband and w is the
noise that is added to the subband. Note that, in an
overcomplete representation such as steerable pyramid,
white Gaussian noise in the image domain is transformed
into correlated Gaussian noise, whose covariance can be
computed from the basis functions of the transform.

A standard approach to denoising is to formulate it as a
Bayesian inference problem, selecting an estimate based on
the posterior density pðxjyÞ, which is proportional to the
product of the likelihood function pðyjxÞ and the image prior
pðxÞ. Two solutions are common. The MAP estimate is the
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Fig. 3. Marginal log distributions of coefficients from a multiscale decomposition of four photographic images (dashed line), synthesized FoGSM

samples from the same subband (solid line), and a Gaussian with the same standard deviation (thin dashed line).

Fig. 4. Joint distribution of pairs of subband coefficients obtained from samples drawn from the best-fitting FoGSM model. See the caption of Fig. 1

for explanation.



mode of the posterior density, x̂MAP ¼ argmaxx log pðxjyÞ,
whereas the Bayesian least square (BLS) estimate, which
minimizes the expected square error between the restored
image and the original image, is the mean of the posterior
density x̂BLS ¼ EðxjyÞ. Both of these solutions involve
computationally expensive (high-dimensional) integration
when used with FoGSM model. Specifically, MAP requires
a high-dimensional integral over z, while BLS requires
high-dimensional integrals over both x and z.

Although it is possible to obtain approximations to these
solutions using Markov chain Monte Carlo [26] or varia-
tional approximations [35], we instead develop a determi-
nistic algorithm that takes advantage of the hGMRF
structure of the FoGSM model. Specifically, we compute

ðx̂; ẑÞ ¼ argmax
x;z

log pðx; zjyÞ ð13Þ

and then take x̂ as the denoised subband. This strategy,
known as a “partial optimal solution” [36], greatly reduces
the computational complexity of the problem. The solution
to the optimization problem in (13) is found by coordinate
ascent. Starting with initial values for x and z, the algorithm
proceeds by alternating between the following steps.

5.1.1 Optimization of x

Given the current estimate of z, the optimization of x in (13)
can be expanded using Bayes’ rule:

argmax
x

log pðx; zjyÞ

¼ argmax
x

log pðyjx; zÞ þ log pðxjzÞ þ log pðzÞ & log pðyÞf g;

¼ argmax
x

log pðyjxÞ þ log pðxjzÞf g;

where the first term is simplified because y and z are
independent when conditioned on x and the last two terms
are dropped because they do not depend on x. Given the
Gaussian structure of the first two terms, the maximum is
linear in y (equivalent to a Wiener filter). Specifically, we
must minimize a quadratic expression:

argmin
x

ðy& xÞTCðCwÞ&1ðy& xÞ
þ xTDð

ffiffiffi
z

p
Þ&1CðQuÞ Dð

ffiffiffi
z

p
Þ&1x;

&

where the noise covariance CðCwÞ is a block-circulant matrix
determined by a generating kernel Cw that represents the
convolutionbywhich the subband is obtained fromthe image
pixels. Note that, although CðCwÞmay be sparse (zero beyond
the support of the filters), the inverse of CðCwÞ can still be

dense. It is therefore computationally advantageous to work
with CðCwÞ rather than its inverse. For this reason, we
introduce t ¼ CðCwÞ&1x and find the optimal t by solving

argmin
t

y& CðCwÞtð ÞTCðCwÞ&1 y& CðCwÞtð Þ
þ tTCðCwÞTDð

ffiffiffi
z

p
Þ&1CðQuÞ Dð

ffiffiffi
z

p
Þ&1CðCwÞt

&

or expanding the first line, and dropping the term
independent of t:

argmin
t

tTCðCwÞt& 2yT t
þ tTCðCwÞTDð

ffiffiffi
z

p
Þ&1CðQuÞ Dð

ffiffiffi
z

p
Þ&1CðCwÞt:

&

Note that this objective function is quadratic in t,
guaranteeing a global optimal solution. We compute the
optimum using conjugate gradient descent and then
recover the optimal x through the relationship x̂ ¼ CðCwÞt̂.

5.1.2 Optimization of z

Given the current estimate of x, the optimization of z in (13)
can be written as

argmax
z

log pðx; zjyÞ ¼

argmax
z

log pðyjx; zÞ þ log pðx; zÞ & log pðyÞf g:

The last term may be dropped because it is independent of z
and the first term is dropped since y is independent of z
when conditioned on x. Thus, the problem is reduced to
argmaxz log pðx; zÞ, which may be computed as in step 1 of
the learning procedure of Section 3.1.

5.1.3 Acceleration

The alternating optimization of x and z is guaranteed to
converge to a local optimum of the objective function in
(13), but the convergence speed can be very slow. To
accelerate convergence, we include a heuristic “inertial”
step after every two steps of the optimization loop.
Specifically, the algorithm takes a step in the direction
established by the optimal values of the previous two
iterations, with the step size optimized according to

x̂ðkþ1Þ; ẑðkþ1Þ
n o

¼ xe
ðkÞð!optÞ; zeðkÞð!optÞ

n o
where

xe
ðkÞð!Þ ¼ x̂ðkÞ þ ! x̂ðkÞ & x̂ðk&1Þ

$ %
;

ze
ðkÞð! ¼ ẑðkÞ þ ! ẑðkÞ & ẑðk&1Þ

$ %
;

!opt ¼ argmax
!2ð0;!maxÞ

log p xeð!Þ; zeð!Þjyð Þ:
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Fig. 5. Samples from the MRFs with parameters shown in Fig. 2.



Intuitively, such a jump ensures that the optimization does
not oscillate back and forth within a narrow valley of the
objective function. In practice, as shown in the following
experiments, it achieves a substantial reduction in the
overall running time of the algorithm.

5.1.4 Parameter Estimation (Optional)

The denoising algorithm described thus far assumes that
the model parameters Qu and Qz are known. These model
parameters can be learned as a generic statistical model for
subband coefficients from a large set of noise-free photo-
graphic images using the algorithm provided in Section 3.1.
The advantage of a generic image model approach is that
the training can be performed offline, which may greatly
reduce the overall running time. Alternatively, these
parameters can be adaptively learned by including a
parameter estimation step in the loop of the denoising
algorithm

Q̂ðkÞ
u ; Q̂ðkÞ

z

$ %
¼ argmax

Qu;Qz

log p x̂ðkÞ; ẑðkÞjy;Qu;Qz

$ %
ð14Þ

as in Section 3.1. The FoGSM model parameters ðQu;QzÞ
are estimated from hGMRFs ½x(

ffiffiffi
ẑ

p ðkÞ* and ½log zðkÞ*, as in
steps 2 and 3 in (7). Adaptively learning the parameters

allows the model to better account for the local structure of

the image in question, thus potentially leading to better

performance. We compare the relative performance of these

two training schemes in the following experiments.

5.2 Experimental Setup

We evaluated the FoGSM denoising method on a set of
standard grayscale test images [17]. All images are of size
256 + 256 or 512 + 512 pixels and in 8-bit TIFF format.
Noisy images were generated by adding simulated white
Gaussian noise. We evaluate the denoising performance by
visual inspection, as well as the conventional objective
performance known as peak-signal-to-noise ratio (PSNR),
defined as 20 log10ð255=#eÞ, where #e is the standard
deviation (computed by averaging over spatial position)
of the difference between the restored image and the
original image.

Each noise-corrupted image was first decomposed into
a steerable pyramid with multiple scales (five levels for a
512 + 512 image and four levels for a 256 + 256 image) and
eight orientations. These values were chosen empirically to
achieve a reasonable compromise between denoising
performance and computational load. The resulting repre-
sentation is approximately 11 times overcomplete, relative
to the original image size. The Markov neighborhoods for
hGMRFs u and log z were both chosen to cover 5 + 5 blocks
of coefficients since this was found to be optimal for
representation of clean images. We verified that this specific
choice was also roughly optimal for the best denoising
performances across different images and noise levels. The
model parameters were obtained by training the FoGSM
model adaptively for each subband as described in
Section 5.1, with initial parameter values chosen to
represent a smooth and isotropic GMRF. The initial values
of x and z are computed from subband denoised with the
local GSM model [17].

5.3 Results
Denoising results for six test images, at seven different noise
levels, are reported in Table 1. The standard deviations of
PSNR values for each image and noise level, computed by
repeating each denoising experiment 10 times with different
samples of noise, are consistently lower than 0.1 dB. In
addition to the results for our FoGSM algorithm, we also
provide denoising results of the BLS-GSMmethod [17]. This
algorithm computes the Bayes least squares estimate (i.e.,
conditional mean) of individual coefficients based on a local
GSM model. The comparison with FoGSM allows us to
assess the gain in performance that is obtained by building
a global model. We employed the implementation de-
scribed in [17], which assumes a neighborhood consisting of
3 + 3 spatial neighbors plus a “parent” coefficient in the
next coarsest scale.2 Finally, we provide results of the
current state-of-the-art denoising method, BM3D [37]. The
PSNR values for these methods were directly taken from
their corresponding publications. Note that the FoGSM
algorithm achieves consistent improvements in PSNR over
the local GSM-based algorithm (average improvement is
0.52 dB), clearly demonstrating the advantage of a globally
consistent statistical model. On the other hand, the
performance of the FoGSM method is comparable (some-
times better, sometimes worse) to that of BM3D, which is
not based on any explicit statistical model. In general,
BM3D relies on the image containing repeating patterns
(specifically, many blocks of pixels that are similar). Thus, it
performs best on images with large regions of the same
texture (e.g., “Barbara”) or long contours of similar
orientation (e.g., “House”) and performs less well on
images with diverse content (e.g., “boats,” or “Lena”).

In Fig. 6, we plot the PSNR performance of four recent
denoising methods relative to that of FoGSM. The perfor-
mance of FoGSM is consistently better than that of kSVD
[39], BLS-GSM [17], and FoE [27], and (on average)
comparable to those of BM3D [37].

Next, we examine and compare the denoising results
visually. Figs. 7 and 9 show the results of denoising the
“Barbara” image and the “boats” image with noise level
# ¼ 50, corresponding to a PSNR of 14.15 dB. We have
chosen a relatively high level of noise, in order to provide a
clear visualization of the capabilities and limitations of the
model. To better examine the details of the denoising
results, we show in Figs. 8 and 10 enlargements of selected
regions of each of the corresponding images in Figs. 7 and 9,
respectively. For these examples, the FoGSM denoising
achieves substantial improvements (þ0.95 and þ0.68 dB)
and is seen to exhibit higher contrast and continuation of
oriented features. However, FoGSM also introduces some
noticeable artifacts in low contrast regions, which are likely
due to failures of the FoGSM model to capture all statistical
properties of photographic image multiscale subband
coefficients. For example, coefficient amplitudes are known
to be correlated across scale (see Fig. 4, right panel). If
represented properly, this correlation should allow the
denoising algorithm to recognize isolated large coefficients
as noise, since (unlike photographic images) they will not
have corresponding large-amplitude coefficients in adjacent
bands. But, the current model treats each subband
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2. A MAP-based denoising algorithm based on the local GSM model was
developed in [38]. However, its performance was significantly worse than
the BLS method published in [17].



independently, thus allowing these isolated coefficients to
remain as unsuppressed artifacts. In addition, these artifacts
may also be aggravated by the use of a MAP-like estimator.
A local MAP-GSM estimator produces similar unsup-
pressed coefficients, when compared to the smoother
behavior of the local BLS-GSM estimate.

The denoising performance obtained with FoGSM is
attained with a substantial computational cost. As a rough
indication, our unoptimized MATLAB code, running on an
Intelworkstationwith 2.6GHzdualOpteron 64-bit processor
and 16 Gbyte RAMmemory, takes, on average, 97.3 minutes
(results averaging over nine trials,with a range of [71.8, 124.4]
minutes) to denoise a 512 + 512 image at noise level # ¼ 50,
and takes, on average, 35.3 minutes (result averaging over
four images, with a range of [28.4, 47.9] minutes) to denoise a
256 + 256 image at the same noise level. It is likely that these
values could be improved by incorporating additional
acceleration heuristics.

5.4 Algorithm Variations
In order to understand the contribution of various aspects
of the FoGSM-based denoising method, we examined their
relative effect on the denoising performance. Table 2 shows
the changes in PSNR and running time when various
features of the method are modified. All results are for noise
level # ¼ 50 and averaged over three 512+ 512 images (they
are “boats,” “Lena,” “Barbara”). The first two columns
correspond to modifications of the front-end representation.
The first (ortho wvlt) corresponds to using an approximately
orthogonal wavelet decomposition based on quadrature
mirror filters [40]. The separable QMF pyramid splits the
image frequency domain into horizontal, vertical, and
mixed diagonal subbands. Using this representation results
in a substantial reduction in performance, which we believe
is partly due to the mixed orientations in the diagonal band
and partly due to the lack of overcompleteness that
generally improves denoising [41], [42].

The second column (4 orns) shows the result of using
steerable pyramiddecompositionwith only four orientations
(instead of eight). Decreasing the number of orientations
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TABLE 1
Comparison of FoGSM with BLS-GSM [17] and BM3D [37]

Performance values are expressed as PSNR, 20 log10ð255=#eÞ, where #e is the standard deviation of the difference between the denoised image and
the original image. Numbers in boldface indicate the best performance among the three methods for each image and noise level. Cases in which the
two best methods differ by less than 0.1 dB are considered a tie.

Fig. 6. Performance comparison of denoising methods for three different images. Plotted are differences in PSNR for different input noise levels ð#Þ
between FoGSM and four other methods (square, BM3D [37], star, BLS-GSM [17], diamond, kSVD [39], and triangle, FoE [27]). The PSNR values
for these methods were taken from their corresponding publications.



leads to a significant drop in performance, accompanied
by a substantial reduction in running time. On the other
hand, increasing the number of orientations (not shown)
leads to small improvements in PSNR, at the expense of
considerable computation cost.

In the next three columns, we examine the effects in the
FoGSM model structure. We first compared the effect of

different choices ofMRF neighborhood size (3+ 3 and 7+ 7).
As shown, changing neighborhood size has relatively little
effect on the overall running time, but the PSNR values were
lower forbothneighborhoodsizes, justifyingour choice of the
5+ 5 neighborhood (at least for this image and noise level). In
the fifth column (gen param), we compared the result of the
offline training of the ðQu;QzÞ parameters of the FoGSM
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Fig. 7. Denoising results using local GSM [17] and FoGSM.

Fig. 8. Enlargement of a selected region of the images in Fig. 7.



model on a set of noise-free images (not including the three
test images). This leads to a significant reduction in the
computational cost ofdenoisingan image since theparameter
learning step no longer needs to be included in the denoising
process. However, this is accompanied by a significant
loss in denoising performance (an average PSNR reduc-
tion of approximately 0.4 dB), since the generically
learned model parameters are less adapted to the
idiosyncrasies of the specific image/subband being de-
noised. The last column (no accel) shows that the accelerat-
ing heuristics introduced in the previous section
significantly improve the running time of the denoising
procedure, while having a negligible effect on PSNR.

6 RELATED MODELS

The local GSM model that underlies the FoGSM is closely

related to other local hidden variable models for images

[16], [8], [43], [31], [44]. However, the use of MRFs in the

FoGSM allow it to extend to images of arbitrary size in a

statistically consistent way, while the local scale mixture

models are essentially confined to describing small image

patches. The underlying MRF structure of the hidden

variables in the FoGSM model also differentiates it from

mixture models with tree-structured hidden variables [19],

[20]. These models have the advantage of explicitly
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Fig. 9. Denoising results using local GSM [17] and FoGSM.

Fig. 10. Enlargement of a selected region of the images in Fig. 9.



capturing cross-band dependencies, but they suffer from
spatial inhomogeneities introduced by the tree partitioning.

As a global MRF-based image model, the basic archi-
tecture of FoGSM differs from existing non-Gausssian MRF
image models [21], [23], [24], [27] in that it is not defined by
specification of clique potentials but through nonlinear
composition of two hGMRFs. On the other hand, FoGSM
has some resemblance to the compound GMRFs model for
images [22], which is formed by modulating an hGMRF
with a binary line process that indicates the existence of an
edge between two spatial locations [21]. A modified
version, proposed in [36], treats the hidden variables as
independent. This simplifies computation but may lead to a
loss in performance in applications.

7 DISCUSSION

We have introduced FoGSMs as a flexible and efficient tool
for modeling the statistics of multiscale subband coefficients
of photographic images. We developed a feasible parameter
estimation method and showed that samples synthesized
from the fitted FoGSM model are able to capture structures
in the marginal and joint subband statistics of photographic
images. We have applied FoGSM to image denoising and
demonstrated performance comparable to current state-of-
the-art denoising methods.

We envision, and are currently working on, a number of
improvements. First, the model should benefit from the
introduction of more general Markov neighborhoods,
including coefficients from subbands at other scales and
orientations [6], [17], since the current model is clearly not
capturing these dependencies. A natural means of achiev-
ing this is to allow different subbands to share the same
hidden scaling field, although this may substantially
complicate the learning and inference algorithms. A
possible remedy is to capture these cross-scale dependen-
cies with a coarse-to-fine conditional model. Second, the
logarithmic link function used to derive the multiplier field
from an hGMRF was chosen somewhat arbitrarily, and we
believe that substitution of another nonlinear transforma-
tion (e.g., a power law, as in [19]) could lead to a more
accurate description of marginal and coefficient statistics.
Finally, there exist residual inhomogeneous structures in
both the u and log z fields (see Fig. 2) that may be captured
by explicitly incorporating local orientation [45] or phase
[46] into the model. Finding tractable models and algo-
rithms for handling such angular variables is challenging,
but we believe their inclusion will result in substantial
improvements in modeling and in denoising performance.

APPENDIX A

CIRCULANT AND BLOCK-CIRCULANT MATRIX

Given a d-dimensional vector (known as a generating kernel)

q ¼ ðq&bd=2c; . . . ; q&1; q0; q1; . . . ; qbd=2c&1ÞT ;

a d+ d circulant matrix is constructed as

CðqÞ ¼

q0 q1 q2 " " " q&1

q&1 q0 q1 " " " q&2

q&2 q&1 q0 " " " q&3

..

. ..
. ..

. . .
. ..

.

q1 q2 q3 " " " q0

0

BBBBB@

1

CCCCCA
:

The rows of CðqÞ are circularly shifted copies of qT .

Multiplication of CðqÞ with a d-dimensional vector u is

equivalent to convolving vectors q and u, with circular

(Dirichlet) boundary handling. The basis functions of the

d-point DFT form a complete set of eigenvectors for any

circulant matrix, regardless of the choice of generating

kernel as

CðqÞ ¼ FDð~qÞFy;

where F is a matrix containing the DFT basis, Fy is the
complex-conjugated transpose (used to compute the for-
ward DFT), and Dð~qÞ is a diagonal matrix containing the
d-point DFT of q. Thus, multiplying matrix CðqÞ with vector
u can be computed as

CðqÞu ¼ FDð~qÞFyu ¼ F ððFyqÞ ' ðFyuÞÞ;

generally known as the convolution theorem. Since the DFT
may be implemented with Oðd log dÞ operations, this
expression often provides an efficient implementation of
convolution with q.

Representation of 2D convolutions (e.g., for images)
requires a second-order circulant (also called block-circulant)
matrix, which can be constructed by recursively applying
the circulant structure. Analogous to the circulant matrix,
the 2D DFT of the shifted symmetric reflection of Q are the
eigenvalues of CðQÞ and the corresponding 2D DFT basis
vectors are the eigenvectors. And again, the convolution
theorem provides an efficient means of implementing
matrix multiplication by the circulant matrix. For a full
account of the properties and computations of circulant and
block-circulant matrices, readers are referred to [47].
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TABLE 2
Effects of Different Algorithm Variations

!PSNR specifies the changes in PSNR resulting from a change in the corresponding attribute. !t=t specifies the percentage of change in running
time relative to the running time of the standard algorithm described in Section 5.3. All values are averages over three 512 + 512 images (“boats,”
“Lena,” “Barbara”) for the noise level # ¼ 50.



APPENDIX B

PARAMETER LEARNING FOR 2D hGMRF
A zero-mean 2D hGMRF u of dimension N +M is
completely determined by the generating kernel Q of its
block-circulant precision matrix. The density of u can be
expressed as

pðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðQÞj j

ð2"ÞMN

s

exp & 1

2
uTCðQÞu

" #
;

where we have abused notation a bit by using u to represent
the vectorized MRF. Assuming a rectangular Markov
neighborhood of size N 0 +M 0, where M 0 , M and
N 0 , N , estimation of Q corresponds to the determination
of the central N 0 +M 0 entries (all others must be zero).

Given a set of independent samples of u, fukgKk¼1, the
generating kernel Q can be estimated by maximizing the log
likelihood:

LðQÞ ¼
XK

k¼1

log pðukÞ

¼ K

2
log CðQÞj j&KMN

2
log 2" & 1

2

XK

k¼1

uT
k CðQÞuk:

Using the eigendecomposition property of block-circulant
matrix and neglecting the constant term, we can write a
modified likelihood function as

~LðQÞ ¼ K

2
log FDð ~QÞFy

'''
'''&

1

2

XK

k¼1

uT
k FDð ~QÞFyuk

¼ K

2
log Dð ~QÞ

'' ''& 1

2

XK

k¼1

~uT
kDð ~QÞ~uk

¼ K

2

XMN

i¼1

log ~Qi &
1

2

XMN

i¼1

~Qi

XK

k¼1

ð~ukÞ2i ;

where ~u ¼ Fyu is the DFT of u. The optimal Q is then
obtained by maximizing ~LðQÞ subject to the constraint that
the solution leads to a symmetric and positive definite
matrix CðQÞ. It can be shown that ~LðQÞ is a convex function
and the constraints form a convex set in the feasible space of
Q. Thus, solving for the optimal Q is a convex optimization
problem and there are a variety of iterative solutions that
are guaranteed to converge to the global optimum [48].

APPENDIX C

SAMPLING 2D hGMRF

A sample of a zero-mean 2D hGMRF u of dimensionN +M
with precision CðQÞ can be obtained from a sample of white
Gaussian noise w of the same dimension, by computing

u ¼ FD
ffiffiffiffi
~Q

q" #&1

Fyw: ð15Þ

That is, compute the DFT of the noise, divide (element-wise)
by the square root of the DFT of the desired generating
kernel, ~Q, and then invert the DFT. A similar algorithm has
been used for texture synthesis [49], as well as for Monte
Carlo sampling for image restoration [50].

It is easy to verify that the resulting MRF has the desired
covariance structure:

EðuuT Þ ¼E FD
ffiffiffiffi
~Q

q" #&1

FywwTFD
ffiffiffiffi
~Q

q" #&1

Fy
" #

¼FD
ffiffiffiffi
~Q

q" #&1

FyE wwT
( )

FD
ffiffiffiffi
~Q

q" #&1

Fy

¼FD ~Q
( )&1

Fy ¼ CðQÞ&1;

where we have used the Hermitian property of matrix F
and the fact that EðwwT Þ ¼ I.
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