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ocal statistical properties of photographic images, when repre-
d in a multi-scale basis, have been described using Gaussian
mixtures (GSMs). In that model, each spatial neighborhood

efficients is described as a Gaussian random vector modulated
andom hidden positive scaling variable. Here, we introduce a
powerful model in which neighborhoods of each subband are
ibed as a finite mixture of GSMs. We develop methods to learn
ixing densities and covariance matrices associated with each
GSM components from a single image, and show that this pro-

naturally segments the image into regions of similar content.
odel parameters can also be learned in the presence of addi-
aussian noise, and the resulting fitted model may be used as

or for Bayesian noise removal. Simulations demonstrate this
l substantially outperforms the original GSM model.

ndex Terms— Image denoising, Image modelling, Gaussian
mixture.

1. INTRODUCTION

al images are highly inhomogeneous: smooth regions are in-
ted by features such as texture, edges, lines, corners, etc. This

ogeneity produces highly non-Gaussian statistics, which are
ly apparent when the image is transformed from the pixel do-
to a linear multi-scale representation. Marginal histograms of
cients reveal highly kurtotic behavior with heavy tails [1, 2]. In

ion, there is a strong non-linear coupling between amplitudes
efficients at nearby positions, orientations, and scales [3, 4].
ussian scale mixture (GSM) model [5], in which clusters of
cients are modeled as a product of a Gaussian vector and a
ve scaling variable, captures both the amplitude coupling and
urtotic marginals of wavelet coefficients [6]. Since the sub-
are computed through band-pass filtering, it seems reasonable

sume that spatial neighborhoods within a subband share the
local covariance [7]. Better modeling may be obtained by al-
g the neighborhoods of the image subbands to have a spatially
ng covariance matrix. In previous work, this has been achieved
timating covariance over a subregion of the image surround-
ach neighborhood (known as SVGSM) [8], or by defining the
iances in a local coordinate system rotated to match the local
nant orientation (known as OAGSM) [9].
everal recent denoising methods demonstrate impressive re-
by exploiting the similarity of neighborhood structures scat-
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tered throughout a given image [10, 11, 12]. Here, we introduce a
finite mixture of GSM (MGSM) model that can effectively adapt the
local covariance in a GSM model to nonlocal image structures. We
develop an algorithm for adapting the parameters (in particular, the
covariances of each of the components) to the data in a single image.
We show first that fitting the model to an image produces a natu-
ral segmentation into regions of similar content. We then develop
a Bayesian Least Squares estimator for removing additive Gaussian
noise. We demonstrate through simulations that the resulting denois-
ing performance is substantially better than that of a single GSM
model (as reported in [7]), and nearly as good as the best results
reported in recent literature.

2. MODELLING NON-LOCAL STATISTICS: MGSM

The modeling capabilities of a GSM can be significantly improved
by estimating the covariance matrices locally [8, 9], because the
neighborhoods over which the estimation is performed are more
likely to be statistically similar. But this reduces the number of
neighborhoods used in the estimate (thus increasing the estimation
error), and still does not guarantee that they are not contaminated
by neighborhoods drawn from different statistical sources (e.g.,
when estimated near a texture boundary). Instead, we would like to
identify the dominant statistical structures occurring throughout the
image, and then compute the contribution of each of these identified
”modes” to the contents of each local neighborhood. We achieve
this by introducing a mixture of Gaussian scale mixtures (MGSM)
model. As with the GSM model, we write a (vectorized) coefficient
neighborhood as:

x =
√
zu,

but unlike a simple GSM, we assume a hidden discrete index vari-
able k ∼ Pk is selected for each neighborhood and determines the
mixing density of the scalar multiplier p(z|k) = pk(z), as well as
the covariance matrix Ck of zero-mean Gaussian vector u given k.
We assume u and z are independent when conditioned on k. Ac-
cording to this, the density of the modelled neighborhood vector is:

p(x) =

KX
k=1

Pkp(x|k) =

KX
k=1

Pk

Z
z

p(x|k, z)pk(z)dz

=

KX
k=1

Pk

Z
z

exp
`
−xT (zCk)−1x/2

´
(2π)N/2|zCk|1/2

pk(z)dz. (1)

In this paper, we model neighborhoods for each subband separately.
For each subband, and assuming a neighborhood sizeN and number
of mixture components K, the parameters of the MGSM model are:
(a) the K probability masses Pk; (b) the K mixing scale densities
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Fig. 1. Image subband labelled according to dominant
MGSM component. Left: a non-oriented steerable pyramid
subband of the House image. Right: color-coded indication
of dominant component in an MGSM model with 8 compo-
nents and 7× 7 neighborhoods. Black pixels indicate neigh-
borhoods with energy below a threshold.

pk(z); and (c) theK covariance matrices Ck. For a given image, we
estimate these parameters by maximizing the likelihood of the data
given the model. The procedure is an iterative EM-like algorithm,
and a very similar version of it is described in Section 3 for the case
when there is additive Gaussian noise in the observed image.

The MGSM model is able to capture similarities in neighbor-
hood structures, even if they are non-adjacent. This is illustrated in
Fig. 1, which shows a non-oriented image subband together with the
result of fitting the MGSM model with K = 8 and a 7 × 7 GSM
neighborhood. The color of each pixel identifies the dominant GSM
mixture component for the neighborhood centered at that position.
Specifically, we estimated the model parameters and then chose, for
each neighborhood, the index k maximizing the posterior P (k|x).
Some mixture components can be seen to represent edges of a given
orientation (components 3, 5, 6, 7 and 8), some represent homoge-
neous texture regions (2 and 4), and one captures corners (1). We
find it remarkable that this model, which does not include any ex-
plicit definition of features or attributes, can perform an automatic
segmentation of the image contents into these feature classes.

3. IMAGE DENOISING USING MGSM

The MGSM model provides a useful substrate for the application
of denoising, where it can be used as a prior model in a Bayesian
estimation scheme. Consider an image corrupted by additive Gaus-
sian noise of known covariance (not necessary white). As with many
other methods, we estimate the original image by transforming the
noisy observation into an overcomplete multi-scale representation,
denoising each subband, and then inverting the transform. We model
the noisy neighborhoods of each subband as a mixture of Gaussian
scale mixtures, plus a Gaussian noise term:

y =
√
zu + w,

where w is a zero mean Gaussian noise vector with covariance
matrix Cw. The density of the observed neighborhood vector
conditioned on z and k is Gaussian (zero-mean), with covariance
Cy|z,k = zCk + Cw. Hence, the density of the observed vector y

is:

p(y) =

KX
k=1

Pk

Z
z

exp
`
−yT (zCk + Cw)−1y/2

´
(2π)N/2|zCk + Cw|1/2

pk(z)dz.

3.1. BLS Coefficient estimation

As in previous work, we compute the Bayesian Least Squares (BLS)
estimate (also known as the MMSE) of each coefficient given the
surrounding block. The BLS estimate is the mean of the posterior
distribution, p(x|y), which may be written in this case as:

x̂BLS(y) =

KX
k=1

P (k|y)

Z
z

E{x|y, k, z}pk(z|y)dz.

The value of the integral over z is the BLS estimate for a single GSM
model (as found in [7]), and the full estimate is a weighted sum
of these over the K GSM mixture components. The integrals are
relatively simple to compute since the embedded expectation is taken
over a conditionally Gaussian density, and thus is just the Wiener
solution, E{x|y, k, z} = zCk(zCk + Cw)−1y.

3.2. Parameter estimation under additive noise

We adaptively estimate the parameters for each noisy subband, tak-
ing the set of all neighborhoods, {ym;m = 1 . . .M}, to represent a
set of independent samples from the noise-corrupted MGSM density.
We estimate the parameters that maximize the global log-likelihood
expression of the observations:

L ({ym}) =

MX
m=1

log

"
KX

i=1

Pki

Z
z

p(ym|ki, z)pki(z)dz

#

In order to simplify the numerical optimization problem, we reduce
the hidden multiplier densities pk(z) to a finite number of discrete
values. We maximize the likelihood using an iterative coordinate
ascent method, optimizing each set of parameters in turn. The ascent
steps are:

• Discrete probabilities Pk:

P
(n+1)
k = P

(n)
k

1

M

MX
m=1

p(ym|k)(n)PK
j=1 p(ym|j)(n)P

(n)
j

,∀k (2)

• Mixing scale densities pk(z):

pk(z)(n+1) =

pk(z)(n)

MP
(n)
k

MX
m=1

p(ym|k, z)(n)P (k|ym)(n)

p(ym|k)(n)
, ∀k (3)

Note that, in contrast to original GSM model [7] where Jeffrey’s
noninformative prior was used for the mixing density, this model
estimates the scale density directly from the data, as in [13].

• Covariance matrices Ck: For the noisy case we have not found
an efficient ML expression for Ck. Instead we have used a con-
sistent estimator which gives rise to the following updating rule:

C
(n)
k =

—„Z
z

Cy(k, z)(n)p(z)(n)dz

«
−Cw

�
+

, (4)



where the operator b�c+ enforces positive definiteness by setting
to zero the negative eigenvalues, and

Cy(k, z)(n) =

PM
m=1 P (k|ym)(n)p(z|ym, k)

(n)ymyT
mPM

m=1 P (k|ym)(n)p(z|ym, k)(n)

' zCk + Cw.

Without loss of generality, we have assumed that
R

z
z pk(z) dz =

1 for all k, which leads directly to Eq. (4).

The ascent algorithm requires an initial set of parameter values. For
both Pk and pk(z) we assume a uniform distribution. The latter
density is discretized using the sampling described in [7].

The covariances, Ck, are initialized from the image content as
follows: The first one, C1, is set to the global sample covariance.
The remaining initial guesses for Ck, k = 2..K are obtained from
high energy areas in the subband, selected using a heuristic.

To update the parameters accordingly, we need to compute,
among others, the expression p(z|ym, k). Using Bayes formula:

p(z|ym, k) =
p(ym|k, z)pk(z)

p(ym|k)
.

This requires us to compute p(ym|k, z), which is a zero-mean Gaus-
sian distribution with covariance zCk + Cw, and p(ym|k), which
is obtained by numerically integrating

R
z
p(ym|k, z)pk(z)dz. Both

of these are involved in the update expressions, as well as P (k|ym),
which is also computed directly using Bayes formula.

4. RESULTS AND DISCUSSION

4.1. Implementation details

We decomposed the images using the Translation Invariant Haar
Pyramid [8] (TIHP), with 3 orientations and 4 or 5 scales for 256×
256 or 512 × 512 images respectively. We used K = 10 GSMs in
the mixture and, in contrast to [7], we increased the GSM neighbor-
hood size from 3 × 3 to 7 × 7. On each iteration of the parameter
estimation algorithm, we pruned the number of GSMs in the mixture
by classifying the samples according to P (k|ym) and deleting those
GSMs with few samples assigned (less than N ).

We implemented the algorithm in Matlab. The current computa-
tional cost is quite high: roughly one hour for a 256×256 image and
six hours for a 512× 512 image, on a computer with two dual-core
3Ghz Intel Xeon processors and 32 Gbytes of memory. We believe
a significant improvement should be possible with a more careful
implementation, or by learning the covariance ”offline”, from a set
of training images.

4.2. Denoising results

We used four standard test images to evaluate our algorithm, known
as Barbara, Boat, House and Peppers. In Table 1 we present the
results of our proposed algorithm, in terms of peak signal-to-noise
ratio (PSNR) over a wide range of noise levels. Figure 2 shows a
visual comparison for Barbara and House, two images with differ-
ent amounts and types of texture, using simulated white Gaussian
noise of σ = 25. Results are shown for the BLS-GSM method
on TIHP (instead of full steerable pyramid, as in [7]), the SVGSM
method [8], and the MGSM. All results are cropped to 128× 128 to
promote the visibility of the artifacts, which are generally informa-
tive as to the relative advantages of denoising methods. We can see

σw/ PSNR Barbara Boat House Peppers
5/ 34.15 38.02 37.30 39.30 37.75

10/ 28.13 34.45 33.78 36.06 34.30
25/ 20.17 29.80 29.62 32.12 29.74
50/ 14.15 26.19 26.55 28.89 26.37

100/ 8.13 22.79 23.91 25.53 22.99

Table 1. Denoising performance expressed as peak signal-
to-noise ratio (PSNR) in dB. First column shows the noise
standard deviation and the PSNR of the noisy image.

the progressive and significant improvement (removing isolated ba-
sis functions, more natural edge appearance, better texture recovery,
etc.) when introducing the spatial adaptation, and even more when
using the mixture of GSMs.

Finally in Fig. 3 we show a graphical comparison of PSNR im-
provements (computed from the averaged MSE results of the 4 test
images) with respect to the BLS-GSM method [7] on TIHP. In-
cluded are results for SVGSM [8], four of the current best published
methods (labelled 3DBM [12], FoGSM [14], K-SVD [15], and SA-
DCT [11]), and the MGSM model introduced here. The MGSM is
seen to provide substantial improvement over the GSM and SVGSM,
for all the images and noise levels. The average improvement is
roughly 0.70 dB with respect to GSM and 0.40 dB with respect to
SVGSM. Relative to other methods our results are better than SA-
DCT and K-SVD, but they are still worse than FoGSM and 3DBM.

5. CONCLUSIONS AND FUTURE WORK

We have presented a denoising algorithm based on a mixture of
Gaussian scale mixtures (MGSM). The proposed model provides
a flexible and conceptually clean means of capturing non-local re-
dundancy within subbands, while retaining the statistical strength of
GSM-based models. In contrast to the original GSM and SVGSM
models, there is no need for priors on the hidden scaling variables,
as these are systematically ML-estimated for each subband. The
proposed model leads to a denoising algorithm with consistent and
significant improvement over GSM and SVGSM, and is competitive
with methods proposed in recent literature.

We are currently investigating a variety of potential improve-
ments. The pruning of under-utilized mixture components should
be refined. The number of mixture models, K, should be selected
adaptively per band, depending on both the content and the num-
ber of neighborhoods. And the model should be extended to exploit
shared features across subbands, either by enlarging the GSM neigh-
borhoods to include other bands, or sharing mixing variables across
bands. We are also investigating more general issues of adaptive
image representation that are inspired by this model.
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