
Efficient Coding and Bayesian Estimation with Neural

Populations

by

Deep Ganguli

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Center for Neural Science

New York University

September 2012

Eero P. Simoncelli





Dedication

To my parents, Sham and Karobi Ganguli.

iii



Acknowledgements

I would like to thank my advisor, Eero Simoncelli, for the support, enthusiasm,

encouragement, and inspiration he has given me throughout the course of this

research. It still amazes me how quickly he can arrive at solutions to my math

problems (which mostly consist of symbols scribbled nervously on a chalkboard)

by drawing simple pictures. I have learned so much from him.

I am grateful to members of the Simoncelli lab: Umesh Rajaeshekar, for teach-

ing me everything I know about image processing and Matlab’s implementation

of the Fast Fourier Transform; Josh McDermott, for always answering my audio

signal processing questions; Chaitue Ekhanadham, for being my resident calculus

guru; Brett Vintch, for teaching me how to rock climb, learning how to snowboard

with me, and always being down to ride bikes and chill at Le Basket; and Rob

Young, for fixing my computer every time it broke and not being too mad when it

was my fault.

I am especially grateful to Jeremy Freeman, who in many ways was my second

advisor. His contributions include thoroughly reading and editing drafts of my

papers, helping me put together talks, teaching me Adobe Illustrator and aspects

of design so I could make better figures, talking me through statistical analyses, and

selflessly championing my work to anyone who would listen. He is also a fantastic

friend. I owe him one for introducing me to Kelly Gannon, whose contributions

include (but are not limited too): delicious home cooked meals, bike adventures

in Brooklyn, driving me to my first job interviews, encouraging me to never stop

skating (even though it hurts more when I fall these days because I’m older now

and the ground seems further away), and tons of love and support.

iv



Abstract

The efficient coding hypothesis asserts that sensory systems evolved to maxi-

mize information transmitted to the brain about the environment. We develop a

precise and testable form of this hypothesis in the context of encoding a sensory

variable in the responses of a population of noisy neurons, each characterized by

a tuning curve. We obtain a closed form solution for the information maximizing

tuning curves as a function of the prior probability of sensory variables encoun-

tered in the environment. The solution states that more cells with narrower tuning

widths should be allocated to encode higher probability stimuli. We extend our

result to predict the discrimination performance of a perceptual system operating

on the efficient neural representation, and find that the best achievable discrim-

ination thresholds are inversely proportional to the sensory prior. The predicted

relationships between empirically measured stimulus priors, physiological tuning

properties, and perceptual discriminability are remarkably well matched to data

obtained for two auditory and three visual variables. We also derive a novel decoder

that performs Bayesian estimation by utilizing the prior information embedded in

the preferred stimuli of the optimal tuning curves. Similar to the population vec-

tor, our decoder computes weighted averages of the preferred stimuli. However,

the firing rates are not used directly as weights, but are first convolved with a

linear filter then exponentiated. We map this simple cascade onto a compact,

biologically plausible neural circuit. The results in this thesis provide a strong

link between two dominant theories in sensory neuroscience − efficient coding and

Bayesian estimation − and suggest how to relate both ideas directly to data from

physiological and perceptual experiments.
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Chapter 1

Introduction

As organisms interact with the world, their sensory systems are constantly

bombarded with physical signals. In the visual system, photons impinging on

photoreceptors in the retina give rise to patterns of spiking activity in neurons a

few synapses away. In the auditory system, sound waves entering the ears cause

a membrane to vibrate, which subsequently causes neurons to produce spikes. It

is by virtue of these patterns of spiking activity that the brain is able to perceive

the environment and allow an organism to produce actions and memories relevant

for its survival.

A fundamental goal in sensory neuroscience is to understand the transforma-

tions of natural signals into neural representations that enable perception. Inspired

by this goal, many investigators have carefully characterized the statistical proper-

ties of the natural environment, the response properties of neurons in early sensory

systems, and the perceptual capabilities of human observers. These investigations

have produced an enormous wealth of data about these three pieces of the puzzle.

To understand the entire picture requires a theoretical framework that can illumi-
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nate connections between each piece, and be tested with the existing data. The

goal of this thesis is to establish such a theoretical framework.

Two dominant theories in sensory neuroscience are explored in this thesis. The

first theory, proposed by Barlow over 50 years ago, hypothesizes that early sensory

systems evolved to maximize the amount of information transmitted to the brain

about the environment, while minimizing metabolic costs [1,2]. This statement has

been termed “the efficient coding hypothesis”, and can be quantified within the

framework of information theory [3]. The second theory is inspired by Helmholtz,

who qualitatively described perception as a process of inference, in which human

observers combine their noisy measurements and prior knowledge of the environ-

ment to construct an estimate of the physical world [4]. Bayesian statistics provides

this notion with a quantitative grounding that can be used to develop optimality

principles for perception. In the following sections we elaborate on these two theo-

ries, their existing support, and our new contributions (which include a previously

unforeseen connection between the two theories).

1.1 The efficient coding hypothesis

Coding efficiency is a well known objective for the design of machine systems. It

is rooted in the mathematics of information theory, which was initially developed

to find fundamental limits on signal processing algorithms for the compression,

transmission, and storage of data [3]. Remarkably, these ideas were also deemed

relevant for perceptual and biological systems soon after [1,2]. These early papers

argued that sensory and perceptual systems should exploit statistical regularities

in the natural environment to efficiently encode sensory information. Although
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this hypothesis was developed over 50 years ago, it has been remarkably difficult

to develop a quantitatively precise formulation of efficient coding that is simple to

test with both physiological and perceptual data.

The efficiency of a given sensory representation depends on specifying four

ingredients: (1) the family of possible neural transformations that dictate how a

natural signal is encoded into neural activity; (2) the types of signals that are to be

encoded, and their statistical properties; (3) the noise processes involved in the in-

puts and outputs of the system; and (4) the metabolic costs of building, operating,

and maintaining the system. Given these ingredients, one can examine the statisti-

cal properties of environmental signals, and show that a transformation optimized

according to a statistical optimality criterion, subject to the relevant constraints,

provides a good description of the response properties of a set of sensory neurons

[5]. The optimization of any formulation that realistically incorporates all the

relevant ingredients is generally intractable. Nevertheless, several simplified for-

mulations have achieved success at explaining the response properties of neurons

in early sensory systems, and in some cases, the implications of coding efficiency

for perception.

The simplest formulation of the efficient coding hypothesis considers a single

neuron that is to encode scalar input with a continuous valued monotonic response

function, which is bounded between a minimum and maximum response value. The

neural response is assumed to be deterministic, and the frequency of occurrence of

values of the input in the environment is modeled with a probability distribution.

In this setup, the information maximizing neural response function is expressed as

proportional to the cumulative probability distribution of the input. Intuitively,

this solution allocates more sensitive regions of the neurons dynamic range to
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encode frequently occurring inputs with high fidelity, at the cost of encoding less

frequent inputs with low fidelity. In a pioneering study, Laughlin measured the

probability distribution of contrast levels in natural scenes, and found that the

contrast response function of a fly large monopolar cell indeed closely resembled

the cumulative of this distribution [6].

Inspired by this observation, several papers examined the optimal nonlinear

transfer function in the presence of neural noise, and found that it could be ana-

lytically expressed as a power law function of the cumulative distribution, with the

exponent depending on the precise noise properties and optimality criteria [7, 8].

These theoretical results were not directly compared to data. Further studies

showed that some neurons dynamically update their monotonic response function

to changes in stimulus statistics in order to maximize information transmission,

[9, 10]. In all noiseless and noisy single neuron cases discussed so far, the optimal

solution involves allocating greater response range (steeper portions of the transfer

function) to more frequently occurring events.

Efficient coding formulations have also been developed to derive optimal coding

schemes for populations of neurons. Some formulations model neurons as having

linear receptive fields, scalar output non-linearities, and no output noise [11, 12].

For the case of no output noise, maximizing information is equivalent to minimizing

the statistical dependency (or reducing the redundancy) between the outputs of all

the neurons in the population [13]. Intuitively, this objective function asserts that

an encoding scheme cannot be efficient if the effort of encoding any particular piece

of information is duplicated in more than one neuron [5]. If the input distribution

is considered to be a subset of natural images collected from the environment,

and there is a power constraint on each neuron, a pioneering study found that
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the numerically optimized receptive fields are localized, oriented, and bandpass

filters, which resemble the receptive fields of neurons in primary visual cortex (V1)

[14]. Subsequent work compared the properties of these derived receptive fields to

those of physiologically measured receptive fields, and found that there was good

agreement between theory and data for subset of these properties [15].

Neurons are noisy (see [16] for review of noise in the nervous system) and,

intuitively, some amount of redundancy in a neural code is desirable to combat

the noise. Several variations of the efficient coding framework have attempted to

incorporate both additive input noise and additive output noise into population

coding models. For analytical tractability, these formulations assume Gaussian

distributions for the inputs and both noise sources, and that a neural population

can be described by a single linear receptive field that is convolved with the in-

put. The optimal linear receptive field exhibits a center surround structure, which

resembles the receptive fields of retinal ganglion cells [17–19], and can predict per-

ceptual phenomena such as the contrast sensitivity function [18], and the oblique

effect [20]. Recent work that relaxes the assumptions about convolutional receptive

fields and Gaussian noise, shows that the information maximizing neural popula-

tion also exhibits (heterogeneous) center-surround receptive fields with rectifying

nonlinearities that are consistent with the detailed response properties of retinal

ganglion cells [21].

An alternative view of efficient coding derives motivation from the steep

metabolic costs of creating and maintaining a neural system [22–24]. Several pa-

pers argue for an “economy of spikes”, in which representational accuracy of a

neural system should naturally trade off with the cost of firing an action poten-

tial. A quantitative formulation of this hypothesis [25] was shown to be consistent
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with the spiking response properties of retinal ganglion cells [26]. An alternative

formulation, known as sparse coding, aims to derive receptive fields that allow for

a minimum mean squared error linear reconstruction of an ensemble of inputs,

subject to a sparsity constraint on the total number of active neurons [27,28]. The

optimal receptive fields for encoding natural images resemble those of V1 simple

cells [27]. For encoding natural sounds, the optimal receptive fields closely resem-

ble those of auditory nerve fibers [28]. In the visual case, these receptive fields

often exhibit response properties that are inconsistent with some aspects of the

known physiology [29].

Several classical variants of the efficient coding hypothesis are supported to

varying degrees by physiological or perceptual data. However, a formulation that

provides a unifying, and easily testable description of the relationship between

sensory statistics, neural coding, and perception is still lacking. Furthermore,

although coding efficiency may be a reasonable objective for early stages of sensory

processing, it seems unlikely to explain more specialized later stages responsible

for producing actions that are directly relevant to the survival of an organism [30].

1.2 Perception as Bayesian inference

Organisms form percepts of the environment from the spiking activity of early

sensory systems. But how can robust percepts of an uncertain world arise from

noisy neural responses? Almost a century ago, Hermann von Helmholtz conjec-

tured that sensory perception arises from the proper fusion of incoming sensory

measurements with prior knowledge of the world [4]. Approximately 50 years

later, ET Jaynes proposed a quantitatively precise formulation of this statement.
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In an article submitted to the IEEE Transactions in Information Theory, Jaynes

proposed that sensory transformations can be described with a calculus of proba-

bilities known as Bayesian inference, and that the brain may be implementing this

calculus [31]. Although the paper was rejected for being implausible and irrelevant

at the time, Bayesian models of neural and perceptual systems have since become

exceedingly popular [e.g., 32, 33].

Bayesian models of perception consist of three natural ingredients: (1) a like-

lihood function, which represents an observers degree of belief about an environ-

mental signal based on sensory evidence; (2) a prior probability distribution, which

characterizes an observers experience regarding the plausibility of different signal

values in the environment; and (3) a loss function, which specifies the cost of mak-

ing perceptual errors. Helmholtz’s fusing of prior knowledge with current sensory

information, corresponds to a multiplication of the prior distribution and likelihood

function. This computation results (after normalization) in a posterior probability

distribution, which is rationally biased towards the prior when the sensory evidence

is weak, and discounts the prior when the sensory evidence is strong. A perceptual

estimate can be obtained by choosing the signal value that minimizes the expec-

tation, over the posterior distribution, of the loss function. Such an estimate is

said to be optimal with respect to an observers prior, likelihood, and loss function.

Optimal Bayesian estimation explains human performance in perceptual [34–36],

sensorimotor, [37, 38], and cognitive [39] tasks remarkably well, and a number of

review articles document progress to date [32, 40–44].

Specifying an observer’s prior, likelihood and loss function for a particular task

is challenging. If the observer has access to a prior distribution that was acquired

from experience in the environment, then it may be possible to directly estimate
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the prior from the environment [36]. Such priors can also be estimated from psy-

chophysical measurements of bias and discriminability, assuming an observer’s loss

function is known [35,36,45]. Specifying an observer’s likelihood function requires

knowledge of how the signal of interest is represented within the brain, including a

characterization of physiological noise properties [46]. In perceptual experiments,

investigators have incorporated noise into the external sensory inputs, which can

provide insights into the properties of internal noise [47]. Specifying an observers

loss function is difficult as subjects exhibit substantial variability in their behavior

in an experimental situation involving rewards [e.g., 48, 49]. Nevertheless, given

the experimental support for Bayesian models of perception, it seems natural to

assume that the brain is implementing Bayesian estimation.

Specifying how the probability distributions required by the Bayesian machin-

ery may be learned, represented, and computed within the brain poses a significant

challenge. A number of authors suggest that probability distributions are explic-

itly represented in the firing rates of a neural population [e.g., 50–53]. In these

formulations, operations such as computing the mean of a distribution reduce to a

linear function of the firing rates, and probability distributions can be dynamically

updated via gain changes. However, a detailed formulation of this sort needs to

be verified with experimental data and address the calculation errors inherent to

noisy representations of probability distributions.

Alternatively, many papers consider the implicit encoding of probabilities in

the noisy responses of a population of neurons [e.g., 54–62]. These formulations

are built around tuning curve descriptions of neurons, which are common in sen-

sory neuroscience. A tuning curve characterizes a neuron’s selectivity and average

response rate for encoding scalar stimulus values. Assuming Poisson distributed
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neuronal variability, several papers show that a log-likelihood function can be ex-

pressed as a firing rate weighted sum of the log tuning curves in a population

[57, 59, 61]. Further work shows that adding the firing rates of two neural popu-

lations, each responding to different sensory inputs, implicitly multiplies the like-

lihoods they represent [62]. This result provides a plausible neural calculus for

behavioral evidence that suggests human observers take uncertainty into account

when fusing multiple sources of information [42].

In the Bayesian framework, the likelihood function must be multiplied by the

prior distribution in order to obtain a posterior distribution. Several proposals

exist for how this may occur in the brain. For example, if a log-prior is encoded as

a firing weighted sum of the log tuning curves in a neural population separate from

the encoding population, then adding the spikes of the two populations implicitly

computes a posterior distribution (analogous to the case of combining likelihoods)

[62]. This proposal leads to a noisy representation of the prior (due to neuronal

variability), but may be useful for encoding contextual or task dependent priors

that must evolve over time. Alternative proposals suggest that samples from a

prior distribution may be represented in spontaneous spiking activity, and stimulus

evoked activity may represent samples from a posterior distribution [63, 64]. This

framework is consistent with some physiological evidence [64], and can provide an

algorithmic explanation for perceptual multi-stability (where a percept switches

over time due to ambiguous sensory input) [65]. However, it is unclear how an

explicit sensory estimate may be obtained from such neural responses, or how

inference algorithms based on sampling strategies may be implemented in canonical

neural circuitry.

Once a posterior distribution is represented in the brain, an optimal percep-
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tual estimate may be derived according to a specified loss function. Determining

how loss functions are represented in the brain, and dependent on reward con-

tingencies, is an area of active research in the nascent interdisciplinary field of

“neuro-economics” [66–68]. Because it is difficult to specify what loss function

the brain may encode and employ for a perceptual task, particular loss functions

are often chosen for gaining mathematical tractability to derive optimal Bayesian

estimation strategies. For example, for a loss function that incurs zero penalty

if the perceptual estimate is equal to the sensory input, and a large penalty for

all other estimates, the optimal Bayesian estimate corresponds to computing the

sensory input that maximizes the posterior distribution (a MAP estimate). Con-

sider a downstream population implementing a MAP estimate from the neural

responses of an encoding population, which is characterized by tuning curves and

independent Poisson noise. The decoder must first explicitly compute a likelihood

by computing a sum of tuning curves, each weighted by the firing rates of the

encoding population, then add the result to a log prior distribution to obtain a

log posterior distribution. The MAP estimate would then be the value associated

with the decoder neuron with the maximum response, corresponding to a winner

take all readout mechanism.

A simpler decoder − the population vector (or center of mass decoder) − pro-

duces a perceptual estimate by computing a firing rate weighted average of the

preferred stimulus values of each neuron. The population vector has a rich history

in experimental neuroscience, where it has been used to accurately predict the

direction of arm movements from neural responses measured in a variety of mo-

tor and premotor areas [69–72], the orientation of visual stimuli from responses in

primary visual cortex [73], the direction of saccades from responses in the superior
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colliculus [74], and the position of a rat from the responses of place cells in the

hippocampus [75]. Recent theoretical work has shown that the population vector

can compute the mean of a posterior distribution [76,77], which is optimal for min-

imizing a squared loss function, and is known as a Bayes least squares estimator.

However, these results rely on strong assumptions about the encoding population,

which are asserted for the explicit purpose equating a Bayes least squares estimator

to a population vector.

Experimental evidence suggests that human judgments of many sensory at-

tributes are consistent with optimal Bayesian estimation, in which noisy sensory

measurements are combined with prior knowledge to obtain perceptual estimates.

An important problem in sensory neuroscience is to develop a neurally plausible

calculus for Bayesian computations that can be verified with physiological and

perceptual data.

1.3 Thesis outline

In this thesis, we consider the efficient encoding of sensory information in neu-

ral populations, and the implications of coding efficiency for Bayesian theories of

perception. In Chapter 2 we start by considering the encoding of a sensory variable

with a heterogeneous population of noisy neurons, each responding selectively to

a particular range of values. The accuracy with which a neural population en-

codes a stimulus value depends on the number of cells that respond to that value

(cell density), their selectivity (tuning widths), and their response levels (gain).

We optimize these parameters for a family of objective functions, that include

maximizing mutual information (a variant of the efficient coding hypothesis) and
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maximizing perceptual discriminability, as special cases. The optimal solutions

for the cell density, tuning width, and gain may be obtained in closed form, and

are expressed as a power law function of the prior probability of stimulus val-

ues encountered in the environment. The exponent of the power law depends on

the objective function. In addition, the optimal neural populations impose strong

limitations on the ability of an organism to discriminate different values of the

encoded variable. The minimum achievable discrimination thresholds are also ex-

pressed as power law functions of the prior, with the exponent depending on the

objective function. As a result, our optimal coding framework predicts an explicit

relationship between the statistical properties of the environment, the allocation

and selectivity of neurons within populations, and perceptual discriminability.

In Chapter 3 we test these relationships for the efficient coding objective func-

tion in the context of two auditory attributes (acoustic frequency and modulation

frequency), and three visual attributes (local orientation, spatial frequency, and

retinal speed). The prior probability of each attribute is estimated from large

databases of natural scenes and sounds. Physiological data are taken from single-

cell electrophysiological recordings in primate or cat that report the independently

measured tuning widths of a large population of neurons as a function of their

stimulus preferences. These measurements were made in a diverse set of brain

areas (the auditory nerve fibers, the inferior colliculus, the primary visual cortex,

and the middle temporal cortex), each chosen based on a substantial literature

identifying the tuning properties of those neurons for the stimulus feature of inter-

est. Discrimination thresholds for each sensory attribute are obtained from human

perceptual experiments. For all cases, we find that our efficient coding predictions

of the relationship between the environment, physiology, and perception are well
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supported by the data.

In Chapter 4 we derive a novel decoder that can correctly extract the prior

information embedded in the efficient population code, and combine it with likeli-

hood information to produce a Bayesian least squares stimulus estimate. We map

the decoder onto a biologically plausible cascade that consists of linear filtering, a

static non-linearity, and divisive normalization. We show that the decoder closely

approximates an omniscient Bayes least squares estimator that has full access to

the prior and likelihood. Finally, we discuss how to test for signatures of this

decoders use with psychophysical measurements of estimation bias.

13



Chapter 2

Implicit Encoding of Prior

Probabilities in Optimal Neural

Populations

2.1 Introduction

Many bottom up theories of neural encoding posit that sensory systems are op-

timized to represent sensory information [1, 2]. The optimality of a given sensory

representation depends on specifying four components: (1) the family of possible

neural transformations that dictate how a natural signal is encoded into neural

activity; (2) the types of signals that are to be encoded, and their statistical prop-

erties; (3) the noise processes involved in the inputs and outputs of the system;

and (4) the metabolic costs of building, operating, and maintaining the system.

It is difficult to test whether a sensory system is optimal because the optimiza-

tion of any formulation that attempts to correctly incorporate all of the relevant
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ingredients is generally intractable.

A substantial literature has considered simple population coding models in

which each neuron’s mean response to a scalar variable is characterized by a tun-

ing curve [e.g., 54–62]. For these models, several papers have examined the op-

timization of Fisher information, which expresses a bound on the mean squared

error of an unbiased estimator [78–81]. In these results, the distribution of sen-

sory variables is assumed to be uniform and the populations are assumed to be

homogeneous with regard to tuning curve shape, spacing, and amplitude.

The distribution of sensory variables encountered in the environment is often

non-uniform, and it is thus of interest to understand how variations in probability

affect the design of optimal populations. It would seem natural that a neural

system should devote more resources to regions of sensory space that occur with

higher probability, analogous to results in coding theory [82]. At the single neuron

level, several publications describe solutions in which monotonic neural response

functions allocate greater dynamic range to higher probability stimuli [6–8, 11].

At the population level, non-uniform allocations of neurons with identical tuning

curves have been shown to be optimal for non-uniform stimulus distributions [83,

84].

Here, we examine the influence of a sensory prior on the optimal allocation of

neurons and spikes in a population, and the implications of this optimal allocation

for subsequent perception. Given a prior distribution over a scalar stimulus param-

eter, and a resource budget of N neurons with an average of R spikes/sec for the

entire population, we seek the optimal shapes, positions, and amplitudes of tun-

ing curves. We assume a population with Poisson-like spiking (which may include

correlations), and consider a family of objective functions based on Fisher informa-
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tion. This family includes lower bounds on mutual information, and the minimum

attainable perceptual discrimination performance as special cases. We then ap-

proximate the Fisher information in terms of two continuous resource variables,

the density and gain of the tuning curves. This approximation allows us to obtain

a closed form solution for the optimal population. For all objective functions, we

find that the optimal tuning curve properties (cell density, tuning width, and gain)

are power-law functions of the stimulus prior, with exponents dependent on the

specific choice of objective function. Through the Fisher information, we also de-

rive a bound on perceptual discriminability, again in the form a power-law of the

stimulus prior. Thus, our framework provides direct and experimentally testable

links between sensory priors, tuning properties of optimal neural representations,

and perceptual discriminability.

2.2 Encoding model and resource constraints

We start with a conventional model for a population of N neurons responding

to a single scalar variable, s [e.g., 54–62]. The number of spikes emitted (per unit

time) by the nth neuron is a sample from an independent Poisson process, with

mean rate determined by its tuning function, hn(s). The probability density of the

population response can be written as

p(~r|s) =
N
∏

n=1

hn(s)
rn e−hn(s)

rn!
. (2.1)

For now we assume that the tuning functions can be described by unimodal func-

tions of arbitrary shape, and generalize our analysis to the case of monotonic tuning

curves of arbitrary shape in section 2.5.1.
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The response model assumes that variance of the neural responses is directly

proportional to the mean responses, which has been observed experimentally in

some cases [85], but may not be true in general. The assumption that neuronal

responses are statistically independent conditioned on the stimulus value is usu-

ally not correct [86, 87]. In section 2.5.2, we generalize our results to consider

Poisson-like response models that belong to the exponential family of probability

distributions with linear sufficient statistics [62, 88]. These distributions allow for

stimulus dependent correlations and an arbitrary linear relationship between mean

and variance of the population response.

We assume the total expected spike rate, R, of the population is fixed, which

places a constraint on the tuning curves:

∫

p(s)
N
∑

n=1

hn(s) ds = R, (2.2)

where p(s) is the probability distribution of stimuli in the environment, and can

have an arbitrary form. We refer to this as a sensory prior, in anticipation of its

future use in Bayesian decoding of the population response.

2.3 Objective function

We now ask: what is the best way to represent values drawn from p(s) given

the limited resources of N neurons and R total spikes? To formulate a family of

objective functions which depend on both p(s), and the tuning curves, we first rely
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on Fisher information, If (s), which is defined as [89]

If (s) = −
∑

~r

p(~r|s) ∂2

∂s2
log p(~r|s).

The Fisher information provides a measure of how accurately a population response

represents a stimulus parameter based on the encoding model. It has been used to

answer theoretical questions about the influence of tuning curve shapes [78,79,90]

and response variability [91, 92] on the representational accuracy of population

codes. It has also been used in neurophysiological studies to quantify changes in

coding accuracy resulting from changes in tuning curve shapes during adaptation

[93–95]. For the independent Poisson noise model, the Fisher information can be

expressed analytically as [54]

If (s) =
N
∑

n=1

h′2
n (s)

hn(s)
,

where h′
n(s) is the derivative of the nth tuning curve.

The Fisher information can also be used to express lower bounds on mutual

information [83], the variance of an unbiased estimator [89], and perceptual dis-

criminability [96]. Specifically, the mutual information, I(~r; s), is bounded by:

I(~r; s) ≥ H(s)− 1

2

∫

p(s) log

(

2πe

If (s)

)

ds, (2.3)

where H(s) is the entropy, or amount of information inherent in p(s), which is

independent of the neural population. The bound is tight in the limit of low noise

which can occur as N increases, R increases, or both [83].

The Cramer-Rao inequality allows us to express the minimum expected squared
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stimulus discriminability achievable by any decoder:

δ2 ≥ ∆2

∫

p(s)

If (s)
ds. (2.4)

The constant ∆ determines the performance level at threshold in a discrimination

task. The conventional Cramer-Rao bound expresses the minimum mean squared

error of any estimator, and in general requires a correction for the estimator bias

[89]. Here, we use it to bound the squared discriminability of the estimator, as

expressed in the stimulus space, which is independent of bias [96].

We formulate a generalized objective function that includes the Fisher bounds

on information and discriminability as special cases:

argmax
hn(s)

∫

p(s) f

(

N
∑

n=1

h′2
n (s)

hn(s)

)

ds, s.t.

∫

p(s)
N
∑

n=1

hn(s) ds = R, (2.5)

where f(·) is either the logarithm, or a power function. When f(x) = log(x),

optimizing Eq. (2.5) is equivalent to maximizing the lower bound on mutual in-

formation given in Eq. (2.3). We refer to this as the infomax objective function.

Otherwise, we assume f(x) = xα, for some exponent α. Optimizing Eq. (2.5) with

α = −1 is equivalent to minimizing the squared discriminability bound expressed

in Eq. (2.4). We refer to this as the discrimax objective function.

2.4 How to optimize?

The objective function expressed in Eq. (2.5) is difficult to optimize because it

is non-convex. To facilitate the optimization, we first parameterize a heterogeneous

neural population by warping and rescaling a homogeneous population, as specified
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by a cell density function, d(s), and a gain function, g(s), that results in tuning

widths that are inversely proportional to the cell density. Second, we show that

Fisher information can be closely approximated as a continuous function of density

and gain. Finally, re-writing the objective function and constraints in these terms

allows us to obtain closed-form solutions for the optimal tuning curves.

2.4.1 Density and gain for a homogeneous population

If p(s) is uniform, then by symmetry, the Fisher information for an optimal

neural population should also be uniform. We assume a convolutional popula-

tion of unimodal tuning curves, evenly spaced on the unit lattice, such that they

approximately “tile” the space:

N
∑

n=1

h(s− n) ≈ 1.

We also assume that this population has an approximately constant Fisher infor-

mation:

If (s) =
N
∑

n=1

h′2(s− n)

h(s− n)

=
N
∑

n=1

φ(s− n) ≈ Iconv. (2.6)

That is, we assume that the Fisher information curves for the individual neurons,

φ(s−n), also tile the stimulus space. The value of the constant, Iconv, is dependent

on the details of the tuning curve shape, h(s), which we leave unspecified. As

an example, Fig. 2.1(a-b) shows that the Fisher information for a convolutional

population of Gaussian tuning curves, with appropriate width, is approximately
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Figure 2.1: Construction of a heterogeneous population of neurons.
(a) Homogeneous population with Gaussian tuning curves on the unit
lattice. The tuning width of σ = 0.55 is chosen so that the curves
approximately tile the stimulus space. (b) The Fisher information of
the convolutional population (green) is approximately constant. (c)
Inset shows d(s), the tuning curve density. The cumulative integral
of this density, D(s), alters the positions and widths of the tuning
curves in the convolutional population. (d) The warped population,
with tuning curve peaks (aligned with tick marks, at locations sn =
D−1(n)), is scaled by the gain function, g(s) (blue). A single tuning
curve is highlighted (red) to illustrate the effect of the warping and
scaling operations. (e) The Fisher information of the inhomogeneous
population is approximately proportional to d2(s)g(s).

constant. Now we introduce two scalar values, a gain (g), and a density (d), that

affect the convolutional population as follows:

hn(s) = g h
(

d(s− n

d
)
)

. (2.7)

21



The gain modulates the maximum average firing rate of each neuron in the popu-

lation. The density controls both the spacing and width of the tuning curves: as

the density increases, the tuning curves become narrower, and are spaced closer

together so as to maintain their tiling of stimulus space. The effect of these two

parameters on Fisher information is:

If (s) = d2g

N(d)
∑

n=1

φ(ds− n)

≈ d2g Iconv.

The second line follows from the assumption of Eq. (2.6), that the Fisher infor-

mation of the convolutional population is approximately constant with respect to

s.

The total resources, N and R, naturally constrain d and g, respectively. If the

original (unit-spacing) convolutional population is supported on the interval (0, Q)

of the stimulus space, then the number of neurons in the modulated population

must be N(d) = Qd to cover the same interval. Under the assumption that

the tuning curves tile the stimulus space, Eq. (2.2) implies that R = g for the

modulated population.

2.4.2 Density and gain for a heterogeneous population

Intuitively, if p(s) is non-uniform, the optimal Fisher information should also

be non-uniform. This can be achieved through inhomogeneities in either the tun-

ing curve density or gain. We thus generalize density and gain to be continuous

functions of the stimulus, d(s) and g(s), that warp and scale the convolutional
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population:

hn(s) = g(sn) h(D(s)− n). (2.8)

Here, D(s) =
∫ s

−∞
d(t)dt, the cumulative integral of d(s), warps the shape of the

prototype tuning curve. The value sn = D−1(n) represents the preferred stimulus

value of the (warped) nth tuning curve (Fig. 2.1(b-d)). Note that the warped

population retains the tiling properties of the original convolutional population.

As in the uniform case, the density controls both the spacing and width of the

tuning curves. This can be seen by rewriting Eq. (2.8) as a first-order Taylor

expansion of D(s) around sn:

hn(s) ≈ g(sn) h(d(sn)(s− sn)),

which is a generalization of Eq. (2.7).

We can now write the Fisher information of the heterogeneous population of

neurons in Eq. (2.8) as

If (s) =
N
∑

n=1

d2(s) g(sn) φ(D(s)− n) (2.9)

≈ d2(s) g(s) Iconv. (2.10)

In addition to assuming that the Fisher information is approximately constant

(Eq. (2.6)), we have also assumed that g(s) is smooth relative to the width of

φ(D(s)−n) for all n, so that we can approximate g(sn) as g(s) and remove it from

the sum. The end result is an approximation of Fisher information in terms of the
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continuous parameterization of cell density and gain. As earlier, the constant Iconv

is determined by the precise shape of the tuning curves.

As in the homogeneous case, the global resource values N and R will place

constraints on d(s) and g(s), respectively. In particular, we require that D(·) map

the entire input space onto the range [1, N ], and thus D(∞) = N , or equivalently,
∫

d(s) ds = N . To attain the proper rate, we use the fact that the warped tuning

curves sum to unity (before multiplication by the gain function) and use Eq. (2.2)

to obtain the constraint
∫

p(s)g(s) ds = R.

2.4.3 Objective function and solution for a heterogeneous

population

Approximating Fisher information as proportional to squared density and gain

allows us to re-write the objective function and resource constraints of Eq. (2.5)

as

argmax
d(s),g(s)

∫

p(s) f
(

d2(s) g(s)
)

ds, s.t.

∫

d(s) ds = N, (2.11)

and

∫

p(s)g(s) ds = R. (2.12)

A closed-form optimum of this objective function is easily determined using cal-

culus of variations. Specifically, one can compute the gradient of the Lagrangian,

set to zero, and solve the resulting system of equations. Solutions are provided in

Table 2.1 for the infomax, discrimax, and general power cases.

In all cases, the solution specifies a power-law relationship between the prior,

and the density and gain of the tuning curves. In general, all solutions allocate more
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Infomax Discrimax General
Optimized function: f(x) = log x f(x) = −x−1 f(x) = −xα, α < 1

3

Density (Tuning width)−1 d(s) Np(s) ∝ Np
1

2 (s) ∝ Np
α−1

3α−1 (s)

Gain g(s) R ∝ Rp−
1

2 (s) ∝ Rp
2α

1−3α (s)

Fisher information If (s) ∝ RN2p2(s) ∝ RN2p
1

2 (s) ∝ RN2p
2

1−3α (s)

Discriminability bound δmin(s) ∝ p−1(s) ∝ p−
1

4 (s) ∝ p
1

3α−1 (s)

Table 2.1: Optimal heterogeneous population properties, for objective
functions specified by Eq. (2.12).

neurons, with correspondingly narrower tuning curves, to higher-probability stim-

uli. In particular, the infomax solution allocates an approximately equal amount

of probability mass to each neuron. The shape of the optimal gain function de-

pends on the objective function: for α < 0, neurons with lower firing rates are

used to represent stimuli with higher probabilities, and for α > 0, neurons with

higher firing rates are used for stimuli with higher probabilities. Note also that

the global resource values, N and R, enter only as scale factors on the overall

solution, allowing us to easily test the validity of the predicted relationships on

experimental data. In addition to power-law relationships between tuning prop-

erties and sensory priors, our formulation offers a direct relationship between the

sensory prior and perceptual discriminability. This can be obtained by substitut-

ing the optimal solutions for d(s) and g(s) into Eq. (2.9), and using the resulting

Fisher information to bound the discriminability, δ(s) ≥ δmin(s) ≡ ∆/
√

If (s) [96].

The resulting expressions are provided in Table 2.1. In general, the solutions pre-

dict that discrimination thresholds should be lower for more frequently occurring

stimuli.

25



2.5 Extensions

2.5.1 Monotonic tuning curves

Thus far we have solved for the optimal cell density and gain for warping and

scaling a homogeneous population of unimodal tuning curves. However, many

neurons exhibit monotonic tuning to intensity variables such as contrast, or sound

pressure level. The influence of continuous cell density and gain on the Fisher

information of a homogeneous population of monotonic tuning curves is the same

as in the unimodal case (Eq. (2.10)), again assuming that the Fisher information

curves of the homogeneous population tile. The constraint on N is also same.

However, the total spiking cost fundamentally differs. Neurons with monotonic

tuning curves saturate, and thus the entire population will be active at the high

range of stimulus values, which incurs a large metabolic cost for encoding these

values. Intuitively, this metabolic penalty can be reduced by lowering the gains of

neurons tuned to the low end of the stimulus range, or by adjusting the cell density

such that there are more tuning curves tuned to the high end of the stimulus range.

It is unclear how the reductions in metabolic cost for these coding strategies may

trade off with the optimal coding of sensory information.

To derive the optimal monotonic coding scheme, we first parameterize a het-

erogeneous population of monotonic tuning curves by warping and scaling the

derivatives of a homogeneous population of monotonic tuning curves:

hn(s) =

∫ s

−∞

h′
n(t) dt =

∫ s

−∞

g(sn)d(t)h
′(D(t)− n) dt. (2.13)

This expression is similar to the parameterization of a heterogeneous population of
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unimodal tuning curves (Eq. (2.8)), except here, h(·) is now a prototype monotonic

tuning curve. The density controls both the number of tuning curves and their

slopes, which are inversely proportional to the cell density. The derivatives of

the (warped) monotonic tuning curves, h′(D(t) − n), will be unimodal functions,

allowing us to use similar approximations and intuitions developed for the unimodal

case. In particular, we assume that the derivatives of the tuning curves tile such

that
∑N

n=1 h
′(D(t)− n) ≈ 1.

The total spike count can be expressed from Eqs. (2.2 & 2.13) as,

R =

∫ ∞

−∞

p(s)

∫ s

−∞

d(t)
N
∑

n=1

g(sn)h
′(D(t)− n) dt ds.

We define a continuous version of the gain as g(t) =
∑N

n=1 g(sn)h
′(D(t)−n) which

allows us to approximate the total number of spikes as

R =

∫ ∞

−∞

p(s)

∫ s

−∞

d(t)g(t)

=

∫ ∞

−∞

(1− P (s)) d(s)g(s) ds

In the second step, we performed integration by parts and defined

P (s) =
∫ s

−∞
p(t) dt as the cumulative density function of the sensory prior. The

constraint on the total number of spikes is very different than the bell-shaped

tuning curve case, as it now depends on the cell density and the cumulative dis-

tribution of the sensory prior, and will thus affect the optimal solutions for cell

density and gain.

We reformulate the original optimization problem of Eq. (2.5) for monotonic
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Infomax Discrimax General
Optimized: f(x) = log x f(x) = −x−1 f(x) = −xα, α < 1

3

Density d(s) Np(s) ∝ Np(s)
1

3 [1− P (s)]
1

3 ∝ Np(s)
1

1−2α [1− P (s)]
α

2α−1

Gain g(s) RN−1 [1− P (s)]−1 RN−1 [1− P (s)]−1 RN−1 [1− P (s)]−1

Fisher. If (s) ∝ RNp2(s) [1− P (s)]−1 ∝ RNp
2

3 (s) [1− P (s)]−
1

3 ∝ RNp
2

1−2α (s) [1− P (s)]
1

2α−1

Discrim. δmin(s) ∝ p−1(s) [1− P (s)]
1

2 ∝ p−
1

3 (s) [1− P (s)]
1

6 ∝ p
1

2α−1 (s) [1− P (s)]
1

2−4α

Table 2.2: Optimal heterogeneous population properties, for objective
functions specified by Eq. (2.14).

tuning curves as:

argmax
d(s),g(s)

∫

p(s) f
(

d2(s) g(s)
)

ds, s.t.

∫

d(s) ds = N, (2.14)

and

∫

(1− P (s)) d(s)g(s) ds = R.

A closed-form optimum of this objective function is easily determined by taking

the gradient of the Lagrangian, setting to zero, and solving the resulting system

of equations. Solutions are provided in Table. 2.2 for the infomax, discrimax,

and general power cases, in addition to solutions for the optimal Fisher informa-

tion and minimum achievable discrimination thresholds achievable by a subsequent

perceptual system.

For all objective functions, the solutions for the optimal density, gain, and

discriminability are products of power law functions of the sensory prior, and

its cumulative distribution. In general, all solutions allocate more neurons with

greater dynamic range to more frequently occurring stimuli. The optimal gain is

the same in all cases. For a neuron tuned to a particular stimulus value, the optimal

gain will be inversely proportional to the probability of all stimuli occurring after

that stimulus value. Intuitively, this solution allocates lower gains to neurons tuned

to the low end of the stimulus range, which is metabolically less costly. The global
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resource values again only appear as scale factors in the overall solution, allowing

us to easily test the validity of the predicted relationships on experimental data.

2.5.2 Generalization to Poisson-like noise distributions

Our results depend on the assumption that neuronal variability is Poisson dis-

tributed and neural responses are statistically independent. To generalize our

results, we also consider a model of neuronal variability that is “Poisson-like” and

can include correlated neuronal variability [62, 88]. The probability density of the

population response can be written as

p(~r|s) = f(~r) exp
[

η(s)T~r − A(η)
]

. (2.15)

This distribution belongs to the exponential family with linear sufficient statistics

where the parameter η(s) is a matrix of the natural parameters of the distribution

with the nth column equal to ηn(s), A(η) is a (log) normalizing constant that

ensures the distribution integrates to one, and f(~r) is an arbitrary function of

the firing rates. The independent Poisson noise model considered in Eq. (2.1) is a

member of this family of distributions with parameters: η(s) = logh(s) where h(s)

is a matrix of tuning curves with the nth column given hn(s), A(η) =
∑N

n=1 exp(ηn),

and f(~r) =
∏N

n=1
1
rn!

.

All of our objective functions depend on an analytical form for the Fisher

information in terms of tuning curves, which is then expressed in terms of density

and gain. To derive the Fisher information for the response model in Eq. (2.15), we

start by noting that the derivative of natural parameters is related to the stimulus

dependent covariance matrix of the population responses, Σ(s), and the derivative
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of the tuning curves as [62, 88],

∂η

∂s
= Σ−1(s)

∂h

∂s
. (2.16)

The term Σ−1(s) is the inverse of the covariance matrix, and is often referred to

as a precision matrix.

The Fisher information matrix about the natural parameters is simply equal

to the covariance matrix [89],

If [η(s)] = Σ(s). (2.17)

The local Fisher information about the stimulus, s, can be derived from the chain

rule as,

If (s) =
∂η

∂s

T

If [η(s)]
∂η

∂s
.

After substituting the relationships in Eq. (2.16 & 2.17) into this expression we

obtain the final expression for the local Fisher information

If (s) =
∂h

∂s

T

Σ−1(s)
∂h

∂s
. (2.18)

The influence of Fisher information on coding accuracy is now directly depen-

dent on knowledge of stimulus dependent (inverse) covariance matrix. Estimating

such a precision matrix from experimental data is technically challenging (although

see [87]). Here, we assume a biologically plausible precision matrix that allows for

30



neuronal variability to be proportional to the mean firing rate, and the responses

of nearby neurons to be correlated [91]. For a homogeneous neural population,

hn(s) = h(s− n), we express each element in the precision matrix as,

Σ−1
n,m(s) =

αδn,m + β(δn,m+1 + δn+1,m)
√

h(s− n)h(s−m)
. (2.19)

The parameter α controls a linear relationship between the mean response and the

variance of the response for all the neurons. The parameter β controls the degree

of the correlations, and δn,n = 1 for all n while δn,m = 0 if n 6= m. The Fisher

information of a homogeneous population may now be expressed from Eqs. (2.18

&2.19) as,

If (s) = α
N
∑

n=1

φ(s− n) + β
∑

n,m=n±1

h′(s− n)h′(s−m)
√

h(s− n)h(s−m)

≈ αIconv + βIcorr

In the last step we make two assumptions. First, we assume (as for the indepen-

dent Poisson case) the Fisher information curves, φ(s − n), of the homogeneous

population tile such that they sum to the constant, Iconv. Second, we assume that

the cross terms, h′(s−n)h′(s−m)√
h(s−n)h(s−m)

, also tile such that they sum to the constant, Icorr.

The Fisher information for a heterogeneous population, obtained by warping
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and scaling the homogeneous population by the density and gain is

If (s) = d2(s)α
N
∑

n=1

g(sn)φ(D(s)− n) (2.20)

+ d2(s)β
∑

n,m=n±1

g(sn)g(sm)
√

g(sn)g(sm)

h′(D(s)− n)h′(D(s)−m)
√

h(D(s)− n)h(D(s)−m)

≈ d2(s)g(s) [αIconv + βIcorr] . (2.21)

In the second step we make three assumptions. First, (as for the independent

Poisson case) we assume g(s) is smooth relative to the width of φ(D(s)−n) for all

n, so that we can approximate g(sn) as g(s). Second, we assume that the neurons

are sufficiently dense such that g(sn)g(sm)√
g(sn)g(sm)

≈ g(sn). Finally, we assume g(s) is also

smooth relative to the width of the cross terms. As a result, the gain factors can

be approximated by same the continuous gain function, g(s), and can be pulled

out of both sums.

Given the form of the Fisher information (Eq. (2.21)), we conclude that the

optimal solutions for the density and gain are the same as those expressed in

Tables 2.2 & 2.1, which were derived for an independent Poisson noise model

(α = 1, β = 0). The absolute values of the Fisher information, and minimum

achievable discrimination thresholds now depend on three additional scale factors,

α, β, and Icorr, that characterize the correlated variability of the population code.

2.6 Discussion

We have examined the influence sensory priors on the optimal allocation of

neural resources, as well as the influence of these optimized resources on subsequent

perception. For a family of objective functions, we obtain closed-form solutions
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specifying power law relationships between the prior probability distribution of

a sensory variable encountered in the environment, the tuning properties of a

population that encodes that variable, and the minimum perceptual discrimination

thresholds achievable for that variable. The solutions are easily testable with

experimental data. In the next chapter, we show that the infomax predictions, for

populations of neurons characterized by unimodal tuning curves, are remarkably

consistent with environmental, physiological, and perceptual data.

Our analysis requires several approximations and assumptions in order to arrive

at an analytical solution. We first rely on lower bounds on mutual information

and discriminability based on Fisher information. Fisher information is known

to provide a poor bound on mutual information when there are a small number

of neurons, a short decoding time, or non-smooth tuning curves [83, 97]. It also

provides a poor bound on supra-threshold discriminability [90, 98]. However, we

do not require the bounds on either information or discriminability to be tight,

but rather that their optima be close to that of their corresponding true objective

functions. We also made several assumptions in deriving our results: (1) the tuning

curves, h(D(s) − n), or in the monotonic case their derivatives, h′(D(s) − n),

evenly tile the stimulus space; (2) the single neuron Fisher informations, φ(D(s)−

n), evenly tile the stimulus space; and (3) the gain function, g(s), varies slowly

and smoothly over the width of φ(D(s) − n). These assumptions allow us to

approximate Fisher information in terms of cell density and gain (Fig. 2.1(e)),

to express the resource constraints in simple form, and to obtain a closed-form

solution to the optimization problem.

Our framework offers an important generalization of the population coding

literature, allowing for non-uniformity of sensory priors, and corresponding het-
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erogeneity in tuning and gain properties. Nevertheless, it suffers from many of the

same simplifications found in previous literature. First, tuning curve models only

specify neural responses to a single stimulus values. The model should be general-

ized to handle arbitrary combinations of scalar inputs. Second, the response model

should be extended beyond tuning curves to a description that can handle multi-

dimensional sensory inputs such as images or sounds. Each of these limitations

offers an important opportunity for future work.
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Chapter 3

Efficient Sensory Coding Predicts

the Heterogeneities of Neural

Populations and Perception

3.1 Introduction

Neurons in sensory systems are often characterized in terms of their selectiv-

ity or ’tuning’ for particular stimulus variables (e.g., acoustic frequency, or visual

orientation). And perceptual experiments commonly characterize the ability of an

observer to discriminate stimuli that differ in terms of these same stimulus vari-

ables. In both cases, the observed representation of these variables is typically

heterogeneous: neural tuning properties and perceptual discriminability are dif-

ferent for different values of the stimulus variable. Despite the ubiquity of this

observation, no current theory explains why this should be the case, or how these

heterogeneities might be related to each other.
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In chapter 2, we developed the ecologically-motivated explanation that these

variations arise because of heterogeneities in the probability of encountering differ-

ent stimuli in the natural environment. Specifically, we developed a variant of the

theory of efficient coding [1, 2], which posits that sensory systems are optimized

to extract and represent information about the sensory world, while minimizing

metabolic resources. We showed that the optimal solution provides simple and

testable predictions regarding the relationship between the frequency of occur-

rence of stimulus values, the neural selectivity for those values, and perceptual

discriminability of those values. Here, we test this relationship for three visual and

two auditory attributes, and find that it is remarkably consistent with existing

data.

3.2 Results

Consider a stimulus variable, s, that is to be encoded in the responses of a

population of N neurons, limited to a total spike rate of R. As is common in

sensory neuroscience, the response of each neuron is characterized by a “tuning

curve” that represents the average spike rate as a function of the stimulus value.

For simplicity, we assume that neuronal response variability is Poisson distributed

with the rate parameter defined by the tuning curve [54], and that for any stimulus,

the responses of the neurons in the population are uncorrelated. Our results can

also be generalized to a class of Poisson-like distributions that include correlations

[62, 88] without changing the form of the result (see methods).

The information about the variable s represented by the noisy population re-

sponses increases with both N , and R [54,59,78,79]. But suppose the environment
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is inhomogeneous, in that the frequency of occurrence of the stimulus variable, as

expressed by a probability distribution, p(s), varies significantly over the range of s.

Intuitively, a “good” sensory system would allocate a higher proportion of neurons

or spikes (or both) to the most frequently occurring stimuli, improving the encod-

ing accuracy of those stimuli at the cost of decreasing the accuracy of infrequently

occurring stimuli. Formally, we seek the set of tuning curves that maximize the

information conveyed about stimuli drawn from the distribution p(s), subject to

the two resource constraints N and R. To facilitate the optimization, we parame-

terize a heterogeneous neural population by warping and rescaling a homogeneous

population, as specified by a cell density function, d(s), and a gain function, g(s),

that results in tuning widths that are inversely proportional to the cell density:

w(s) ∝ 1
d(s)

(Fig. 2.1).

We optimized the parameters of the population for the transmission of stimu-

lus information, expressed using a lower bound based on Fisher information [83].

The Fisher information is proportional to the product of the squared cell density

and the gain, and the lower bound on information is the expectation of the log

Fisher information under the stimulus distribution [99]. We verify that this bound

provides a good approximation under the conditions explored here (see methods).

The resulting optimization problem, constrained by the two resources, is:

argmax
d(s),g(s)

∫

p(s) log p
(

d2(s)g(s)
)

ds, subject to

∫

d(s) ds = N,

and

∫

p(s)g(s) ds = R,

and a closed form solution is readily obtained using calculus of variations:
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d(s) = Np(s), w(s) ∝ 1

d(s)
=

1

Np(s)
, g(s) = R. (3.1)

The structure of this optimal population directly reflects the statistical proper-

ties of the environment. Specifically, the cell density is proportional to the stimu-

lus distribution, ensuring that frequently occurring stimuli are coded with greater

precision, using denser and more narrowly tuned cells. On the other hand, we see

that the maximal response (gain) of the cells in the optimal population is con-

stant, independent of the preferred stimulus value. Since we have assumed the

tuning widths are inversely proportional to cell density, and thus to the stimulus

distribution, this solution implies that the average response of each neuron (over

stimuli encountered in the world), is identical across the population. Finally, the

unknown total resource values {N,R} appear only as multiplicative scale factors

in the expressions for gain and density, and thus the optimal solution provides a

unique prediction for the shapes of both the cell density and tuning width as a

function of preferred stimulus.

The optimal population also limits the best achievable discrimination perfor-

mance of a perceptual system that bases its responses on the output of this popu-

lation. Specifically, the Fisher information, expressed in terms of cell density and

gain, provides a lower bound on discriminability [54], even when the observer is

biased [96]. Substituting the optimal cell density and gain into this bound gives

an expression for the minimum achievable discrimination thresholds:

δmin(s) ∝
1

√

d2(s)g(s)
=

1

N
√
Rp(s)

(3.2)

Thus, our solution predicts that frequently occurring stimuli should be more
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discriminable (specifically, inverse discrimination thresholds should be proportional

to the probability of encountering a stimulus value). The shape of this solution is

again a simple function of the stimulus probability, p(s), scaled by a multiplicative

factor that depends on neural resources and an additional factor that depends on

the experimental conditions under which discrimination thresholds are measured

(e.g., criterion value, stimulus duration, or intensity). As a result, the solution

provides a unique prediction of the shape of perceptual discrimination as a function

of stimulus value.

Our efficient coding framework predicts explicit relationships between sensory

statistics, physiological tuning properties, and perceptual discriminability. We

tested these relationships in the context of two auditory attributes (acoustic fre-

quency and modulation frequency), and three visual attributes (local orientation,

spatial frequency, and retinal speed). The data, and predictions, are shown in

Fig. 3.1. Each row of this figure corresponds to data obtained for a particular

attribute. Each of these attributes exhibit substantial heterogeneity in their sta-

tistical, physiological, and perceptual representations. Data in the first column

(Fig. 3.1a-e) correspond to stimulus distributions for each attribute, as estimated

from large databases of photographic images or sounds obtained from natural en-

vironments. Physiological data (Fig. 3.1f-j) are taken from single-cell electro-

physiological recordings in primate or cat that report the independently measured

tuning widths of a large population of neurons as a function of their preferred stim-

uli. These measurements were made in a diverse set of brain areas (the auditory

nerve fibers, the inferior colliculus, the primary visual cortex, and the middle tem-

poral cortex), each chosen based on a substantial literature identifying the tuning

properties of those neurons for the stimulus feature of interest. For the case of
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local orientation, we also analyzed another physiological data set in which tuning

widths are reported (see supplementary information). Estimates of the cell density

in each area (Fig. 3.1k-o) are obtained with a histogram binned over the preferred

stimuli. Discrimination thresholds for each sensory attribute (Fig. 3.1p-t) were

measured in human perceptual experiments. In some cases, we include two per-

ceptual data sets (distinguished by color) obtained under different experimental

conditions.

For each attribute, we find that the predicted relationships between the en-

vironment, physiology, and perception (Fig. 3.1 thick black lines) are consistent

with the data. In most cases, we used the histogram of the environmental data as

an estimate of p(s), and then used this to predict the physiological and perceptual

data. Predicted curves for tuning width and perceptual discriminability are indi-

vidually re-scaled to best match the corresponding data (since the true scale factors

depend on the unknown values of N and R). In the case of local image speed (Fig.

3.1e,j,o,&t) for which environmental data are technically difficult to estimate, we

used the theory in reverse, fitting the perceptual data and using this to generate

a prediction for p(s). For all other sensory attributes, we find that predictions of

perceptual discrimination data are remarkably accurate. For all attributes, both

physiological predictions are supported by the data and consistent with our as-

sumption that tuning widths are inversely proportional to cell density. For tuning

widths, the predictions account for (39.6, 69.1, 47.7, 67.4)% of the variance in the

data, which corresponds to (95.8, 93.5, 97.1, 98.8)% of the data variance that is

accounted for by the best-fitting power law with two additional free parameters.

The predicted cell densities exhibit systematic deviations from the estimates near

the two ends of the stimulus range (see supplementary information). Estimates of
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cell density may not be properly represented in the data, as they are limited by

sample size and potential biases in electrode sampling. Finally, we examined the

gain of several neural populations (see supplementary information). We find that,

although there is significant variation in these values across the population, it is

not systematically related to the stimulus, in accordance with the predictions of

our framework.

The neural data exhibit scatter about their predicted values, and we wondered

how much of an effect this variability would have on the information that they

transmit. To quantify this, we compared the amount of information transmitted by

each observed neural population, to that transmitted by the theoretically optimal

populations (see methods). We find that, relative to the information transmitted

by a homogeneous population with the same resources, the observed neural popu-

lations encode between 85− 95% of the information that would be transmitted by

the optimal population (Fig. 3.2). Thus, despite the variability of the physiological

data, we conclude that neural populations are near-optimal in their efficiency for

transmitting signals drawn from their associated environmental distributions.

3.3 Discussion

The notion that an organism is adapted both neurophysiologically and percep-

tually to the statistics of the natural environment is of fundamental importance to

evolutionary biology. Our framework instantiates this notion in a mathematically

precise form, leading to a direct relationship between environmental distributions,

the tuning properties of neural populations, and perceptual discriminability. We

find that these predictions are supported by physiological data from a diverse set

41



of brain areas, as well as human perceptual data.

These results generalize and extend a number of previously published results

on specific variants of the efficient coding hypothesis. For populations of identi-

cal bell-shaped tuning curves, a non-uniform distribution of preferred stimuli was

found to be optimal [83, 84]. However, these results were not compared directly

to physiological data, and because they assumed uniform tuning widths, cannot

account for perceptual discriminability (Fig. 3.1p-t). A number of studies have

examined coding efficiency for single neurons with monotonic response functions,

demonstrating that the optimal solution is proportional to the cumulative stimulus

distribution [6–8, 11], consistent with some physiological data [6]. Our framework

should facilitiate an extension of our results to populations of monotonic tuning

curves. The optimal cell density and gain will surely differ from those presented

here, since the constraint on total spike rate will depend on the cell density.

As with many previous studies of neural population coding, our results are lim-

ited to the description of single stimulus variables, and generalization to the joint

encoding of multiple attributes is not straightforward. Nevertheless, we find that

our physiological predictions are consistent with populations of linear receptive

fields are that are numerically optimized to encode ensembles of natural images

[14, 18, 27] or sounds [28]. Specifically, the tuning characteristics of these opti-

mized receptive fields are consistent with our predictions of cell density and tuning

width for the encoding of orientation, spatial frequency, and acoustic frequency

(see supplementary information). We also derived and tested the predictions of

an alternative objective function − that the neural systems may be optimized for

discrimination performance. However, we find that the alternative predictions are

not supported by the data sets examined here (see supplementary information).
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Many have argued that coding efficiency is a reasonable objective for early

stages of sensory processing, but seems unlikely to explain more specialized later

stages responsible for producing actions [30]. Nevertheless, if we take seriously the

notion that perception is a process of inference [4], then these later stages must

rely on knowledge of the frequency of occurrence of sensory attributes in the en-

vironment. Although such prior information has been widely used in formulating

Bayesian explanations for perceptual phenomena [32], the means by which it is

represented within the brain is currently unknown [46]. The results presented here

provide a potential solution, in which prior probabilities are implicitly embedded

in the arrangement and selectivity of tuning curves. In Chapter 4 we show that

the responses of an efficient population can be decoded in a biologically plausible

mechanism that correctly combines current sensory information with the embed-

ded prior. Thus, an efficient coding strategy may offer unforeseen benefits for

explaining later stages of sensory processing.
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3.4 Methods

3.4.1 Estimating environmental distributions

The environmental distributions for the two auditory attributes (acoustic fre-

quency and modulation frequency) were computed from commercially available

compilations of animal vocalizations (58 min) [100, 101], background environmen-

tal sounds (113 min) [102], and recordings made while walking around a suburban

university campus (62 min). The campus sounds were provided by Josh McDer-

mott and were recorded with a Sennheiser omnidirectional microphone (ME62)

and a Marantz solid state recorder (PMD670). The distributions for local orien-

tation and spatial frequency were computed from three publicly available image

databases comprised of a total of 816 natural scenes [15,103,104]. The distribution

for speed was predicted according to the theory from the psychophysical data.

Acoustic Frequency

We assume that the ensemble power spectral density of sounds reflects the

probability of acoustic frequencies occurring in the natural environment. We com-

puted the power spectral density for each sound file in the database using Welch’s

method [118], with non-overlapping 500 millisecond segments windowed with a

hamming filter to mitigate boundary effects. The ensemble power spectrum, S(f),

was fit to all recordings with a modified power-law [119]:

S(f) =
A

f p
0 + f p

. (3.3)
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The parameters were chosen to minimize squared error to the data (A = 2.4 ×

106, f0 = 1.52× 103, p = 2.61).

Modulation Frequency

We assume that the ensemble modulation power spectral density of sounds

reflects the probability of modulation frequencies occurring in the natural envi-

ronment. Each sound in the auditory database was decomposed into subbands

using a physiologically motived bank of 30 raised cosine filters [120]. The center

frequencies of the filters were equally spaced on an equivalent rectangular band-

width (ERBN) scale, and the filter bandwidths (as a function of center frequency)

were comparable to those of the human ear [121]. The temporal envelope of the

output of each frequency channel was extracted by computing the magnitude of

the analytic signal. The temporal modulation power spectrum was computed by

averaging the power spectral density of each envelope across all frequency chan-

nels. The modulation spectrum of the envelope of a bandpass filter output is

inevitably low-pass (with a cutoff determined by the filter bandwidth). To avoid

biasing our measurements of modulation statistics, we only included frequencies

below this filter cutoff in our average. The ensemble modulation spectrum was fit

to all recordings with a modified power law, (Eq. 3.3), with parameters chosen to

minimize squared error to the data (A = 0.06, f0 = 0, p = 0.84).

Local Orientation

We used a Gaussian pyramid [122] to decompose each image in the database

into a spatial scale (2 − 5 cycles/deg) that matched that of the grating stimuli

used in the orientation discrimination experiment (4 cycles/deg) (Fig. 3.1r) [36].
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The horizontal and vertical gradients, centered on each pixel in the resulting im-

age, were computed with local rotation-invariant 5-tap derivative filters [123]. We

computed an orientation tensor [124], defined as the covariance matrix of the gra-

dients pooled across a local region. A pooling size of 1 degree was chosen to best

match the physiological data, which was measured foveally (between 0 − 3 deg

retinal eccentricity) (Fig. 3.1m,h) [109]. We computed three quantities from the

eigenvector decomposition of the orientation tensor: the energy (sum of the eigen-

values), orientedness (ratio of the eigenvalue difference to the eigenvalue sum),

and the dominant orientation (angle of the eigenvector with the larger eigenvalue).

We formed a histogram of the dominant orientations of all tensors for which the

energy exceeded the 68th percentile of all energies in the database, and the orient-

edness exceeded 0.8. The histogram was converted to a probability distribution

by normalizing by the total number of tensors that exceeded the two thresholds.

We verified that the resulting distribution did not change significantly for modest

changes in both thresholds.

Spatial Frequency

We assume that the radially integrated power spectral density of natural images

reflects the probability of spatial frequencies occurring in the natural environment.

The power spectral density for each image in the database was computed by taking

the magnitude of the windowed Fast Fourier transform of the image, and integrat-

ing the result over orientation. The units of the power spectrum were converted

from cycles per pixel to cycles per degree of visual angle by using the appropriate

camera settings for which each image was captured. The ensemble spectra were fit

with a modified power law (Eq. 3.3) with parameters chosen to minimize squared
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error to the data (A = 0.21, f0 = 0.11, p = 1.14). The approximate 1
f
nature of the

estimated spectrum is consistent with many previous studies [e.g.,125,126]).

Speed

The psychophysical data were fit with a power law,

δ(s) = asp + b,

with parameters chosen to minimize squared error to the data (a = 0.05, p =

0.93, b = 0.11). According to the theory (Eq. 3.2), the predicted environmental

distribution for speed is estimated as p(s) ∝ δ(s)−1 (Fig. 3.1e). This “slow speed

prior” is qualitatively consistent with previous estimates of the distribution of

retinal speed [35,127,128].

3.4.2 Cell density estimates

To quantitatively determine whether the estimated environmental distributions

provide an accurate prediction of the physiologically measured cell densities, we

performed a one sample Kolmogorov-Smirnov (KS) test. For our purposes, the KS

statistic quantifies the maximal difference between the cumulative density function

(CDF) of the environmental distribution, and the empirical CDF of the cell density

(Fig. 3.3). For the attributes of acoustic frequency, modulation frequency, and

spatial frequency, we found that the cell densities deviated significantly from the

corresponding environmental distributions (p < 0.001 for each attribute, KS test).

For speed, we cannot reject the null hypothesis that the cell density does not

deviate from the estimated environmental distribution (p = 0.15, KS test). For all
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attributes, we find that the data are much closer to our predictions than a uniform

distribution (Fig. 3.3 grey lines)

3.4.3 Estimating mutual information

Analytically computing the mutual information between the stimulus and the

population response, I(~r; s), is intractable. Instead, we estimate it with a Monte-

Carlo approximation, assuming that neural responses are described as samples from

an independent Poisson process with a rate parameter determined by each neurons

tuning curve. To develop this procedure, we first express the mutual information

as the difference between the stimulus entropy, H(s), and the reduction in stimulus

entropy once a population response is observed, H(s|~r):

I(~r; s) = H(s)−H(s|~r)

The stimulus entropy is defined as,

H(s) = −
∫

p(s) log p(s) ds,

and, can be readily computed by numerical integration assuming p(s) is known.

The conditional entropy is defined as,

H(s|~r) = −
∫ ∫

p(~r, s) log p(s|~r) ds d~r. (3.4)

The conditional entropy is difficult to compute as it requires multi-dimensional
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integration. We instead approximate it with L samples from the joint distribution,

H(s|~r) ≈ 1

L

L
∑

l=1

log p(sl|~rl). (3.5)

Here, (sl, ~rl) ∼ p(s, ~r) denotes the lth draw from the joint distribution. These sam-

ples can be readily obtained by an ancestral sampling procedure [129]. Ancestral

sampling works by first drawing a sample from the prior distribution, sl ∼ p(s),

then drawing a sample from the conditional distribution, evaluated at this sample,

~rl ∼ p(~r|sl). Since we have assumed that the response distribution is independent

Poisson, the nth element of ~rl is a sample from a Poisson distribution with a rate

parameter determined by its tuning curve evaluated at sl: rl,n ∼ Poiss(hn(sl)).

Each repeat of this procedure generates one independent sample from the joint

distribution. Finally, we compute the posterior distribution required in Eq. (3.5)

from Bayes rule as,

p(sl|~rl) =
p(sl)p(~rl|sl)
∫

p(s)p(~rl|s) ds
.

The numerator is straightforward to evaluate, and the denominator can be com-

puted by numerical integration.

3.4.4 Estimating normalized information

The normalized mutual information, Inorm(~r; s), is defined as:

Inorm(~r; s) =
Idat(~r; s)− Ihom(~r|s)
Ihet(~r; s)− Ihom(~r; s)
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Here, Ihom(~r; s) is the information transmitted by the homogeneous population,

Ihet(~r; s) is the information transmitted by the optimal heterogeneous population,

and Idat(~r|s) is the information transmitted by the observed neural populations.

A value of 0 indicates measured neural populations transmitting as much infor-

mation as a homogeneous population. A value of 1 indicates that the measured

neural population transmits as much information as the optimal heterogeneous

population. The normalized information is not necessarily bounded between 0 and

1. Negative values indicate that the measured neural populations are transmitting

less information than the homogenous populations, and values greater than 1 in-

dicate that the measured neural populations transmit more information than the

optimal solution.

To compute the normalized information for each attribute (Fig. 3.2) we first

constructed a homogeneous population, characterized by Gaussian tuning curves

(with the same width parameter) evenly spaced across the domain of the sensory

prior. The number of tuning curves, N , was chosen to be equal to the number of

cells observed for each attribute. The total number of spikes, R, was constrained

to lie within a metabolically relevant regime [24]: R
N

= 0.1, 1, or 10 spikes per

neuron. The width parameter of the Gaussian was chosen such that, after warping

the homogeneous population by the optimal density function, the tuning widths of

the resulting optimal heterogeneous population (measured as the full width at half

maximum value) were equal to the predicted tuning widths (Fig. 3.1f-j thick black

lines). For the physiological datasets, we did not have access to the empirically

measured acoustic or modulation frequency tuning curves. We chose to model

them with Gamma functions, with rate and shape parameters chosen to minimize

squared error between the data and the widths and preferred stimuli of the Gamma
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functions. In the case of spatial frequency and speed, we used the measured tuning

curves, which were fit to the data with a log Gaussian function [130]. These

tuning curves exhibited substantial variability in their gains (Fig. 3.5). To ensure

a comparison of information transmission for identical resources, we scaled the

gains of tuning curves in each of these populations by a single value such that

R was the same as in the corresponding homogeneous and optimal heterogeneous

populations.

Once the tuning curves were specified, we estimated the normalized mutual

information with the ancestral sampling procedure with L = 10, 000 samples. We

verified that this was a sufficient number of samples by repeating the procedure

with 100, 000 samples and obtaining similar results. We also verified that the pre-

cise shape of the tuning curve used to model the physiological data for acoustic and

modulation frequency did not significantly influence the normalized information by

re-running the analysis with Gaussian and raised cosine tuning functions fit to the

data. 95% confidence intervals for the normalized information were obtained with

1, 000 bootstrap estimates of Idat(~r|s). For all atributes and resource constraints

(except speed with R
N

= 0.1), the normalized information was significantly greater

than 0 and very close to 1, indicating that the observed neural populations are

close to optimal for information transmission despite significant heterogeneity in

cell density, tuning width, and (for spatial frequency and speed) gain. Median

values for the normalized information are presented in Table 3.1.
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Spikes/Neuron (R/N): 0.1 1 10
Acoustic Frequency, N = 553 0.87 0.93 0.96
Modulation Frequency, N = 262 0.85 0.85 0.88
Spatial Frequency, N = 538 0.80 0.84 0.98
Speed, N = 76 0.26 0.97 1.03

Table 3.1: Normalized information, Inorm(~r; s), computed for each
data set under different resource constraints.

3.4.5 Testing the Fisher bound on mutual information

Our results are optimized for a lower bound on mutual information, based on

Fisher information If (s),

I(~r; s) ≥ H(s) +
1

2

∫

p(s) log

(

If (s)

2πe

)

ds. (3.6)

where the Fisher information, assuming an independent Poisson noise model is

give by [54].

If (s) =
N
∑

n=1

h′2
n (s)

hn(s)
,

We verified that the lower bound on mutual information is indeed tight for the

sensory priors, tuning curves, and resource constraints explored here. Therefore,

our reliance on the lower bound for analytical tractability does not influence our

optimal solutions. To see this, we computed the difference between the ancestral

sampling estimate of mutual information for each data set, over a range of resource

constraints, and the corresponding lower bound from Eq. 3.6. The difference be-

tween these values are shown in Table 3.2. In the worst case, the lower bound

differed by a tenth of a bit. In all other cases, the bound underestimated the true

52



Spikes/Neuron (R/N): 0.1 1 10
Acoustic Frequency, N = 553 0.002 0.007 0.0001
Modulation Frequency, N = 262 0.07 0.02 0.008
Spatial Frequency, N = 538 0.03 0.006 0.001
Speed, N = 76 0.1 0.05 0.02

Table 3.2: Difference between mutual information and the lower
bound (in bits) computed for each data set under different resource
constraints.

information by less than a hundredth of a bit.

3.5 Supplementary information

3.5.1 Another orientation example

Visually oriented stimuli are more perceptually discriminable about horizontal

or vertical axes rather than oblique axes. This “oblique” effect has been confirmed

empirically in numerous behavioral studies in humans and animals published over

the past century [131]. Our theoretical explanation for the oblique effect states

that orientation discrimination thresholds should be inversely proportional to the

frequency of occurrence of orientations in the natural environment. We found that

this perceptual prediction is remarkably accurate (Fig. 3.1r). However, it relies

on the underlying physiological prediction that there are more cells with narrower

tuning for representing more frequently occurring orientations. Although we have

shown that is partially true for one data set (Fig. 3.1m), other neurophysiological

investigations into the anisotropy of orientation tuning preferences have provided

mixed results with some groups finding strong anisotropies and others none (see

[132] for review).
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We analyzed a separate large data set of the orientation tuning properties of

a population simple cells recorded from cat area 17 [132] (Fig. 3.4). There are

indeed more cells with narrower tuning for more frequently occurring orientations.

However, the magnitudes of these biases are significantly smaller than those found

in the Macaque V1 data reported in Fig. 3.1 m and are inconsistent with the

magnitude of the environmental and perceptual biases (Fig. 3.4 thick black lines).

There are several possible reasons for inconsistencies between the orientation

data sets considered here. First, the measurements are made in different species,

and may reflect differences in either the neurophysiology or visual environments

of cats and monkeys. Second, the Macaque cells were recorded from the fovea. In

the same study, it was found that the density of cells recorded in the periphery

was uniform [109]. The cat data were recorded over a wide range of eccentricities,

possibly diminishing the magnitude of the reported bias in cell density. Finally,

there is theoretical and physiological evidence that orientation tuning preferences

may vary spatially across the visual field [133,134]. As a result orientation tuning

preferences may also depend heavily on the angular position of the receptive fields

relative to the fovea.

3.5.2 Predictions of gain

We examined the gain of V1 neurons tuned to spatial frequency [107], and MT

neurons tuned to speed [108] (Fig. 3.5). We find that, although there is significant

variation in these values for each attribute, it is not systematically related to the

stimulus, in accordance with the predictions of our framework. This is also true of

the orientation tuning data obtained from cat area 17 [132] (Fig. 3.4c). For both

attributes we found a weak but insignificant linear correlation between preferred
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stimulus value and gain of each neuron (r = 0.065, p = 0.13 for spatial frequency

and r = 0.104, p = 0.37 for speed).

To test for possible nonlinear relationships between the gain, g, and preferred

stimuli, µ, we constructed null model that assumes statistical independence be-

tween the two quantities: p(µ, g) = p(µ)p(g). The distribution for p(µ) was pa-

rameterized by an exponential distribution with mean parameter 1.53 cpd for spa-

tial frequency and 17.35 deg/sec for speed, chosen to maximize the log likelihood

of the data. The distribution for p(g) was also parameterized by an exponential

distribution with maximum likelihood parameters of 27.01 spikes/sec for spatial

frequency and 29.71 spikes/sec for speed. For each attribute, we generated sam-

ples of preferred stimuli and gain from the null model, matched to the sample size

of the data. We then computed a distribution of the log likelihood of the synthetic

data under the null model by drawing new samples from the model and computing

the likelihood 10, 000 times. For each attribute, we found that the log likelihood of

the data under the independent model was well within the 95% confidence intervals

computed from the distribution of log likelihoods of synthetic data sampled from

the model. Therefore we cannot reject the hypothesis that the gain and preferred

stimuli of the cells are statistically independent.

3.5.3 Predictions of alternative efficient coding frameworks

We find that our physiological predictions are qualitatively consistent with

populations of linear receptive fields that are numerically optimized to encode

ensembles of natural images [14, 27] or sounds [28]. Specifically, the tuning char-

acteristics of these optimized receptive fields are consistent with our predictions of

cell density and tuning width for the encoding of orientation, spatial frequency, and
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Input Response Neural noise Objective Constraints
This work p(s) tuning curves Poisson information {N,R}
ICA[14, 15] natural images linear RF none information power

Sparse Coding [28] natural sounds linear RF none squared error sparsity

Table 3.3: Comparison of efficient coding frameworks

acoustic frequency (Fig. 3.6). The visual receptive fields are derived from indepen-

dent components analysis (ICA) and the auditory receptive fields are derived from

sparse coding. These theories may be interpreted as variants of the efficient coding

hypothesis, each using a different objective function and constraints, and making

different assumptions about input distributions, neural response properties, and

noise. These differences are summarized in Table 3.3, and further elaborated in

the following sections.

Independent components analysis of natural image patches

ICA assumes a linear generative model of natural images,

x = As, (3.7)

where x is a matrix with each column representing a different natural image, A is

a matrix of basis functions, and s is a matrix of coefficients. The goal of ICA is to

simultaneously learn the basis functions, A, and coefficients, s = A−1x, such that

the coefficients are as statistically independent as possible. Assuming no neuronal

noise, this procedure is equivalent to picking the neural responses, (often equated

to the coefficients s), and receptive fields (often equated to the columns of A) to

maximize the information transmitted about the natural image ensemble. To ob-

tain a solution, we ran the Fast ICA algorithm [135] (with the default parameters)
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using one million 16X16 pixel image patches sampled randomly from the same

database of natural images used to compute the environmental distributions for

local orientation and spatial frequency [15,103]. The dimensionality of each patch

was reduced by a factor of two using principle components analysis, effectively low-

pass filtering the images, in order to aid the algorithms convergence. As described

in previous literature, the optimal receptive fields (Fig. 3.6a) are seen to closely

resemble those of simple cells in V1 [14,15].

To derive the orientation and spatial frequency tuning properties of these re-

ceptive fields, we first computed the magnitude of the two dimensional Fourier

transform of each filter and found the location of the maximum amplitude. We

estimated the orientation tuning curve by interpolating the values of the magni-

tude as a function of angle about this peak value. A spatial frequency tuning

curve was computed by interpolating the values of the magnitude radially through

the location of the peak magnitude. We found that 98 of the 128 receptive fields

exhibited clear tuning to both orientation and spatial frequency. For these units,

we computed the bandwidths of the derived tuning curves as the full width at half

maximum (Fig. 3.6b,d). The preferred stimuli of the tuning curves were computed

as the orientation or spatial frequency that elicited the maximum response. A

histogram of the preferred stimuli was used as an estimate for the local cell density

(Fig. 3.6c,e). For both attributes, we find that the predictions of our framework are

qualitatively consistent with the derived tuning characteristics (Fig. 3.6b-e thick

black lines).
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Sparse coding of natural sounds

Sparse coding also assumes a linear generative model of the input (Eq. 3.7).

However, the goal of sparse coding is to learn the basis functions and coefficients to

minimize reconstruction error subject to a sparsity constraint on the coefficients:

argmin
A,s

‖x−As‖2 + λ‖s‖0. (3.8)

The first term in the objective function is the mean squared error between the

generative model and the inputs. The second term enforces sparsity, or rather

that there are as few active neurons as possible. The parameter λ controls the

amount of tradeoff between sparsity and reconstruction error.

When the inputs consist of natural sounds, an approximate numerical solution

to this objective function yields receptive fields that resemble those of auditory

nerve fibers [28] (Fig. 3.6f). The tuning widths of these filters, as function of their

preferred stimulus values, closely match the predictions of our efficient coding

framework (Fig. 3.6g). We computed a histogram of the preferred stimuli as a

local estimate of cell density and find that it is also qualitatively consistent with

our results (Fig. 3.6 h).

3.5.4 Predictions of an alternative optimality principle

To further examine whether coding efficiency is a reasonable objective function

for early sensory systems, we formulate and test an alternative hypothesis − that

sensory systems are optimized to discriminate stimulus values [7]. Specifically,

we consider the optimization of a lower bound on average squared stimulus dis-

criminability [99], expressed in terms of cell density and gain. The new objective
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function and constraints are,

argmax
d(s),g(s)

∫

p(s)d−2(s)g−1(s) ds, subject to

∫

d(s) ds = N,

and

∫

p(s)g(s) ds = R,

and a closed form solution is readily obtained using calculus of variations:

d(s) ∝ Np
1

2 (s), w(s) ∝ 1

d(s)
=

1

Np
1

2 (s)
, g(s) ∝ R

p
1

2 (s)
. (3.9)

The structure of this optimal population differs significantly from that of the

optimally efficient population. Specifically, the cell density is proportional to the

square root of stimulus distribution, thus allocating more cells, relative to the

efficient coding solution, to less frequently occurring stimuli at the cost of allocating

relatively less cells to more frequently occurring stimuli. The gain of the cells in

the optimal population is inversely proportional to the square root of the stimulus

distribution. Since we have assumed the tuning widths are inversely proportional

to cell density, and thus to the square root of the stimulus distribution, this solution

implies that the average response of each neuron (over stimuli encountered in the

world), is identical across the population, as in the efficient coding solution. Finally,

the unknown total resource values {N,R} again appear only as multiplicative

scale factors in the expressions for gain and density, and thus the optimal solution

provides a unique prediction for the shapes of both the cell density and tuning

width as a function of preferred stimulus.

Analogous to the efficient coding solution, this optimal population also limits
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the best achievable discrimination performance of a perceptual system that bases

its responses on the output of this population. Specifically, the minimum achievable

discrimination thresholds are expressed as,

δmin(s) ∝
1

√

d2(s)g(s)
=

1

N
√
Rp

1

4 (s)
. (3.10)

As in the efficient coding case, this solution predicts that frequently occurring

stimuli should be more discriminable. However, this solution achieves lower average

squared discrimination thresholds by producing lower thresholds, relative to the

efficient coding solution, to less frequently occurring stimuli at the cost of producing

relatively higher thresholds to more frequently occurring stimuli. The solution is

again a simple function of the stimulus probability, p(s), scaled by a multiplicative

factor that depends on neural resources and an additional factor that depends on

the experimental conditions under which discrimination thresholds are measured.

As a result, the solution provides a unique prediction of the shape of perceptual

discriminability as a function of stimulus value.

We compared these relationships to those predicted by efficient coding in the

context of the previously discussed attributes. The data, and predictions, are

shown in Fig. 3.7. For each attribute, we find that the predicted relationships be-

tween the environment, physiology, and perception for the optimal discriminability

hypothesis (Fig. 3.7 thick green lines) are deviate more significantly from the data

than the predictions of the efficient coding hypothesis (Fig. 3.7 thick black lines).

For tuning widths, the new predictions account for (32.0, 55.8, 36.0, 55.0)% of the

variance in the data, which corresponds to (7.6, 13.32, 11.7, 12.4)% less of the data

variance that is accounted for by the efficient coding solutions. The predicted
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cell densities also deviate significantly from data (p < 0.001 for all attributes, one

sample KS test). Finally, the new predictions of gain cannot account for the lack

of systematic relationship between the preferred stimuli and the gains observed in

Fig. 3.5 and Fig. 3.4c. Based on these differences in predictions, we conclude that

the efficient coding hypothesis provides more parsimonious optimality principle for

sensory and perceptual coding than the optimal discriminability hypothesis.
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Figure 3.1: Testing the predicted relationship between sensory pri-
ors, neural population properties (tuning width and cell density) and
psychophysical discrimination thresholds. Each row corresponds to a
particular sensory attribute: acoustic frequency, modulation frequency,
local orientation, spatial frequency, and speed. For each attribute, the
data in the starred panel was fit with a parametric form or histogram
density estimate (thick black lines, fitting details in methods). These
curves were used (after transformation according to Eqs. (3.1) or (3.2))
to generate predictions for all other panels in the same row. Since the
predictions include an unknown scale factor (that depends on resources
N and R), each curve is rescaled to minimize the squared error to the
associated data. (a-e) Estimated environmental distributions. Panels
a and b, the distribution of acoustic and modulation frequencies were
computed from commercially available compilations of animal vocaliza-
tions and background sounds [100–102]. Panel c, a histogram of
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the distribution of local orientations in a large database of images con-
taining both natural and man-made scenes [15, 36, 103, 104]. Panel
d, distribution of spatial frequencies computed from the same image
database. Panel e, theoretical prediction of the distribution of speeds
encountered in the natural environment, based on the perceptual data
in panel t, that is also consistent with the physiological data in panels
j and o. See methods for details about how the distributions were esti-
mated. (f-j) Physiologically measured tuning widths (as a function of
preferred stimulus) of neural populations known to be tuned for each
attribute. Panel f, data were obtained from 553 auditory nerve fibers
measured in cats [105], adapted from [28]. Panel g, data were obtained
from 262 neurons in the central nucleus of the inferior colliculous mea-
sured in cats [106]. Panel h, theoretical prediction of orientation tun-
ing widths for a population of orientation-tuned V1 simple cells that
is also consistent with the measured environmental distribution, cell
density, and psycophysical thresholds from panels c, m, and r. Panel
i, data were obtained from 538 cells in Macaque primary visual cor-
tex (V1) [107]. Panel j, data were obtained from 76 speed-tuned cells
in Macaque middle temporal cortex (MT) [108]. (k-o) Histograms of
the number of cells tuned to each stimulus value. Panels k,l,n,&o,
histograms were computed from the data in panels f,g,i,&j. Panel m,
cell density reported for a population of 79 orientation-tuned V1 simple
cells recorded foveally [109]. (p-t) Discrimination thresholds averaged
across multiple human subjects for each sensory attribute. Panel p,
acoustic frequency discrimination thresholds from two different studies
shown in red [110] and blue [111]. Panel q, modulation frequency dis-
crimination thresholds from two different studies shown in red [112] and
blue [113]. Panel r, orientation discrimination thresholds [36]. Panel
s, spatial frequency discrimination thresholds measured with sinusoidal
gratings at 10% contrast (red) [114], and 25% contrast (blue) [115].
Two predictions are shown corresponding to different scale factors, re-
flecting the different stimulus conditions. Panel t, speed discrimination
thresholds from two different studies shown in red [116] and blue [117].
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Figure 3.5: There is no systematic variation of cell gain (measured
as the maximum average firing rate of each cell) with preferred stimuli.
Panel a, data were obtained from 538 spatial frequency tuned cells in
Macaque V1 (same data as in Fig. 3.1 i,n). Panel b, data were obtained
from 76 speed tuned cells in MT (same data as in Fig. 3.1 j,o).
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fields of V1 simple cells. (b - e) tuning characteristics of these re-
ceptive fields match the predictions of our efficient coding framework
(thick black lines). Panel b, orientation tuning widths computed from
the receptive fields in panel a. Blue bars show the mean and standard
deviation of the bandwidths in 16.37 degree bins. Panel c, histogram
density estimate of the preferred orientations of these receptive fields.
Panel d, spatial frequency tuning widths computed from the receptive
fields in panel a. Panel e, histogram density estimate of the preferred
spatial frequencies of these receptive fields. Low spatial frequencies are
underestimated due to the small patch sizes. Panel f, linear receptive
fields, derived from natural sounds (red) using sparse coding, resem-
ble the receptive fields of auditory nerve fibers (blue). Figure adapted
from [28]. Panels g & h, tuning characteristics of these receptive fields
match the predictions of our efficient coding framework (thick black
lines). Panel g, acoustic frequency tuning widths adapted from [28].
Panel h, histogram density estimate of the preferred acoustic frequen-
cies of the receptive fields from panel f.

66



0.1 1 10

−80

−60

−40

e j o t

d i n s

c h m r

b g l q

a f k p

1
100

40 10

Preferred Stim. (deg/sec) Preferred Stim. (deg/sec) 

1 10 100

0.01

0.1

1 10 100
1

10

0 25 50
0

20

1 10 100

0.1

1

Speed (deg/sec) Speed (deg/sec)

B
a

n
d

w
id

th
 

(d
e

g
/s

e
c
)

T
h

re
s
h

o
ld

 
(d

e
g

/s
e

c
)

#
 C

e
lls

P
ro

b
a

b
ili

ty

Preferred Stim. (cpd) Preferred Stim. (cpd) 

0.1 1 10
0.01

0.1

1

10

100

0 2 4 6
0

150

300

2 4 8 16

0.1

0.4

1.6

6.4

0.1 1 10

−45

−30

−15

0

Spatial Freq. (cpd) Spatial Freq. (cpd)

E
n

e
rg

y
 (

d
B

)

B
a

n
d

w
id

th
 (

c
p

d
)

#
 C

e
lls

T
h

re
s
h

o
ld

 (
c
p

d
)

0 45 90 135 180
0

25

50

75

0 45 90 135 180
0

10

20

0 45 90 135 180
0

10

20

0 45 90 135 180
0

0.006

0.012

Orientation (º) Preferred Stim. (º) Preferred Stim. (º) Orientation (º)

P
ro

b
a

b
ili

ty

B
a

n
d

w
id

th
 (

º)

#
 C

e
lls

T
h

re
s
h

o
ld

 (
º)

0.1 1 10 100
−100

−50

0

16 64 256

16

64

256

25 125 225
0

50

100

4 16 64 256

1

4

16

64

Modulation Freq. (Hz) Preferred Stim. (Hz) Preferred Stim. (Hz) Modulation Freq. (Hz) 

B
a

n
d

w
id

th
 (

H
z
)

#
 C

e
lls

P
o

w
e

r 
(d

B
)

T
h

re
s
h

o
ld

 (
H

z
)

10 200 100

0.1 1 10

−80

−60

−40

0.1 1 10
0.1

1

0 1 2 3
0

100

0.1 1 10

1

10

Acoustic Freq. (kHz) Acoustic Freq. (kHz) Preferred Stim. (kHz) Preferred Stim. (kHz) 

B
a

n
d

w
id

th
 (

k
H

z
)

#
 C

e
lls

P
o

w
e

r 
(d

B
)

T
h

re
s
h

o
ld

 (
H

z
)

Figure 3.7: Comparing predicted relationships between sensory pri-
ors, neural population properties (tuning width and cell density) and
psychophysical discrimination thresholds for the efficient coding hy-
pothesis (thick black lines) and the optimal discrimination hypothesis
(thick green lines). Each panel is the same as in Fig. 3.1, except here the
curves fitted to the data in the starred panels were used (after trans-
formation according to Eqs. (3.9) or (3.10)) to generate predictions
generated from the optimal discriminability hypothesis Each curve is
rescaled to minimize the squared error to the associated data.
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Chapter 4

Neural Implementation of

Bayesian Estimation using

Efficient Population Codes

4.1 Introduction

Perception has been described as a process of inference, in which human ob-

servers combine their noisy sensory measurements and prior knowledge of the envi-

ronment to construct an estimate of the physical world [4]. Bayesian statistics pro-

vides a powerful framework for understanding this inferential process with respect

to three fundamental components [32]: (1) a likelihood function, which represents

an observers degree of belief about an environmental signal based on sensory evi-

dence; (2) a prior probability distribution, which characterizes an observers sense

of the plausibility of different signal values in the environment; and (3) a loss func-

tion, which specifies the cost of making estimation errors. The central postulate
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in Bayesian statistics is that the prior and likelihood can be combined to form a

posterior distribution, which reflects the plausibility of signal values arising from

the environment based on the current sensory evidence and prior knowledge. As

the uncertainty about the sensory evidence increases, the posterior rationally re-

lies more heavily on the prior. An optimal point estimate of a signal value can

be obtained by choosing the signal value that minimizes the expectation, over the

posterior distribution, of the loss function. Experimental evidence suggests that

human performance in perceptual [32, 34–36], sensorimotor, [37, 38], and cogni-

tive [39] tasks is consistent with such optimal Bayesian estimation. Given the

behavioral data in support of the Bayesian framework, a fundamental problem in

neuroscience is to understand how the probability distributions required by the

Bayesian machinery may be represented, learned, and computed with in the brain.

A substantial literature considers how a likelihood function can be represented

by population of neurons, in which each neuron’s mean response to a scalar variable

is characterized by a tuning curve [e.g., 54–62]. In these models, sensory evidence

corresponds to the noisy neural responses to the actual sensory input. When neural

responses are Poisson distributed and statistically independent, the log-likelihood

function can be explicitly computed as a sum (over neurons) of each neuron’s

log tuning curve, weighted by its response [59–61]. The uncertainty about sensory

evidence (as characterized by the width of the likelihood function) increases with a

decrease in the number of neurons, the total average firing rate, the inverse tuning

widths, or some combination of these [78–81]. When the neuronal variability arises

from an exponential family with linear sufficient statistics (which includes the

independent Poisson model) recent work shows that adding the firing rates of two

neural populations, each corresponding to a different sensory cue about a stimulus,
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implicitly multiplies the likelihoods they represent. This provides a plausible neural

calculus for behavioral data that suggests human observers combine likelihood

information in cue combination tasks [42].

The means by which prior information is represented and computed with in

the brain is less well explored. In many cases, the prior is assumed to be uniform,

and therefore the posterior distribution is simply proportional to the likelihood.

However, a number of psychophysical studies suggest that human observers rely on

non-uniform priors to produce (biased) estimates when sensory evidence is weak

[e.g.,34–36]. One proposal for embedding prior information in neural responses,

is to encode it in the same way as a likelihood [62]. In this case the log prior

can be explicitly computed as firing rate weighted sum of the log tuning curves

of a separate neural population. A desirable aspect of this approach is that a log

posterior distribution can be implicitly computed by simply adding the firing rates

of neurons representing the likelihood to the firing rates of neurons representing

the prior, analogous to the case of combining likelihoods. However, the represen-

tation of the prior will be noisy due to neuronal variability, which may lead to

suboptimal estimates of the true posterior distribution. An alternative approach

interprets spontaneous neural activity as samples from a prior distribution defined

over the latent variables of a generative model of the sensory input [63,64]. Stim-

ulus evoked activity is interpreted as samples from the posterior distribution over

the latent variables. Although certain predictions of this approach are consistent

with physiological data [64], it remains unclear how a stimulus estimate may be

obtained from these responses, or how these models of neural processing are related

to more conventional tuning curve based models of population coding.

A substantial body of work explores the neural implementation of estimators,
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or decoders, that can compute stimulus estimates based on noisy population re-

sponses [54–61, 136, 137]. These results all rely on choosing the stimulus value

that maximizes the likelihood (ML estimate) or the posterior distribution (MAP

estimate) of the stimulus values that generated the observed population response.

Consider a downstream population implementing a MAP estimate from the neural

responses of an encoding population, which is characterized by tuning curves and

independent Poisson noise. The decoder must first explicitly compute a likelihood

by computing a sum of tuning curves, each weighted by the firing rates of the

encoding population, then add the result to a log prior distribution to obtain a log

posterior distribution. The MAP estimate would then be the value associated with

the decoder neuron with the maximum response, corresponding to a winner take

all readout mechanism. Aspects of this implementation are undesirable [46]. First,

the decoder requires a separate population of cells that has precise knowledge of

the tuning curves in the encoding population. It is not clear how these tuning

curves can be learned from the neural responses of the input population. Second,

the decoder must have explicit knowledge of the prior distribution. If the prior

is encoded in a separate population [62], then the decoder requires an additional

population of cells that has full knowledge of the tuning curves representing the

prior. Finally, the winner take all rule is highly sensitive to noise.

A more plausible decoder − the population vector (or center of mass decoder)

− produces a stimulus estimate by computing a firing rate weighted average of the

preferred stimulus values of each neuron. The population vector has a rich history

in experimental neuroscience, where it has been used to accurately predict the

direction of arm movements from neural responses measured in a variety of motor

and premotor areas [69–72], the orientation of visual stimuli from responses in
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primary visual cortex [73], the direction of saccades from responses in the superior

colliculus [74], and the position of a rat from the responses of place cells in the

hippocampus [75]. Recent theoretical work has shown that the population vector

can compute the mean of a posterior distribution [76, 77], which is optimal for

minimizing a square loss function, and is known as a Bayes least squares estimator.

These results rely on strong assumptions about the encoding population, which

are asserted for the explicit purpose equating a Bayes least squares estimator to a

population vector.

Here, we derive and examine precise conditions under which a Bayes least

squares estimator can be implemented with a population vector like decoder. We

assume sensory variables are encoded by a heterogeneous neural population with

tuning curves that are optimized for the transmission of sensory information, sub-

ject to limitations on the number of neurons and the total average spike rate.

This encoder implicitly represents the sensory prior in the distribution of preferred

stimuli, is consistent with physiological data, and can predict perceptual discrim-

ination thresholds of an optimal observer [99]. Given this encoder, we derive a

novel decoder that can approximate the mean and variance of a posterior distribu-

tion. The decoder is based on a sampling approximation of the Bayes least squares

estimator, where the preferred stimuli are construed as a set of samples from the

prior. Similar to the population vector, it computes weighted averages of the pre-

ferred stimuli. However, the firing rates are not used directly as weights, but are

first convolved with a linear filter then exponentiated. The decoder is neurally

plausible, and requires knowledge only of the preferred stimuli and a fixed filter,

and not the prior or tuning curves. Simulations demonstrate that it outperforms

the standard population vector, and converges to the true Bayes least squares es-
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Figure 4.1: Generative model of the population response, and its
neural representation with an efficient neural code. Panel a, a stimulus
drawn from p(s) generates a stochastic population response. The firing
rate of the nth neuron, rn, is a Poisson random variable drawn from the
probability distribution p(rn|s). The responses are independent con-
ditioned on the stimulus value such that probability of a population
response is p(~r|s) = ∏N

n=1 p(rn|s). Panel b, an example prior distribu-
tion from which an efficient population code can be constructed. Panel
c, tuning curves denote the expected firing rate of each neuron in the
efficient population, hn(s) = Ern|s(rn), which correspond to the rate pa-
rameters of the Poisson distributions. The tuning curves are designed
to maximize mutual information between the stimuli drawn from p(s),
and the responses. Tick marks denote the preferred stimulus value of
each neuron. Panel d, the preferred stimuli represent samples from the
prior distribution. A histogram of the preferred stimuli approximates
the prior (thick black curve).

timator with as few as 10 neurons (or samples from the prior). We discuss how

to test for signatures of this decoders use with psychophysical measurements of

estimation bias.

4.2 Efficient encoding model

We assume a conventional model for a population of N neurons responding to

a single scalar variable, s [54–62,136,137]. The number of spikes emitted (per unit
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time) by the nth neuron is a sample from an independent Poisson process, with

mean rate determined by its tuning function, hn(s). The probability density of the

population response can be written as

p(~r|s) =
N
∏

n=1

hn(s)
rn e−hn(s)

rn!
. (4.1)

We assume that stimulus values are drawn from a prior distribution, p(s), which

can have an arbitrary shape. A generative model of the population coding model

is shown in Fig. 4.1a.

Most studies on population coding assume a convolutional population of neu-

rons, where each neuron’s tuning curve is a shifted copy of a prototype tuning

curve, hn(s) = h(s− n) [e.g.,54–61,78–81,136,137]. The tuning curve shape, h(·),

is often assumed to be a Gaussian, raised cosine, or a Von Mises function. Here,

we consider tuning curves that maximize the information transmitted about stim-

ulus values drawn from p(s), subject to constraints on the number of neurons, N ,

and the total number of spikes R. The optimal tuning curves may be obtained by

warping the tuning curves in the standard convolutional code by the cumulative

distribution of the prior (P (s) =
∫ s

−∞
p(t) dt) and scaling the entire population to

fire a maximum of R spikes [99]. As a result, each optimized tuning curve can be

expressed as, hn(s) = Rh(s−NP (s)). An example of an efficient population code

for an exponential prior distribution is shown in Fig. 4.1b-c.

The efficient population code implicitly embeds the prior distribution in the

preferred stimuli and widths of the tuning curves. The preferred stimulus value of

each neuron is sn = NP−1(n), where n is an integer ranging from 1 to N . These
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values represent samples from the prior distribution (Fig. 4.1d). 1 The tuning

width of each neuron in the population is inversely proportional to the prior. This

can be seen by taking a first-order Taylor expansion of P (s) around sn to obtain

hn(s) ≈ Rh(Np(sn)(s− sn)).

4.3 Bayesian estimation

We seek a decoder that can appropriately leverage the prior information em-

bedded in the tuning curves of the efficient encoding population to produce an

optimal Bayesian perceptual estimate. An estimator, ŝ(~r(s)), is a deterministic

function that takes as input a noisy population response to a sensory parameter,

~r(s), and outputs an estimate of that parameter ŝ. Due to the response variabil-

ity, the estimated values can differ for repeated presentations of the same sensory

stimulus (Fig. 4.2). For notational convenience, we drop the explicit dependence

of the firing rates on the unobserved stimulus such that ~r(s) = ~r.

The first step in a Bayesian estimation strategy is to construct a posterior prob-

ability distribution of the possible stimuli that gave rise to the observed population

response,

p(s|~r) = p(~r|s)p(s)
p(~r)

.

Here, the likelihood, p(~r|s), is a function of s evaluated for a single observation of

~r. The denominator, p(~r) =
∫

p(~r|s)p(s) ds, is a normalizing constant that ensures

1The standard (stochastic) way to obtain N samples from p(s) is to generate a N random
draws from a uniform distribution between 1 and N , and then pass these through the inverse
cumulative distribution [129]. Repeating this procedure will generate a different set of N samples
each time the procedure is repeated. The efficient coding formulation offers a deterministic set
of samples that does not change unless the prior changes.
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decodeencodeprior

Figure 4.2: Illustration of the encoding decoding process. Stimuli
drawn from the prior distribution (colored dots) are encoded by a pop-
ulation of neurons, characterized by tuning curves h(·). The encoding
process is noisy. As a result, repeated presentations of the same stimu-
lus value, yield a distribution of N dimensional neural responses (clouds
colored corresponding to the stimuli that caused them). A determinis-
tic estimator decodes a single pattern of activity into an estimate ŝ(~r).
Due to the response noise, the estimated values for particular stimulus
condition are also random variables that can be modeled with a prob-
ability distribution p(ŝ(~r)|s) (colored curves). The difference between
the true stimulus and the average estimates (dashed lines) represents
the estimation bias. The width of these distributions corresponds to
the estimation variance.

the posterior is a proper probability distribution.

An optimal Bayesian estimator computes an estimate from the posterior distri-

bution that minimizes a loss function, L(s, ŝ (~r)), which characterizes the average

cost of a mismatch between estimated stimulus and the true value:

ŝOPT (~r) = argmin
ŝ(~r)

∫

p(s|~r)L(s, ŝ (~r)) ds. (4.2)

A common loss function is the squared error,

L(s, ŝ (~r)) = (s− ŝ (~r))2, (4.3)
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which can be expressed in terms of two quantities: the bias, b(s), and the variance

σ2(s) (Fig. 4.2). The bias is the difference between the average of ŝ (~r) across trials

that use the stimulus s and the true value of s:

b(s) = ER|S [ŝ (~r)]− s (4.4)

An estimator is termed unbiased if b(s) = 0 for all stimulus values. Estimation

biases can arise from the influence of the prior (when the sensory evidence is weak),

the loss function, or even the likelihood. The variance of the estimator quantifies

how much the estimate varies about its mean value:

σ2(s) = ER|S

[

(

ŝ (~r)− ER|S [ŝ (~r)]
)2
]

. (4.5)

The bias and variance can be used to compute the trial averaged conditional mean

squared estimation (MSE) error:

MSE (s) = ER|S

[

(ŝ (~r)− s)2
]

= b2(s) + σ2(s). (4.6)

The total mean squared estimation error is simply the expectation of the condi-

tional error under the prior distribution: MSE =
∫

MSE(s)p(s) ds.

The Bayes least squares (BLS) estimator can be derived from Equations. 4.2

& 4.3 as computing the mean of the posterior distribution:

ŝBLS (~r) = ES|R [s] =

∫

sp(s|~r) ds. (4.7)

An analytical expression for this estimator does not exist for our encoding model.
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4.4 An importance sampling approximation to

Bayesian estimation

A common technique to evaluate expectations, like the one necessary for com-

puting the BLS estimator (Eq. 4.7), is to approximate them with a sum such that,

∫

sp(s|~r) ds ≈ 1

L

L
∑

l=1

slp(sl|~r), (4.8)

where sl ∼ p(s|~r) represents one of L samples from the posterior probability dis-

tribution. The approximation converges to the true expectation as the number

of samples tends to infinity. For the brain to use this trick, it would need access

to samples from the posterior distribution, but the efficient code only produces

samples from the prior distribution in the form of preferred stimuli, sn ∼ p(s). A

well known sampling method, called importance sampling, can correctly use this

embedded prior information to approximate the Bayes least squares estimator.

In general form, an importance sampler approximates the expected value of

any function, f(s), with samples from a proposal distribution, q(s), that is easy to

obtain samples from,

ES|R [f(s)] =

∫

f(s)
p(s|~r)
q(s)

q(s) ds ≈ 1

L

L
∑

l=1

f(sl)
p(sl|~r)
q(sl)

. (4.9)

Here, sl represents one of L samples from the proposal distribution (sl ∼ q(s)). If

the proposal distribution is chosen to be the prior distribution, and the preferred

stimuli are used as samples from this prior, then the importance sampler (Eq. 4.9)
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can be expressed (using Bayes rule) as,

ES|R [f(s)] ≈ 1

N

N
∑

n=1

f(sn)
p(sn|~r)
p(sn)

=
1
N

∑N

n=1 f(sn)p(~r|sn)
p(~r)

. (4.10)

To compute the marginal probability of the observed population response, p(~r), we

again approximate the necessary integral over the joint distribution, using the pre-

ferred stimuli as samples from the prior: p(~r) =
∫

p(~r|s)p(s) ds ≈ 1
N

∑N

n=1 p(~r|sn).

Substituting this expression into Eq. 4.10, and choosing f(s) = s, allows us to

express the Bayes least squares estimator as,

ŝBLS (~r) ≈
∑N

n=1 snp(~r|sn)
∑N

n=1 p(~r|sn)
. (4.11)

4.5 The Bayesian population vector

The importance sampling approximation to the Bayes least squares estimator

exhibits a striking similarity to a standard population vector decoder. The popu-

lation vector (PV) computes a firing rate weighted average of the preferred stimuli

of the cells, and can be expressed as,

ŝPV (~r) =

∑N

n=1 snrn
∑N

n=1 rn
. (4.12)

By inspection, if one assumes rn ∝ p(~r|sn), then ŝPV (~r) = ŝBLS (~r) [76, 77]. How-

ever, this assumption is both artificial and clearly violated by our response model.

To derive a version of the importance sampling approximation of the BLS

estimator that does not rely on this assumption, we expand out the likelihood
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weights, p(~r|sn) according to Eq. 4.1, and substitute them into Eq. 4.11 to obtain,

ŝBLS (~r) ≈
∑N

n=1 sn exp
(

∑N

m=1 rm log hm(sn)−
∑N

m=1 hm(sn)−
∑N

m=1 log(rm!)
)

∑N

n=1 exp
(

∑N

m=1 rm log hm(sn)−
∑N

m=1 hm(sn)−
∑N

m=1 log(rm!)
)

=

∑N

n=1 sn exp
(

∑N

m=1 rm log hm(sn)
)

∑N

n=1 exp
(

∑N

m=1 rm log hm(sn)
) (4.13)

In the second step, we use the fact that for an efficient population code,
∑N

m=1 hm(sn) = R, and can thus be pulled out of the sum over n in both numerator

and denominator to cancel. The fact that the tuning curves sum to a constant has

previously been assumed to be true [61], but here we have derived it from the

fundamental principle of efficient coding [99]. The term
∑N

m=1 log(rm!) does not

depend on n, and therefore also cancels out in the numerator and denominator.

The term hm(sn) represents the average response of the mth neuron to the

stimulus preferences of all the other neurons in the population. In a convolutional

population code, this set of weights is the same for all m neurons, since each

tuning curve overlaps the same amount with its neighbors. This is also true for the

tuning curves in the efficient population code, as they are obtained from warping

a convolutional code by the cumulative of the prior distribution, ensuring that

the original overlap between tuning curves is preserved. As a result, the term
∑N

m=1 rm log hm(sn) can be expressed as a convolution of the neural responses

with a fixed linear filter, ~w, which depends on the (log of the) amount of overlap

between tuning curves. Incorporating this into Eq. 4.13, we obtain an expression

for the importance sampling approximation to the Bayes least squares estimator,
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which we term the Bayesian population vector (BPV):

ŝBPV (~r) =

∑N

n=1 sn exp
(

∑N

m=1 rm ~wm−n

)

∑N

n=1 exp
(

∑N

m=1 rm ~wm−n

) (4.14)

The BPV can be directly mapped onto a compact, biologically plausible neural

circuit (Fig. 4.3). To produce a Bayes least squares estimate, a downstream neu-

ral population receives inputs (in the form of spike counts) from the responses of

the efficient population. Each downstream neuron linearly pools together the re-

sponses of neurons in the input population that have similar stimulus preferences.

The result is then passed through a static exponential non-linearity. This simple

linear-nonlinear (LN) cascade corresponds to approximating the likelihood, or sen-

sory evidence. The output of this cascade is then sent to a standard population

vector decoder, which makes use of the embedded prior information to compute

the posterior mean.

4.6 Simulations

The Bayesian population vector provides a remarkably accurate approximation

to the omniscient Bayes least squares estimator (which has explicit access to the

prior and likelihood), in terms of mean squared error, across a wide range of N and

R (Fig. 4.4a). We computed the mean squared errors of these estimators, based on

the responses of a population code optimized for transmitting information about

samples from an exponential prior distribution, as shown in Fig. 4.1. To compute

the mean squared error, we first simulated neural population responses to 1, 000

repeats of each stimulus value. The response of each neuron to a single stimulus
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value corresponds to a sample from a Poisson distribution, with the rate param-

eter determined by the neuron’s tuning curve, evaluated at the stimulus value.

From these neural responses, we computed stimulus estimates, using the omni-

scient Bayes least squares estimator (Eq. 4.7) and the Bayesian population vector

(Eq. 4.14). The sample mean and variance of these estimates, conditioned on the

stimulus condition, produces estimates of the estimation bias (Eq. 4.4) and variance

(Eq. 4.5) respectively. To compute the mean squared error, we first approximate

conditional mean squared error from the bias and variance terms (Eq. 4.6), then

compute its expectation under the sensory prior by numerical quadrature.

The mean squared error of the Bayesian population vector converges to that

of the Bayes least squares estimator as the number of neurons (or samples from

the prior) increases, independent of the total average firing rates. In a low firing

rate regime (0.1 maximum average spikes/neuron) the approximation is to within

1% of the true MSE with as few as 10 neurons. However, when the same 10

neurons are firing a maximum of 100 spikes each, the mean squared error of the

BPV is 25% larger than that of the BLS estimator. In this regime, the likelihood

is very narrow (due to the abundance of spikes) relative to the spacing of the

preferred stimuli (which is large due to the small number of neurons). As a result

modified weights, given by the continuous likelihood function evaluated at the

preferred stimuli, p(~r|sn), may reduce to a delta function centered on the single

preferred stimulus value that lies in the non-zero support of the likelihood. When

the weights correspond to a delta function, the BPV reduces to a winner take all

readout mechanism which is suboptimal relative to the omniscient BLS estimator

operating in the same metabolic regime.

The standard population vector provides an accurate approximation to the
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Bayes least square estimator, in terms of mean squared error, in a low firing rate

regime (0.1 maximum average spikes/neuron), and a very poor approximation

when the neurons fire 1 or 10 spikes per neuron (Fig. 4.4b). In these higher firing

rate regimes, the population vector becomes increasingly suboptimal (by orders of

magnitude) as the number of neurons increases. To further understand the differ-

ences in mean squared error between these three estimators we examine their bias

and variance properties (Fig. 4.5). We find that the Bayesian population vector has

similar bias and variance properties to the Bayes least squares estimator. Both of

these estimators become unbiased as the uncertainty about the sensory evidence

decreases (either with an increase in N , R, or both). However, the population

vector does not take likelihood information into account, and is therefore biased

by the prior even when sensory evidence is strong. This suggests that the stan-

dard population vector is insufficient for explaining psychophysical evidence that

suggests human observers properly take sensory uncertainty into account when

making perceptual estimates.

4.7 Experimental predictions

The simplest physiological prediction of the BPV decoder is that the preferred

stimuli of the tuning curves in a brain region thought to encode a particular sen-

sory attribute, should represent samples from the prior probability of occurrence

of that attribute. Testing other aspects of the BPV with physiological measure-

ments is difficult, as it requires directly determining neurons that are responsible

for producing estimates, characterizing their response properties (as a function of

the spike rates of the encoding population), and comparing them to the response
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properties of the hypothetical decoder neurons.

Perceptually, the BPV makes a testable prediction about estimation bias. As

the simulations show, the decoder bias depends on the observer’s sensory prior, and

the number of neurons and total average firing rates used in a task (Fig. 4.5b,e).

These biases can be measured perceptually for a human observer and compared to

those of the BPV with the parameters N and R fit to the data. The simplest way to

measure estimation bias is to give a subject a tool to indicate the perceived value of

a stimulus parameter. For example, a probe stimulus shown at low signal to noise

ratio (SNR), sL, could be briefly presented, followed by a high SNR test stimulus,

sH , that the subject could adjust until they perceived the two stimuli to be equal.

The bias in estimating the probe would then be, b(sL) = E[sH ] − sL, where the

expectation is taken across trials that used the same probe stimulus. As the SNR of

sL decreases, we assume that R decreases, thus broadening the observers likelihood

function such that their estimates will be more readily biased by the sensory prior.

We also assume that the SNR of sH is high such that the internal representation

of test stimulus is unbiased. This method of estimating perceptual bias may be

corrupted by additional motor biases involved in manipulating the tool to adjust

the test stimulus.

Alternatively, perceptual bias can be measured in a two alternative forced choice

(2AFC) paradigm where, on a given trial, subjects are presented with both high

and low SNR stimuli, and asked to report a binary decision about whether sL > sH .

The stimulus conditions under which the subject makes the correct choice 50% of

the time corresponds to the point of subjective equality, in which the internal

representations of the two stimulus values, sL and sH , are the same. If the subject
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is using the BPV decoder, this implies

ER|S [ŝBPV(~r(sL))] = ER|S [ŝBPV(~r(sH))]

b(sL) + sL = b(sH) + sH .

If the subjects estimates of the high SNR stimulus are unbiased, then perceptual

bias for the low SNR stimulus conditions is b(sL) = sH − sL. Although this

experimental paradigm eliminates potential motor biases, it requires more trials

than the estimation task to estimate perceptual biases. Nevertheless, in both

cases, evidence in support of the use of the BPV in a perceptual task may be

obtained if experimental measurements of perceptual biases match those of the

biases exhibited by the BPV for stimuli drawn from a known sensory prior.

4.8 Discussion

There is considerable evidence that human judgements of many perceptual at-

tributes can be described by Bayesian observer models, in which noisy sensory

measurements are combined with long term prior knowledge to obtain stimulus

estimates. We have elucidated a physiological substrate for this probabilistic com-

putation. To do so, we model the noisy measurement process by a population of

neurons, each tuned to particular values of the sensory attribute, such that the

tuning curves are optimized for transmitting information about stimulus values

drawn from the prior distribution. Such an efficient code implicitly embeds the

prior distribution in the density of tuning curves, and allows for the expression

of a population vector like decoder that closely approximates an explicit Bayesian
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estimator that is optimal for minimizing a square loss function.

Our basic formalism of characterizing a sensory measurement with the re-

sponses of an encoding population, followed by an estimate produced by a decoding

population, is highly oversimplified. Sensory computations occur in cascades, with

each layer adding additional noise. Designating a single neural population as an

encoder or decoder is thus somewhat artificial. Furthermore, many estimation

problems require maintaining and propagating an estimate of variable that evolves

over time. We have effectively ignored the time course of neuronal responses, which

can be used to produce and propagate stimulus estimates and their corresponding

uncertainties [138,139]. We have also assumed that neuronal responses are indepen-

dent, conditioned on the stimulus value. Neural populations do exhibit correlated

variability [86,87], and possibly higher order dependencies. A downstream decoder

must have full knowledge of these dependencies in order to compute an optimal

estimate; however, increased attention in a task can decrease correlated variabil-

ity [140], which may help justify the use of a decoder that assumes independent

responses. Despite these caveats, our results present an important step forward in

the population coding literature to understand how the brain how the brain might

represent and compute with the probabilities required by the Bayesian machinery.

In our framework, we assume the encoding of long term prior information in

the structure of the tuning curves. As a result, the prior may induce biases in

the likelihood function. To gain an intuition for how this may occur, we express

an analytical solution for a maximum likelihood (ML) estimator by assuming that

the optimally efficient tuning curves can be approximated by Gaussian functions

with mean parameters sn and standard deviation parameters σn. The resulting
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ML estimator [56, 141,142],

ŝML (~r) ≈
∑N

n=1 sn
rn
σ2
n

∑N

n=1
rn
σ2
n

,

is also similar to a population vector. In addition to the preferred stimuli corre-

sponding to samples from the prior, the tuning widths are inversely proportional

to the prior, 1
σn

∝ p(sn). As a result, spikes produced from neurons with nar-

rower tuning curves will bias the peak of the likelihood towards their preferred

stimuli stronger than spikes from neurons with wider tuning curves. As a result, it

may be possible that perceptual biases can be explained by a maximum likelihood

estimation strategy operating on the responses of an efficient population code.

Although we have described a decoder than can explicitly produce stimulus

estimates from a posterior distribution, in some cases it is desirable for the brain

to leave the representation probabilistic in order to facilitate further computations

[46, 62]. Our framework can be extended to do so, by implicitly encoding a Gaus-

sian approximation to the posterior in terms of its mean and variance parameters.

The mean of the Gaussian approximation to the posterior, µ, is approximated by

the output of the Bayesian population vector (Eq. 4.14). The variance parame-

ter approximation, σ2, can be approximated from the same importance sampling

approximation (Eq. 4.9, with f(s) = s2) as

σ2 = ES|R

[

s2
]

− E2
S|R [s]

≈
∑N

n=1 s
2
n exp

(

∑N

m=1 rm ~wm−n

)

∑N

n=1 exp
(

∑N

m=1 rm ~wm−n

) −





∑N

n=1 sn exp
(

∑N

m=1 rm ~wm−n

)

∑N

n=1 exp
(

∑N

m=1 rm ~wm−n

)





2

Computing the variance of the posterior distribution requires the same circuit
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as computing the mean, except with additional quadratic non-linearities. Such

Gaussian approximations to the posterior are common in variational approaches

to solving inference problems in machine learning [129], and in some cases it has

been shown that human observers typically only represent the mean and variance

of probability distributions [143]. We are currently developing novel perceptual

tasks to determine what types of distributions the brain chooses to encode, and

what tradeoffs are involved in learning complex distributions [134].

The Bayesian population vector consists of a cascade of three canonical neural

computations, linear filtering, exponentiation, and divisive normalization. Each

of these have considerable physiological support across a wide range of sensory

systems [144, 145]. Linear non-linear (LN) computations provide an accurate de-

scription of the functional response properties of neurons in early sensory systems

[146,147]. In these models, the linear filter is usually applied directly to the stim-

ulus variable, but here we apply it to spiking responses of an input population.

The output of the LN cascade undergoes divisive normalization, which has been

implicated in numerous theoretical goals of neural coding [144]. A small subset

of these goals include producing invariance with respect to particular stimulus di-

mensions [148], aiding the discrimination of stimuli by a downstream population

[149], reducing the statistical independence between neural responses (a noiseless

formulation of the efficient coding hypothesis) [150], and marginalizing probability

distributions [151]. Furthermore, cascades of LN processing, followed by divisive

normalization, have been proposed in the computer vision community as optimal

artificial neural network architectures for object recognition [152]. We add optimal

Bayesian estimation to the long list of rationales for these canonical computations.

Our results support the idea that the brain relies on a small set computational
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modules, that are cascaded across brain regions and sensory modalities, to solve a

diverse array of computational problems.
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a

b

c

Figure 4.3: Neural implementation of the Bayesian population vec-
tor. Panel a, example of a prior distribution over the stimulus variable.
Panel b, population code designed to maximize information transmis-
sion. Tick marks denote the preferred stimuli, sn, of each neuron which
also represent samples from the prior: sn ∼ p(s). These are also shown
as tick marks on the stimulus axis of the prior. The firing rate of each
neuron in response to a particular stimulus value is represented by a
dot color coded by the preferred stimulus of the corresponding tun-
ing curve. Panel c, to produce a Bayesian perceptual estimate of the
stimulus value that generated the observed response, the firing rate of
each cell is first convolved with a linear filter. The filter pools together
the firing rates of neurons with similar stimulus preferences (triplets
of thin gray lines). The output of this convolution is then exponenti-
ated (boxes with non-linearities) and passed to a standard population
vector decoder. The population vector weights the convolved and expo-
nentiated firing rates by the preferred stimulus of each cell (thick lines
color coded by the stimulus preferences of the encoder neurons). The
result is summed and divisively normalized by the unweighted sum of
the modified firing rates. The result is the Bayes least square estimate
of the stimulus that produced the observed population response.
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Figure 4.4: Mean squared estimation error of the Bayesian population
vector decoder and the standard population vector decoder, relative to
the omniscient Bayes least squares decoder for a variety of resource con-
straints. A relative MSE value of 1 indicates a perfect approximation to
the BLS. Values greater than 1 indicate a poor approximation. Panel a,
the Bayesian population vector accurately approximates the omniscient
Bayes least squares estimator (in terms of mean squared error) over a
wide range of resource constraints. Panel b, the standard population
vector is suboptimal in most cases.
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Figure 4.5: Bias and variance properties of the Bayes least squares
estimator, Bayesian population vector, and population vector. Each
column corresponds to a different estimator. Each row corresponds
to different resource constraints on the encoding population. The ex-
pected value of the estimates is shown in red. The estimation bias is
the deviation of this expected value from the actual stimulus (black).
Estimation variance is shown as a grey shaded region about the mean
estimates. Panels a-c, estimates obtained from the responses of an en-
coding population with N = 20 neurons with a maximum average firing
rate of 1 spike for each neuron. In this regime, all estimators have sim-
ilar bias and variance properties. Panel d-f, estimates obtained from
the responses of an encoding population with N = 20 neurons with
a maximum average firing rate of 100 spikes for each neuron. In this
regime, the BLS and BPV estimators become unbiased, but the PV
remains biased.
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Chapter 5

General Discussion

A fundamental goal in sensory neuroscience is to understand the transforma-

tions of natural signals into neural representations that enable perception. We

have explored this problem in the context of two well known theories − the effi-

cient coding hypothesis [1,2], and perception as optimal Bayesian estimation [32].

In particular, we developed a variant of the efficient coding hypothesis which led

to the prediction that heterogeneities in neural tuning and perceptual discrim-

inability arise because of heterogeneities in the prior probability of encountering

different sensory inputs in the natural environment. We supported this prediction

with environmental, physiological, and perceptual data obtained for two auditory

and three visual attributes. We then modeled perceptual estimates as arising

from an efficient encoder - Bayesian decoder cascade. We developed a neurally

plausible Bayesian decoder that extracts the embedded prior information in the

efficient encoder, and combines it with likelihood information to produce a per-

ceptual estimate. The decoder can be implemented in a LN cascade with divisive

normalization, and closely approximates an ideal Bayesian observer model. Our
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results establish a tight link between efficient coding and Bayesian estimation, and

suggest how to relate both ideas directly to data from physiological and perceptual

experiments. There are several intriguing opportunities for future research.

Our framework examines the neural and perceptual coding of sensory inputs

whose probability of occurrence in the environment is stable over long time scales.

However, both perception, and the response properties of neurons are known to

adapt to changes in sensory inputs that occur over the timescale of milliseconds

to minutes (see [153, 154] for review). For example, prolonged exposure to an ori-

ented pattern causes the perception of a subsequent test pattern to be biased away

from the adapted pattern (for small differences between the test and adaptor) [155].

Similar repulsive biases have been reported after adaptation to the direction of mo-

tion stimuli [156]. For both types of stimuli, discrimination thresholds measured

for test stimuli near the adaptor either decrease modestly [157–159], or remain

unchanged [160, 161]. Investigations into the neural correlates of these perceptual

effects have focused on examining adaptation induced changes in the tuning prop-

erties of V1 neurons responding to oriented stimuli, and MT neurons responding to

motion stimuli. In V1, adaptation causes a decrease in the gain of neurons tuned

to the adaptor, and a repulsive shift in the stimulus preferences of neurons whose

tuning curves flank the adaptor [162]. In MT, adaptation also causes a decrease

in the gain of cells tuned to the adaptor [163], but causes an attractive shift in the

stimulus preferences of tuning curves that flank the adaptor [164]. Furthermore,

the flanking tuning curves exhibit narrower tuning widths after adaptation. Taken

together, these results suggests that cortical areas may differ in their adaptation

properties.

Aspects of the physiological and perceptual consequences of adaptation are in-
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consistent with efficient coding and Bayesian estimation. If we interpret adaptation

as a means by which a neural population updates its sensory prior (by maximizing

information transmission) then the population should allocate more neurons with

narrower tuning widths to the adapted stimulus condition, and maintain a constant

gain across all neurons. This solution is inconsistent with the physiological data

showing a decrease in the gains of cells tuned to the adaptor, and in some cases a

decrease in the number of cells tuned to the adaptor. Furthermore, updating the

prior to reflect the boost in occurrence of the adapted stimulus would lead an op-

timal Bayesian estimator to exhibit attractive estimation biases, which is at odds

with the perceptually documented repulsive biases [165]. To examine whether a

temporarily suboptimal (with respect to information transmission) coding scheme

could explain adaptation, we considered what would happen if we re-optimized the

gain for the updated sensory prior while holding the cell density fixed. In this case,

the optimal gain is again constant, which implies that the neurons tuned to the

adaptor will fire (on average) more spikes, simply because the adaptor occurs more

frequently and the tuning widths no longer equalize the responses. The solution

also implies that discriminability will not be affected by adaptation. Neither of

these predictions are consistent with the data. A possible explanation for the re-

pulsive perceptual biases seen during adaptation, is that the decoder is “unaware”

of the adaptation induced changes in the encoder [96]. Such suboptimal decoding

can qualitatively account for repulsive biases, and in our framework, corresponds

to the Bayesian decoder not updating its pooling weights or preferred stimuli post

adaptation. It seems as though adaptation cannot be described by the kinds of

optimality principles explored here. Developing a complete theoretical explanation

of adaptation provides an important opportunity for future work.
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Given the physiological changes observed during adaptation, it may be possible

to develop an unsupervised learning rule (one that does not have direct access to

the sensory prior or samples from the sensory prior) that arrives at our efficient

coding solution without the explicit computation and maximization of mutual in-

formation. There are three main signals the brain could monitor and adjust over

different time scales to achieve this. First, the solution requires that the mean

response of each neuron (averaged across all possible stimuli) should be the same.

Simple forms of adaptation achieve this over relatively fast time scales, which sug-

gests that the brain has the capacity to regulate average firing rates dynamically

with changes in sensory inputs, perhaps for maintaining homeostasis. Second, the

solution requires that the tuning widths should be inversely proportional to the

sensory prior. Such changes in tuning widths could arise from sparsity constraints,

which put pressure on a neural system to minimize the number of active neu-

rons [27, 28]. For example, if a neuron is too active (its preferred stimulus occurs

frequently), then it can narrow its tuning curve to be less selective, which would

effectively decrease the number of times it responds to stimuli. Finally, the solution

requires that the neuronal tuning curves evenly tile the stimulus space. In order

to achieve this, neurons need to coordinate with their nearest neighbors, perhaps

through local recurrent connectivity, such that their responses are not overly re-

dundant. Understanding the mechanisms by which these three signals, mean firing

rate, sparsity, and redundancy, could be monitored and adjusted to arrive at an

efficient coding solution offers an important opportunity for future research.

Once the efficient code is learned, it may also be possible to learn the proper-

ties of the down stream neurons responsible for approximating Bayes least squares

estimation. Assuming the exponential non-linearity is either known a priori or
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fundamentally constrained by the neurobiology, the remaining parameters of the

Bayesian population vector are the linear pooling weights, and the preferred stimuli

of the input population. The pooling weights represent the amount of overlap be-

tween neighboring tuning curves. This knowledge could be embedded in the same

local recurrent connectivity that monitors redundancy to enforce tiling in the effi-

cient input layer. Once the pooling weights are learned, the preferred stimuli could

be learned from labeled data (pairs of stimuli and their associated neural responses

after pooling, exponentiation, and normalization) through linear regression. In an

unsupervised setting, recent work proposes an online learning rule for a Bayes least

squares estimator [166]. The learning rule requires knowledge of the probability

distribution of measurements (in our case this is the marginal distribution of re-

sponses, p(~r)) and the details of the likelihood function. Given that the brain has

unlimited access to spikes, it seems reasonable to assume that it can appropriately

estimate the marginal distribution over spike counts. Whether the brain can com-

bine this information with knowledge of its noise processes to learn the parameters

of the Bayesian population vector provides an intriguing opportunity for future

research.

In this thesis, we have provided a theoretical framework for understanding how

sensory signals get transformed into neural representations that lead to perception,

and suggested how to test the framework with environmental, physiological, and

perceptual data. The theories presented here offer only a small glimpse into the

potentially vast set of computational principles underlying the neural code. Given

recent advances in neural recording technologies and statistical methodologies, the

time seems ripe for developing and testing a new generation of theories that can

further unlock the mysteries of the brain.
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